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Abstract

These are the lecture notes for the course
https://math.ethz.ch/fim/activities/nachdiplom-lectures/euan-spence.html. The ab-
stract for the course is as follows.

Semiclassical analysis (SCA) is a branch of microlocal analysis concerned with rigorously
analysing PDEs with large (or small) parameters. On the other hand, numerical analysis (NA)
seeks to design numerical methods that are accurate, efficient, and robust, with theorems
guaranteeing these properties.

In the context of high-frequency wave scattering, both SCA and NA share the same goal –
that of understanding the behaviour of the scattered wave – but these two fields have operated
largely in isolation, mainly because the tools and techniques of the two fields are somewhat
disjoint.

This by-and-large self-contained course focuses on the Helmholtz equation, which is ar-
guably the simplest possible model of wave propagation. Our first goal will be to show how
even relatively-simple tools from semiclassical analysis can be used to prove fundamental re-
sults about the numerical analysis of finite-element method applied to the high-frequency
Helmholtz equation.

The course will aim at being accessible both to students coming from a numerical-analysis/applied-
maths background and to students coming from an analysis background.
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0 Introduction

0.1 Where does the Helmholtz equation come from? (Short version)

The Helmholtz equation is the simplest model of wave propagation; indeed, seeking solutions of
the wave equation

∆U − 1

c2
∂2U

∂t2
= 0

in the form U(x, t) = exp(−iωt)u(x) (so-called “time-harmonic solutions”), we find that u(x)
satisfies

∆u+ k2u = 0 (0.1)

with k = ω/c; since c is a speed (with dimension (length)(time)−1), and ω has dimension (time)−1,
k has dimension (length)−1; k is called the wavenumber, and ω is called the angular frequency.

In this course, we are interested in the Helmholtz equation (0.1) (and its generalisation with
variable coefficients) when k is large, and we approach this question mathematically by studying
the behaviour of Helmholtz solutions as k →∞. We often refer to this limit as the “high-frequency”
limit, rather than the “large-wavenumber” limit, because the former terminology is more familiar
to most people than the latter.

0.2 Why is the high-frequency Helmholtz equation difficult?

Dividing the Helmholtz equation (0.1) by k2, we obtain

k−2∆u+ u = 0. (0.2)

Recall that a singular limit of a PDE with a parameter is one in which the coefficient of the
highest-order term vanishes with the parameter is formally set to the limit; a regular limit is
one in which this coefficient does not vanish. The limit k → ∞ is therefore a singular limit for
the Helmholtz equation, and the limit k → 0 a regular limit. This explains why the Helmholtz
equation with k large is harder to solve than the Helmholtz equation with k small, or the Laplace
equation. Furthermore, one can show that the equations governing the k → ∞ limit of solutions
of the Helmholtz equation are nonlinear.

The high-frequency Helmholtz equation ∆u + k2u = 0 is difficult to solve numerically for the
following three reasons:

1. The solutions of the homogeneous Helmholtz equation oscillate on a scale of 1/k, and so
to approximate them accurately with piecewise polynomial functions (e.g. using the finite
element method) one needs the total number of degrees of freedom, N , to be proportional to
kd as k increases, where d is the spatial dimension.

2. The pollution effect means that for fixed-order finite-element methods with N ∼ kd, even
though the best-approximation error is bounded independently of k, the relative error grows
with k. The fact that N � kd is required for the relative error to be bounded independently of
k leads to very large matrices, and hence to large (and sometimes intractable) computational
costs.

3. The standard variational formulation of the Helmholtz equation is not coercive (i.e. it is
sign-indefinite) when k is sufficiently large; in other words, zero is in the numerical range
or field of values of the operator. This indefiniteness is inherited by the Galerkin linear
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system; therefore even when the linear system has a unique solution (which depends on the
discretisation and on k), one expects iterative methods to behave badly if the system is not
preconditioned.

0.3 Where does the Helmholtz equation come from? (Longer version)

Answer 1: from the acoustic approximation of elastic waves. The acoustic approximation
of the elastic wave equation removes the (longitudinal) shear waves and keeps the (transverse)
compressional waves to obtain the wave equation

1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)

= ∇ ·
(

1

ρ
f

)
,

where p is the pressure, ρ is the density, κ is given in terms of the Lamé parameters and has
the same dimension as pressure, and f is a force term; see, e.g., [35, §1.2.6]. Assuming p(x, t) =
u(x) exp(−iωt), we obtain

∇ ·
(

1

ρ
∇u
)

+
ω2

κ
u = −∇ ·

(
1

ρ
f

)
. (0.3)

Let ρ0 and κ0 be reference values of ρ and κ. Let A := ρ0/ρ and n := κ0/κ be the (dimensionless)
relative variations of ρ and κ, respectively (observe that matrix-valued A then corresponds to
anisotropic density), and let c0 =

√
ρ0/κ0 (which one can check has the dimensions of speed).

Multiplying (0.3) by ρ0 and using these definitions, we find that u satisfies

∇ · (A∇u) + k2nu = −ρ0∇ ·
(

1

ρ
f

)
.

Answer 2: from transverse electric (TE) or transverse magnetic (TM) modes of the
time-harmonic Maxwell equations. The time-harmonic Maxwell equations are

∇×H + iωεE = (iω)−1J, ∇×E− iωµH = 0 in R3, (0.4)

where ε is the electric permittivity and µ is the magnetic permeability. When all fields and
parameters involved depend only on two Cartesian space variables, say x and y, the equations
(0.4) reduce to the Helmholtz equation in R2.

In the transverse-magnetic (TM) mode, J and E are given by J = (0, 0, Jz(x, y)) and E =
(0, 0, Ez(x, y)) so, when additionally the permittivity ε is a scalar and the permeability µ satisfies

µ =

(
µ̃ 0
0 1

)
(0.5)

for µ̃ a 2× 2 symmetric positive-definite matrix, Ez satisfies

∇ · (A∇Ez) + ω2nEz = −f (0.6)

with n = ε,

A =

(
0 1
−1 0

)T (
µ̃
)−1

(
0 1
−1 0

)
, (0.7)

and f = Jz. Similarly, in the case of the transverse-electric (TE) mode, J and H are given by
J = (Jx(x, y), Jy(x, y), 0) and H = (0, 0, Hz(x, y)), so that when µ is a scalar and ε satisfies an
equation analogous to (0.5), the PDE (0.6) holds with Ez replaced by Hz, A given by (0.7) with
µ̃ replaced by ε̃, n = µ, and

f = − 1

iω
∇ ·
[(

0 1
−1 0

)(
ε̃
)−1

(
Jx
Jy

)]
.
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1 Wellposedness of the Helmholtz equation

1.1 The Helmholtz exterior Dirichlet problem

Notation: Lp(Ω) denotes complex-valued Lp functions on a Lipschitz open set Ω. When the
range of the functions is not C, it will be given in the second argument; e.g. L∞(Ω,Rd×d) denotes
the space of d × d matrices with each entry a real-valued L∞ function on Ω. We use γ to denote
the trace operator H1(Ω) → H1/2(∂Ω) and ∂ν to denote the normal derivative trace operator
H1(Ω,∆)→ H−1/2(∂Ω), where H1(Ω,∆) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}.

Assumption 1.1. (Assumptions on the domain and coefficients.)
(i) Ω− ⊂ Rd, d = 2, 3, is a bounded open Lipschitz set such that its open complement Ω+ :=

Rd \ Ω− is connected.
(ii) A ∈ C0,1(Ω+,SPD) (where SPD is the set of d× d real, symmetric, positive-definite matri-

ces) is such that supp(I − A) is bounded and there exist 0 < Amin ≤ Amax < ∞ such that, for all
ξ ∈ Rd,

Amin|ξ|2 ≤
(
A(x)ξ

)
· ξ ≤ Amax|ξ|2 for every x ∈ Ω+. (1.1)

(iii) n ∈ L∞(Ω+,R) is such that supp(1− n) is bounded and there exist 0 < nmin ≤ nmax <∞
such that

nmin ≤ n(x) ≤ nmax for almost every x ∈ Ω+. (1.2)

Definition 1.2. (Exterior Dirichlet Problem (EDP).) Given Ω−, A, and n satisfying As-
sumption 1.1, k > 0, and

• f ∈ L2(Ω+) with suppf bounded,

• gD ∈ H1/2(ΓD), where ΓD := ∂Ω−,

we say u ∈ H1
loc(Ω+) satisfies the exterior Dirichlet problem if

k−2∇ · (A∇u) + nu = −f in Ω+, γu = gD on ΓD, (1.3)

and u satisfies the Sommerfeld radiation condition

k−1 ∂u

∂r
(x)− iu(x) = o

(
1

r(d−1)/2

)
(1.4)

as r := |x| → ∞, uniformly in x̂ := x/r.

Some remarks:
(i) The PDE in (1.3) is understood in the following weak sense:∫

Ω+

k−2u∇ · (A∇φ) + nuφ = −
∫

Ω+

f φ for all φ ∈ C∞comp(Ω+), (1.5)

where C∞comp(Ω+) := {φ ∈ C∞(Ω+) : suppφ is a compact subset of Ω+}.
(ii) We can legitimately impose the radiation condition (1.4) on the function u ∈ H1

loc(Ω+)
since u satisfies the equation k−2∆u + u = 0 outside a ball of finite radius, and then u is C∞

outside this ball by elliptic regularity (see §2.3 below).

Definition 1.3. (Helmholtz plane-wave sound-soft scattering problem.) Given k > 0 and
a ∈ Rd with |a| = 1, let uI(x) := exp(ikx · a). Given Ω−, A, and n satisfying Assumption 1.1, we
say u ∈ H1

loc(Ω+) satisfies the Helmholtz plane-wave scattering problem if

k−2∇ · (A∇u) + nu = 0 in Ω+, γu = 0 on ΓD, (1.6)

and uS := u − uI satisfies the Sommerfeld radiation condition (1.4) (with u replaced by uS) as
r := |x| → ∞, uniformly in x̂ := x/r.

(If the zero Neumann boundary condition ∂nu = 0 is prescribed instead of the zero Dirichlet
condition, then the problem is the sound-hard scattering problem.)
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Lemma 1.4. (Atkinson-Wilcox expansion.) (i) If u ∈ C2(Rd \ BR) (for some R > 0) is a
solution of the Helmholtz equation satisfying the Sommerfeld radiation condition, then

u(x) =
eikr

r(d−1)/2

∞∑
n=0

fn(x̂)

rn
for all r > R,

where both the series and all its term-by-term derivatives converge absolutely and uniformly with
respect to r and x̂.

(ii) If f0 = 0, then u = 0 in Rd \BR.

Proof. (i) can be proved using the explicit solution (obtained by separation of variables) for the
solution of the Helmholtz equation outside a ball (see (1.10) below), or integral equations and
properties of the fundamental solution; for the former approach, see [118, §2.6.3], for the latter
approach, see [41, Theorem 3.6].

(ii) is proved using (i) in, e.g., [41, Corollary 3.8].

Remark 1.5. (An “outgoing solution” of the Helmholtz equation.) A solution of the
Helmholtz equation satisfying the Sommerfeld radiation condition (1.4) is often called an outgoing
solution. The reason for this is that, if u satisfies the Sommerfeld radiation condition and U(x, t) :=
u(x) exp(−iωt), then, with c = ω/k,

U(x, t) =
eik(r−ct)

r(d−1)/2

∞∑
n=0

fn(x̂)

rn
for all r ≥ R;

recall that a function of the form (r, t) 7→ w(r− ct) can be seen as a wave moving in the positive r
direction with speed c as t increases (i.e., “outgoing”).

1.2 Weighted norms

For Ω a bounded Lipschitz open set, let

‖v‖2Hm
k (Ω) :=

∑
0≤|α|≤m

k−2|α| ‖Dαv‖2L2(Ω) , (1.7)

so that, in particular,
‖v‖2H1

k(Ω) := k−2 ‖∇v‖2L2(Ω) + ‖v‖2L2(Ω) . (1.8)

The rationale for using these norms is that if a function v oscillates with frequency k, then we
(roughly) expect |∇v| ∼ k|v|; e.g., if v(x) = exp(ikx · a), then ∇v(x) = ika exp(ikx · a).

1.3 The Dirichlet-to-Neumann map in the exterior of a ball

Let R > 0 be such that Ω−∪ supp(I−A)∪ supp(1−n) b BR, where BR denotes the ball of radius
R about the origin; see Figure 1.1. Let ΩR := Ω+ ∩BR, and let ΓR := ∂BR.

Definition 1.6. (Dirichlet-to-Neumann map in the exterior of BR.) Given g ∈ H1/2(ΓR),
let u be the outgoing solution of

(−k−2∆− 1)u = 0 in Rd \BR and γu = g on ΓR. (1.9)

Define the map DtNk : H1/2(ΓR)→ H−1/2(ΓR) by

DtNkg := k−1∂νu,

where ν := x/R = x̂ (i.e., ν is the outward-pointing unit normal vector to BR).

When d = 2, the outgoing solution to (1.9) is given in polar coordinates by

u(r, θ) =
1

2π

∞∑
n=−∞

H
(1)
n (kr)

H
(1)
n (kR)

exp(inθ)ĝ(n), where ĝ(n) :=

∫ 2π

0

exp(−inθ)g(R, θ) dθ, (1.10)
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so that

DtNkg =
1

2π

∞∑
n=−∞

H
(1)′

n (kR)

H
(1)
n (kR)

exp(inθ)ĝ(n).

