
Recap of material from notes

A family a = (a~)0<~≤~0
, with a~ ∈ C∞(T ∗Rd), is a symbol of order m, written as a ∈ Sm(Rd), if, for any

multiindices α, β, there exists Cα,β such that

|∂αx ∂
β
ξ a~(x, ξ)| ≤ Cα,β〈ξ〉m−|β| for all (x, ξ) ∈ T ∗Rd and for all 0 < ~ ≤ ~0 (0.1)

For a ∈ Sm, we define the semiclassical quantisation of a, Op~(a) by

(
Op~(a)v

)
(x) := (2π~)−d

∫
Rd

∫
Rd

exp
(
i(x− y) · ξ/~

)
a(x, ξ)v(y) dydξ (0.2)

for v ∈ S (Rd), where the integral is understood as an iterated integral, with the y integration performed first,
i.e., (

Op~(a)v
)
(x) = (2π~)−d

∫
Rd

exp
(
ix · ξ/~

)
a(x, ξ)F~v(ξ) dξ. (0.3)

Lemma 0.1. Op~(a) : S (Rd)→ S (Rd).

Theorem 0.2. (Composition and mapping properties of semiclassical pseudodifferential opera-
tors.) If A ∈ ΨmA

~ and B ∈ ΨmB

~ , then

(i) A∗ : S (Rd)→ S (Rd) and A∗ ∈ ΨmA

~ ,

Lemma 0.3. If a ∈ ~∞S−∞, then Op~(a) = O(~∞)Ψ−∞ .

Definition 0.4. (Operator wavefront set.) (x0, ξ0) ∈ T ∗Rd is not in the semiclassical operator wavefront
set of A = Op~(a) ∈ Ψm

~ , denoted by WF~A, if there exists a neighbourhood U of (x0, ξ0) such that for all
multiindices α, β and all N ≥ 1 there exists Cα,β,N,U > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,N,U~N for all (x, ξ) ∈ U and 0 < ~ ≤ ~0; (0.4)

Definition 0.5. (Symbol class Smphg.) a ∈ Smphg if a ∈ Sm and there exist aj ∈ Sm−j, independent of ~, such

that, for all N ∈ Z+,

a−
N−1∑
j=0

~jaj ∈ ~NSm−N . (0.5)

If A = Op~(a) for a ∈ Smphg, we write A ∈ Ψm
phg.

Lemma 0.6. (Definitions of compactly and properly supported in terms of cut-off functions.)
(i) A is compactly supported iff there exist χ1, χ2 ∈ D such that A = χ1Aχ2.
(ii) A is properly supported iff for any χ ∈ D there exist χ1, χ2 ∈ D such that

χA = χAχ1, Aχ = χ2Aχ.

Theorem 0.7. (Borel’s theorem.) Given aj ∈ Sm−j, j = 0, 1, . . ., there exists a ∈ Sm such that a ∼∑∞
j=0 ~jaj (in the sense of (0.5)).

Lemma 0.8. Suppose a ∈ Sm and aj ∈ Sm−j j = 0, 1, . . . are such that a ∼
∑∞
j=0 ~jaj. If aj ∈ Sm−jphg , then

a ∈ Smphg.

0.1 Exercises for Section 7

1. (i) Show that a(x, ξ) =
∑
|γ|≤m aγ(x)ξγ , where aα ∈ C∞ and ∂γaα ∈ L∞ for all γ and α, is in Sm.

(ii) Show that 〈ξ〉−m ∈ S−m for m ∈ Z+.

(iii) Show that if χ ∈ C∞comp(T ∗Rd), then χ ∈ S−N for every N ≥ 1.

Solution: (i)

∂αx ∂
β
ξ a(x, ξ) =

∑
|γ|≤m

∂αx aγ(x)

{
γ!((γ − β)!)−1ξγ−β if β ≤ γ,
0 otherwise.

The bound in (0.1) then follows since, when β ≤ γ,

|ξγ−β | ≤ |ξ||γ|−|β| = |ξ|m−|β| ≤ 〈ξ〉m−|β|.
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(iii) Since χ has compact support, ∂αx ∂
β
ξ χ(x, ξ) vanishes as |ξ| → ∞ faster than |ξ|−N for any N > 0, and

thus χ ∈ S−N for every N ≥ 1.

