Recap of material from notes

A family $a = (a_{\hbar})_{0 < \hbar \leq \hbar_0}$, with $a_{\hbar} \in C^{\infty}(T^*\mathbb{R}^d)$, is a symbol of order *m*, written as $a \in S^m(\mathbb{R}^d)$, if, for any multiindices α, β , there exists $C_{\alpha,\beta}$ such that

$$|\partial_x^{\alpha} \partial_{\xi}^{\beta} a_{\hbar}(x,\xi)| \le C_{\alpha,\beta} \langle \xi \rangle^{m-|\beta|} \quad \text{for all } (x,\xi) \in T^* \mathbb{R}^d \text{ and for all } 0 < \hbar \le \hbar_0$$
(0.1)

For $a \in S^m$, we define the *semiclassical quantisation* of a, $Op_{\hbar}(a)$ by

$$\left(\operatorname{Op}_{\hbar}(a)v\right)(x) := (2\pi\hbar)^{-d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \exp\left(\mathrm{i}(x-y) \cdot \xi/\hbar\right) a(x,\xi)v(y) \,\mathrm{d}y \mathrm{d}\xi \tag{0.2}$$

for $v \in \mathscr{S}(\mathbb{R}^d)$, where the integral is understood as an iterated integral, with the y integration performed first, i.e.,

$$\left(\operatorname{Op}_{\hbar}(a)v\right)(x) = (2\pi\hbar)^{-d} \int_{\mathbb{R}^d} \exp\left(\mathrm{i}x \cdot \xi/\hbar\right) a(x,\xi) \mathcal{F}_{\hbar}v(\xi) \,\mathrm{d}\xi.$$
(0.3)

Lemma 0.1. $Op_{\hbar}(a) : \mathscr{S}(\mathbb{R}^d) \to \mathscr{S}(\mathbb{R}^d).$

Theorem 0.2. (Composition and mapping properties of semiclassical pseudodifferential operators.) If $A \in \Psi_{\hbar}^{m_A}$ and $B \in \Psi_{\hbar}^{m_B}$, then

(i)
$$A^* : \mathscr{S}(\mathbb{R}^d) \to \mathscr{S}(\mathbb{R}^d) \text{ and } A^* \in \Psi^{m_A}_{\hbar}$$

Lemma 0.3. If $a \in \hbar^{\infty} S^{-\infty}$, then $\operatorname{Op}_{\hbar}(a) = O(\hbar^{\infty})_{\Psi^{-\infty}}$.

Definition 0.4. (Operator wavefront set.) $(x_0, \xi_0) \in T^* \mathbb{R}^d$ is not in the semiclassical operator wavefront set of $A = \operatorname{Op}_{\hbar}(a) \in \Psi^m_{\hbar}$, denoted by WF_h A, if there exists a neighbourhood U of (x_0, ξ_0) such that for all multiindices α, β and all $N \geq 1$ there exists $C_{\alpha,\beta,N,U} > 0$ such that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)| \le C_{\alpha,\beta,N,U}\hbar^N \quad \text{for all } (x,\xi) \in U \text{ and } 0 < \hbar \le \hbar_0; \tag{0.4}$$

Definition 0.5. (Symbol class S_{phg}^m .) $a \in S_{phg}^m$ if $a \in S^m$ and there exist $a_j \in S^{m-j}$, independent of \hbar , such that, for all $N \in \mathbb{Z}^+$,

$$a - \sum_{j=0}^{N-1} \hbar^j a_j \in \hbar^N S^{m-N}.$$

$$(0.5)$$

If $A = \operatorname{Op}_{\hbar}(a)$ for $a \in S^m_{phg}$, we write $A \in \Psi^m_{phg}$.

Lemma 0.6. (Definitions of compactly and properly supported in terms of cut-off functions.)

- (i) A is compactly supported iff there exist $\chi_1, \chi_2 \in \mathcal{D}$ such that $A = \chi_1 A \chi_2$.
- (ii) A is properly supported iff for any $\chi \in \mathcal{D}$ there exist $\chi_1, \chi_2 \in \mathcal{D}$ such that

$$\chi A = \chi A \chi_1, \qquad A \chi = \chi_2 A \chi.$$

Theorem 0.7. (Borel's theorem.) Given $a_j \in S^{m-j}$, j = 0, 1, ..., there exists $a \in S^m$ such that $a \sim \sum_{j=0}^{\infty} \hbar^j a_j$ (in the sense of (0.5)).

