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Abstract

Morphological sieves are a popular tool for scale-space
image analysis. Recent work has considered the develop-
ment of colour and multichannel sieves, and their appli-
cation to image segmentation. This paper proposes a new
colour sieve based on the geometry of the local convex hull,
providing a more flexible approach to extrema definition.
Results show the new approach to have a similar segmenta-
tion performance to existing colour sieves but with an im-
proved performance in terms of noise reduction.

1. Introduction

Scale-spaces formed from greyscale images are an im-
portant tool for hierarchical image analysis. Traditionally,
the scale-spaces are linear and are created by employing the
diffusion equation [11]. More recently, the application of a
series of structuring elements of increasing scale have been
used by several researchers to form morphological scale-
spaces, for example see [10] and [14]. However, in com-
mon with linear scale-spaces, scale-spaces based on struc-
tural morphology do not obey the property of strong causal-
ity with the result that new boundaries can be created, and
the position of edges can drift, with increasing scale [1].
Alternatively, morphological sieves based on connected op-
erators possess the property of strong causality and, as they
employ area operators, require no a priori knowledge of the
shape of image objects [2, 1]. In addition, sieves have low
computational complexity and are robust to noise [9].

Morphological sieves are useful for many image pro-
cessing applications. At small scales they can be used to
remove image noise [19, 18]. At larger scales, sieves pro-
duce regions that show correspondence with image objects
and have been formally related to segmentation algorithms
based on region merging/classification [6]. Consequently,

they have been employed in applications such as segmen-
tation and classification [16, 1]. Although colour plays an
important role in the segmentation process [13], the devel-
opment of multichannel sieves is problematic as their un-
derlying morphological operations require regional maxima
and minima to be identified and processed. As no unique or-
dering for multivariate data exists, these operations cannot
easily be extended to colour images.

The convex colour sieve (CCS) [7] and the vector area
morphology sieve (VAMS) [5] were proposed indepen-
dently in 2003 and address the problem of extending mor-
phological sieves to colour images. These two approaches,
although differing in the details, have algorithms that essen-
tially follow the same steps and the main difference in their
performance results from their approaches to defining ex-
trema [8]. The CCS forms a convex hull from each pixel and
its connected neighbours and then defines a pixel as extreme
(resp. non-extreme) if it lies on the edge (resp. interior) of
the hull. The VAMS first forms a scalar image in which
the value of each pixel is the mean aggregate distance to
its connected neighbours, assessed using a norm, and then
identifies extrema as the maxima in the scalar surface. Re-
cent analysis has shown that the binary decision used by the
CCS produces a very high proportion of extrema and an ag-
gressive filtering action. In contrast the VAMS has fewer
extrema and hence a lower computational cost. However, a
lower proportion of extrema also results in less image sim-
plification for a given scale. The VAM Open-Close Sieve
(VAMOCS) increases the aggressiveness of the VAMS by
also sieving the minima in the scalar surface produced by
the VAMS [8]. These minima correspond to “nearly flat” re-
gions and their inclusion in the merging process was shown
to produce an improved segmentation performance.

As the surface produced by the CCS is binary every pixel
is either extreme or non-extreme and the inclusion of min-
ima would result in every pixel participating in the merg-
ing process. This paper proposes a new sieve, termed the
Positional Colour Sieve (PCS), which addresses this prob-
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lem by deriving a scalar surface from the geometry of the
local convex hull. This process reduces the proportion of
pixels that are categorised as extreme and also allows the
closing operation of the VAMOCS to be incorporated into
the PCS structure, giving the Positional Colour Open-Close
Sieve (PCOCS).

This paper is organised as follows: Section 2 reviews
colour sieves and describes the PCS algorithm. A perfor-
mance evaluation is presented in section 3, including noise
reduction and a quantitative evaluation of the segmentation
performance using the Berkeley segmentation dataset. Fi-
nally, conclusions are given in section 4.