An analogous expression is available for d = 3; see, e.g., [33, Equation 3.6] [118, §2.6.3], [108,
Equation 3.10].

Lemma 1.7. (Key properties of DtNk.)

(i) Given k0, R0 > 0 there exists CDtN1 = CDtN1(k0R0) such that for all k ≥ k0 and R ≥ R0,∣∣〈DtNk(γu), γv〉ΓR

〉∣∣ ≤ k CDtN1 ‖u‖H1
k(ΩR) ‖v‖H1

k(ΩR) for all u, v ∈ H1(ΩR). (1.11)

where 〈·, ·〉ΓR
denotes the duality pairing on ΓR that is linear in the first argument and antilinear

in the second argument.
(ii)

=
〈
DtNkφ, φ

〉
ΓR

> 0 for all φ ∈ H1/2(ΓR) \ {0}. (1.12)

(iii) Given k0, R0 > 0 there exists CDtN2 = CDtN2(k0R0) such that for all k ≥ k0 and R ≥ R0,

−<
〈
DtNkφ, φ

〉
ΓR
≥ CDtN2(kR)−1 ‖φ‖2L2(ΓR) for all φ ∈ H1/2(ΓR). (1.13)

Proof. The proof of Part (ii) is Exercise 1 in §1.6. For the proofs of Parts (i) and (iii), see [108,
Lemma 3.3].

Ω−

supp(I − A)

supp(1 − n)
R

Figure 1.1: A schematic of Ω−, the supports of I −A and 1− n, and BR.

Remark 1.8. (Energy.) If u(x) is a solution of the Helmholtz equation in Ω+, then =〈∂νu, γu〉ΓR

(where ν = x̂) is proportional to the flux in the x̂ direction across ΓR of the energy of the wave
equation solution u(x) exp(−iωt); see, e.g., [136, Page 262]. The sign property (1.12) is therefore
another illustration (on top of that in Remark 1.5) that the Sommerfeld radiation condition implies
that the associated solution u(x) exp(−iωt) of the wave equation corresponds to a wave moving away
from Ω− towards infinity; indeed, if =〈∂νu, γu〉ΓR

> 0, then energy is moving across ΓR in the
positive r direction.
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1.4 Variational formulation of the EDP with zero Dirichlet data

This formulation is based on Green’s identity.

Lemma 1.9. (Green’s identity (Version 1).) Let Ω be a bounded Lipschitz open set with
outward-pointing unit normal vector field ν. If A ∈ C0,1(Ω,Rd×d), u ∈ H2(Ω), and v ∈ H1(Ω),
then ∫

∂Ω

ν · γ(A∇u) γv =

∫
Ω

(A∇u) · ∇v + v∇ · (A∇u). (1.14)

Proof. First assume that v ∈ C∞(Ω) := {w|Ω : w ∈ C∞(Rd)}. Then (1.14) follows from applying
the divergence theorem ∫

Ω

∇ · F =

∫
∂Ω

ν · γF, for all F ∈ H1(Ω,Cd×d), (1.15)

with F = vA∇u, which is indeed in H1 since the product of a Lipschitz function and an H1

function is H1. Since C∞(Ω) is dense in H1(Ω) and (1.14) is continuous in v with respect to the
H1(D) norm, (1.14) holds for all v ∈ H1(Ω).

Lemma 1.10. (Green’s identity (Version 2) and conormal derivative.) Let Ω be a bounded
Lipschitz open set with outward-pointing unit normal vector field ν. If A ∈ C0,1(Ω,Rd×d), u ∈
H1(Ω), and ∇ · (A∇u) ∈ L2(Ω) (understood as in (1.5)1) then there exists a uniquely defined
ϕ ∈ H−1/2(∂Ω) such that

〈ϕ, γv〉∂Ω =

∫
Ω

(A∇u) · ∇v + v∇ · (A∇u) for all v ∈ H1(Ω), (1.16)

where 〈·, ·〉∂Ω denotes the duality pairing on ∂Ω that is linear in the first argument and antilinear
in the second argument. Furthermore, if u ∈ H2(Ω) then ϕ = ν · γ(A∇u) and thus we denote ϕ by
∂ν,Au.

Proof. Define ϕ ∈ H−1/2(∂Ω) by

〈ϕ,ψ〉∂Ω :=

∫
Ω

(A∇u) · ∇(ηψ) + ηψ∇ · (A∇u) for all ψ ∈ H1/2(Γ), (1.17)

where η : H1/2(∂Ω) → H1(Ω) is a continuous right inverse to the trace operator γ : H1(Ω) →
H1/2(∂Ω); i.e. γηψ = ψ for all ψ ∈ H1/2(∂Ω). We now need to show that (1.16) holds.

We first prove that if u ∈ H1(Ω) with ∇ · (A∇u) ∈ L2(Ω) and w ∈ H1
0 (Ω),∫

Ω

A∇u · ∇w = −
∫

Ω

w∇ · (A∇u). (1.18)

By the definition of the weak derivative, for all φ ∈ C∞comp(Ω),∫
Ω

φ∇ · (A∇u) =

∫
Ω

u∇ · (A∇φ) = −
∫

Ω

(A∇u) · ∇φ, (1.19)

where for the last equality we have used the divergence theorem (1.15) with F = uA∇φ, which is
in H1 (again since the product of a Lipschitz function and an H1 function is H1). Since C∞comp(Ω)
is dense in H1

0 (Ω) and (1.19) is continuous in v with respect to the H1(Ω) norm, (1.18) holds.
To prove (1.16), we apply (1.17) with ψ = γv to obtain that

〈ϕ, γv〉Γ =

∫
Ω

(A∇u) · ∇(ηγv) + ηγv∇ · (A∇u). (1.20)

We then apply (1.18) with w = v − ηγv, which is in H1
0 (Ω) because γη = I, to obtain that∫

Ω

(A∇u) · ∇
(
v − ηγv

)
= −

∫
Ω

(
v − ηγv

)
∇ · (A∇u). (1.21)

The result (1.16) then follows from adding (1.20) and (1.21). The result that ϕ = ν ·γ(A∇u) when
u ∈ H2(Ω) follows from comparing (1.16) and (1.14).

1That is, there exists g ∈ L2(Ω) such that
∫
Ω u∇ · (A∇φ) =

∫
Ω gφ for all φ ∈ C∞comp(Ω).
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Definition 1.11. (Variational formulation of EDP with gD = 0.) Given Ω−, A, and n
satisfying Assumption 1.1 and f ∈ L2(Ω+) with suppf bounded, choose R > 0 such that Ω− ∪
supp(I −A) ∪ supp(1− n) ∪ supp f b BR. Let

H1
0,D(ΩR) :=

{
v ∈ H1(ΩR) : γv = 0 on ΓD

}
. (1.22)

The variational formulation of the EDP of Definition 1.2 with gD = 0 is

find ũ ∈ H1
0,D(ΩR) such that a(ũ, v) = F (v) for all v ∈ H1

0,D(ΩR), (1.23)

where

a(ũ, v) :=

∫
ΩR

(
k−2(A∇ũ) · ∇v − nuv

)
− k−1

〈
DtNkγũ, γv

〉
ΓR

and F (v) :=

∫
ΩR

f v. (1.24)

Lemma 1.12. (Equivalence of the formulations.)
(i) If u is a solution of the Helmholtz EDP of Definition 1.2 with gD = 0, then u|ΩR

is a solution
of the variational problem (1.23) with a(·, ·) and F (·) as in (1.24). Conversely, if ũ is a solution
of this variational problem, then there exists a solution u of the Helmholtz EDP of Definition 1.2
with gD = 0 such that u|ΩR

= ũ.
(ii) If u is a solution of the plane-wave sound-soft scattering problem of Definition 1.3, then

u|ΩR
is a solution of the variational problem (1.23) with a(·, ·) as in (1.24) and

F (v) := k−1

∫
ΓR

(
k−1 ∂u

I

∂r
−DtNk(γuI)

)
γv. (1.25)

Conversely, if ũ is a solution of this variational problem, then there exists a solution of the plane-
wave sound-soft scattering problem of Definition 1.3 such that u|ΩR

= ũ.

Proof. The proof of Part (i) is Exercise 2 in §1.6; the proof of Part (ii) is similar.

Lemma 1.13. (Continuity of the sesquilinear form.) Given k0, R0 > 0, for all k ≥ k0 and
R ≥ R0,

|a(u, v)| ≤ Ccont ‖u‖H1
k(BR) ‖v‖H1

k(BR) for all u, v ∈ H1(BR), (1.26)

where
Ccont := max{Amax, nmax}+ CDtN1. (1.27)

Proof of Lemma 1.13. This follows from the Cauchy-Schwarz inequality, the definition of ‖·‖H1
k(ΩR)

(1.8), and the inequalites (1.1), (1.2), and (1.11).

1.5 Wellposedness of the EDP

Theorem 1.14. (Unique continuation principle (UCP).) Suppse that Ω is Lipschitz, A ∈
C0,1(Ω,SPD), n ∈ L∞(Ω,R), and u satisfies k−2∇ · (A∇u) + nu = 0 (in the sense of (1.5)). If
u = 0 on Br(x0) for some r > 0 and x0 ∈ Ω such that Br(x0) b ΩR, then u = 0 in Ω.

References for the proof. This follows from the unique continuation results of [66, 91] (for Lipschitz
A) and [87, 150] (for n ∈ L3/2); see, e.g., [71, Theorem 2.1].

Remark 1.15. Actually, in 2-d the UCP holds when A is L∞ and n ∈ Lp for some p > 1 [3]. An
example of an A ∈ C0,α for all α < 1 for which the UCP fails in 3-d is given in [57]. Nevertheless,
the UCP can be extended from Lipschitz A to piecewise-Lipschitz A by the Baire-category argument
in [13] (see also [101, Proposition 2.11]).

Lemma 1.16. If Ω−, A, and n satisfy Assumption 1.1, then the solution to the variational problem
(1.23) is unique.

Proof. This is Exercise 3 in §1.6.

Theorem 1.17. (Wellposedness of the EDP.) The EDP of Definition 1.2 has a unique solution
which depends continuously on the data.
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Proof. We first consider the case when gD = 0. By Lemma 1.12, it is sufficient to prove that the
variational problem (1.23) has a unique solution which depends continuously on the data. By the
inequalities (1.13), (1.1), and (1.2), and the definition of ‖ · ‖H1

k(ΩR) (1.8), for any v ∈ H1
0,D(ΩR),

<a(v, v) ≥ Amink
−2 ‖∇v‖2L2(ΩR) − nmax ‖v‖2L2(ΩR) = Amin ‖v‖2H1

k(ΩR) − (nmax +Amin) ‖v‖2L2(ΩR) ;

(1.28)

i.e., a(·, ·) satisfies a G̊arding inequality. Since the sesquilinear form is continuous (by Lemma
1.13) and satisfies a G̊arding inequality, Fredholm theory implies that existence of a solution to
the variational problem and continuous dependence of the solution on the data both follow from
uniqueness; see, e.g., [106, Theorem 2.34], [53, §6.2.8], [135, Theorem 6.31].

When gD 6= 0, let χ ∈ C∞comp(BR) with χ = 1 onBR′ for someR′ satisfying diam(Ω−) < R′ < R.
Then, given u satisfying the EDP with gD 6≡ 0, u − χηgD satisfies the EDP with zero Dirichlet
data and with suitably modified f and g (the bounded support of χηgD ensures that u − χηgD
satisfies the radiation condition). Existence of the solution of the EDP then follows from the case
gD = 0.

Remark 1.18. (Transmission problems.) Definition 1.2 allows for discontinuous n, but not
discontinuous A. The only change needed to allow A ∈ L∞(Ω+,SPD) in Assumption 1.1 (instead
of A ∈ C0,1(Ω+,SPD)) is for the PDE in (1.3) to be understood in the sense that∫

Ω+

(
− k−2∇u · (A∇φ) + nuφ

)
= −

∫
Ω+

f φ for all φ ∈ C∞comp(Ω+). (1.29)

Lemma 1.10 then holds with ∇ · (A∇u) ∈ L2(Ω) understood as in (1.29). Wellposedness then
follows as above, using the fact that a UCP holds for piecewise Lipschitz A – see the references in
Remark 1.15.

1.6 Exercises

1. Prove Part (ii) of Lemma 1.7. Hint: use Lemma 1.4 and Green’s identity.

2. Prove Part (i) of Lemma 1.12. Hint: use Green’s identity and the fact that a piecewise H1

function is globally H1 if it is continuous.

3. Prove Lemma 1.16. Hint: use Part (ii) of Lemma 1.7.

2 The k-dependence of the Helmholtz solution operator

2.1 The operator norm of the Helmholtz solution operator

Definition 2.1. Let Csol(k,A, n,Ω−, R) be the operator norm of the map L2(ΩR) 3 f 7→ u ∈
H1(ΩR), where u is the solution of the variational problem (1.23) (i.e., the EDP with gD = 0);
i.e.,

Csol(k,A, n,Ω−, R) := sup
f∈L2(BR)
‖f‖L2(ΩR)=1

‖u‖H1
k(ΩR).