Lemma 0.8. Suppose $a \in S^m$ and $a_j \in S^{m-j}$ j = 0, 1, ... are such that $a \sim \sum_{j=0}^{\infty} \hbar^j a_j$. If $a_j \in S_{phg}^{m-j}$, then $a \in S_{phg}^m$.

0.1 Exercises for Section 7

- 1. (i) Show that $a(x,\xi) = \sum_{|\gamma| \le m} a_{\gamma}(x)\xi^{\gamma}$, where $a_{\alpha} \in C^{\infty}$ and $\partial^{\gamma}a_{\alpha} \in L^{\infty}$ for all γ and α , is in S^m .
 - (ii) Show that $\langle \xi \rangle^{-m} \in S^{-m}$ for $m \in \mathbb{Z}^+$.

(iii) Show that if $\chi \in C^{\infty}_{\text{comp}}(T^*\mathbb{R}^d)$, then $\chi \in S^{-N}$ for every $N \ge 1$. Solution: (i)

$$\partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi) = \sum_{|\gamma| \le m} \partial_x^{\alpha} a_{\gamma}(x) \begin{cases} \gamma! ((\gamma - \beta)!)^{-1} \xi^{\gamma - \beta} & \text{if } \beta \le \gamma, \\ 0 & \text{otherwise.} \end{cases}$$

The bound in (0.1) then follows since, when $\beta \leq \gamma$,

$$|\xi^{\gamma-\beta}| \le |\xi|^{|\gamma|-|\beta|} = |\xi|^{m-|\beta|} \le \langle\xi\rangle^{m-|\beta|}.$$

(iii) Since χ has compact support, $\partial_x^{\alpha} \partial_{\xi}^{\beta} \chi(x,\xi)$ vanishes as $|\xi| \to \infty$ faster than $|\xi|^{-N}$ for any N > 0, and thus $\chi \in S^{-N}$ for every $N \ge 1$.

(ii) If we can show that $\langle \xi \rangle^{-1} \in S^1$, then the result follows from the composition property $(a \in S^m, b \in S^\ell)$, then $ab \in S^{m+\ell}$. We now prove by induction that for all $\beta \in \mathbb{N}^d$,

$$\partial_{\xi}^{\beta} \langle \xi \rangle^{-1} = \sum_{|\alpha| \le |\beta|} P_{\alpha}(\xi) \langle \xi \rangle^{-1 - |\alpha| - |\beta|} \tag{0.6}$$

for some polynomials P_{α} of degree $|\alpha|$. Indeed, assume that this holds for some β , and consider

$$\begin{aligned} \partial_{\xi_i} \left[P_{\alpha}(\xi) \langle \xi \rangle^{-1-|\alpha|-|\beta|} \right] &= (\partial_{\xi_i} P_{\alpha}(\xi)) \langle \xi \rangle^{-1-|\alpha|-|\beta|} + (-1-|\alpha|-|\beta|) P_{\alpha}(\xi) \langle \xi \rangle^{-1-|\alpha|-|\beta|-1} \frac{\xi_i}{\langle \xi \rangle} \\ &= \underbrace{(\partial_{\xi_i} P_{\alpha}(\xi))}_{\text{degree } |\alpha|-1} \langle \xi \rangle^{-1-(|\alpha|-1)-(|\beta|+1)} \\ &+ (-1-|\alpha|-|\beta|) \underbrace{\xi_i P_{\alpha}(\xi)}_{\text{degree } |\alpha|+1} \langle \xi \rangle^{-1-(|\alpha|+1)-(|\beta|+1)}; \end{aligned}$$

therefore (0.6) holds for multiindices of order $|\beta| + 1$.

Having proved (0.6), we now bound $|\partial_{\xi}^{\beta}(\langle\xi\rangle^{-1})|$. To do this, we use the following lemma.