2. Colour sieves

A main steps of a generalised colour sieve algorithm are
given in [8] as:

1. Identify all extreme regions;
2. Merge all scale 1 extrema regions with their nearest

neighbour;
3. Repeat steps 1 and 2 until no extrema are found at cur-

rent scale;
4. Repeat steps 1 to 3 with increasing scale until only 1

region remains.

Compared with its better known greyscale counterpart
that processes the maxima and minima separately, colour
sieves simply process extrema as they cannot distinguish
between maxima and minima. The merging process in step
2 is analogous to that of the greyscale sieve and changes the
colour of each extreme region to that of its closest neigh-
bour, as assessed using the Euclidean distance. However,
the merging is not guaranteed to produce a non-extreme re-
gion and, in addition, can create new extrema close to the
merged regions. As a consequence, in colour sieves the ad-
dition of step 3 is necessary to ensure idempotence. Steps 1
and 2 are therefore repeated at each scale and, as the num-
ber of extrema found depends on the definition of extrema
adopted, this is a critical factor in the performance of the
sieve.

The CCS defines extremeness in terms of membership
of its local convex hull: if a point is on the edge of the
local convex hull consisting of the point and its connected
neighbours, then it is extreme. This method reduces to a
combined opening and closing for greyscale images and
can be extended to any number of dimensions. In addi-
tion, its extremum definition is also invariant to rotation and
linear transformations of the axes. The main disadvantage
of this method is the number of extrema: an-dimensional
hull needs at leastn+1 points to be non-degenerate, which
means a high proportion of the points are classified as ex-
treme, giving an aggressive sieving action. For example,
figures 1(a) and (b) show a complex image and the convex

0+0i 3+4i 3+4i 2−3i 4−5i

4+1i 4+1i 3+4i 0−7i 3+2i

9+3i 0+0i 0+0i −1+2i 3+2i

9+3i 7−5i 7−5i −1+2i 2+1i

0+2i 0+2i 7−5i −1+2i 2+1i

(a) Complex image
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(d) PCS scalar image

Figure 1. Colour sieves example using 8nn
connectivity. Extrema marked in bold in (c)
and (d).

hull for the 0 + 0i region. As0 + 0i lies inside the hull
it is not extreme. However, using this definition, there is
only one other non-extreme region in the image. As well
as increasing the processing load, classifying the majority
of pixels as extreme does not fit well with an intuitive inter-
pretation of extrema as outliers.

An alternative definition of extrema is provided by the
VAMS. Here, extrema are the maxima of a scalar surface
in which each region is assigned the average aggregate dis-
tance from each pixel in the region to its neighbours. In fig-
ure 1(c) this results in only 2 extreme regions, whose values
are clearly different from their neighbours. Minima in the
scalar image correspond to regions that are closer to their
neighbours than their connected neighbours are to theirs and
the VAMOCS also identifies and processes these, producing
an improved segmentation performance [8]. In figure 1(c)
the 4 corners are minimum regions, with similar values to
their surrounding points.

The PCS aims to derive a scalar surface from the ge-
ometry of the local convex hull. This approach has several
advantages: unlike the VAMS, the extrema will not be af-
fected by rotation of the axes, the number of extrema will be
more in line with expectations, and it will also enable min-
ima to be identified and processed. In the approach adopted
here, the value of each point in the scalar image depends on
the following criteria:

1. The angle with neighbouring points. For points on
the exterior of the hull the angle is measured using
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Figure 2. PCS example for 0+0i region from
figure 1(a).

neighbouring exterior points. For points inside the hull
the maximum angle to neighbouring exterior points is
used. When all points are in a plane the maximum
angle isπ so, to avoid bias, all angles are scaled to a
0 − π range. As the angle reduces the point becomes
more extreme, so it is subtracted from the maximum
angle to give an increasing measure.

2. The normalised distance, measuring the extremeness
of the position. The first step in finding this mea-
sure is to define 3 points, the original point (o), the
point furthest fromo (f1) and the point furthest from
f1 (f2). The normalised distance is then given by
(of1 + of2)/f1f2 or 2of1/f1f2 = 2 wheno andf2

are the same point. The measure is shifted to a range
of 0–1 by subtracting 1.