This definition implies that the solution of the EDP with gD = 0 satisfies

‖u‖H1
k(ΩR) ≤ Csol ‖f‖L2(ΩR) . (2.1)

Theorem 1.17 implies that Csol < ∞, and, more generally, that the map (H1
0,D(ΩR))′ 3 f 7→ u ∈

H1
0,D(ΩR) is bounded. The following lemma gives a bound on this latter map in terms of Csol.

Lemma 2.2. Given F ∈ (H1
0,D(ΩR))′, let u be the solution of the variational problem a(u, v) =

F (v) for all v ∈ H1
0,D(ΩR), where a(·, ·) is given by (1.24). Then u satisfies

‖u‖H1
k(ΩR) ≤

(1 + 2Csolnmax)

min{Amin, nmin}
‖F‖(H1

k(ΩR))′ ,
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where

‖F‖(H1
k(ΩR))′ := sup

v∈H1
0,D(ΩR)\{0}

|F (v)|
‖v‖H1

k(ΩR)

.

Proof. This is Exercise 1 in §2.5 (with this result going back to at least [33, Text between Lemmas
3.3 and 3.4]).

2.2 The k-dependence of Csol

There could be a whole lecture course studying the k-dependence of Csol; it would be a great
course, but it is not this course. The goal of this section is to summarise the results about how
Csol behaves when k is large that we need later. The summary is that

• Csol grows at least linearly in k (Lemma 2.4) and at most exponentially in k (Theorem 2.5).

• Linear growth is attained when Ω−, A, and n are nontrapping (Theorem 2.7).

• Exponential growth is attained through a sequence of ks when one of Ω−, A, and n is
such that the problem has the strongest form of trapping (Theorem 2.9); however, for most
frequencies Csol is polynomially bounded in k (Theorem 2.11).

Although this section is focused on recapping rather than proving, I believe that everyone studying
the Helmholtz equation should have proved at least one k-explicit upper bound on Csol in their
lives! Theorem 2.14 therefore records the bound on Csol when A = I, n = 1, and Ω− is star-shaped
proved by Morawetz (using only integration by parts), and the proof of this is Exercise 3 in §2.5.

Remark 2.3. (k → ∞ vs kR → ∞.) Since k has units (length)−1 but kR is nondimensional,
it makes more sense to talk about the limit kR → ∞ than the limit k → ∞, and to write bounds
in terms of kR (or k multiplied by some other parameter with dimension length) instead of k.
However, since we are focused on the case when R is fixed and k can be arbitrarily large, we
usually work with k instead of kR (the next lemma and Theorem 2.14 being the only exceptions).

Lemma 2.4. (Csol grows at least linearly in k with no scatterer.) If A = I, n = 1,Ω− = ∅,
then, given k0, R0 > 0, there exists C > 0 such that Csol ≥ CkR for all k ≥ k0 and R ≥ R0.

Proof. This is Exercise 2 in §2.5.

Theorem 2.5. (Exponential upper bound on Csol.) If Ω−, A, and n are all C∞, then given
k0 > 0 there exists C,α > 0 such that, for all k ≥ k0,

Csol ≤ C exp(αk).

References for the proof. This was first proved in [25, Theorem 2] using Carleman estimates; for a
proof of the analogue of this result for scattering by a potential (involving the operator −k−2∆ +
V − z)), see [52, Theorem 6.25].

The key geometric conditions that govern the k-dependence of Csol are those of trapping and
nontrapping. We now define nontrapping for the case when Ω− = ∅; the definition for general
smooth Ω− is much more technical (and requires the notion of the Melrose-Sjöstrand generalised
bicharacteristic flow; see [110, 111], [79, §24.3]), and when Ω− has corners more technical still (see
[16] for the notion of a nontrapping polygon).

Definition 2.6. (Nontrapping A and n.) Suppose A and n satisfy Assumption 1.1 and are
additionally both C1,1. Let R > 0 be such that supp(I − A) ∪ supp(1 − n) b BR. Consider the
solutions (x(s), ξ(s)) ∈ Rd × Rd of the Hamiltonian system

dxi
ds

(s) =
∂

∂ξi
H
(
x(s), ξ(s)

)
,

dξi
ds

(s) = − ∂

∂xi
H
(
x(s), ξ(s)

)
, (2.2)

10



satisfying H(x(s), ξ(s)) = 0, where the Hamiltonian H(x, ξ) is given by

H(x, ξ) :=

d∑
i=1

d∑
j=1

Aij(x)ξiξj − n(x). (2.3)

We say that A and n are nontrapping if there exists S(R) > 0 such that all solutions of (2.2) with
|x(0)| < R satisfy |x(s)| > R for all s ≥ S(R).

Four remarks: (i) if A = I and n = 1, then H = |ξ|2−1 and (2.2) becomes ẋi = 2ξi and ξ̇i = 0,
with solution x = x0+2sξ0, ξ = ξ0 i.e., straight-line motion with speed 2, (ii) the projections in x of
the solutions of (2.2) are the rays of the Helmholtz equation, (iii) we see later that the significance
of the Hamiltonian (2.3) is that it is the semiclassical principal symbol of the Helmholtz equation,
and (iv) the requirement that A and n are both C1,1 means that the coefficients of the ODE system
(2.2) are Lipschitz, and then the solutions of (2.2) exist by the Picard–Lindelöf/Cauchy–Lipschitz
theorem (see, e.g., [8, §31]).

Theorem 2.7. (Nontrapping bound on Csol.) If Ω− = ∅ and A and n are both C1,1 and
nontrapping in the sense of Definition 2.6, then given k0 > 0 there exists C > 0 such that, for all
k ≥ k0,

Csol ≤ Ck. (2.4)

References for the proof. This is proved in [64] using the defect-measure argument of [26, Theorem
1.3 and §3]. When A and n are both C∞ and nontrapping, the bound (2.4) follows from the results
about propagation of singularities of the wave equation in [51, §VI] combined by [147, Theorem
3]/ [148, Chapter 10, Theorem 2] or [97]. (The argument in [147] takes results about propagation
of singularities for the wave equation, and outputs a bound on Csol; see, e.g., the account of this
argument in [52, Theorem 4.43]).

Remark 2.8. (The constant in the nontrapping bound on Csol.) In fact, [64] shows that,
if k0 is sufficiently large and one works in an H1

k norm weighted with A and n, then the constant
C in (2.4) is a multiple of the length of the longest ray in BR; see [64, Theorem 1 and Equation
6.32].

We write a . b if there exists C > 0, independent of k, such that a ≤ Cb. We write a & b if
b . a, and a ∼ b if a . b and a & b.

In the rest of the course, we will informally describe the case when Csol . k as “nontrapping”.
We emphasise however, that there exist A,n, and Ω− for which Csol . k, but for which the concept
of nontrapping is not well defined because either the coefficients A,n or the domain Ω− are too
rough; an example of the former situation is given in [70, Theorem 2.7], an example of the latter
situation is given in Theorem 2.14 below.

Theorem 2.9. (Exponential blow up of Csol through a sequence of ks for trapping Ω−.)
Suppose d = 2, A = I and n = 1. Given a1 > a2 > 0, let

E :=

{
(x1, x2) :

(
x1

a1

)2

+

(
x2

a2

)2

< 1

}
. (2.5)

Assume that ΓD coincides with the boundary of E in the neighbourhoods of the points (0,±a2),
and that Ω+ contains the convex hull of the union of these neighbourhoods (see, e.g., Figure 2.1).

Then there exists C1, C2 > 0 and {kj}∞j=1 with kj →∞ as k →∞ such that, for all j,

Csol(kj) ≥ C1 exp(C2kj).

References for the proof. This is proved in [19, Equation A.16]; the idea is that there exists families
of Laplace eigenfunctions of the ellipse that localise exponentially around the minor axis. These
eigenfunctions, chopped off with suitable cut-off functions, form functions through which the ex-
ponential growth of Csol(k) is attained (with kj such that k2

j is the appropriate eigenvalue). This
exponential localisation of Laplace eigenfunctions is also proved in [119, Theorem 3.1].
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x1

x2

a2

a1

Figure 2.1: An example of an Ω− satisfying the conditions of Theorem 2.9.

Remark 2.10. (Other results on the blow up of Csol.) Superalgebraic blow up of Csol through
a sequence of ks for more general Ω− than in Theorem 2.9 is proved in [30, Theorem 1].

An example where the trapping is created by smooth coefficients (as opposed to the obstacle)
is given in [125]: here Csol grows exponentially through a sequences of ks, Ω− = ∅, A = I, and
n is C∞ and spherically symmetric. For an example where trapping is caused by discontinuous
coefficients, see [124, 28, 29, 2] (with these results summarised for an “applied” audience in [113,
§6]).

The frequencies {kj}∞j=1, together with the (compactly-supported) functions through which the
blow-up occurs, are called quasimodes. The existence of quasimodes is linked to the existence
of resonances, i.e., poles of the meromorphic continuation of the solution operator of (0.1) from
=k ≥ 0 to =k < 0. The relationship between trapping, resonances, and quasimodes is a classic
topic in scattering theory; see [140, 141, 144, 137, 138] and [52, Chapter 7].

Theorem 2.11. (Csol is polynomially bounded for most frequencies.) If Ω−, A, and n
satisfy Assumption 1.1 then given k0 > 0 and δ > 0 there exists a set J ⊂ [k0,∞) with |J | ≤ δ
such that, for any ε > 0, there exists C > 0 such that

Csol(k) ≤ Ck5d/2+1+ε for all k ∈ [k0,∞) \ J.

If both Ω− and A are C1,σ for some σ > 0 then the exponent is reduced to 5d/2 + ε.

The result of Theorem 2.11 holds for a much wider range of scattering problems, namely those
fitting in the framework of black-box scattering introduced in [133] (see [52, Chapter 4]); see [95,
Theorem 1.1].

References for the proof of Theorem 2.11. This is proved for n = 1 in [95, Theorem 1.1 and Corol-
lary 3.6]; the proof for more-general n follows from [94, Lemma 2.3] (which shows that the EDP
of Definition 1.2 fits into the framework of black-box scattering).

Under an additional assumption about the location of resonances, a similar result to Theorem
2.11 with a larger exponent can also be extracted from [139, Proposition 3] by using the Markov
inequality.

As mentioned above, the definition of nontrapping Ω− is technical because one needs to define
reflection of the rays from ΓD. Nevertheless, a geometric condition that implies nontrapping (at
least for smooth domains) is that of star-shapedness.

12



Definition 2.12. (Star-shaped and star-shaped with respect to a ball.)
(i) Ω is star-shaped with respect to the point x0 if the segment [x0, x] ⊂ Ω for all x ∈ Ω.
(ii) Ω is star-shaped with respect to the ball Ba(x0) if it is star-shaped with respect to every point
in Ba(x0).

These definitions make sense even for non-Lipschitz Ω, but when Ω is Lipschitz one can charac-
terise star-shapedness with respect to a point or ball in terms of (x− x0) · ν(x) for x ∈ ∂Ω, where
ν(x) is the outward-pointing unit normal vector at x ∈ ∂Ω.

Lemma 2.13. ([112, Lemma 5.4.1]) (i) If Ω is Lipschitz (with outward-pointing unit normal
vector field ν(x)), then it is star-shaped with respect to x0 if and only if (x− x0) · ν(x) ≥ 0 for all
x ∈ ∂Ω for which ν(x) is defined.
(ii) If Ω is Lipschitz, then Ω is star-shaped with respect to Ba(x0) if and only if (x−x0) ·ν(x) ≥ a
for all x ∈ ∂Ω for which ν(x) is defined.

Theorem 2.14. (Morawetz bound on Csol for star-shaped Ω−.) If A = I, n = 1, and Ω−
is Lipschitz and star-shaped with respect to the origin, then, for all k > 0 and R > diam(Ω−),

Csol ≤ 2kR

√
1 +

(
d− 1

2kR

)2

. (2.6)

Proof. This is Exercise 3 in §2.5.

Remark 2.15 (The idea behind the proof of Theorem 2.14). The proof of Theorem 2.14 is based
on the following identity: if

Lv := k−2∆v + v and Mβ,αv := x · ∇v − ikβv + αv,

with β and α real-valued functions, then

2<
(
Mβ,αvLv

)
=∇ ·

[
2k−1<

(
Mβ,αv k

−1∇v
)

+
(
|v|2 − k−2|∇v|2

)
x
]

− 2<
(
v (i∇β + k−1∇α) · k−1∇v

)
−
(
d− 2α

)
|v|2 −

(
2α− d+ 2

)
k−2|∇v|2.

(2.7)

The idea of multiplying second-order PDEs with first-order expressions has been used by many
authors; multiplying ∆v by a derivative of v goes back to Rellich [126, 127], and multiplying
∇· (A∇v) by a derivative of v goes back to Hörmander [77] and Payne and Weinberger [121] (e.g.,
the identity (2.7) with α and β equal zero appears as [121, Equation 2.4]). These identities have
been independently discovered by, e.g., Jerison and Kenig [88, 90, 89] and Pohozaev [123].

In the context of the Helmholtz equation, the identity (2.7) with x replaced by a general vector
field, and α and β replaced by general scalar fields was the heart of Morawetz’s paper [115], following
both the earlier work by Morawetz and Ludwig [116] using a special case of (2.7) (see (2.18) below)
and Morawetz’s earlier work on the wave equation [114].

