Exercises for Section 3

1. The goal of this exercise is to show how the quantity h*k3 (appearing in Theorem (3.15)
under the assumption that Cso ~ k) arises from analysing solutions of the Galerkin linear
system in 1-d. This material, and significant extensions of it, appear in [4, 6, 7, 5, 1].

(a) Consider the finite-element discretisation of the 1-d model problem
k72w +u=—f in(0,1), u(0)=0, and Ek 'u'(1)—iu(l)=0 (0.1)

on a uniform grid with meshwidth h, nodes z;, and with piecewise-linear hat functions
¢; such that ¢;(x;) = d;;. If z; and ;11 are both away from the boundary, show that

(6509 = 7 (1= 55 ) = St

and

1 hk)? 1
a(j, djt1) = =i <—1 ! 6) > =: WR(M{)

so that, at least in the interior of the domain, the nodal values of Galerkin solution wuy
satisfy
R(hk)un(z; — h) + 2S5 (hk)u(x;) + R(hk)un(z; + h) = 0. (0.2)

By using the definitions of the hat functions ¢,

oy = [190sPar— [loae =i [ e [ (122

and
a(¢j,¢j+1) = a(¢j+1>¢1) = k_2 /Oh(_h_Q)dx - /Oh (1 B %) (%) dx,

and performing the integrals gives the claimed expressions.

(b) Seeking a solution of (0.2) of the form un(z;) = exp(i%xj), show that the constraint
that k is real implies that hk < 1/12. Under this constraint, show that

B 312
k= %cos_1 (—;((Z]]z))) =k — k2Z + O(K°h*); (0.3)

i.e., if the Galerkin solution is a propagating wave, then its “discrete wavenumber” k
differs from the true wavenumber k by (to leading order) a constant times h2k3.

(This type of analysis is often called “dispersion analysis” for the following reason.
Recall that a wave of the form f(kx — wt) has phase velocity w/k; when this phase
velocity is independent of k, the wave is non-dispersive, and when the phase velocity
depends on k, the wave is dispersive. The solution of the wave equation exp(ikz — iwt)

with k = w/c has phase velocity w/k = (k/k)c (as in §0.1 of the notes), which depends
on k when k is given by (0.3).)
Substituting uy (z;) = exp(iExj) into (0.2), we find that

R(hk) exp(2ikh) + 25(hk) exp(ikh) + R(hk) = 0,

so that

~ . S(hk) S(hk)\>
exp(lkzh)——mi (R(hk)> -1 (0.4)

If |S(hk)/R(hk)| > 1, then the right-hand side of (0.4) is real, and k cannot be real.
Therefore we require that |S(hk)/R(hk)| < 1, and using the definitions of S(hk) and
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R(hk) this is the requirement that hk < \/12. Taking the real part of (0.4), we find

that S(hk)
ikh) = — 2=~
cos(ikh) R(hk)
Asz — 0,
1—22/3 z? 4 6
a2 LT P tow)
and
-1 1 ) \/i\f x3/2 O( 5/2)
cos —x) = T+ —=+ x R
( 6v/2

so that (after some calculation)
cos™! (m) =z — xj’ + O(z),
and the result follows.
2. Prove Lemma 3.3. Hint: let B : L?(Qr) — Hj p(Qr) be defined by
(Bu,v) g1 () = (nu, w)r2(qy) forallue L*(Qg), v e H&D(QR),
where 4 is the inclusion map Hj ,(Qr) = L?*(Qr), and recall that 1 is compact by a result

of Rellich; see, e.g., [9, Theorem 3.27].
Solution: let A be defined by

(Aou, v) 1 (qp) = k™ AV, Vo) 20, + (nu, ) 12(0p) — k_1<DtNk7u,vv>FR

(i.e., Ap is the operator associated with the sesquilinear form ay(-,-) in Exercise 1 in §2.4).
Similar to in Lemma 1.13, Aq is bounded on Hj ;,(Qr), and by the inequality (1.13), A is
coercive on Hj p(Qr).

With B defined in the hint, the definition of a(-,-) (1.24) implies that A = Ay — 2Bs. Since
v is compact Hj p(Qr) — L?(Qg) and B is bounded L*(Qr) — H} 5 (Qr), B is compact
Hj p(Qr) = Hy p(Qr) and the proof is complete.

3. Prove Lemma 3.18. Hint: using Green’s identity and the radiation condition, show that
(DtNy, ¢>FR = <Dtqu§,w>FR for all ¢, € H'/?(Tg).

Solution: the result follows if a(v,u) = a(w@,v) for all u, v, and this follows if we can show the
result in the hint about DtNy.

Using Green’s identity (Lemma 1.10) twice, we have that if u,v € H'(Q,A) then

/ uAv — vAu = / yudyv — v dyu. (0.5)
Q aD

Given ¢ € HY/?(I'g), let u be the outgoing solution of (k~2A+1)u = 0 in R*\ Bg with yu = ¢
on I'g. Similarly, given 1) € H'/?(I'g), let v be the outgoing solution of (k~2A + 1)v =0 in
R\ Bg with yu =1 on I'g. Applying (0.5) in B/ \ B with R’ > R, we have

(DN, )y, — (DN )y, = [ ugh -

r, on on

(RY\ Bg). Tt i
loc R)- 18
now sufficient to prove that I — 0 as R’ — oo. Since both u and v satisfy the Sommerfeld
radiation condition (1.4).