Lemma. Suppose that $F(X) = P(X)\langle X \rangle^{-m}$, where P is a polynomial of degree ℓ . Then there exists a constant C such that for all $X \in \mathbb{R}^d$, $|E(X)| \leq C/X^{\ell-m}$

$$|F(X)| \le C \langle X \rangle^{\ell-m}$$
.

Proof. It suffices to show that the function

$$R(X) := P(X) \langle X \rangle^{-\ell}$$

is bounded on \mathbb{R}^d . We first note that since R is continuous on \mathbb{R}^d , it is bounded on the unit ball. Next we consider R outside the unit ball and write

$$R(X) = \frac{\sum_{|\alpha| \le \ell} a_{\alpha} X^{\alpha}}{(1+|X|^2)^{\ell/2}}$$

Hence, for $|X| \ge 1$,

$$|R(X)| \le \frac{|X|^{\ell} \sum_{|\alpha| \le l} |a_{\alpha}|}{|X|^{\ell}} \le \sum_{|\alpha| \le \ell} |a_{\alpha}|.$$

This proves that R is also bounded outside the unit ball, and the result follows.

By (0.6),

$$\left|\partial_{\xi}^{\beta}\langle\xi\rangle^{-1}\right| \leq \sum_{|\alpha| \leq |\beta|} \left|P_{\alpha}(\xi)\right|\langle\xi\rangle^{-1-|\alpha|-|\beta|}.$$
(0.7)

By the lemma, there exists C_{α} such that, for all $\xi \in \mathbb{R}^d$,

$$\|P_{\alpha}(\xi)\langle\xi\rangle^{-1-|\alpha|-|\beta|}\| \le C_{\alpha}\langle\xi\rangle^{-1-|\beta|};$$

thus, for all $\xi \in \mathbb{R}^d$,

$$|\partial_{\xi}^{\beta}\langle\xi\rangle| \leq \Big(\sum_{\alpha} C_{\alpha}\Big)\langle\xi\rangle^{-1-|\beta|};$$

i.e., $\langle \xi \rangle^{-1} \in S^{-1}$.

2. Prove Lemma 0.1. Hint: perform the y integral in (0.2) and then use the definition of $\mathcal{S}(\mathbb{R}^d)$. Solution: by performing the y integral,

$$\left(\operatorname{Op}_{\hbar}(a)v\right)(x) = (2\pi\hbar)^{-d} \int_{\mathbb{R}^d} \exp\left(\mathrm{i}x \cdot \xi/\hbar\right) a(x,\xi) \mathcal{F}_{\hbar}v(\xi) \,\mathrm{d}\xi$$

so that

$$x^{\alpha}\partial_{x}^{\beta}\Big(\big(\operatorname{Op}_{\hbar}(a)v\big)(x)\Big) = \frac{x^{\alpha}}{(2\pi\hbar)^{d}} \int_{\mathbb{R}^{d}} \partial_{x}^{\beta}\Big(\exp\big(\mathrm{i}x\cdot\xi/\hbar\big)\,a(x,\xi)\Big)\mathcal{F}_{\hbar}v(\xi)\,\mathrm{d}\xi,$$
$$= \frac{x^{\alpha}}{(2\pi\hbar)^{d}} \int_{\mathbb{R}^{d}}\exp\big(\mathrm{i}x\cdot\xi/\hbar\big)\left(\sum_{\gamma:|\gamma|\leq|\beta|} \left(\begin{array}{c}\beta\\\gamma\end{array}\right)\left(\frac{\mathrm{i}\xi}{\hbar}\right)^{\beta-\gamma}\partial_{x}^{\gamma}a(x,\xi)\right)\mathcal{F}_{\hbar}v(\xi)\,\mathrm{d}\xi.$$