Similar identities are available with A and n variable; the analogous identity to (2.7) with A
variable and n ≡ 1 was used by Bloom in [20], and the one with A ≡ I and variable n was used
in Bloom and Kazarinoff in [21]. Although these identities have a long history, the recent papers
[113], [70], [39] contain new results about the variable-coefficient Helmholtz equation obtained with
these identities, and [34] contains new results about the constant-coefficient Helmholtz equation.

The reason why the identity (2.7) can be used to prove a bound on Csol can be understood using
semiclassical analysis; this is not a focus of this lecture course, but we refer the interested reader
to [70, Section 7] for an introduction to this.

2.3 Bounding the H2 norm of the solution of the EDP

Given Ω− and A satisfying Assumption 1.1, with Ω− in addition C1,1, let R > 0 such that
Ω− ∪ supp(I − A) b BR. By elliptic regularity (see, e.g., [106, Theorem 4.18], [72, Theorem
2.4.2.5], [53, §6.3.2]), there exists C > 0 (depending on the W 1,∞ norm of A) such that

|v|H2(ΩR) ≤ C
(
‖∇ · (A∇v)‖L2(ΩR+1) +R−1 ‖∇v‖L2(ΩR+1) +R−2 ‖v‖L2(ΩR+1)

)
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so that

k−2|u|H2(ΩR) ≤ C
[
Csol(k,A, n,Ω−, R+ 1)

(
nmax + (kR)−1 + (kR)−2

)
+ 1
]
‖f‖L2(ΩR) .

Combining this last inequality with (2.1), we can bound ‖u‖H2
k(ΩR) in terms of ‖f‖L2(ΩR) with a

constant involving both Csol(k,A, n,Ω−, R) and Csol(k,A, n,Ω−, R + 1). We could certainly live
with this; however, the FEM theory in §3 requires the following Poisson regularity result, and
using this result we can bound k−2|u|H2(ΩR) in terms of ‖f‖L2(ΩR) with a constant involving only
Csol(k,A, n,R) (see (2.10) below).

Lemma 2.16. (H2 regularity of Poisson’s equation with DtNk boundary condition.)
Given Ω− and A satisfying Assumption 1.1, with Ω− in addition C1,1, let R > 0 be such that
Ω− ∪ supp(I − A) b BR. Then there exists CH2 such that given f ∈ L2(ΩR) there exists v ∈
H1

0,D(ΩR) satisfying

∇ · (A∇v) = −f̃ in ΩR, and k−1∂νv = DtNk(γv) on ΓR, (2.8)

and, for all k > 0,∣∣v∣∣
H2(ΩR)

≤ CH2

(∥∥f̃∥∥
L2(ΩR)

+R−1 ‖∇v‖L2(ΩR) +R−2 ‖v‖L2(ΩR)

)
. (2.9)

The key point in (2.9) is that, although v in (2.8) depends on k via the boundary condition on
ΓR, CH2 is independent of k.

References for the proof of Lemma 2.16. This is proved in [96, Theorem 6.1] following the proof
of the analogous result [38, Theorem 3.1] when DtNk is replaced by ik, A = I, and Ω− = ∅. Both
these proofs rely on ideas from [72, §3] used to prove H2 regularity results on C2 convex domains;
see [72, Theorem 3.1.1.1 and proof of Theorem 3.1.2.3] and Exercise 4 in §2.5 below.

Corollary 2.17. Suppose that Ω−, A, and n satisfy Assumption 1.1 and, in addition, Ω− is C1,1.
The solution u of the EDP of Definition 1.2 with gD = 0 is in H2(ΩR) and, if kR ≥ 1, then

|u|H2
k(ΩR) ≤ CH2

[
Csol(k,A, n,Ω−, R)

(
nmax +

√
2
)

+ 1
]
‖f‖L2(ΩR) , (2.10)

where the weighted semi-norm |u|H2
k(ΩR) := k−2|u|H2(ΩR) (in analogy with (1.7)).

2.4 Using Green’s identity to bound the L2 norm of ∇u in terms of the
L2 norm of u (and vice versa) plus norms of the data and traces

Using Green’s identity in this way is well-known, see, e.g., [115, Theorem I.1] and [134, Lemma
2.2], and the idea is similar to that of Caccioppoli inequalities in the Calculus of Variations.

Lemma 2.18. (Bounding the H1 semi-norm of u via the L2 norm and L2 norm of f .)
Assume there exists a solution to the EDP of Definition 1.2.

(i) Let R > 0 be such that Ω− ∪ supp(I −A) ∪ supp(1− n) ∪ suppf b ΩR. Then, for all k > 0,

k−2Amin ‖∇u‖2L2(ΩR) ≤
3

2
nmax ‖u‖2L2(ΩR) +

1

2nmax
‖f‖2L2(Ω+) + k−2 ‖γu‖L2(ΓD) ‖∂ν,Au‖L2(ΓD) .

(2.11)
(ii) Let R > 0 be such that Ω− ⊂⊂ ΩR. Then, for all k > 0,

nmin ‖u‖2L2(ΩR) ≤
4

k2

(
Amax +

6(Amax)2

nmink2

)
‖∇u‖2L2(ΩR+1) +

2

nmin
‖f‖2L2(Ω+)

+ 4k−2 ‖γu‖L2(ΓD) ‖∂ν,Au‖L2(ΓD) . (2.12)

14



Proof. (i) Applying Green’s identity (1.16) with Ω = ΩR, with u the solution of the EDP, and with
v = u, we obtain

− k−2 〈∂ν,Au, γu〉ΓD
+ k−2

∫
ΓR

u
∂u

∂r
=

∫
ΩR

k−2(A∇u) · ∇u− n|u|2 − uf, (2.13)

where we have used the fact that u ∈ C∞ in a neighbourhood of ΓR (by elliptic regularity) to write
the duality pairing on ΓR as an integral. The key point now is that the inequality (1.13) involving
the term on ΓR in (2.13) allows us to obtain an upper bound on

∫
ΩR

(A∇u) · ∇u. Indeed, taking

the real part of (2.13), using the inequality (1.13), and then the Cauchy-Schwarz inequality and
the inequalities on A and n (1.1) and (1.2), we obtain that

k−2Amin ‖∇u‖2L2(ΩR) ≤ nmax ‖u‖2L2(ΩR) + ‖u‖L2(ΩR) ‖f‖L2(ΩR) + k−2 ‖γu‖L2(ΓD) ‖∂ν,Au‖L2(ΓD) .

The result (2.11) then follows from using the inequality

2αβ ≤ εα2 + ε−1β2 for all α, β, ε > 0, (2.14)

on ‖u‖L2(ΩR)‖f‖L2(ΩR).
(ii) The sign property of the inequality (1.13) does not allow us to obtain an upper bound on∫

ΩR
n|u|2 via the argument in Part (i). Instead we apply Green’s identity in ΩR+1 with u the

solution of the EDP and v = χu, where χ(x) := χ(r) is such that χ ≡ 1 on [0, R], χ(R + 1) = 0,
and χ(r) = F (R + 1 − r) for r ∈ [R,R + 1], where F (t) := t2(3 − 2t). Observe that F increases
from 0 to 1 as t increases from 0 to 1, and thus χ decreases from 1 to 0 as r increases from R to
R+ 1. This particular choice of F is motivated by the fact that there exists an M > 0 such that

(F ′(t))2

F (t)
≤M for all 0 ≤ t ≤ 1; (2.15)

in fact, one can easily verify that this last inequality holds with M = 12.
Applying Green’s identity (1.16) as described above we obtain

− k−2 〈∂ν,Au, γu〉ΓD
=

∫
ΩR+1

k−2χ(A∇u) · ∇u+ k−2(A∇u) · (u∇χ)− nχ|u|2 − χuf (2.16)

(where we use the convention on ΓD that the normal points out of Ω− and thus into ΩR+1); observe
that, since χ(R + 1) = 0, there is no contribution from ΓR, and thus we have avoided the issue
with the sign in the inequality (1.13). Now, by the Cauchy-Schwarz inequality and (2.14),∣∣∣∣∣

∫
ΩR+1

(A∇u) · (u∇χ)

∣∣∣∣∣ ≤ ε

2

∫
ΩR+1

χ|u|2 +
1

2ε

∫
ΩR+1

|A∇u|2|∇χ|2

χ
. (2.17)

Then, using the second inequality in (1.1), the inequality (2.15) with M = 12, and choosing
ε = nmink

2 we obtain that∣∣∣∣∣
∫

ΩR+1

(A∇u) · (u∇χ)

∣∣∣∣∣ ≤ nmink
2

2

∫
ΩR+1

χ|u|2 +
6(Amax)2

nmink2

∫
ΩR+1

|∇u|2.

Using this last inequality in (2.16), we find that

nmin

2

∫
ΩR+1

χ|u|2 ≤ 1

k2

(
Amax +

6(Amax)2

nmink2

)
‖∇u‖2L2(ΩR+1) +

∫
ΩR+1

χuf

+ k−2 ‖γu‖L2(ΓD) ‖∂ν,Au‖L2(ΓD) .

Using the Cauchy inequality (2.14) again on the term
∫

ΩR+1
χuf with weight ε = nmin, we obtain

(2.12).
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Remark. (Dimensions of the factors in (2.11) and (2.12).) The dimensions of the factors in
front of the norms in (2.11) and (2.12) are as expected apart from(

Amax +
6(Amax)2

nmink2

)
;

this expression should be non-dimensional, but instead the second term has dimension (length)2.
This discrepancy is because there is the factor 1 = ((R+ 1)−R)2 (the distance between BR+1 and
BR squared) multiplying the k2s, providing the missing (length)−2.

2.5 Exercises

1. Prove Lemma 2.2. Hint: let u = u+ +w where u+ is the solution of the variational problem
a+(u+, v) = F (v) for all v ∈ H1

0,D(ΩR), where

a+(u, v) :=

∫
ΩR

(
k−2(A∇u) · ∇v + nuv

)
− k−1

〈
DtNkγu, γv

〉
ΓR
.

2. Prove Lemma 2.4. Hint: consider u(x) = exp(ikx1)χ(r/R) for χ ∈ C∞comp(R;R) with suppχ b
(0, 1).

3. Via the following steps, prove Theorem 2.14 under the simplifying assumption that Ω− is
C1,1 so that u ∈ H2(ΩR) (for a proof when Ω− is only C0, see [33, Lemma 3.8], [70, Remark
2.13]).

(a) Prove the identity (2.7). Hint: splitMβ,αv up into its component parts and prove these
three identities separately by expanding the divergences on the right-hand sides, and
using that

2<
{
∇v · (x · ∇)∇v

}
= ∇ ·

[
|∇v|2x

]
− d|∇v|2

and
2<
{
v x · ∇v

}
= ∇ ·

[
|v|2x

]
− d|v|2.

(b) With Lv as above, show that if α ∈ R, then

2<
{
Mr,αvLv

}
=∇ ·

[
2k−1<

{
Mr,αv k

−1∇v
}

+
(
|v|2 − k−2|∇v|2

)
x
]
−
∣∣k−1vr − iv

∣∣2
+
(
2α− (d− 1)

)(
|v|2 − k−2|∇v|2

)
− k−2

(
|∇v|2 − |vr|2

)
, (2.18)

where vr = x · ∇v/r (this identity first appeared as [116, Equation 1.2]).

(c) With the identity (2.18) written as ∇ ·Qr,α(v) = Pr,α(v), show that if u is an outgoing
solution of Lu = 0 in Rd \BR0

, then, for all α ∈ R,∫
ΓR1

QR1,α(u) · x̂→ 0 as R1 →∞. (2.19)

(d) Show that if u is an outgoing solution of Lu = 0 in Rd \ BR0
, for some R0 > 0, then,

for R > R0, ∫
ΓR

QR,(d−1)/2(u) · x̂ ≤ 0. (2.20)

Hint: integrate the identity (2.18) over BR1 \BR. 2

2An analogous inequality to (2.20) holds if ΓR is replaced by the boundary of a Lipschitz domain that is star-
shaped with respect to a ball, and u satisfies the impedance boundary condition ∂nu− iku = g on this boundary; see
[70, Lemma A.11]. This is essentially the reason why [11, Page 109], [107, Prop. 8.1.4], [103, Proposition 2.1], [46],
[76] were able to independently discover the multiplier x · ∇u and use it to prove bounds on Helmholtz problems
with an impedance boundary condition.

16



(e) With the identity (2.7) written as ∇·Qβ,α(v) = Pβ,α(v), show that if u ∈ H2(ΩR) with
γu = 0 on ΓD, then ∫

ΓD

Qβ,α(u) · n =

∫
ΓD

(
x · n(x)

)
k−2

∣∣∣∣∂u∂n
∣∣∣∣2 .

(f) By using Parts (a), (d), and (e), prove the bound (2.6); i.e., that if Ω− is star-shaped
with respect to the origin and u is the solution of the EDP with gD = 0, A = I, and
n = 1, then

‖u‖H1
k(ΩR) ≤ 2kR

√
1 +

(
d− 1

2kR

)2

‖f‖L2(ΩR) .

4. The purpose of this exercise is to show how properties of DtNk enter the proof of Lemma
2.16 (for the full proof, see [96, Proof of Theorem 6.1]). Assume the following two results.

