
Exercises for Section 3

1. The goal of this exercise is to show how the quantity h2k3 (appearing in Theorem (3.15)
under the assumption that Csol ∼ k) arises from analysing solutions of the Galerkin linear
system in 1-d. This material, and significant extensions of it, appear in [4, 6, 7, 5, 1].

(a) Consider the finite-element discretisation of the 1-d model problem

k−2u′′ + u = −f in (0, 1), u(0) = 0, and k−1u′(1)− iu(1) = 0 (0.1)

on a uniform grid with meshwidth h, nodes xj , and with piecewise-linear hat functions
φj such that φj(xi) = δij . If xj and xj+1 are both away from the boundary, show that

a(φj , φj) =
2

k2h

(
1− (hk)2

3

)
=:

2

k2h
S(hk)

and

a(φj , φj+1) =
1

k2h

(
−1− (hk)2

6

)
=:

1

k2h
R(hk)

so that, at least in the interior of the domain, the nodal values of Galerkin solution uN
satisfy

R(hk)uN (xj − h) + 2S(hk)u(xj) +R(hk)uN (xj + h) = 0. (0.2)

By using the definitions of the hat functions φj

a(φj , φj) := k−2

∫
|∇φj |2dx−

∫
|φj |2dx = k−2

∫ h

−h
h−2dx−

∫ h

−h

(
1− x

h

)2

dx,

and

a(φj , φj+1) = a(φj+1, φ1) = k−2

∫ h

0

(−h−2)dx−
∫ h

0

(
1− x

h

)(x
h

)
dx,

and performing the integrals gives the claimed expressions.

(b) Seeking a solution of (0.2) of the form uN (xj) = exp(ik̃xj), show that the constraint

that k̃ is real implies that hk <
√

12. Under this constraint, show that

k̃ =
1

h
cos−1

(
−S(hk)

R(hk)

)
= k − k3h2

24
+O(k5h4); (0.3)

i.e., if the Galerkin solution is a propagating wave, then its “discrete wavenumber” k̃
differs from the true wavenumber k by (to leading order) a constant times h2k3.

(This type of analysis is often called “dispersion analysis” for the following reason.
Recall that a wave of the form f(kx − ωt) has phase velocity ω/k; when this phase
velocity is independent of k, the wave is non-dispersive, and when the phase velocity
depends on k, the wave is dispersive. The solution of the wave equation exp(ik̃x− iωt)

with k = ω/c has phase velocity ω/k̃ = (k/k̃)c (as in §0.1 of the notes), which depends

on k when k̃ is given by (0.3).)

Substituting uN (xj) = exp(ik̃xj) into (0.2), we find that

R(hk) exp(2ik̃h) + 2S(hk) exp(ik̃h) +R(hk) = 0,

so that

exp(ik̃h) = −S(hk)

R(hk)
±

√(
S(hk)

R(hk)

)2

− 1. (0.4)

If |S(hk)/R(hk)| > 1, then the right-hand side of (0.4) is real, and k̃ cannot be real.
Therefore we require that |S(hk)/R(hk)| < 1, and using the definitions of S(hk) and
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R(hk) this is the requirement that hk <
√

12. Taking the real part of (0.4), we find
that

cos(ik̃h) = −S(hk)

R(hk)
.

As x→ 0,
1− x2/3

1 + x2/6
= 1− x2

2
+
x4

12
+O(x6)

and

cos−1(1− x) =
√

2
√
x+

x3/2

6
√

2
+O(x5/2),

so that (after some calculation)

cos−1

(
1− x2/3

1 + x2/6

)
= x− x3

24
+O(x4),

and the result follows.

2. Prove Lemma 3.3. Hint: let B : L2(ΩR)→ H1
0,D(ΩR) be defined by

(Bu, v)H1
k(ΩR) = (nu, ıv)L2(ΩR) for all u ∈ L2(ΩR), v ∈ H1

0,D(ΩR),

where ı is the inclusion map H1
0,D(ΩR) → L2(ΩR), and recall that ı is compact by a result

of Rellich; see, e.g., [9, Theorem 3.27].

Solution: let A0 be defined by

(A0u, v)H1
k(ΩR) := k−1(A∇u,∇v)L2(ΩR) + (nu, v)L2(ΩR) − k−1

〈
DtNkγu, γv

〉
ΓR

(i.e., A0 is the operator associated with the sesquilinear form a+(·, ·) in Exercise 1 in §2.4).
Similar to in Lemma 1.13, A0 is bounded on H1

0,D(ΩR), and by the inequality (1.13), A0 is

coercive on H1
0,D(ΩR).