The idea now is to integrate by parts on the right-hand side, bringing down inverse powers of |x| to show that the right-hand side is bounded. A convenient way to do this is to observe that, with $D := (1/i)\partial$,

$$\left(\frac{1+x\cdot D_{\xi}}{1+|x|^2/\hbar}\right)\exp(\mathrm{i}x\cdot\xi/\hbar) = \exp(\mathrm{i}x\cdot\xi/\hbar),$$

so that, for any m,

$$x^{\alpha}\partial_{x}^{\beta}\left(\left(\operatorname{Op}_{\hbar}(a)v\right)(x)\right)$$

$$=\frac{x^{\alpha}}{(2\pi\hbar)^{d}}\int_{\mathbb{R}^{d}}\exp\left(\mathrm{i}x\cdot\xi/\hbar\right)\left(\frac{1-x\cdot D_{\xi}}{1+|x|^{2}/\hbar}\right)^{m}\left[\left(\sum_{|\gamma|\leq|\beta|}\binom{\beta}{\gamma}\binom{\zeta}{h}^{\beta-\gamma}\partial_{x}^{\gamma}a(x,\xi)\right)\mathcal{F}_{\hbar}v(\xi)\right]\,\mathrm{d}\xi.$$

Since $\mathcal{F}_{\hbar} v \in \mathscr{S}(\mathbb{R}^d)$ and the derivatives of $a(x,\xi)$ satisfy (0.1), the integral on the right-hand side of this last equation is finite, and the result follows by choosing $m > |\alpha|$.

3. Prove Part (i) of Theorem 0.2 in the special case when A is a Fourier multiplier. Solution:

$$\left\langle \operatorname{Op}_{\hbar}(a)u, v \right\rangle_{\mathbb{R}^{d}} = \int_{\mathbb{R}^{d}} \left(\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{e}^{\operatorname{i}(x-y)\cdot\xi/\hbar} a(\xi)u(y) \,\mathrm{d}y \,\mathrm{d}\xi \right) \overline{v(x)} \,\mathrm{d}x$$
$$= \int_{\mathbb{R}^{d}} \overline{\left(\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{e}^{\operatorname{i}(y-x)\cdot\xi/\hbar} \overline{a(\xi)}v(x) \,\mathrm{d}x \,\mathrm{d}\xi \right)} u(y) \,\mathrm{d}y = \left\langle u, \operatorname{Op}_{\hbar}(\overline{a})v \right\rangle_{\mathbb{R}^{d}}.$$

4. Prove Lemma 0.3. Hint: given $s > 0, N \ge 1$, choose an appropriate $M \ge 1$, and use that $a \in \hbar^M S^{-M}$. Solution: Given $s > 0, N \ge 1$, let $M := \max\{N, 2s\}$. By definition $a \in \hbar^M S^{-M}$, and so, by Part (iv) of Theorem 0.2, given $\hbar_0 > 0$, there exists $C_{s,M}$ such that

 $\hbar^{-M} \|\operatorname{Op}_{\hbar}(a)\|_{H_{\hbar}^{-s} \to H_{\hbar}^{-s+M}} \le C_{s,M} \quad \text{for all } 0 < \hbar \le \hbar_0.$

Then, since $M \geq 2s$, by the definition of $\|\cdot\|_{H^s_{h}}$,

$$\|\operatorname{Op}_{\hbar}(a)\|_{H_{\hbar}^{-s} \to H_{\hbar}^{s}} \leq \|\operatorname{Op}_{\hbar}(a)\|_{H_{\hbar}^{-s} \to H_{\hbar}^{-s+M}} \leq C_{s,M}\hbar^{M} \lesssim C_{s,M}\hbar^{N},$$

and thus $Op_{\hbar}(a) = O(\hbar^{\infty})_{\Psi^{-\infty}}$ by the definition of the latter.

- 5. If $P_{\hbar}u := -\hbar^2 \nabla \cdot (A \nabla u) nu$, show that
 - (i) P_{\hbar} is the quantisation of a symbol in S^2_{phg} , and
 - (ii) $\sigma_{\hbar}(P_{\hbar}) = (A\xi) \cdot \xi n \in S^2.$

Solution: since $P_{\hbar}u = -\hbar^2 A_{j\ell}\partial_j\partial_\ell u - \hbar^2(\partial_j A_{j\ell})(\partial_\ell u) - n$, the fact that $P_{\hbar} = \operatorname{Op}_{\hbar}\left((A\xi)\cdot\xi - n - i\hbar\xi_\ell\partial_j A_{j\ell}\right)$ follows from the definition of $\operatorname{Op}_{\hbar}$. The fact that the symbol is in S^2_{phg} follows from Definition 0.5, and the fact that $\sigma_{\hbar}(P_{\hbar}) = (A\xi)\cdot\xi - n \in S^2$ then follows from the fact that $\hbar\xi_\ell\partial_j A_{j\ell} \in \hbar S^1$.