(ii) If we can show that 〈ξ〉−1 ∈ S1, then the result follows from the composition property (a ∈ Sm, b ∈ S`,
then ab ∈ Sm+`). We now prove by induction that for all β ∈ Nd,

∂βξ 〈ξ〉
−1 =

∑
|α|≤|β|

Pα(ξ)〈ξ〉−1−|α|−|β| (0.6)

for some polynomials Pα of degree |α|. Indeed, assume that this holds for some β, and consider

∂ξi

[
Pα(ξ)〈ξ〉−1−|α|−|β|

]
= (∂ξiPα(ξ))〈ξ〉−1−|α|−|β| + (−1− |α| − |β|)Pα(ξ)〈ξ〉−1−|α|−|β|−1 ξi

〈ξ〉
= (∂ξiPα(ξ))︸ ︷︷ ︸

degree |α| − 1

〈ξ〉−1−(|α|−1)−(|β|+1)

+ (−1− |α| − |β|) ξiPα(ξ)︸ ︷︷ ︸
degree |α|+ 1

〈ξ〉−1−(|α|+1)−(|β|+1);

therefore (0.6) holds for multiindices of order |β|+ 1.

Having proved (0.6), we now bound |∂βξ (〈ξ〉−1)|. To do this, we use the following lemma.

Lemma. Suppose that F (X) = P (X)〈X〉−m, where P is a polynomial of degree `. Then there exists a
constant C such that for all X ∈ Rd,

|F (X)| ≤ C〈X〉`−m .

Proof. It suffices to show that the function

R(X) := P (X)〈X〉−`

is bounded on Rd. We first note that since R is continuous on Rd, it is bounded on the unit ball. Next
we consider R outside the unit ball and write

R(X) =

∑
|α|≤` aαX

α

(1 + |X|2)`/2

Hence, for |X| ≥ 1,

|R(X)| ≤
|X|`

∑
|α|≤l |aα|
|X|`

≤
∑
|α|≤`

|aα| .

This proves that R is also bounded outside the unit ball, and the result follows.

By (0.6), ∣∣∂βξ 〈ξ〉−1
∣∣ ≤ ∑

|α|≤|β|

∣∣Pα(ξ)
∣∣〈ξ〉−1−|α|−|β|. (0.7)

By the lemma, there exists Cα such that, for all ξ ∈ Rd,

‖Pα(ξ)〈ξ〉−1−|α|−|β|‖ ≤ Cα〈ξ〉−1−|β|;

thus, for all ξ ∈ Rd,
|∂βξ 〈ξ〉| ≤

(∑
α

Cα

)
〈ξ〉−1−|β|;

i.e., 〈ξ〉−1 ∈ S−1.

2. Prove Lemma 0.1. Hint: perform the y integral in (0.2) and then use the definition of S(Rd).
Solution: by performing the y integral,(

Op~(a)v
)
(x) = (2π~)−d

∫
Rd

exp
(
ix · ξ/~

)
a(x, ξ)F~v(ξ) dξ,
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so that

xα∂βx

((
Op~(a)v

)
(x)
)

=
xα

(2π~)d

∫
Rd

∂βx

(
exp

(
ix · ξ/~

)
a(x, ξ)

)
F~v(ξ) dξ,

=
xα

(2π~)d

∫
Rd

exp
(
ix · ξ/~

) ∑
γ:|γ|≤|β|

(
β
γ

)(
iξ

~

)β−γ
∂γxa(x, ξ)

F~v(ξ) dξ.

The idea now is to integrate by parts on the right-hand side, bringing down inverse powers of |x| to show
that the right-hand side is bounded. A convenient way to do this is to observe that, with D := (1/i)∂,(

1 + x ·Dξ

1 + |x|2/~

)
exp(ix · ξ/~) = exp(ix · ξ/~),

so that, for any m,

xα∂βx

((
Op~(a)v

)
(x)
)

=
xα

(2π~)d

∫
Rd

exp
(
ix · ξ/~

)(1− x ·Dξ

1 + |x|2/~

)m  ∑
|γ|≤|β|

(
β
γ

)(
iξ

~

)β−γ
∂γxa(x, ξ)

F~v(ξ)

 dξ.

Since F~v ∈ S (Rd) and the derivatives of a(x, ξ) satisfy (0.1), the integral on the right-hand side of this
last equation is finite, and the result follows by choosing m > |α|.