I= /FR, u (g: - ikv) —v (g:f - iku) =0 <<R,)(}i_1)/?> 0 <(R,)(61i_1)/2> O((R)*™") = o(1)

as R’ — oo and the proof is complete.

where we have written du/dn and dv/dn since u and v are both in H?




4. The goal of this exercise is to show how the conditions for quasioptimality in Lemma 3.20
can be formulated more abstractly (with this done in [2, Theorem 2.1}).

Asin §3.2, let A : H — H be the linear operator such that a(u,v) = (Au, v)y for all u,v € H.
Given Hy closed in H, let Py be the orthogonal projection onto Hy so that, in particular,
(I — Py)u|ly = min, eny ||t — vn||n. Suppose that Ay : H — H is a bounded linear
operator that is coercive (i.e., (3.5) holds with A replaced by Ay).

Let u be the solution of the variational problem (3.1), and let uy be the Galerkin solution
defined by (3.2). Show that if

*\ — * * «
107 = ) (AT A = ) € 5 06)
[ P
then the Galerkin solution uy exists, is unique, and satisfies
2||All
v —unlly < aﬂ_m (I = Pr)ully - (0.7)

Hint: define 7 : H — H by
a(w, Tv) = —(a —ap)(w,v) for all w e H,
where ag(w,v) = (Aow,v)y, let n(Hy) = ||(I — Pn)T |-, and use the ideas in the proof

of Lemma 3.20.

(This result is useful when (A*)~!1(A* — Af) is smoothing; recall from Exercise 2 that the
sesquilinear form of the EDP (1.24) fits into this framework — with also .4y coercive.)

Solution: first observe that the definition of 7 implies that

(Aw, Tv)y = —((A— Ag)w,v) for all w € H,

H

Lo, AT = —(A — Ag)*, pe., T = —(A*) "1 (A" — AY).

We show that under the assumption that the Galerkin solution exists, the bound (0.7) holds;
the proof that uy exists is then identical to the proof of the analogous part of Lemma 3.20.

Let e := u—uy. By the coercivity of ag(+, ), Galerkin orthogonality (3.3), and the definition
of T,
allelly; < lao(e, )| = |a(e,e) — (a— a)(e,e)],
= |a(e, (I = Py)u) — ale, Te)|,
la(e, (I — Py)u) —ale, (I — Py)Te)l,
1Al el (I = Pl + 1T = P)Telly, ).

Therefore, if ||(I — Pn)T|ln—n < a@/(2||Al|%), then the bound (0.7) holds and the proof is
complete.

<

5. The goal of this exercise is to show how the ||A|x4—x in the quasi-optimality constant in
(0.7) can be replaced by || Ao ||%—3 — this is useful for proving quasioptimality of the Galerkin
method applied to Helmholtz boundary integral equations where the norms grow with k; see

(8], [3]-
Assume that A and Ay are as in Exercise 2.

(a) Show that
2
el = un 2 < [ Aollg el — el 1t — Pralyg + | (A = Ao)(u — ),y — Py, |

(Note that ||u — Pyull% on the right-hand side is multiplied by ||Ag||#—%#, instead of
by ||A||x—% as in the argument leading to (0.7).)



Solution: by coercivity of 4y and Galerkin orthogonality,

allu — UNH?.[ < |(A0(u —un),u — UN)’H"
= |(A0(u —un),u — PNu)H + (Ao(u —uy), Pyu— uN)H|7
|(Ao(u — un),u — PNU)H + ((Ao — A)(u — un), Pyu — UN)H”
and the result follows.
(b) Show that, for all wy € H,

(A= A= )0} < (ol + 17 = P)CA = Al
([ = Pa) (") 2 (A" — A3)

- UNHH ”wNH’H'

Solution: using Galerkin orthogonality and the fact that Py is a projection, we have

’LUN)H

(u—un), (A) 7 (A= Ao wn),,
= (A(u —un), (I = Py)(A") 1A= Ao)*wy),,
= (Ao(u—un), (I = Px)(A*) " (A= Ag) wn ),
+ ((A=Ao)(u—un), (I = Px)(A*) (A= Ag) wn),,
= (Ao(u—un), (I = Px)(A") (A = Ao) wn),,
+ (I = Pn)(A = Ao)(u — un), (I = Pr)(A")THA = Ao) wiv) 5,

and the result follows.
(¢) By writing
[u—unlly < llu—Pyully + [lun — Pyully

and using Parts (a) and (b), show that if

«@
(I — Pn)(A")HA" — A2) < (0.8)
|| 0 ||’H—>”H 4] Aol
and
I = Pa)(A = A0l < IAollposre - (0.9)
then the Galerkin solution uy exists, is unique, and satisfies
2| Ao
lu—unlly < (1 + % (I = Pr)ully - (0.10)

Solution: inputting the result of (b) into the result of (a) and then imposing the condi-
tions (0.8) and (0.9), we find

(6%
=l < [ Aollye-yrg 10— Pavully, + 5l = Pl
[0
< Aollp e u = Pavullyy + 5 (e =l + llu = Pl ),

and the result follows.

(This result is similar to that in [8, Theorem 3.8]; in this latter result, instead of A,
being coercive, A satisfies a discrete inf-sup condition in H  with constant «, and then
quasioptimality holds with constant 2(1 4+ ||.Ag||/c). The proof is very similar to above,
but starts by writing ||u — un|l,, < ||u— Pnully + |luy — Pyull;, and then bounding
|lun — Pyull;, using steps similar to those above.)
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