6. Prove that if $a(x,\xi)$ is independent of \hbar , then $WF_{\hbar}(Op_{\hbar}(a)) = \operatorname{supp} a$. Solution: If $(x_0,\xi_0) \notin \operatorname{supp} a$, then there exists a neighbourhood U of (x_0,ξ_0) such that $a(x,\xi) = 0$ for all $(x,\xi) \in U$. Therefore, by (0.4), $(x_0,\xi_0) \in (WF_{\hbar}(Op_{\hbar}(a))^c; \text{ i.e., } (\operatorname{supp} a)^c \subset (WF_{\hbar}(Op_{\hbar}(a))^c.$

Conversely, if $(x_0, \xi_0) \in (WF_{\hbar}(Op_{\hbar}(a))^c \text{ and } a \text{ is independent of } \hbar$, then by (0.4) there exists a neighbourhood U of (x_0, ξ_0) such that $a(x, \xi) = 0$ for all $(x, \xi) \in U$. Therefore $(x_0, \xi_0) \in (\operatorname{supp} a)^c$; i.e. $(WF_{\hbar}(Op_{\hbar}(a))^c \subset (\operatorname{supp} a)^c)$.

7. Prove Lemma 0.6. Solution:

(i) \Rightarrow Since K_A is compactly supported, there exist $\chi_1, \chi_2 \in \mathcal{D}$ such that

$$K_A(x,y) = \chi_1(x) K_A(x,y) \chi_2(y).$$
(0.8)

 \Leftarrow The assumption implies that there exist $\chi_1, \chi_2 \in \mathcal{D}$ such that (0.8) holds. Since χ_1 and χ_2 both have compact support, so does K_A .

(ii) \Leftarrow Given a compact $X \subset \mathbb{R}^d$, there exists $\chi_X \in \mathcal{D}$ such that $\chi_X = 1$ on X. By assumption there exists $\chi_Y \in \mathcal{D}$ such that $\chi_X A = \chi_X A \chi_Y$. Thus

$$\chi_X(x)K_A(x,y) = \chi_X(x)K_A(x,y)\chi_Y(y) \quad \text{for all } x,y \in \mathbb{R}^d.$$

$$(0.9)$$

Therefore

$$\{(x,y)\in \operatorname{supp} K_A: x\in \operatorname{supp} X\}\subset \{(x,y)\in \operatorname{supp} K_A: x\in \operatorname{supp} \chi_X\}\subset \operatorname{supp} \chi_Y,$$

which is compact. The proof that, for compact Y, $\{(x, y) \in \text{supp } K_A : y \in \text{supp } Y\}$ is compact is similar. \Rightarrow Given $\chi_x \in \mathcal{D}$, by assumption $\{(x, y) \in \text{supp } K_A : x \in \text{supp } \chi_x\}$ is compact. Therefore there exists $\chi_y \in \mathcal{D}$ such that $\chi_y = 1$ on this last set. Then (0.9) holds so $\chi_x A = \chi_x A \chi_y$. The proof that, given $\chi_y \in \mathcal{D}$ there exists $\chi_x \in \mathcal{D}$ such that $A\chi_y = \chi_x A \chi_y$ is similar.

8. Prove Theorem 0.7 via the following steps.

(a) Let $\chi \in C^{\infty}_{\text{comp}}(\mathbb{R})$ with $\chi \equiv 1$ on [-1,1]. Show that if $\{\lambda_j\}_{j=0}^{\infty} \subset \mathbb{R}$ with $\lambda_j \to \infty$, the sum

$$a(x,\xi) := \sum_{j=0}^{\infty} \chi\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right) \hbar^j a_j(x,\xi)$$

converges.