With B defined in the hint, the definition of a(·, ·) (1.24) implies that A = A0 − 2Bı. Since
ı is compact H1

0,D(ΩR) → L2(ΩR) and B is bounded L2(ΩR) → H1
0,D(ΩR), Bı is compact

H1
0,D(ΩR)→ H1

0,D(ΩR) and the proof is complete.

3. Prove Lemma 3.18. Hint: using Green’s identity and the radiation condition, show that〈
DtNkψ, φ

〉
ΓR

=
〈
DtNkφ, ψ

〉
ΓR

for all φ, ψ ∈ H1/2(ΓR).

Solution: the result follows if a(v, u) = a(u, v) for all u, v, and this follows if we can show the
result in the hint about DtNk.

Using Green’s identity (Lemma 1.10) twice, we have that if u, v ∈ H1(Ω,∆) then∫
Ω

u∆v − v∆u =

∫
∂D

γu ∂νv − γv ∂νu. (0.5)

Given φ ∈ H1/2(ΓR), let u be the outgoing solution of (k−2∆+1)u = 0 in Rd\BR with γu = φ
on ΓR. Similarly, given ψ ∈ H1/2(ΓR), let v be the outgoing solution of (k−2∆ + 1)v = 0 in
Rd \BR with γu = ψ on ΓR. Applying (0.5) in BR′ \BR with R′ > R, we have〈

DtNkψ, φ
〉

ΓR
−
〈
DtNkφ, ψ

〉
ΓR

=

∫
ΓR′

u
∂v

∂n
− v ∂u

∂n
=: I,

where we have written ∂u/∂n and ∂v/∂n since u and v are both in H2
loc(Rd \ BR). It is

now sufficient to prove that I → 0 as R′ → ∞. Since both u and v satisfy the Sommerfeld
radiation condition (1.4).

I =

∫
ΓR′

u

(
∂v

∂r
− ikv

)
−v
(
∂u

∂r
− iku

)
= O

(
1

(R′)(d−1)/2

)
o

(
1

(R′)(d−1)/2

)
O
(
(R′)d−1

)
= o(1)

as R′ →∞ and the proof is complete.
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4. The goal of this exercise is to show how the conditions for quasioptimality in Lemma 3.20
can be formulated more abstractly (with this done in [2, Theorem 2.1]).

As in §3.2, let A : H → H be the linear operator such that a(u, v) = (Au, v)H for all u, v ∈ H.
Given HN closed in H, let PN be the orthogonal projection onto HN so that, in particular,
‖(I − PN )u‖H = minvN∈HN

‖u − vN‖H. Suppose that A0 : H → H is a bounded linear
operator that is coercive (i.e., (3.5) holds with A replaced by A0).

Let u be the solution of the variational problem (3.1), and let uN be the Galerkin solution
defined by (3.2). Show that if∥∥(I − PN )(A∗)−1(A∗ −A∗0)

∥∥
H→H ≤

α

2 ‖A‖H→H
, (0.6)

then the Galerkin solution uN exists, is unique, and satisfies

‖u− uN‖H ≤
2 ‖A‖H→H

α
‖(I − PN )u‖H . (0.7)

Hint: define T : H → H by

a(w, T v) = −(a− a0)(w, v) for all w ∈ H,

where a0(w, v) = (A0w, v)H, let η(HN ) := ‖(I − PN )T ‖H→H, and use the ideas in the proof
of Lemma 3.20.

(This result is useful when (A∗)−1(A∗ − A∗0) is smoothing; recall from Exercise 2 that the
sesquilinear form of the EDP (1.24) fits into this framework – with also A0 coercive.)

Solution: first observe that the definition of T implies that

(Aw, T v)H = −
(
(A−A0)w, v

)
H for all w ∈ H,

i.e., A∗T = −(A−A0)∗, i.e., T = −(A∗)−1(A∗ −A∗0).

We show that under the assumption that the Galerkin solution exists, the bound (0.7) holds;
the proof that uN exists is then identical to the proof of the analogous part of Lemma 3.20.

