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ABSTRACT
A new morphological gradient operator for colour images
is introduced that can be viewed as a direct extension of
the well known morphological gradient. In this approach,
each pixel is considered as multivariate data and its output
is the maximum distance between any two points within a
structuring element, determined by a norm. In contrast with
other nonlinear schemes, this approach reduces to the mor-
phological gradient for single channel images. It is also
computationally efficient and responds well to step edges.
To overcome any sensitivity to noise a robust colour mor-
phological gradient operator is proposed that rejects outly-
ing vector pairs before determining the maximum distance.
Results show the effectiveness of the techniques.

1. INTRODUCTION

Determining the gradient of an image is a fundamental im-
age processing operation that is often used as a precursor
to other, more advanced operations such as feature extrac-
tion and segmentation. Increasingly, image processing tech-
niques have to accommodate multidimensional data, such as
that found in colour and multispectral imagery, where the
application of greyscale gradient techniques to individual
channels is often inadequate. The extension of second order
differential methods to multispectral images has been con-
sidered by Cumani [1]. Compass edge detectors have been
applied to colour images in [2] and more recently by Ruzon
and Tomasi [3], who have further considered junction and
corner detection [4]. Using Bayesian theory, the maximum
a posteriori criterion was used to detect and locate edges
in vector images by Djuric and Fwu [5]. In contrast to the
above approaches, this paper considers gradient operators
for colour images based on mathematical morphology [6].

The classical morphological gradient operator for grey-
scale images is the difference between a dilation and an ero-
sion [7]. Simple operators of this type are over-sensitive
to image noise and some alternatives for practical morpho-
logical edge detection were proposed by Lee et al. [8]. At-
tempts to extend morphological operations to colour images
have been hampered by the absence of an explicit ordering

for multivariate data and this restriction is equally applica-
ble to the morphological gradient. In [9], lexicographical
ordering is used to develop a multi-scale gradient operator
for morphological segmentation. An alternative approach
is Reduced Ordering (R-ordering), in which the ordering is
performed on a set of scalar values derived from the vector
data, as used by the vector order statistics-based colour edge
detectors of Trahanias and Venetsanopoulos [10, 11]. As
this work is the most directly related to that presented here,
it is reviewed in section 2. In contrast, the colour morpho-
logical gradient operators proposed in this paper do not re-
quire an explicit vector ordering, producing the simple and
effective operators that are described in section 3. Results
and conclusions are given in sections 4 and 5 respectively.

2. VECTOR ORDER STATISTICS COLOUR EDGE
DETECTION

In the R-ordering employed by [10] and [11], the set of vec-
tors X

1,X2, · · · ,Xn are ordered according to their scalar
distances, dis, given by

di =

n
∑

k=1

∥

∥X
i − X

k
∥

∥

p
(1)

where p is a norm, to give the ordered sequence X
1 ≤

X
2 ≤ · · · ≤ X

n in which X
1 is the vector median [12].

Following from this ordering, the vector range edge detec-
tor (VRED) is defined as

V RED =
∥

∥

∥
X

(n) − X
(1)

∥

∥

∥

p
(2)

and measures the distance from the median to the extremum
vector. However, this detector will respond to a single noisy
pixel and to improve its robustness the distances to the k

highest ranked vectors can be taken into account, resulting
in the minimum vector range edge detector (MVRED),

MV RED = min
j

{

∥

∥

∥
X

(n−j+1) − X
(1)

∥

∥

∥

p

}

,

j = 1, 2, · · · , k; k < n (3)
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where k can be estimated by considering the numbers of
pixels on the smaller side of an edge. Further details of this
and other related vector edge detectors are given in [10] and
[11].

3. COLOUR MORPHOLOGICAL GRADIENT
OPERATORS

The classical definition of the morphological gradient of a
greyscale image is [7]

∇(f) = δg(f) − εg(f) (4)

for a structuring element g. To develop a colour morpholog-
ical operator, the greyscale gradient of (4) can alternatively
be expressed as

∇(f) = max
x∈g

{f(x)} − min
x∈g

{f(x)}

= max (|f(x) − f(y)|) ∀x, y ∈ g. (5)

Hence, the morphological gradient can be viewed as
the greatest absolute intensity difference between any two
pixels within the structuring element; a definition that can
easily be extended to give the colour morphological gradi-
ent (CMG) operator. Denoting {N} = 1, 2, · · · , N as the
set of N vectors contained within a structuring element g,
the CMG can then be defined as

CMG = max
i,j∈{N}

{

∥

∥

∥
X

(i) − X
(j)

∥

∥

∥

p

}

(6)

whose response is the distance between the two vectors in
the set that are furthest apart, see figure 1. Compared with
the VRED, (6) reduces to the morphological gradient of (4)
for single channel images and therefore has the potential to
provide a better estimate of the gradient. For example, the
single channel form of (2) measures the difference between
the median and either the highest or the lowest intensity de-
pending on which is furthest from the vector median, which
is only a good gradient measure for symmetric distributions.