Solution: Given ξ_0 and $\hbar > 0$, since $\lambda_j \to \infty$ and χ has compact support, there exists $J \in \mathbb{Z}^+$ such that $\chi(\lambda_j \hbar \langle \xi \rangle^{-1}) = 0$ for all $j \geq J$. Therefore, for each x_0, ξ_0 , and $\hbar > 0$, the sum converges since there are at most finitely-many non-zero terms.

(b) Show that, given β and $\chi \in C^{\infty}_{\text{comp}}(\mathbb{R})$, there exists $C_{\beta,\chi}$ such that

$$\partial_{\xi}^{\beta} \left(\chi \left(\frac{\lambda_j \hbar}{\langle \xi \rangle} \right) \right) \leq \frac{C_{\beta, \chi}}{\lambda_j \hbar} \langle \xi \rangle^{1 - |\beta|}.$$
(0.10)

Solution: We prove the result via induction on $|\beta|$. For $|\beta| = 0$, we write

$$\chi\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right) = \frac{\lambda_j\hbar}{\langle\xi\rangle}\chi\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right)\frac{\langle\xi\rangle}{\lambda_j\hbar},$$

and the result for $|\beta| = 0$ holds with $C_{0,\chi} = \sup_{t \in \mathbb{R}} t\chi(t)$. Now

$$\partial_{\xi_i}\partial_{\xi}^{\beta}\chi\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right) = \partial_{\xi}^{\beta}\left(-\frac{\lambda_j\hbar\xi_i}{\langle\xi\rangle^3}\chi'\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right)\right). \tag{0.11}$$

By Exercise 1, $\xi_i \in S^1$ and $\langle \xi \rangle^{-1} \in S^{-1}$.

Our aim is to apply the Leibniz formula to the right-hand side of the last displayed equation, and use the induction hypothesis. However, a direct application of this to $(\xi_i \langle \xi \rangle^{-3})\chi'$ obtains the bound $C_{\beta,\chi} \langle \xi \rangle^{-1-|\beta|}$, i.e., a better bound in $\langle \xi \rangle$, but missing a factor of $1/(\lambda_j \hbar)$.

If we apply the Leibniz formula to $b\psi$, with ψ satisfying (0.10) and $b \in S^0$, we get the bound $C_{\beta,\psi}\langle\xi\rangle^{1-|\beta|}$. Motivated by this, we let $b := \xi_i\langle\xi\rangle$ (which is in S^0 by Theorem 0.2 (ii)), and let $\psi(y) = y^2\chi'(y)$. Observe that $\psi \in C^{\infty}_{\text{comp}}(\mathbb{R})$, and thus (0.10) holds with χ replaced by ψ . Applying the Leibniz formula to $b\psi$, we find

$$\partial_{\xi}^{\beta} \left((\lambda_{j}\hbar)^{2} \frac{\xi_{i}}{\langle \xi \rangle^{3}} \chi' \left(\frac{\lambda_{j}\hbar}{\langle \xi \rangle} \right) \right) = \sum_{\beta' \leq \beta} \binom{\beta}{\beta'} \partial_{\xi}^{\beta'} \left(\psi \left(\frac{\lambda_{j}\hbar}{\langle \xi \rangle} \right) \right) \partial_{\xi}^{\beta-\beta'} b$$

By the triangle inequality, the induction hypothesis applied to ψ , and the fact that $b \in S^0$,

$$\partial_{\xi}^{\beta}\left((\lambda_{j}\hbar)^{2}\frac{\xi_{i}}{\langle\xi\rangle^{3}}\chi'\left(\frac{\lambda_{j}\hbar}{\langle\xi\rangle}\right)\right) \leq \sum_{\beta'\leq\beta} \binom{\beta}{\beta'}\frac{C_{\beta',\psi}}{\lambda_{j}\hbar}\langle\xi\rangle^{1-|\beta'|}C_{b}\langle\xi\rangle^{|\beta'|-|\beta|} \leq \frac{C_{\beta,\chi}}{\lambda_{j}\hbar}\langle\xi\rangle^{1-|\beta|}.$$

Combining this last inequality with (0.11) and using that $(\lambda_j \hbar)^{-1} \leq C$ (since \hbar is fixed and $\lambda_j \to \infty$), we obtain the result.