A measure of extremeness is then given by the product of
the angle and the normalised distances measures. This mea-
sure overcomes the problem of using the angular measure in
isolation, as points that are close to coplanar can be differ-
entiated by the distance measure. Similarly, points that are
located amid similar neighbours are less likely to be classi-
fied as extreme. Finally, a third criterion is added to ensure
that points within the hull are not classified as extreme:

3. Whether the point is within or on the edge of the hull.
As extrema are not expected to occur within the hull,
the scalar product of measures 1 and 2 is augmented
by π for points on the edge of the hull. Points coplanar
or collinear with edges are considered to be in the hull.

This process is illustrated for the(0 + 0i) region previ-
ously considered (see figure 2):

• The maximum angle isarccos (−14/
√

5 ∗ 49) =
2.678 rad (using points(0−7i) and(−1+2i)), giving
a measure ofπ − 2.678 = 0.464 rad.

scale VAMS CCS GSAOCS PCS PCOCS

1 2209 33616 4062 8889 17433
41207 41207 41207 41207 41207

2 1054 12852 1973 3602 5695
37199 16402 36553 30775 22189

10 151 2211 424 667 134
27547 2878 28457 15548 5020

50 21 456 110 918 189
19660 572 20697 7546 1132

100 8 223 63 71 96
16102 279 17040 5435 559

500 1 44 11 13 19
8024 53 9114 2498 97

1000 1 23 7 7 12
6871 25 6150 1478 40

Table 1. (Number of extreme regions)/(total
number of regions) for Lily image.

• Pointf1 = (9 + 3i) and is9.49 from pointo (0+0i),
and pointf2 = (0−7i) is 13.45 fromf1 and 7.00 from
pointo.

• Sincef1f2 6= of1, points o andf2 are not the same
there is no need to scaled2. The normalised distance
(9.49 + 7)/13.45− 1 = 0.225

• The final measure is0.464× 0.225 = 0.1045.

Repeating the above process for all regions in figure 1(a)
produces the PCS scalar image shown in figure 1(d) in
which there are 3 extrema (maxima) and also 3 minima.

Figure 3 shows the distribution of initial extrema at se-
lected scales for the test images Lily and Lenna. The frac-
tion of Lily’s regions that are extreme are given in table 1
and were similar to the fractions obtained for Lenna. The
PCS initially has roughly four times the number of extreme
regions as the VAMS but only a quarter the number of the
CCS; this factor of four occurs by chance. As each ex-
tremum has to be merged with its closest neighbour, the ag-
gressiveness of the PCS’s sieving action should therefore lie
somewhere between the VAMS and the CCS. The fractions
for the PCOCS in table 1 also includes minima, which relate
to nearly flat regions. The PCOCS also processes the min-
ima regions in the scalar surface and, as scale increases the
total number of regions reduces through the merging pro-
cess; this explains why the PCOCS achieves a more rapid
reduction in total regions, and hence more image simplifi-
cation.
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(a) Original images

(b) CCS extrema (white)

(c) VAMS extrema (white)

(d) PCS scalar surface

(e) PCS maxima

Figure 3. Colour sieve extrema for Lily and
Lenna images.

3. Experimental results

The PCS was evaluated on a number of natural images
and the results for the Lily (186 × 230 pixels) and Lenna
(512× 512 pixels) are representative of those obtained. For

(a) PCS

(b) PCOCS

(c) VAMS

(d) CCS

(e) GSAOCS

Figure 4. Sieve results for Lily image. Area =
10 (left), 100 (centre) and 1000 (right).

comparison, the images were also sieved with the CCS, the
VAMS and the VAMOCS. All colour sieves used 4 near-
est neighbour connectivity and theL2 norm. In addition,
results for the greyscale area-open-close sieve (GSAOCS)
were obtained, using brightness as the ordering factor.