• If D is a bounded, convex, open set of Rd with C2 boundary and v ∈ H1(D;Cd), then∫
D

(
|∇ · v|2 −

n∑
i,j=1

∫
D

∂vi
∂xj

∂vj
∂xi

)
≥ −2<

〈
(γv)T ,∇T (γv · n)

〉
∂D
, (2.21)

where ∇T is the surface gradient on ∂D and (γv)T := γv − n(γv · n) is the tangential
component of γv; this follows from [72, Theorem 3.1.1.1] and the fact that the second
fundamental form of ∂D (defined in, e.g., [72, §3.1.1]) is non-positive (see [72, Proof of
Theorem 3.1.2.3]).

• The solution of (2.8) is in H2(ΩR); this follows from results about the regularity of
transmission problems (see [42, Theorem 5.2.1 and §5.4b]) since ΓR is C2 and A = I in
a neighbourhood of ΓR.

Use these two results along with Lemma 1.7 to prove the bound (2.9) when A = I and
Ω− = ∅.

3 Convergence of the h-FEM: sharp k-explicit results for
p = 1

3.1 Definition of the Galerkin method

Let H := H1
0,D(ΩR), and let HN be a finite-dimensional subspace of H. We restate the variational

formulation (1.23) of the EDP with gD = 0 as

find u ∈ H such that a(u, v) = F (v) for all v ∈ H. (3.1)

The Galerkin method applied to the variational problem (3.1) is

find uN ∈ HN such that a(uN , vN ) = F (vN ) for all vN ∈ HN . (3.2)

Observe that setting v = vN in (3.1) and combining this with (3.2) we obtain the Galerkin orthog-
onality that

a(u− uN , vN ) = 0 for all vN ∈ HN . (3.3)

These definitions of course make sense for (3.1) with a(·, ·) a general sesquilinear form and F (·) a
general antilinear functional (i.e., not just with a(·, ·) and F (v) defined by (1.24)).
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3.2 Abstract results about convergence of the Galerkin method and
their applicability (or not) to the Helmholtz equation

Let (HN )∞N=1 be a sequence of finite-dimensional subspaces of H that is asymptotically dense in
H, meaning that, for all v ∈ H,

min
wN∈HN

‖v − wN‖H → 0 as N →∞.

We say that the Galerkin method (3.2) converges if there exists N0 ∈ N such that for all N ≥ N0

and for all F (·) ∈ H′, uN defined by (3.2) exists and is unique, and ‖uN − u‖H → 0 as N →∞.
In this section, we focus on proving either a bound on the relative error of the Galerkin solution,

i.e., a bound on
‖u− uN‖H
‖u‖H

,

or that the Galerkin method is quasioptimal, i.e., there exists a Cqo > 0 and N0 ∈ N such that,
for N ≥ N0,

‖u− uN‖H ≤ Cqo min
vN∈HN

‖u− vN‖H . (3.4)

(If (3.4) holds with Cqo = 1 then the method is optimal.)
To state the following theorem we recall that given a sesquilinear form a : H ×H → C, there

exists a unique linear operator A : H → H such that a(u, v) = (Au, v)H for all u, v ∈ H. (see, e.g.,
[130, Lemma 2.1.38]).

Theorem 3.1. (The main abstract theorem on convergence of the Galerkin method.)
Let A : H → H be a bounded linear operator.

(a) If A is invertible then there exists a sequence (HN )∞N=1 for which the Galerkin method (3.2)
converges.

(b) If A is coercive, i.e., there exists α > 0 such that∣∣(Av, v)H
∣∣ ≥ α ‖v‖2H for all v ∈ H, (3.5)

then, for every sequence (HN )∞N=1, the Galerkin equations (3.2) have a unique solution uN for
every N and ∥∥u− uN∥∥H ≤ ‖A‖H→Hα

min
vN∈HN

∥∥u− vN∥∥H.
(c) If A is invertible then the following are equivalent:

(i) The Galerkin method (3.2) converges for every sequence (HN )∞N=1 that is asymptotically
dense in H.

(ii) A = A0 +K where A0 is coercive and K is compact.

References for the proof. Part (a) was first proved in [104, Theorem 1]; see also [68, Chapter II,
Theorem 4.1]. Part (b) is Céa’s Lemma; see [31]. Part (c) was first proved in [104, Theorem 2],
with this result building on results in [149]; see also [68, Chapter II, Lemma 5.1 and Theorem
5.1]

Remark 3.2. The fact that Point (ii) in Part (c) implies Point (i) is very well known in the
numerical-analysis community (see, e.g., [130, Theorem 4.2.9], [142, Theorem 8.11]). However, the
fact that Point (i) implies Point (ii) appears not to be well known (e.g., it was recently independently
rederived in [7, Theorem 5.2]); this implication is nevertheless is quoted in, e.g., [80, Page 303].

The following two results show that Part (b) of Theorem 3.1 is not applicable to the Helmholtz
equation, but Part (c) is.

Lemma 3.3. (The Helmholtz sesquilinear form is not coercive for k sufficiently large.)
Suppose that A,n, and Ω− satisfy Assumption 1.1 and let a(·, ·) be defined by (1.24). Let λ1 > 0
be the first Dirichlet eigenvalue of n−1∇· (A∇·) in ΩR. If k2 ≥ λ1, then there exists v ∈ H1

0,D(ΩR)
such that a(v, v) = 0.
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Proof. If λj is a Dirichlet eigenvalue of n−1∇ · (A∇·) in ΩR with corresponding eigenfunction
uj ∈ H1

0 (ΩR) := {v ∈ H1
0,D(ΩR) : γv = 0 on ΓR}, then(

A∇uj ,∇v
)
L2(ΩR)

− λj
(
nuj , v

)
L2(ΩR)

= 0 for all v ∈ H1
0,D(ΩR),

and thus (
A∇uj ,∇uj

)
L2(ΩR)

− λj
(
nuj , uj

)
L2(ΩR)

= 0.

Therefore, by the definition of a(·, ·) (1.24),

a(uj , uj) = k−2(λj − k2)
(
nuj , uj

)
L2(ΩR)

,

and thus a(uj , uj) = 0 if k2 = λj . Furthermore, if λ1 < k2 < λj (for some j > 1) then

a(u1, u1) < 0 < a(uj , uj). (3.6)

The numerical range of a general sesquilinear form a : H×H → C is defined to equal{
a(v, v)

‖v‖2H
: v ∈ H \ {0}

}
⊂ C; (3.7)

furthermore, the numerical range is convex by, e.g., [74, Theorem 1.1-2]. Therefore (3.6) implies
that there exists v ∈ H1

0,D(ΩR) such that a(v, v) = 0.

Lemma 3.4. (Helmholtz sesquilinear form = coercive + compact.) Suppose that A,n,
and Ω− satisfy Assumption 1.1. Let A be the operator associated with the sesquilinear form a(·, ·)
defined by (1.24) and let H := H1

0,D(ΩR). Then A = A0 +K with A0 bounded and coercive on H
and K compact on H.

Proof. This follows from the G̊arding inequality (1.28); see Exercise 3 in §3.12.

Although Part (c) of Theorem 3.1 is applicable to the Helmholtz equation, this abstract result
gives no information about the k-dependence of either the threshold N0 for the Galerkin solution
to exist or the Galerkin error. The main results of this section (in §3.4) are all about this k-
dependence.

3.3 Definition of the FEM and assumptions for the results in this section

The finite-element method (FEM) is the Galerkin method applied with finite-dimensional subspaces
consisting of piecewise polynomials. The h-version of the FEM is where accuracy is increased by
decreasing the meshwidth h, the p-version of the FEM is where accuracy is increased by increasing
the polynomial degree p, and the hp-version of the FEM is where accuracy is increased by both
decreasing h and increasing p.

The main results in this section (Theorems 3.11 and 3.15) are proved for a sequence of subspaces
(Hh)0<h≤h0

satisfying the following assumption.

Assumption 3.5. There exists Cint > 0 such that for all 0 < h ≤ h0 there exists Ih : H2(ΩR)→
Hh such that

‖v − Ihv‖L2(ΩR) + h ‖∇(v − Ihv)‖L2(ΩR) ≤ Cinth
2|v|H2(ΩR) for all v ∈ H2(ΩR). (3.8)

We now show that the standard piecewise-polynomial subspaces of the h-version of the FEM
satisfy Assumption 3.5 (with Ih the so-called nodal interpolant) – see Lemma 3.8 below – hence
our choice of the notation (Hh)0<h≤h0 .

Definition 3.6. (Triangulation [40, Page 61].) A finite collection of sets T is a triangulation
of Ω if the following properties hold.

1. Ω =
⋃
K∈T K
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2. Each K ∈ T is closed and its interior,
◦
K, is non-empty and connected.

3. If K1,K2 ∈ T and K1 6= K2 then
◦
K1 ∩

◦
K2 = ∅.

4. Each K ∈ T is Lipschitz.

For K ∈ T , let hK := diam(K) = maxx,y∈K |x− y| and let the mesh width h := maxK∈T hK .
We denote a triangulation with mesh width h by Th. We now consider a family of triangulations
(Th)0<h≤h0 for some h0. Let ρK be the diameter of the largest ball contained in K (so ρK ≤ hK).

Definition 3.7. (Shape-regular and quasi-uniform [23, Definition 4.4.13], [40, Pages
128 and 135].)

(i) The family (Th)0<h≤h0
is shape-regular (or non-degenerate) if there exists C > 0 such that

hK ≤ CρK for all K ∈ Th and for all 0 < h ≤ h0.
(ii) The family (Th)0<h≤h0 is quasi-uniform if there exists C > 0 such that h ≤ ChK for all

K ∈ Th and for all 0 < h ≤ h0; i.e.,

max
K∈Th

diam(K) ≤ C min
K∈Th

diam(K) for all 0 < h ≤ h0.

Given a triangulation Th, let

Hp,1(Th) :=
{
v ∈ H1(ΩR) : v|K is a polynomial of degree p for each K ∈ Th and v = 0 on ΓD

}
.

(3.9)
If (Th)0<h≤h0

is quasi-uniform, then the dimension of Hp,1(Th) is proportional to (p/h)d. From
here on, we abbreviate the family (Hp,1(Th))0<h≤h0

(with p fixed) by (Hh)0<h≤h0
.

Lemma 3.8. (Conditions under which Assumption 3.5 holds.) Let (Th)0<h≤h0
be a se-

quence of shape-regular triangulations, satisfying the addition conditions that (i) each K ∈ Th is a
simplex, and (ii) any face of any simplex K1 in the triangulation is either a subset of the boundary
of the domain, or a face of another simplex K2 in the triangulation.

Then Assumption 3.5 holds for (H)0<h≤h0
with Ih the nodal interpolant and Cint depending

only on p, d, and the shape-regularity constant of (Th)0<h≤h0
.

References for the proof. This follows from, e.g., [40, Theorem 17.1], [23, Proposition 3.3.17 and
§4.4] (with (3.8) following from [23, Equation 4.4.28]).

The main results in this section (Theorems 3.11 and 3.15) require ΩR to be at least C1,1 (so
that the solution of the EDP with gD = 0 is in H2(ΩR)). For such ΩR it is not possible to fit ∂ΩR
exactly with simplicial elements (i.e. when each element of Th is a simplex), and fitting ∂ΩR with
isoparametric elements (see, e.g, [40, Chapter VI], [23, §4.7]) or curved elements (see, e.g., [18])
is often impractical. Some analysis of non-conforming error is therefore required, but since this is
standard (see, e.g., [23, Chapter 10]), we ignore this issue here.

Finally, we make some simplifying assumptions on the parameters k,R, and h.

Assumption 3.9. R ≥ R0 > 0, k ≥ k0 > 0, k0R0 ≥ 1, and hk ≤ 1.

Observe that (3.8), the definition of ‖ · ‖H1
k(ΩR) (1.8), and the assumption that hk ≤ 1 imply

that
‖v − Ihv‖H1

k(ΩR) ≤
√

2Cinthk|v|H2
k(ΩR). (3.10)

Remark 3.10. (Approximating DtNk.) Implementing the operator DtNk is computationally
expensive, and so in practice one seeks to approximate this operator by either imposing an ab-
sorbing boundary condition on ΓR, or using a perfectly-matched layer (PML), or using boundary
integral equations (so-called “FEM-BEM coupling”). For simplicity, in this section we analyse
the FEM assuming that DtNk is realised exactly. Recent k-explicit results on the error incurred
by approximating DtNk by absorbing boundary conditions or PML can be found in [60] and [61],
respectively.
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3.4 Statement of the main results of this section

Theorem 3.11 gives sufficient conditions for the Galerkin method to be quasioptimal (with constant
of quasioptimality independent of k), and Theorem 3.15 gives sufficient conditions for the relative
error of the Galerkin solution to be controllably small, independent of k. Both these results are
sharp for p = 1 when Csol ∼ k.

Theorem 3.11. (Quasioptimality.) Let u be the solution of the EDP. Suppose that Assumptions
1.1, 3.5, and 3.9 hold, and Ω− is C1,1. Let Csol be defined by (2.1), Ccont by (1.27), CH2 by (2.9),
and Cint by (3.8).