3. Prove Part (i) of Theorem 0.2 in the special case when A is a Fourier multiplier. Solution:

〈
Op~(a)u, v

〉
Rd =

∫
Rd

(∫
Rd

∫
Rd

ei(x−y)·ξ/~a(ξ)u(y) dy dξ

)
v(x) dx

=

∫
Rd

(∫
Rd

∫
Rd

ei(y−x)·ξ/~a(ξ)v(x) dxdξ

)
u(y) dy =

〈
u,Op~(a)v

〉
Rd .

4. Prove Lemma 0.3. Hint: given s > 0, N ≥ 1, choose an appropriate M ≥ 1, and use that a ∈ ~MS−M .

Solution: Given s > 0, N ≥ 1, let M := max{N, 2s}. By definition a ∈ ~MS−M , and so, by Part (iv) of
Theorem 0.2, given ~0 > 0, there exists Cs,M such that

~−M ‖Op~(a)‖H−s
~ →H

−s+M
~

≤ Cs,M for all 0 < ~ ≤ ~0.

Then, since M ≥ 2s, by the definition of ‖ · ‖Hs
~
,

‖Op~(a)‖H−s
~ →H

s
~
≤ ‖Op~(a)‖H−s

~ →H
−s+M
~

≤ Cs,M~M . Cs,M~N ,

and thus Op~(a) = O(~∞)Ψ−∞ by the definition of the latter.

5. If P~u := −~2∇ · (A∇u)− nu, show that

(i) P~ is the quantisation of a symbol in S2
phg, and

(ii) σ~(P~) = (Aξ) · ξ − n ∈ S2.

Solution: since P~u = −~2Aj`∂j∂`u−~2(∂jAj`)(∂`u)−n, the fact that P~ = Op~
(
(Aξ) ·ξ−n− i~ξ`∂jAj`

)
follows from the definition of Op~. The fact that the symbol is in S2

phg follows from Definition 0.5, and

the fact that σ~(P~) = (Aξ) · ξ − n ∈ S2 then follows from the fact that ~ξ`∂jAj` ∈ ~S1.

6. Prove that if a(x, ξ) is independent of ~, then WF~(Op~(a)) = supp a. Solution: If (x0, ξ0) /∈ supp a, then
there exists a neighbourhood U of (x0, ξ0) such that a(x, ξ) = 0 for all (x, ξ) ∈ U . Therefore, by (0.4),
(x0, ξ0) ∈ (WF~(Op~(a))c; i.e., (supp a)c ⊂ (WF~(Op~(a))c.

Conversely, if (x0, ξ0) ∈ (WF~(Op~(a))c and a is independent of ~, then by (0.4) there exists a neigh-
bourhood U of (x0, ξ0) such that a(x, ξ) = 0 for all (x, ξ) ∈ U . Therefore (x0, ξ0) ∈ (supp a)c; i.e.
(WF~(Op~(a))c ⊂ (supp a)c.
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7. Prove Lemma 0.6. Solution:

(i) ⇒ Since KA is compactly supported, there exist χ1, χ2 ∈ D such that

KA(x, y) = χ1(x)KA(x, y)χ2(y). (0.8)

⇐ The assumption implies that there exist χ1, χ2 ∈ D such that (0.8) holds. Since χ1 and χ2 both have
compact support, so does KA.

(ii)⇐ Given a compact X ⊂ Rd, there exists χ
X
∈ D such that χ

X
= 1 on X. By assumption there exists

χ
Y
∈ D such that χ

X
A = χ

X
Aχ

Y
. Thus

χ
X

(x)KA(x, y) = χ
X

(x)KA(x, y)χ
Y

(y) for all x, y ∈ Rd. (0.9)

Therefore

{(x, y) ∈ suppKA : x ∈ suppX} ⊂ {(x, y) ∈ suppKA : x ∈ suppχ
X
} ⊂ suppχ

Y
,

which is compact. The proof that, for compact Y , {(x, y) ∈ suppKA : y ∈ suppY } is compact is similar.

⇒ Given χ
X
∈ D, by assumption {(x, y) ∈ suppKA : x ∈ suppχ

X
} is compact. Therefore there exists

χ
Y
∈ D such that χ

Y
= 1 on this last set. Then (0.9) holds so χ

X
A = χ

X
Aχ

Y
. The proof that, given

χ
Y
∈ D there exists χ

X
∈ D such that Aχ

Y
= χ

X
Aχ

Y
is similar.