The results of sieving the Lily and Lenna images are pre-
sented in figures 4 and 5. All sieves preserve significant
boundaries through scale. An indication of the aggressive-
ness of the sieving action is given by the amount of im-
age simplification at each scale and the results show broad
agreement with the proportion of extrema detailed in the
previous section; those sieves that have the highest propor-
tion of extrema produce the most image simplification at a
given scale. Figures 4 and 5 show the aggressiveness of the
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(a) PCS

(b) PCOCS

(c) VAMS

(d) CCS

(e) GSAOCS

Figure 5. Sieve results for Lenna image. Area
= 100 (left), 1000 (centre) and 10000 (right).

PCS falls between the VAMS and CCS and a quantitative
evaluation of the segmentation performance is presented in
section 3.2.

3.1. Noise Reduction

To evaluate the ability of the sieves to remove noise, the
Lily test image was corrupted with light (1%) and moderate

Method - Imp1 Imp2 Gaus1 Gaus2
- 0 1.17 10.77 4.56 26.13

VAMS 0.83 0.38 1.40 3.18 9.57
CCS 1.15 0.49 1.64 3.10 9.69

GSAOCS 0.40 0.21 1.80 3.45 17.95
PCS 0.52 0.25 1.19 2.44 8.52

Table 2. NMSE (×10−2) for colour sieves ap-
plied to Lily image.

Method - Imp1 Imp2 Gaus1 Gaus2
- 0 1.05 9.95 17.56 35.12

VAMS 1.55 0.66 2.07 13.01 19.56
CCS 2.57 1.30 2.59 11.83 16.06

GSAOCS 1.03 0.49 2.49 15.01 30.30
PCS 1.64 0.66 1.86 10.20 16.75

Table 3. MCRE (×10−2) for colour sieves ap-
plied to Lily image.

(10%) impulsive noise and with moderate (σ2 = 103) and
heavy (σ2 = 104) Gaussian noise. In colour image pro-
cessing, the normalised mean square error (NMSE) and the
mean chromaticity error (MCRE) are two widely used met-
rics that provide objective error measures [17]. The NMSE
is given by

NMSE(f , f) =

∑M
x=1

∑N
y=1

∥∥fxy − fxy

∥∥2

∑M
x=1

∑N
y=1 ‖fxy‖2

(1)

whereM and N are the image dimensions, andfxy and
fxy are the original and processed pixels at location(x, y)
respectively. The MCRE is defined as the distance between
the intersection points offxy and fxy with the Maxwell
triangle. When the triangle is defined on the unit plane this
gives

MCRE(f , f) =

(
M∑

x=1

N∑
y=1

(
(rxy − rxy)2+

(gxy − gxy)2 + (bxy − bxy)2
)1/2

)
/(MN) (2)

wherer, g andb are the normalised RGB values [3].
The noise-corrupted images were sieved over range of

areas and, at each scale, the NMSE found. The minimum
NMSE and corresponding MCRE for each sieve are given
in tables 2 and 3 respectively. Results show that with no
added noise the GSAOCS produces the least image distor-
tion. When noise is added, the PCS has the lowest NMSE
and MCRE measures for all noise types except light impul-
sive noise, where its performance is similar to the GSAOCS.
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This shows that the definition of extrema used by the PCS
successfully identifies noise points. It was also found that
for higher levels of noise the minimum NMSE occurred at
larger scales for lower noise levels. The PCOCS was not
included in this evaluation as the main benefit of its use of
closings is for segmentation rather than noise reduction.

3.2 Image Segmentation

An evaluation of the segmentation performance of
the colour sieves was undertaken using the Berkeley
database [12], a set of natural images and human ground
truth segmentations. To provide a quantitative performance
measure precision-recall (P-R) curves of [13] were em-
ployed. These are a variant of ROC curves where precision
is the normalised number of identified boundary pixels (true
positive/total positive) and recall is the proportion of identi-
fied pixels or the false-negative rate (true positive/total true
positive). These metrics have the advantage of being inde-
pendent of scale, unlike the ROC curve, and are an alter-
native to other metrics such as the global coherency error
(GCE). They also enable segmentation performance to be
characterised by a single figure (the F-measure), given by
the harmonic mean of precision and recall.