If
hkCsol ≤ C0 (3.11)

where

C0 :=
1

Ccont

√
Amin

2
(
nmax +Amin

) [√2CintCH2

(
nmax +

1

Csol
+
√

2

)]−1

,

then the Galerkin solution uN to the variational problem (3.2) exists, is unique, and satisfies the
bound

‖u− uN‖H1
k(ΩR) ≤

2Ccont

Amin

(
min

vN∈Hh

‖u− vN‖H1
k(ΩR)

)
. (3.12)

The quantity C0 depends on k via Csol. However, under the assumption that Csol & 1, C0 ∼ 1.
When Csol . k (informally, the problem is nontrapping), the condition (3.11) is that hk2 is

sufficiently small; this condition is sharp – see Figure 3.1.
Our bound on the relative error requires the following assumption about the oscillatory char-

acter of u.

Assumption 3.12. (Oscillatory behaviour.) Given k0 > 0, there exists Cosc = Cosc(A,n,Ω−, R, k0)
(‘osc’ standing for ‘oscillation’) such that, for all k ≥ k0, the solution of the EDP of Definition 1.2
satisfies

|u|H2
k(ΩR) ≤ Cosc ‖u‖H1

k(ΩR) . (3.13)

Theorem 3.13. Assumption 3.12 is satisfied when u is the solution of the plane-wave sound-soft
scattering problem, Ω− is C1,1, and Csol . k.

Reference for the proof. See [96, Theorem 9.1] (note that [96, Remark 9.10] outlines how the as-
sumption that Csol . k can be removed).

Remark 3.14. (Discussion of Assumption 3.12.) Assumption 3.12 is not satisfied for the
solution of the EDP for general f ∈ L2(ΩR). For example, consider the 1-d problem

k−2u′′ + u = −f in (0, 1), u(0) = 0, and k−1u′(1)− iu(1) = 0 (3.14)

with
f(x) := −k−2

[
exp(iknx)χ(x)

]′′ − [ exp(iknx)χ(x)
]
, (3.15)

where χ has compact support in (0, 1). The solution to (3.14) is then u(x) = exp(iknx)χ(x), which
oscillates on a scale of k−n, i.e., a smaller scale than k−1 when n > 1.

If Assumption 3.12 holds then, using (3.10) and (3.13) in (3.12), we obtain that if hkCsol ≤ C0,
then

‖u− uN‖H1
k(ΩR)

‖u‖H1
k(ΩR)

. hk ≤ C0

Csol
;

i.e., a bound on the relative error. When Csol ∼ k, this bound says that the relative error decreases
like k−1 when hk2 is sufficiently small. This leaves open the possibility that the relative error is
bounded in k when hka is sufficiently small, for some 1 < a < 2; the following theorem shows that
(when Csol ∼ k) this is true when a = 3/2.
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This next result involves the following constant; by, e.g., [23, §5.3], [146, Corollary A.15], there
exists CPF = CPF(Ω−) (‘PF’ standing for ‘Poincaré–Friedrichs’) such that

R−2 ‖v‖2L2(ΩR) ≤ CPF

(
R−1 ‖γv‖2L2(ΓR) + ‖∇v‖2L2(ΩR)

)
(3.16)

for all v ∈ H1(ΩR).

Theorem 3.15. (Relative-error bound.) Let u be the solution of the EDP. Suppose that
Assumptions 1.1, 3.5, 3.9, and 3.12 hold, and Ω− is C1,1. Let CDtN1 be defined by (1.11), CDtN2

by (1.13), Csol by (2.1), Ccont by (1.27), CH2 by (2.9), Cint by (3.8), Cosc by (3.13), and CPF by
(3.16).

If
(hk)2Csol ≤ C1, (3.17)

then the Galerkin solution uN to the variational problem (3.2) exists, is unique, and satisfies the
bound

‖u− uN‖H1
k(ΩR)

‖u‖H1
k(ΩR)

≤ C2hk + C3(hk)2Csol, (3.18)

where

C1 :=
1

4(Amax + CDtN1)nmax(CH2)2(Cint)2

(
1 +

√
2

min
{
Amin(1 + CPF)−1, CDtN2(CPF)−1

})−1

×
(
nmax +

1

Csol
+
√

2

)−1

,

C2 :=

√
2CintCosc

Amin

(
max

{
Amax, nmax

}
+ CDtN1

)
,

and

C3 :=
4
√

2√
Amin

(
Amax + CDtN1

)
(Cint)

2CH2Cosc

√
nmax +Amin

(
nmax +

1

Csol
+
√

2

)
.

When Csol ∼ k (informally, the problem is nontrapping), the condition (3.17) is that h2k3 is
sufficiently small. The quantity C2 is independent of k and h. The quantities C0, C1, and C3

are independent of h, but depend on k via Csol. Under the assumption that Csol & 1 however,
C0, C1, and C3 all ∼ 1. The requirement that h2k3 be sufficiently small for the relative-error to be
controllably small (independent of k) is sharp – see Figure 3.1.

The history of the results in Theorems 3.11 and 3.15 and the techniques used to obtain them
are discussed in §3.11 below.

Remark 3.16. (The pollution effect.) The pollution effect for the h-FEM can be defined by
either saying that the h-FEM suffers the pollution effect if the condition “hk sufficiently small
(independent of k)” is not enough to ensure that the relative error is controllably small, indepen-
dently of k – see, e.g., [83, §4.6.1] – or by saying that the h-FEM suffers the pollution effect if the
condition “hk sufficiently small (independent of k)” is not enough to ensure quasi-optimality with
constant independent of k – see, e.g. [12, Definition 2.1].

With either definition, the sharpness of the conditions on h and k in Theorems 3.11 and 3.15
shows that the h-FEM with p = 1 suffers from the pollution effect.

More generally, the pollution effect can be defined by replacing “hk sufficiently small” in the
above definitions by “sufficiently large (but k-independent) number of degrees of freedom per wave-
length”, since the number of degrees of freedom per wavelength for the h-FEM is proportional to
(p/h)(2π/k).

3.5 Numerical experiments illustrating Theorems 3.11 and 3.15

Figure 3.1.
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Figure 3.1: The ratio of the Galerkin error and the best-approximation error (left) and the relative
Galerkin error (right) for the h-FEM with p = 1

3.6 The adjoint solution operator with L2 data

The proofs of Theorems 3.11 and 3.15 crucially rely on properties of the adjoint solution operator.

Definition 3.17. (Adjoint solution operator S∗.) Given f ∈ L2(ΩR), let S∗f ∈ H1
0,D(ΩR) be

defined as the solution of the variational problem

a(v,S∗f) = (v, f)L2(ΩR) for all v ∈ H1
0,D(ΩR). (3.19)

S∗ is therefore the solution operator of the adjoint problem to the variational problem (3.1)
with data in L2(ΩR).

Lemma 3.18. If S∗ is defined as in (3.19) then

a(S∗f, v) = (f, v)L2(ΩR) for all v ∈ H1
0,D(ΩR); (3.20)

i.e., S∗f is the complex-conjugate of an outgoing Helmholtz solution.

Proof. This is Exercise 2 in §3.12.

Following [129], let

η(HN ) := sup
f∈L2(ΩR)

min
vN∈HN

‖S∗f − vN‖H1
k(ΩR)

‖f‖L2(ΩR)

; (3.21)

observe that this definition implies that, given f ∈ L2(ΩR),

there exists wN ∈ HN such that ‖S∗f − wN‖H1
k(ΩR) ≤ η(HN ) ‖f‖L2(ΩR) . (3.22)

Lemma 3.19. (Bound on η(HN ).) Suppose that Ω−, A, and n satisfy Assumption 1.1 and, in
addition, Ω− is C1,1. If Assumption 3.5 holds and kR ≥ 1, then

η(HN ) ≤ hk Csol

[√
2CintCH2

(
nmax +

1

Csol
+
√

2

)]
. (3.23)

Proof. By the consequence (3.10) of (3.8), there exists vN ∈ HN such that

‖S∗f − vN‖H1
k(ΩR) ≤

√
2Cinthk|S∗f |H2

k(ΩR)

(indeed, we can take vN = Ih(S∗f)). The result then follows from Lemma 3.18, the bound (2.10),
and the fact that kR ≥ 1.
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3.7 Sufficient conditions for quasioptimality/relative error controllably
small in terms of η(HN)

Lemma 3.20. (Sufficient conditions for quasi-optimality.) If

η(HN ) ≤ 1

Ccont

√
Amin

2
(
nmax +Amin

) , (3.24)

then the Galerkin solution uN to the variational problem (3.2) exists, is unique, and satisfies the
bound

‖u− uN‖H1
k(ΩR) ≤

2Ccont

Amin

(
min
vN∈VN

‖u− vN‖H1
k(ΩR)

)
. (3.25)

Lemma 3.21. (Sufficient conditions for relative error controllably small.) Suppose that
Assumptions 1.1, 3.5, 3.9, and 3.12 hold, and Ω− is C1,1. Let Ccont? and CH2? be defined by
(3.42) and (3.46) below. If

hk η(HN ) ≤ C1, where C1 :=
1

2
√

2Ccont?CH2?Cintnmax

, (3.26)

then the Galerkin solution uh to the variational problem (3.2) exists, is unique, and satisfies the
bound

‖u− uh‖H1
k(ΩR)

‖u‖H1
k(ΩR)

≤ C2hk + C3hk η(HN ), (3.27)

where

C2 :=

√
2CcontCintCosc

Amin
and C3 :=

4Ccont?CintCosc

√
nmax +Amin√

Amin

. (3.28)

Lemma 3.20 holds for any finite-dimensional subspace HN , whereas Lemma 3.21 is geared to
be used for a member of (Hh)0<h≤h0

(because of the presence of h in (3.26), coming from a use
of (3.8)). Nevertheless, to avoid swapping between the notations HN and Hh, from now on we
denote the finite dimensional subspaces as (HN )∞N=0.

Theorems 3.11 and 3.15 follow immediately from Lemmas 3.20 and 3.21, respectively, by using
the bound (3.23) on η(HN ).

Observe that Lemma 3.20 requires no assumptions on A,n, and Ω−, but Lemma 3.21 does.
The reason is that the proof of Lemma 3.21 requires H2 regularity of both u – hence the presence
of Cosc in C2 and C3 – and the solution of a different elliptic boundary-value problem on Ω− with
coefficient A – hence the presence of CH2? in C1 (see (3.36) and Lemma 3.24 below for the definition
of this boundary-value problem).

We now prove Lemma 3.20 (§3.8); with this proof in hand, we then describe the ideas behind
Lemma 3.21 (§3.9).

3.8 Proof of Lemma 3.20

We first prove the result under the assumption that the Galerkin solution uN exists.

Step 1: Use the G̊arding inequality and Galerkin orthogonality. Using (in this order)
the G̊arding inequality (1.28), Galerkin orthogonality (3.3) and continuity of a(·, ·) (1.26), we have
that, for any vN ∈ HN ,

Amin ‖u− uN‖2H1
k(ΩR) ≤ <a(u− uN , u− uN ) +

(
nmax +Amin

)
‖u− uN‖2L2(ΩR)

= <a(u− uN , u− vN ) +
(
nmax +Amin

)
‖u− uN‖2L2(ΩR)

≤ Ccont ‖u− uN‖H1
k(ΩR) ‖u− vN‖H1

k(ΩR) +
(
nmax +Amin

)
‖u− uN‖2L2(ΩR) .

(3.29)
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Step 2: Prove an Aubin-Nitsche type bound using the definition of η(HN ). The qua-
sioptimal error bound (3.25) under the condition (3.24) follows from (3.29) if we can prove that

‖u− uN‖L2(ΩR) ≤ Ccontη(HN ) ‖u− uN‖H1
k(ΩR) . (3.30)

By the definition of S∗ (3.19), Galerkin orthogonality (3.3), and continuity (1.26),

‖u− uN‖2L2(ΩR) = a
(
u− uN , S∗(u− uN )

)
= a

(
u− uN , S∗(u− uN )− vN

)
(3.31)

≤ Cc ‖u− uN‖H1
k(ΩR) ‖S

∗(u− uN )− vN‖H1
k(ΩR)

(3.32)

for any vN ∈ HN . The definition of η(HN ) (3.21) implies that there exists a wN ∈ HN such that

‖S∗(u− uN )− wN‖H1
k(ΩR) ≤ η(HN ) ‖u− uN‖L2(ΩR)

(see (3.22)). Using this last inequality in (3.32), we obtain (3.30).

Step 3: Prove that uN exists. We have so far assumed that uN exists. Recall that an N ×N
matrix B is invertible if and only if B has full rank, which is the case if and only if the only solution
of Bv = 0 is v = 0. Therefore, to show that uN exists, we only need to show that uN is unique.
Seeking a contradiction, suppose that there exists a ũN ∈ HN such that

a(ũN , vN ) = 0 for all vN ∈ HN .

Let ũ be such that
a(ũ, v) = 0 for all v ∈ H; (3.33)

thus ũN is the Galerkin approximation to ũ. Repeating the argument in the first part of the proof
we see that if (3.24) holds then the quasi-optimal error bound (3.25) holds (with u replaced by ũ
and uN replaced by ũN ). By assumption, the only solution to the variational problem (3.33) is
ũ = 0, and then (3.25) implies that ũN = 0. We have therefore shown that the solution uN exists
under the condition (3.24) and the proof is complete.