(c) Show that there is an increasing sequence $\{\lambda_j\}_{j=0}^{\infty}$ with $\lambda_j \to \infty$ such that for any multiindices $\alpha, \beta \in \mathbb{N}^d$ with $|\alpha| + |\beta| \leq j$,

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}\left(\chi\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right)a_j\right)\right| \le 2^{-j}\hbar^{-1}\langle\xi\rangle^{m-j-|\beta|+1}$$

Solution: by the Leibniz rule

$$\partial_x^{\alpha} \partial_{\xi}^{\beta} \left(\chi \left(\frac{\lambda_j \hbar}{\langle \xi \rangle} \right) a_j \right) = \sum_{\beta' \leq \beta} \binom{\beta}{\beta'} \partial_{\xi}^{\beta'} \left(\chi \left(\frac{\lambda_j \hbar}{\langle \xi \rangle} \right) \right) \partial_x^{\alpha} \partial_{\xi}^{\beta - \beta'} a_j.$$

By the triangle inequality, Part (b), and the fact that $a_j \in S^{m-j}$,

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}\left(\chi\left(\frac{\lambda_j\hbar}{\langle\xi\rangle}\right)a_j\right)\right| \leq \sum_{\beta'\leq\beta} \binom{\beta}{\beta'} \frac{C_{\beta',\chi}}{\lambda_j\hbar} \langle\xi\rangle^{1-|\beta'|} C_{\alpha,\beta-\beta'} \langle\xi\rangle^{m-j-|\beta|+|\beta'|} \leq \frac{\widetilde{C}_{\alpha,\beta}}{\lambda_j\hbar} \langle\xi\rangle^{m-|\beta|+1}.$$

Choosing $(\lambda_j)_{j=0}^{\infty}$ such that $\lambda_j \geq \widetilde{C}^{\alpha,\beta} 2^{-j}$, we obtain the result.

(d) With the choice of λ_j from (c), show that for any $\alpha, \beta \in \mathbb{N}^d$ with $|\alpha| + |\beta| \leq N$,

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}\left(a(x,\xi) - \sum_{j=0}^{N} a_j(x,\xi)\right)\right| \le C_{\alpha\beta N}\hbar^N \langle\xi\rangle^{m-|\beta|-N},\tag{0.12}$$

and conclude that $a \sim \sum_j h^j a_j$.

Solution: We now assume that $\hbar \leq 1$ (if instead $\hbar \leq \hbar_0$, we replace 2^{-j} by $(h_0 + 1)^{-j}$ in Part (c) and in the rest of the argument).

$$a(x,\xi) - \sum_{j=0}^{N} \hbar^{j} a_{j}(x,\xi) = \sum_{j=0}^{N} \hbar^{j} \left(\chi \left(\frac{\lambda_{j} \hbar}{\langle \xi \rangle} \right) - 1 \right) a(x,\xi) + \sum_{j=N+1}^{\infty} \hbar^{j} \chi \left(\frac{\lambda_{j} \hbar}{\langle \xi \rangle} \right) a_{j}(x,\xi)$$
$$=: T_{1}(x,\xi,N) + T_{2}(x,\xi,N).$$

By the result of Part (c),

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}T_2(x,\xi,N)\right| \leq \sum_{j=N+1}^{\infty} \frac{1}{2^j} \hbar^{j-1} \langle \xi \rangle^{m-j-|\beta|+1} = \frac{\langle \xi \rangle^{m-|\beta|+1}}{\hbar} \sum_{j=N+1}^{\infty} \left(\frac{\hbar}{2\langle \xi \rangle}\right)^j \leq 2^{-N} \hbar^N \langle \xi \rangle^{m-|\beta|-N}, \tag{0.13}$$

where we have used that $\hbar/(2\langle\xi\rangle) \leq 1/2$.