By increasing the scale until the sieve images contained
a fixed number of regions, and varying the number of re-
gions, P-R curves for each sieve were obtained. Figure 6
presents the average P-R curves for 100 images from the
dataset with the corresponding F-measures given in table 4.
Results show the segmentation performances of the CCS,
PCS and PCOCS to be very similar. Although the process-
ing of minima by the PCOCS reduces the number of regions
at which the peak F-measure occurs from 300 to 30, the F-
measure is unchanged. This is unlike the VAMOCS where,
in comparison with the VAMS, an improved F-measure oc-
curs with a reduced number of regions. For comparison, the
curve for a random segmentation is also shown. This was
generated by marking all regions as extreme and randomly
selecting the neighbour to merge with, an approach more
appropriate than that described on the web site associated
with [13].

Sieving the entire tree to the same level is known to
be sub-optimal in terms of segmentation performance but
has the advantage of maintaining idempotency. Segmenta-
tion can also be achieved by constructing a scale-tree from
the sieve decomposition and then pruning the tree appropri-
ately [4]. Therefore, examining the scale trees of figure 7
provides an indication of the sieves’ segmentation poten-
tial. The CCS gives a balanced tree structure with a low tree
depth, with similar numbers of child in each branch and few,
if any, leaf nodes off the root. In contrast, the PCS tree re-
sembles that of the VAMS, with a high tree depth and some
leaves close to the root as fewer regions are removed at each
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Figure 6. Average Precision-Recall curves for
100 images from the Berkeley Dataset.

step. Another factor which influences the segmentation per-
formance is the merging rule. For the PCS and PCOCS the
colour of all extrema was changed to that of their closest
neighbour. However, the use of other merging rules, such
as those suggested by Salembier and Garrido [15], may pro-
vide better results, especially at higher scales.

To provide an indication of the robustness of the seg-
mentations to image noise, the Lily image was corrupted by
mixed impulsive and Gaussian noise and sieved as before,
see figure 8. Comparing these results with the noise-free
ones of figure 4 shows that all sieves are influenced by noise
to some degree, even at high scales.

The final aspect to be considered is the computational
complexity, as assessed by the processing times. A com-
prehensive evaluation of these was undertaken in [8] for
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Method F-measure (R,P) Regions
Human 0.79 (0.70,0.90) -

GSAOCS 0.46 (0.50,0.44) 300
CCS 0.49 (0.61,0.41) 30

VAMS 0.40 (0.51,0.32) 100
PCS 0.48 (0.65,0.38) 300

PCOCS 0.48 (0.62,0.39) 30
VAMOCS 0.51 (0.61,0.43) 50
Random 0.38(0.80,0.25) 300

Table 4. F-measure and number of regions for
P-R curves of figure 6.

VAMS, VAMOCS, CCS and GSAOCS. The PCS imple-
mentation used here is 2-3 times slower than the CCS, due
to the multiple hull calculations. One reason for this is that
the local convex hull is constructed at each scale rather than
updated. Storing and updating the hull has the potential of
reducing the complexity of the PCS, PCOCS and the CCS.

4. Conclusions

A new colour morphology sieve has been described and
evaluated. The PCS uses the geometry of the local convex
hull to construct a scalar surface in which extrema can be
identified. Compared to the CCS, fewer extreme regions re-
sult from this approach to extrema definition. In addition,
the PCS allows the use of closings to flatten homogenous re-
gions. Result show that although the number of extrema is
more realistic, this does not translate into an improved seg-
mentation performance and this is supported by an analysis
of the scale-tree. Furthermore, although the use of closings
reduced the number of regions it did not result in the same
benefit as for the VAMOCS.

Notwithstanding, the PCS produced the best overall per-
formance in terms of noise removal indicating that there
is some merit in its extremum definition. Areas of further
work include the development of more advanced tree prun-
ing and rules for region merging algorithms, with the aim
of further improving the segmentation performance.
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