Remark 3.22. (Aubin-Nitsche-type bound.) We describe (3.30) as an “Aubin-Nitsche-type
bound”, since the argument that obtains (3.30) was first introduced in the coercive case by Aubin
[9, Theorem 3.1] and Nitsche [120] (see, e.g., [40, Theorem 19.1] for (3.30) exactly as stated); the
history of these arguments is discussed further in §3.11.

3.9 The ideas behind the proof of Lemma 3.21

The start of the proof of Lemma 3.21 is the same as Step 1 in the proof of Lemma 3.20; i.e., one
arrives at (3.29). The end of the proof – justifying that uN exists – uses the same arguments as in
Step 3 of the proof of Lemma 3.20.

We now claim that Lemma 3.21 follows from using in (3.29) the result that if hk η(HN ) is
sufficiently small then

‖u− uN‖L2(ΩR) . η(HN ) ‖u− wN‖H1
k(ΩR) for all wN ∈ HN . (3.34)

Observe that (3.34) is a stronger bound than (3.30), since wN on the right-hand side of (3.34) is
arbitrary.

To justify the claim, observe that inputting (3.34) into (3.29), choosing wN = vN , and using
the inequality (2.14) on the first term on the right-hand side of (3.29), we obtain that, if hk η(HN )
is sufficiently small, then

‖u− uN‖H1
k(ΩR) .

(
1 + η(HN )

)
‖u− vN‖H1

k(ΩR) for all vN ∈ HN .

At first it might look like we have just rederived the condition that the Galerkin solution is quasi-
optimal (with constant independent of k) if η(HN ) is sufficiently small. However, the key point is
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that “hk η(HN ) sufficiently small” is a weaker condition that “η(HN ) sufficiently small”. Assuming
H2 regularity of the solution, and using (3.10), we obtain that, if hkη(HN ) is sufficiently small,
then

‖u− uN‖H1
k(ΩR) .

(
1 + η(HN )

)
hk|u|H2

k(ΩR), (3.35)

and this becomes (3.27) after using the oscillatory-behaviour bound (3.13).
We now describe how to prove (3.34). Define the sesquilinear form a?(·, ·) by

a?(u, v) :=

∫
ΩR

k−2(A∇u) · ∇v − k−1
〈
DtNkγu, γv

〉
ΓR

; (3.36)

one can show that a?(·, ·) is continuous and coercive in H1
0,D(ΩR) (see Lemma 3.23 below). We

argue as in Step 2 of the proof of Lemma 3.20 to obtain (3.31), but then introduce a?(·, ·), where
for brevity we use the notation that ξ = S∗(u− uN ),

‖u− uN‖2L2(ΩR) = a(u− uN , ξ) = a(u− uN , ξ − vN ),

= a?(u− uN , ξ − vN )−
(
n(u− uN ), ξ − vN

)
L2(ΩR)

. (3.37)

Given z ∈ H1
0,D(ΩR), define PNz ∈ HN by

a?(wN ,PNz) = a?(wN , z) for all wN ∈ HN ;

since a?(·, ·) is continuous and coercive in H1
0,D(ΩR), the Lax–Milgram theorem implies that PN

is well defined. The definition of PN implies the Galerkin-orthogonality property that

a?(wN , z − PNz) = 0 for all wN ∈ HN . (3.38)

Choosing vN = PNξ in (3.37) and then using (3.38), we obtain that, for all wN ∈ HN ,

‖u− uN‖2L2(ΩR) = a?(u− wN , ξ − PNξ)−
(
n(u− uN ), ξ − PNξ

)
L2(ΩR)

,

. ‖u− wN‖∗ ‖ξ − PNξ‖∗ + ‖u− uN‖L2(ΩR) ‖ξ − PNξ‖L2(ΩR) , (3.39)

where
‖v‖? :=

√
a?(v, v) . ‖v‖H1

k(ΩR). (3.40)

Comparing (3.32) and (3.39), and using this last norm inequality, we see that Galerkin or-
thogonality for a?(·, ·) has allowed us to obtain ‖u − wN‖H1

k
(with wN arbitrary) as opposed to

‖u− uN‖H1
k

on the right-hand side – this is ultimately what leads to the bound (3.34) instead of

(3.30). To get there, we need to

(i) use Part (b) of Theorem 3.1, (3.40), the fact that ξ = S∗(u − uN ), and the definition of
η(HN ) to get

‖ξ − PNξ‖∗ . min
vN∈HN

‖ξ − vN‖∗ . min
vN∈HN

‖ξ − vN‖H1
k(ΩR) . η(HN )‖u− uN‖L2(ΩR)

(see (3.48) below), and

(ii) use the argument in the proof of Lemma 3.20 to show that ‖ξ−PNξ‖L2(Rd) . hk‖ξ−PNξ‖∗
(see (3.49) below), and thus controlling the last term on the right-hand side of (3.39) leads
to the condition that hk η(HN ) is sufficiently small.

The arguments in (ii) crucially use the H2 regularity result of Lemma 2.16 – we see now that the
non-standard boundary-value problem (2.8) comes from the sesquilinear form a?(·, ·).
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3.10 Proof of Lemma 3.21

Lemma 3.23. (Continuity and coercivity of a?(·, ·).) With a?(·, ·) defined by (3.36), for all
u, v ∈ H1

0,D(ΩR),∣∣a?(u, v)
∣∣ ≤ Ccont? ‖u‖H1

k(ΩR) ‖v‖H1
k(ΩR) and <a?(v, v) ≥ Ccoer? ‖v‖

2
H1

k,R(ΩR) , (3.41)

where

Ccont? := Amax + CDtN1, Ccoer? := min
{
Amin(1 + CPF)−1, CDtN2(CPF)−1

}
, (3.42)

and
‖v‖2H1

k,R(ΩR) := k−2 ‖∇u‖2L2(ΩR) + (kR)−2 ‖v‖2L2(ΩR) . (3.43)

Proof. The first inequality in (3.41) follows from the inequality (1.11) and the Cauchy–Schwarz
inequality. The second inequality in (3.41) follows from (1.13) and (3.16); indeed, for any C > 0,

<a?(v, v) ≥
(
Amin − C)k−2 ‖∇v‖2L2(ΩR) +

(
CDtN2 − C

)
k−2R−1 ‖γv‖2L2(ΓR)

+ Ck−2
(
‖∇v‖2L2(ΩR) +R−1 ‖γv‖2L2(ΓR)

)
≥
(
Amin − C)k−2 ‖∇v‖2L2(ΩR) +

(
CDtN2 − C

)
k−2R−1 ‖γv‖2L2(ΓR) +

C

CPF
(kR)−2 ‖v‖2L2(ΩR) .

The value of C that produces the largest multiple of ‖v‖2H1
k,R(ΩR) (3.43) on the right-hand side of

the last inequality is C = C ′ := AminCPF(1 + CPF)−1. If CDtN2 ≥ C ′, then coercivity holds with
Ccoer∗ = Amin(1 + CPF)−1. If CDtN2 < C ′, then we take C = CDtN2, and obtain coercivity with
Ccoer∗ = CDtN2/CPF; i.e., coercivity holds with Ccoer∗ given in (3.42).

By Lemma 3.23,

Ccoer? ‖v‖
2
H1

k,R(ΩR) ≤
∣∣a?(v, v)

∣∣ ≤ Ccont? ‖v‖
2
H1

k(ΩR) for all v ∈ H1
0,D(ΩR); (3.44)

we then define the new norm on H1
0,D(ΩR),

‖v‖? :=
√
a?(v, v).

Lemma 3.24. (Bounds on the solution of the variational problem associated with
a?(·, ·).) The solution of the variational problem

find u ∈ H1
0,D(ΩR) such that a?(u, v) = (f, v)L2(ΩR) for all v ∈ H1

0,D(ΩR)

satisfies

‖u‖H1
k,R(ΩR) ≤

kR

Ccoer?

‖f‖L2(ΩR) and |u|H2
k(ΩR) ≤ CH2? ‖f‖L2(ΩR) , (3.45)

where
CH2? := CH2

(
1 +
√

2(Ccoer?)
−1
)
. (3.46)

Proof. Since a?(·, ·) is continuous and coercive in H1
0,D(ΩR), the first bound in (3.45) follows from

the Lax–Milgram theorem and the fact that

sup
v∈H

∣∣(f, v)L2(ΩR)

∣∣
‖v‖H1

k,R(ΩR)

≤ kR ‖f‖L2(ΩR) ,

by the definition of ‖ · ‖H1
k,R(ΩR) (3.43). The second bound in (3.45) follows from combining the

first bound in (3.45) and the bound (2.9).
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We now define the particular Galerkin projection known in the literature as the “elliptic pro-
jection” (see the discussion in §3.11).

Definition 3.25. (Elliptic projection PN .) Given u ∈ H1
0,D(ΩR), define PNu ∈ HN by

a?(vN ,PNu) = a?(vN , u) for all vN ∈ HN .

Since a?(·, ·) is continuous and coercive in H1
0,D(ΩR) by Lemma 3.23, the Lax–Milgram theorem

implies that PN is well defined. The definition of PN then immediately implies the Galerkin-
orthogonality property that

a?(vN , u− PNu) = 0 for all vN ∈ HN . (3.47)

Lemma 3.26. (Approximation properties of PN .) For all u ∈ H1
0,D(ΩR),

‖u− PNu‖? ≤
√
Ccont? min

vN∈HN

‖u− vN‖H1
k(ΩR) and (3.48)

‖u− PNu‖L2(ΩR) ≤ hk
√

2CintCH2?

√
Ccont? ‖u− PNu‖? . (3.49)

Proof. By the Cauchy–Schwarz inequality a?(·, ·) is continuous in the ‖ · ‖? norm with continuity
constant equal to one, and, by definition, a?(·, ·) is coercive in this norm. Therefore Céa’s lemma
implies that

‖u− PNu‖? ≤ min
vN∈HN

‖u− vN‖? ,

and (3.48) follows from the norm equivalence (3.44).
To prove (3.49) we argue as in the proof of Lemma 3.20. Given u ∈ H1

0,D(ΩR), let ξ be the
solution of the variational problem

find ξ ∈ H1
0,D(ΩR) such that a?(ξ, v) = (u− PNu, v)L2(ΩR) for all v ∈ H1

0,D(ΩR). (3.50)

Then, by Galerkin orthogonality (3.47) and continuity of a?(·, ·), for all vN ∈ HN ,

‖u− PNu‖2L2(ΩR) = a?(ξ, u− PNu) = a?(ξ − vN , u− PNu) ≤ ‖ξ − vN‖? ‖u− PNu‖? (3.51)

By the norm equivalence (3.44), the consequence (3.10) of the definition of Cint, the definition of
ξ (3.50), and the second bound in (3.45),

‖ξ − Ihξ‖? ≤
√
Ccont? ‖ξ − Ihξ‖H1

k(ΩR) ≤
√
Ccont?

√
2Cinthk|ξ|H2

k(ΩR),

≤
√
Ccont?

√
2CinthkCH2? ‖u− PNu‖L2(ΩR) ,

and the result (3.49) follows from combining this last inequality with (3.51).

Lemma 3.27. (Aubin-Nitsche analogue via elliptic projection.) Assuming that the Galerkin
solution uN to the variational problem (3.2) exists, if (3.26) holds, then

‖u− uN‖L2(ΩR) ≤ 2Ccont?η(HN ) ‖u− wN‖H1
k(ΩR) for all wN ∈ HN .

Proof. Let ξ = S∗(u− uN ); i.e. ξ is the solution of variational problem

find ξ ∈ H1
0,D(ΩR) such that a(v, ξ) = (v, u− uN )L2(ΩR) for all v ∈ H1

0,D(ΩR).

Then, by Galerkin orthogonality (3.47) and the definition of a?(·, ·) (3.36), for all vN ∈ HN ,

‖u− uN‖2L2(ΩR) = a(u− uN , ξ) = a(u− uN , ξ − vN ),

= a?(u− uN , ξ − vN )L2(ΩR) −
(
n(u− uN ), ξ − vN

)
L2(ΩR)

.

We choose vN = PNξ, and then use (in the following order) (i) the Galerkin orthogonality (3.47),
(ii) continuity of a?(·, ·), (iii) the bound (3.49), (iv) the upper bound in the norm equivalence (3.44)
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and the bound (3.48), and (v) the consequence (3.22) of the definition of η to obtain that, for all
wN ∈ HN ,

‖u− uN‖2L2(ΩR) = a?(u− wN , ξ − PNξ)L2(ΩR) −
(
n(u− uN ), ξ − PNξ

)
L2(ΩR)

≤ ‖u− wN‖? ‖ξ − PNξ‖? + nmax ‖u− uN‖L2(ΩR) ‖ξ − PNξ‖L2(ΩR)

≤
(
‖u− wN‖? + hk

√
2CintCH2?

√
Ccont?nmax ‖u− uN‖L2(ΩR)

)
‖ξ − PNξ‖?

≤
(√

Ccont? ‖u− wN‖H1
k(ΩR) + hk

√
2CintCH2?

√
Ccont?nmax ‖u− uN‖L2(ΩR)

)
×
√
Ccont? min

vN∈HN

‖ξ − vN‖H1
k(ΩR)

≤
(√

Ccont? ‖u− wN‖H1
k(ΩR) + hk

√
2CintCH2?