8. Prove Theorem 0.7 via the following steps.

(a) Let χ ∈ C∞comp(R) with χ ≡ 1 on [−1, 1]. Show that if {λj}∞j=0 ⊂ R with λj →∞, the sum

a(x, ξ) :=
∞∑
j=0

χ

(
λj~
〈ξ〉

)
~jaj(x, ξ)

converges.

Solution: Given ξ0 and ~ > 0, since λj → ∞ and χ has compact support, there exists J ∈ Z+ such
that χ(λj~〈ξ〉−1) = 0 for all j ≥ J . Therefore, for each x0, ξ0, and ~ > 0, the sum converges since
there are at most finitely-many non-zero terms.

(b) Show that, given β and χ ∈ C∞comp(R), there exists Cβ,χ such that

∂βξ

(
χ

(
λj~
〈ξ〉

))
≤ Cβ,χ

λj~
〈ξ〉1−|β|. (0.10)

Solution: We prove the result via induction on |β|. For |β| = 0, we write

χ

(
λj~
〈ξ〉

)
=
λj~
〈ξ〉

χ

(
λj~
〈ξ〉

)
〈ξ〉
λj~

,

and the result for |β| = 0 holds with C0,χ = supt∈R tχ(t).

Now

∂ξi∂
β
ξ χ

(
λj~
〈ξ〉

)
= ∂βξ

(
−λj~ξi
〈ξ〉3

χ′
(
λj~
〈ξ〉

))
. (0.11)

By Exercise 1, ξi ∈ S1 and 〈ξ〉−1 ∈ S−1.

Our aim is to apply the Leibniz formula to the right-hand side of the last displayed equation, and
use the induction hypothesis. However, a direct application of this to (ξi〈ξ〉−3)χ′ obtains the bound
Cβ,χ〈ξ〉−1−|β|, i.e., a better bound in 〈ξ〉, but missing a factor of 1/(λj~).

If we apply the Leibniz formula to bψ, with ψ satisfying (0.10) and b ∈ S0, we get the bound
Cβ,ψ〈ξ〉1−|β|. Motivated by this, we let b := ξi〈ξ〉 (which is in S0 by Theorem 0.2 (ii)), and let
ψ(y) = y2χ′(y). Observe that ψ ∈ C∞comp(R), and thus (0.10) holds with χ replaced by ψ.

Applying the Leibniz formula to bψ, we find

∂βξ

(
(λj~)2 ξi

〈ξ〉3
χ′
(
λj~
〈ξ〉

))
=
∑
β′≤β

(
β

β′

)
∂β
′

ξ

(
ψ

(
λj~
〈ξ〉

))
∂β−β

′

ξ b .

By the triangle inequality, the induction hypothesis applied to ψ, and the fact that b ∈ S0,

∂βξ

(
(λj~)2 ξi

〈ξ〉3
χ′
(
λj~
〈ξ〉

))
≤
∑
β′≤β

(
β

β′

)
Cβ′,ψ
λj~

〈ξ〉1−|β
′|Cb〈ξ〉|β

′|−|β| ≤ Cβ,χ
λj~
〈ξ〉1−|β|.

Combining this last inequality with (0.11) and using that (λj~)−1 ≤ C (since ~ is fixed and λj →∞),
we obtain the result.
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(c) Show that there is an increasing sequence {λj}∞j=0 with λj → ∞ such that for any multiindices

α, β ∈ Nd with |α|+ |β| ≤ j,∣∣∣∣∂αx ∂βξ (χ(λj~〈ξ〉
)
aj

)∣∣∣∣ ≤ 2−j~−1〈ξ〉m−j−|β|+1.

Solution: by the Leibniz rule

∂αx ∂
β
ξ

(
χ

(
λj~
〈ξ〉

)
aj

)
=
∑
β′≤β

(
β

β′

)
∂β
′

ξ

(
χ

(
λj~
〈ξ〉

))
∂αx ∂

β−β′
ξ aj .

By the triangle inequality, Part (b), and the fact that aj ∈ Sm−j ,∣∣∣∣∂αx ∂βξ (χ(λj~〈ξ〉
)
aj

)∣∣∣∣ ≤ ∑
β′≤β

(
β

β′

)
Cβ′,χ
λj~

〈ξ〉1−|β
′|Cα,β−β′〈ξ〉m−j−|β|+|β

′| ≤ C̃α,β
λj~
〈ξ〉m−|β|+1 .

Choosing (λj)
∞
j=0 such that λj ≥ C̃α,β2−j , we obtain the result.