Let e := u−uN . By the coercivity of a0(·, ·), Galerkin orthogonality (3.3), and the definition
of T ,

α ‖e‖2H ≤
∣∣a0(e, e)

∣∣ =
∣∣a(e, e)− (a− a0)(e, e)

∣∣,
=
∣∣a(e, (I − PN )u

)
− a(e, T e)

∣∣,
=
∣∣a(e, (I − PN )u

)
− a(e, (I − PN )T e)

∣∣,
≤ ‖A‖H→H ‖e‖H

(
‖(I − PN )u‖H + ‖(I − PN )T e‖H

)
.

Therefore, if ‖(I − PN )T‖H→H ≤ α/(2‖A‖H), then the bound (0.7) holds and the proof is
complete.

5. The goal of this exercise is to show how the ‖A‖H→H in the quasi-optimality constant in
(0.7) can be replaced by ‖A0‖H→H – this is useful for proving quasioptimality of the Galerkin
method applied to Helmholtz boundary integral equations where the norms grow with k; see
[8], [3].

Assume that A and A0 are as in Exercise 2.

(a) Show that

α ‖u− uN‖2H ≤ ‖A0‖H→H ‖u− uN‖H ‖u− PNu‖H +
∣∣((A−A0)(u− uN ), uN − PNu

)
H

∣∣.
(Note that ‖u − PNu‖H on the right-hand side is multiplied by ‖A0‖H→H, instead of
by ‖A‖H→H as in the argument leading to (0.7).)
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Solution: by coercivity of A0 and Galerkin orthogonality,

α ‖u− uN‖2H ≤
∣∣(A0(u− uN ), u− uN

)
H

∣∣,
=
∣∣(A0(u− uN ), u− PNu

)
H +

(
A0(u− uN ), PNu− uN

)
H

∣∣,
=
∣∣(A0(u− uN ), u− PNu

)
H +

(
(A0 −A)(u− uN ), PNu− uN

)
H

∣∣,
and the result follows.

(b) Show that, for all wN ∈ HN ,

∣∣((A−A0)(u− uN ), wN
)
H

∣∣ ≤ ( ‖A0‖H→H + ‖(I − PN )(A−A0)‖H→H

)
×
∥∥(I − PN )(A∗)−1(A∗ −A∗0)

∥∥
H→H ‖u− uN‖H ‖wN‖H .

Solution: using Galerkin orthogonality and the fact that PN is a projection, we have(
(A−A0)(u− uN ), wN

)
H

=
(
(u− uN ), (A−A0)∗wN

)
H

=
(
A(u− uN ), (A∗)−1(A−A0)∗wN

)
H

=
(
A(u− uN ), (I − PN )(A∗)−1(A−A0)∗wN

)
H

=
(
A0(u− uN ), (I − PN )(A∗)−1(A−A0)∗wN

)
H

+
(
(A−A0)(u− uN ), (I − PN )(A∗)−1(A−A0)∗wN

)
H

=
(
A0(u− uN ), (I − PN )(A∗)−1(A−A0)∗wN

)
H

+
(
(I − PN )(A−A0)(u− uN ), (I − PN )(A∗)−1(A−A0)∗wN

)
H,

and the result follows.

(c) By writing
‖u− uN‖H ≤ ‖u− PNu‖H + ‖uN − PNu‖H

and using Parts (a) and (b), show that if∥∥(I − PN )(A∗)−1(A∗ −A∗0)
∥∥
H→H ≤

α

4 ‖A0‖H→H
(0.8)

and

‖(I − PN )(A−A0)‖H→H ≤ ‖A0‖H→H . (0.9)

then the Galerkin solution uN exists, is unique, and satisfies

‖u− uN‖V ≤
(

1 +
2 ‖A0‖H→H

α

)
‖(I − PN )u‖H . (0.10)

Solution: inputting the result of (b) into the result of (a) and then imposing the condi-
tions (0.8) and (0.9), we find

α ‖u− uN‖H ≤ ‖A0‖H→H ‖u− PNu‖H +
α

2
‖uN − PNu‖H ,

≤ ‖A0‖H→H ‖u− PNu‖H +
α

2

(
‖u− uN‖H + ‖u− PNu‖H

)
,

and the result follows.

(This result is similar to that in [8, Theorem 3.8]; in this latter result, instead of A0

being coercive, A0 satisfies a discrete inf-sup condition in HN with constant α, and then
quasioptimality holds with constant 2(1 + ‖A0‖/α). The proof is very similar to above,
but starts by writing ‖u− uN‖H ≤ ‖u− PNu‖H + ‖uN − PNu‖H and then bounding
‖uN − PNu‖H using steps similar to those above.)
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