The evaluation of (6) is also much less computationally
expensive than the VRED and only requires NC2 norms and
the same number of comparisons. However, it suffers from
the same sensitivity to noise as the classic morphological
gradient. The MVRED overcame this problem by eliminat-
ing extrema vectors, as determined by their distance from
the median. Likewise, the CMG can be made more robust
by rejecting outlier vectors although, unless the vector me-
dian is explicitly calculated, it cannot use the same approach
as the MVRED. Instead, a simple and effective technique
is proposed that, having identified the two vectors that are
furthest apart, removes all distances associated with them
from the set of norms and then recalculates the maximum.
This process can be repeated, successively removing pairs

−4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

Fig. 1. Example colour morphological gradient operators
using L2 norm. The CMG of (6) and the RCMG of (7) for
n = 1 are the lengths of sold and dotted lines respectively.

of vectors and finding the new maximum. If {CMGmaxn
}

is the set of n vector pairs eliminated, the robust colour mor-
phological gradient (RCMG) can be defined by

RCMG = max

i,j∈{N}−{CMGmaxn
}

{

∥

∥X
(i)

− X
(j)

∥

∥

p

}

. (7)

For a set of N vectors, n cannot exceed N−1
2 − 1 if

at least two vectors from the original set are to remain, al-
though in practice lower values of n are more appropriate.
Figure 1 illustrates the RCMG for n = 1 and, for noisy im-
ages, this process can be interpreted as follows. If any of
the removed vectors is an outlier, such as that found with
long-tailed noise, it will be successfully removed while if
it comes from a relatively homogeneous population its re-
moval will have little effect on the maximum norm as other,
similar vectors will exist.

4. EXPERIMENTAL RESULTS

To evaluate the proposed techniques, they are applied to the
512× 512 colour image Lenna. Figure 2 shows the original
image and the results of the CMG and VRED using a 3 × 3
mask, the L2 norm and the RGB colour space. For visuali-
sation, the edge images are normalised to a 0 − 255 range.
It can be seen that although the CMG is computationally
simpler its performance is very similar to that of the VRED
both at edges and in the homogeneous regions. This result
is interesting as its demonstrates that the explicit ordering
used by the VRED and [9] is not a requisite for successful
colour edge detection using morphological operators.

Figure 3 shows the response of the gradient operators
in figure 2(b) and (c) for the portion of row 99 marked in
figure 2(a). This location was chosen as it provides a cross-
section through the boundary between Lenna’s hat and the
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Fig. 2. Colour edge operator results: (a) original im-
age showing position of cross-section used in figure 3, (b)
VRED result with 3× 3 mask and (c) CMG for 3× 3 mask.
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Fig. 3. CMG and VRED gradient magnitudes for row 99,
columns 280−349 of Lenna, marked in figure 2(a) opposite.

background. In the hat and background regions both edge
detectors provide a similar response, with the magnitude of
the CMG above that of the VRED as would be expected
from the theory. On the edge the VRED response shows
a local minimum at the centre of the edge. This response,
which was typical of those along this edge, shows that the
one-sided difference between the vector median and vector
extremum does not always estimate the true gradient. In
contrast, the CMG response across the edge is well behaved
and shows a peak at the desired position.

To test the sensitivity of the RCMG operator to noise,
15% of the pixels in Lenna were replaced by uniformly dis-
tributed random noise, see figure 4(a). For this level of noise
it was found that neither the VRED nor the CMG produce
a meaningful gradient image. With a mask size of 3 × 3
the RCMG result still suffers from noise, even when the
maximum value of n = 3 is used, see figure 4(b). This
is initially somewhat surprising as only 3 vectors, giving 3
unique norms, remain. However, examination of the un-
processed image, where the high response is due to noise,
reveals that they occur when 6 or more of the pixels in the
3×3 mask are noise points. When the mask size increases to
5×5 the results are improved, see figure 4(b), with the only
expense being a small reduction in the overall magnitude of
the CMG response.

5. CONCLUSIONS

The CMG has been proposed as a morphological gradient
operator for multivariate images. For a single channel input
image, the CMG’s output is identical to the classical mor-
phological gradient, resulting in a filter that provides a good
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estimate of the true gradient in colour images. Its results are
achieved without the computational expense of other non-
linear colour edge detectors, by virtue of the fact that it does
not require the vectors to be ordered in order to evaluate the
colour gradient.

As the response of the CMG is given by the maximum
distance between any two points within the structuring el-
ement, it is sensitive to noise. To improve its robustness,
outlier vector pairs can be eliminated before the maximum
distance is determined, producing the RCMG. Again, by
ranking pairs rather than individual vectors, an explicit vec-
tor ordering is not required. Results show that the RCMG
performs well with noisy images providing the mask size is
sufficient to contain the requisite number of noise-free pix-
els. Improving the performance of the CMG for short-tailed
noise is an area of ongoing research.
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Fig. 4. RCMG results: (a) Lenna with 15% of pixels re-
placed with uniform random noise, (b) RCMG for 3 × 3
mask with n = 3 and (c) RCMG for 5×5 mask with n = 9.
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