(d) With the choice of λj from (c), show that for any α, β ∈ Nd with |α|+ |β| ≤ N ,∣∣∣∣∣∣∂αx ∂βξ
(
a(x, ξ)−

N∑
j=0

aj(x, ξ)

)∣∣∣∣∣∣ ≤ CαβN~N 〈ξ〉m−|β|−N , (0.12)

and conclude that a ∼
∑
j h

jaj .

Solution: We now assume that ~ ≤ 1 (if instead ~ ≤ ~0, we replace 2−j by (h0 + 1)−j in Part (c) and
in the rest of the argument).

a(x, ξ)−
N∑
j=0

~jaj(x, ξ) =

N∑
j=0

~j
(
χ

(
λj~
〈ξ〉

)
− 1

)
a(x, ξ) +

∞∑
j=N+1

~jχ
(
λj~
〈ξ〉

)
aj(x, ξ)

=: T1(x, ξ,N) + T2(x, ξ,N).

By the result of Part (c),∣∣∂αx ∂βξ T2(x, ξ,N)
∣∣ ≤ ∞∑

j=N+1

1

2j
~j−1〈ξ〉m−j−|β|+1 =

〈ξ〉m−|β|+1

~

∞∑
j=N+1

(
~

2〈ξ〉

)j
≤ 2−N~N 〈ξ〉m−|β|−N , (0.13)

where we have used that ~/(2〈ξ〉) ≤ 1/2.

Since χ ≡ 1 on [−1, 1], if ~ ≤ λ−1
j 〈ξ〉 for j = 1, . . . , N , then δ1(x, ξ,N) = 0. This condition is ensured

if ~ ≤ λ−1
N 〈ξ〉 (since λj is increasing), so we now assume, without loss of generality, that ~ ≥ λ−1

N 〈ξ〉,
i.e. (

〈ξ〉~−1λ−1
N

)−1 ≥ 1. (0.14)

Now

∂αx ∂
β
ξ T1(x, ξ) =

N∑
j=0

~j∂βξ

(
χ

(
λj~
〈ξ〉

)
∂αx a(x, ξ)

)
−

N∑
j=0

~j∂αx ∂
β
ξ a(x, ξ) =: T11 − T12.

Using the fact that a ∈ Sm, the inequality (0.14), and the fact that ~ ≤ 1, we have

|T12| ≤
N∑
j=0

~jCαβ〈ξ〉m−|β| ≤
N∑
j=0

~jCαβ〈ξ〉m−|β|
(
〈ξ〉λ−1

N ~−1
)−N ≤ (2λNNCα,β

)
~N 〈ξ〉m−|β|−N .

(0.15)

By the Leibniz rule, the bound (0.10), and the fact that a ∈ Sm,

|T11| ≤
N∑
j=0

~j
∑
β′≤β

(
β

β′

)
Cβ′,χ
λj~

〈ξ〉1−|β
′|Cα,β−β′〈ξ〉m−|β|+|β

′|

≤ 2

λ1~
Cα,β,χ〈ξ〉m−|β|+1

≤ 2

λ1~
Cα,β,χ〈ξ〉m−|β|+1

(
〈ξ〉λ−1

N ~−1
)−N−1 ≤ 2λNNCα,β,χ~N 〈ξ〉m−|β|−N . (0.16)

Combining (0.13), (0.15), and (0.16) completes the proof of (0.12).
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9. Prove Lemma 0.8.

Solution: Since a ∼
∑∞
j=0 aj , given N ∈ Z+, there exists RN ∈ Sm−N such that

a =

N−1∑
j=0

~jaj + ~NRN .

Since aj ∈ Sm−jphg , there exist symbols ajk ∈ Sm−j−k independent of ~, and QN−j ∈ Sm−N such that

aj =

N−1−j∑
k=0

~kajk + ~N−jQN−j .

Therefore

a =

N−1∑
j=0

N−1−j∑
k=0

~j+kajk + ~N
RN +

N−1∑
j=0

QN−j

 .

Now
N−1∑
j=0

N−1−j∑
k=0

~j+kajk =

N−1∑
p=0

p∑
q=0

~paq(p−q).

So

a =

N−1∑
p=0

~pãp + ~N R̃N

where ãp :=
∑p
q=0 aq,p−q ∈ Sm−p are independent of ~ and R̃N := RN +

∑N−1
j=0 QN−j ∈ Sm−N ; i.e.,

a ∈ Smphg.
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