Since $\chi \equiv 1$ on [-1, 1], if $\hbar \leq \lambda_j^{-1} \langle \xi \rangle$ for j = 1, ..., N, then $\delta_1(x, \xi, N) = 0$. This condition is ensured if $\hbar \leq \lambda_N^{-1} \langle \xi \rangle$ (since λ_j is increasing), so we now assume, without loss of generality, that $\hbar \geq \lambda_N^{-1} \langle \xi \rangle$, i.e.

$$\left(\langle \xi \rangle \hbar^{-1} \lambda_N^{-1} \right)^{-1} \ge 1. \tag{0.14}$$

Now

$$\partial_x^{\alpha} \partial_{\xi}^{\beta} T_1(x,\xi) = \sum_{j=0}^N \hbar^j \partial_{\xi}^{\beta} \left(\chi\left(\frac{\lambda_j \hbar}{\langle \xi \rangle}\right) \partial_x^{\alpha} a(x,\xi) \right) - \sum_{j=0}^N \hbar^j \partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi) =: T_{11} - T_{12}.$$

Using the fact that $a \in S^m$, the inequality (0.14), and the fact that $\hbar \leq 1$, we have

$$|T_{12}| \leq \sum_{j=0}^{N} \hbar^{j} C_{\alpha\beta} \langle \xi \rangle^{m-|\beta|} \leq \sum_{j=0}^{N} \hbar^{j} C_{\alpha\beta} \langle \xi \rangle^{m-|\beta|} \left(\langle \xi \rangle \lambda_{N}^{-1} \hbar^{-1} \right)^{-N} \leq \left(2\lambda_{N}^{N} C_{\alpha,\beta} \right) \hbar^{N} \langle \xi \rangle^{m-|\beta|-N}.$$

$$(0.15)$$

By the Leibniz rule, the bound (0.10), and the fact that $a \in S^m$,

$$|T_{11}| \leq \sum_{j=0}^{N} \hbar^{j} \sum_{\beta' \leq \beta} {\beta \choose \beta'} \frac{C_{\beta',\chi}}{\lambda_{j}\hbar} \langle \xi \rangle^{1-|\beta'|} C_{\alpha,\beta-\beta'} \langle \xi \rangle^{m-|\beta|+|\beta'|}$$

$$\leq \frac{2}{\lambda_{1}\hbar} C_{\alpha,\beta,\chi} \langle \xi \rangle^{m-|\beta|+1}$$

$$\leq \frac{2}{\lambda_{1}\hbar} C_{\alpha,\beta,\chi} \langle \xi \rangle^{m-|\beta|+1} (\langle \xi \rangle \lambda_{N}^{-1}\hbar^{-1})^{-N-1} \leq 2\lambda_{N}^{N} C_{\alpha,\beta,\chi} \hbar^{N} \langle \xi \rangle^{m-|\beta|-N}.$$
(0.16)

Combining (0.13), (0.15), and (0.16) completes the proof of (0.12).

9. Prove Lemma 0.8.

Solution: Since $a \sim \sum_{j=0}^{\infty} a_j$, given $N \in \mathbb{Z}^+$, there exists $R_N \in S^{m-N}$ such that

$$a = \sum_{j=0}^{N-1} \hbar^j a_j + \hbar^N R_N \,.$$

Since $a_j \in S_{\text{phg}}^{m-j}$, there exist symbols $a_{jk} \in S^{m-j-k}$ independent of \hbar , and $Q_{N-j} \in S^{m-N}$ such that

$$a_j = \sum_{k=0}^{N-1-j} \hbar^k a_{jk} + \hbar^{N-j} Q_{N-j} \,.$$

Therefore

$$a = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1-j} \hbar^{j+k} a_{jk} + \hbar^N \left(R_N + \sum_{j=0}^{N-1} Q_{N-j} \right).$$

Now

$$\sum_{j=0}^{N-1} \sum_{k=0}^{N-1-j} \hbar^{j+k} a_{jk} = \sum_{p=0}^{N-1} \sum_{q=0}^{p} \hbar^{p} a_{q(p-q)}.$$

 \mathbf{So}

$$a = \sum_{p=0}^{N-1} \hbar^p \tilde{a}_p + \hbar^N \widetilde{R}_N$$

where $\tilde{a}_p := \sum_{q=0}^p a_{q,p-q} \in S^{m-p}$ are independent of \hbar and $\tilde{R}_N := R_N + \sum_{j=0}^{N-1} Q_{N-j} \in S^{m-N}$; i.e., $a \in S_{\text{phg}}^m$.