√
Ccont?nmax ‖u− uN‖L2(ΩR)

)
×
√
Ccont?η(HN ) ‖u− uN‖L2(ΩR) ;

the result then follows.

Proof of Lemma 3.21. We first assume that the Galerkin solution uN exists. Having proved the
result under the assumption of existence, the fact that the condition (3.26) implies existence follows
by arguing exactly as at the end of the proof of Lemma 3.20

Using the G̊arding inequality (1.28), Galerkin orthogonality (3.3) and continuity of a(·, ·) (1.26),
we find that that (3.29) holds for any vN ∈ HN . Using first the inequality (2.14) with α =
‖u−uN‖H1

k(ΩR), β = Ccont‖u− vN‖H1
k(ΩR), ε = Amin, and then Lemma 3.27, we find that if (3.26)

holds, then, for any vN ∈ HN ,

Amin

2
‖u− uN‖2H1

k(ΩR) ≤
(Ccont)

2

2Amin
‖u− vN‖2H1

k(ΩR) +
(
nmax +Amin

)
‖u− uN‖2L2(ΩR)

≤
[

(Ccont)
2

2Amin
+ 4
(
nmax +Amin

)
(Ccont?)

2
(
η(HN )

)2] ‖u− vN‖2H1
k(ΩR) .

(3.52)

By the consequence (3.10) of the definition of Cint and the bound (3.13),

‖u− Ihu‖H1
k(ΩR) ≤

√
2hkCint|u|H2

k(ΩR) ≤
√

2hkCintCosc ‖u‖H1
k(ΩR) . (3.53)

Choosing vN = Ihu in (3.52), using (3.53), taking the square root and using the inequality√
a2 + b2 ≤ a+ b for all a, b > 0, we find the result (3.27).

3.11 History of the results in this section and the arguments used in
the proofs

The arguments used to prove Theorem 3.11. As mentioned in §3.9, the argument that
obtains (3.30) from (3.32) was first introduced in the coercive case by Aubin [9, Theorem 3.1] and
Nitsche [120], with (3.30) appearing exactly as stated in, e.g., [40, Theorem 19.1]. This argument
is often called a “duality argument” because it uses the adjoint sesquilinear form (in our case,
η(HN ) involves the adjoint solution operator).

Schatz [131] considered second-order linear elliptic PDEs satisfying a G̊arding inequality (such
as (1.28)) proving existence and uniqueness of the Galerkin solution for h sufficiently small. The
fact that these arguments also give quasioptimality was recognised in [11, Theorem 3.1], with this
result proving the analogue of Theorem 3.11 (i.e., quasioptimality if hk2 is sufficiently small) for
the 1-d problem (3.14). Other uses of this argument on 1-d problems included [49, Lemma 2.6],
[86, Theorem 3], [103, Theorem 3.2]. The analogue of Theorem 3.11 for the Helmholtz interior
impedance problem

k−2∆u+ u = −f in Ω, k−1∂nu− iu = g on ∂Ω,
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with Ω ⊂ Rd, d = 2, 3, was then proved by Melenk [107, Proposition 8.2.7]; this advance was thanks
to the availability of a k-explicit bound on the analogue of Csol for this problem using essentially
the identity (2.7) – see the discussion in Exercise 3 in §2.5.

Sauter [129] introduced the notation η(HN ) and emphasised the role of “adjoint approxima-
bility”, with then [14] formulating more abstractly this idea of obtaining sufficient conditions for
quasioptimality in terms of approximability of solutions of the adjoint equation (see Exercises 4 and
5 in §3.12 below). The argument was then used in the framework of [129] for Helmholtz problems
with variable coefficients in [71, 64] and in domains with corners [36].

The arguments used to prove Theorem 3.15. The initial ideas behind the elliptic-projection
argument were introduced in the Helmholtz context in [55, 56] for interior-penalty discontinuous
Galerkin methods, and then further developed for the standard FEM and continuous interior-
penalty methods in [151, 154]. The argument has been subsequently used by, e.g., [50, 15, 152,
36, 65, 100, 96] with all these papers considering the Helmholtz interior impedance problem apart
from [100], which considered PML truncation, and [96] which considered the sesquilinear form
a(·, ·) (1.24) (i.e., involving DtNk).

The elliptic-projection argument for the Helmholtz equation with impedance boundary con-
ditions requires the analogous result to Lemma 2.16 for Poisson’s equation with the impedance
boundary condition k−1∂nv = iγv. This result was explicitly assumed in [56, Lemma 4.3], im-
plicitly assumed in [151, 154, 15, 36], and recently proved in [38]. Lemma 2.16 was proved in [96,
Theorem 6.1] using arguments from [38], which in turn use results from [72] (see Exercise 4 in
§2.5).

In all of the works referenced above except [96], the elliptic-projection argument is used to
obtain (3.35) and then the analogue of the H2 bound (2.10) is used to obtain a bound on the
Galerkin error in terms of the data. The ingredient need to prove a bound on the relative error
– the measure of the error most used in practical applications 3 – is the oscillatory behaviour
bound (3.13), proved for the Helmholtz EDP in [96, Theorem 9.1]. We note that oscillatory
behaviour similar to (3.13) of Helmholtz solutions has been an assumption in many analyses of
finite- and boundary-element methods; see, e.g., [84, First equation in §3.4], [85, Definition 3.2],
[24, Definition 4.6], [14, Definition 3.5], [48, Assumption 3.4]. Rigorous results other than [96,
Theorem 9.1] proving such behaviour are [69, Theorems 1.1 and 1.2] and [63, Theorem 1.11(c)].
These results concern the Neumann trace of the solution of the Helmholtz plane-wave scattering
problem with A = I and n = 1, and are then used in [69] and [63] to analyse boundary-element
methods applied to this problem; in common with the proof of (3.13) in [96, Theorem 9.1], these
results are obtained using semiclassical-analysis techniques.

3.12 Exercises for Section 3

1. The goal of this exercise is to show how the quantity h2k3 (appearing in Theorem 3.15 under
the assumption that Csol ∼ k) arises from analysing solutions of the Galerkin linear system
in 1-d. This material, and significant extensions of it, appear in [75, 84, 86, 83, 1].

(a) Consider the finite-element discretisation of the 1-d model problem (3.14) on a uniform
grid with meshwidth h, nodes xj , and with piecewise-linear hat functions φj such that
φj(xi) = δij . If xj and xj+1 are both away from the boundary, show that

a(φj , φj) =
2

k2h

(
1− (hk)2

3

)
=:

2

k2h
S(hk)

and

a(φj , φj+1) =
1

k2h

(
−1− (hk)2

6

)
=:

1

k2h
R(hk)

so that, at least in the interior of the domain, the nodal values of Galerkin solution uN
satisfy

R(hk)uN (xj − h) + 2S(hk)u(xj) +R(hk)uN (xj + h) = 0. (3.54)
3For example, according to Google Scholar out of the articles published between 2010 and 2021 in the journal

“Computer Methods in Applied Mechanics and Engineering” (a top, mathematically-inclined engineering journal),
21 contain the phrase “quasi optimality”, 111 contain “quasi optimal”, and 1020 contain “relative error”.
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(b) Seeking a solution of (3.54) of the form uN (xj) = exp(ik̃xj), show that the constraint

that k̃ is real implies that hk <
√

12. Under this constraint, show that

k̃ =
1

h
cos−1

(
−S(hk)

R(hk)

)
= k − k3h2

24
+O(k5h4); (3.55)

i.e., if the Galerkin solution is a propagating wave, then its “discrete wavenumber” k̃
differs from the true wavenumber k by (to leading order) a constant times h2k3.

(This type of analysis is often called “dispersion analysis” for the following reason.
Recall that a wave of the form f(kx − ωt) has phase velocity ω/k; when this phase
velocity is independent of k, the wave is non-dispersive, and when the phase velocity
depends on k, the wave is dispersive. The solution of the wave equation exp(ik̃x− iωt)

with k = ω/c has phase velocity ω/k̃ = (k/k̃)c (as in §0.1), which depends on k when k̃
is given by (3.55).)

2. Prove Lemma 3.3. Hint: let B : L2(ΩR)→ H1
0,D(ΩR) be defined by

(Bu, v)H1
k(ΩR) = (nu, ıv)L2(ΩR) for all u ∈ L2(ΩR), v ∈ H1

0,D(ΩR),

where ı is the inclusion map H1
0,D(ΩR) → L2(ΩR), and recall that ı is compact by a result

of Rellich; see, e.g., [106, Theorem 3.27].

3. Prove Lemma 3.18. Hint: using Green’s identity and the radiation condition, show that〈
DtNkψ, φ

〉
ΓR

=
〈
DtNkφ, ψ

〉
ΓR

for all φ, ψ ∈ H1/2(ΓR).

4. The goal of this exercise is to show how the conditions for quasioptimality in Lemma 3.20
can be formulated more abstractly (with this done in [14, Theorem 2.1]).

As in §3.2, let A : H → H be the linear operator such that a(u, v) = (Au, v)H for all u, v ∈ H.
Given HN closed in H, let PN be the orthogonal projection onto HN so that, in particular,
‖(I − PN )u‖H = minvN∈HN

‖u − vN‖H. Suppose that A0 : H → H is a bounded linear
operator that is coercive (i.e., (3.5) holds with A replaced by A0).

Let u be the solution of the variational problem (3.1), and let uN be the Galerkin solution
defined by (3.2). Show that if∥∥(I − PN )(A∗)−1(A∗ −A∗0)

∥∥
H→H ≤

α

2 ‖A‖H→H
, (3.56)

then the Galerkin solution uN exists, is unique, and satisfies

‖u− uN‖H ≤
2 ‖A‖H→H

α
‖(I − PN )u‖H . (3.57)

Hint: define T : H → H by

a(w, T v) = −(a− a0)(w, v) for all w ∈ H,

where a0(w, v) = (A0w, v)H, let η(HN ) := ‖(I − PN )T ‖H→H, and use the ideas in the proof
of Lemma 3.20.

(This result is useful when (A∗)−1(A∗ − A∗0) is smoothing; recall from Exercise 2 that the
sesquilinear form of the EDP (1.24) fits into this framework – with also A0 coercive.)

5. The goal of this exercise is to show how the ‖A‖H→H in the quasi-optimality constant in
(3.57) can be replaced by ‖A0‖H→H – this is useful for proving quasioptimality of the Galerkin
method applied to Helmholtz boundary integral equations where the norms grow with k; see
[102], [62].

Assume that A and A0 are as in Exercise 2.
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(a) Show that

α ‖u− uN‖2H ≤ ‖A0‖H→H ‖u− uN‖H ‖u− PNu‖H +
∣∣((A−A0)(u− uN ), uN − PNu

)
H

∣∣.
(Note that ‖u − PNu‖H on the right-hand side is multiplied by ‖A0‖H→H, instead of
by ‖A‖H→H as in the argument leading to (3.57).)

(b) Show that, for all wN ∈ HN ,

∣∣((A−A0)(u− uN ), wN
)
H

∣∣ ≤ ( ‖A0‖H→H + ‖(I − PN )(A−A0)‖H→H

)
×
∥∥(I − PN )(A∗)−1(A∗ −A∗0)

∥∥
H→H ‖u− uN‖H ‖wN‖H .

(c) By writing
‖u− uN‖H ≤ ‖u− PNu‖H + ‖uN − PNu‖H

and using Parts (a) and (b), show that if∥∥(I − PN )(A∗)−1(A∗ −A∗0)
∥∥
H→H ≤

α

4 ‖A0‖H→H
(3.58)

and

‖(I − PN )(A−A0)‖H→H ≤ ‖A0‖H→H . (3.59)

then the Galerkin solution uN exists, is unique, and satisfies

‖u− uN‖V ≤
(

1 +
2 ‖A0‖H→H

α

)
‖(I − PN )u‖H . (3.60)

(This result is similar to that in [102, Theorem 3.8]; in this latter result, instead of A0

being coercive, A0 satisfies a discrete inf-sup condition in HN with constant α, and then
quasioptimality holds with constant 2(1 + ‖A0‖/α). The proof is very similar to above,
but starts by writing ‖u− uN‖H ≤ ‖u− PNu‖H + ‖uN − PNu‖H and then bounding
‖uN − PNu‖H using steps similar to those above.)

4 Sharp k-explicit convergence results about the h-FEM
(with p > 1) and hp-FEM via frequency-splitting of high-
frequency Helmholtz solutions

4.1 Assumptions on the finite-dimensional subspaces

The main results of this section are proved under one or both of the following two assumptions
on the finite-dimensional subspaces. We highlight immediately that both these assumptions are
satisfied by the standard hp-finite-element space Hp,1(Th) (3.9), provided that the triangulations
are constructed by refining a fixed triangulation that has analytic element maps; see Theorems 4.2
and 4.5 below.

The results in this section hold for Ω− = ∅, in which case ΩR = BR, and thus we work on BR
for the whole of the section.

Assumption 4.1. (Approximation of functions with finite regularity.) Given s, d with
s > d/2, there exists Capprox1 > 0 such that if v ∈ Hs(BR) and p ≥ s− 1, then

min
wN∈HN

‖v − wN‖H1
k(BR) ≤ Capprox1

(
hk

p

)s−1(
1 +

hk

p

)
|v|Hs

k(BR), (4.1)

where |v|Hs
k(BR) := k−s|v|Hs(BR).
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Assumption 4.1 is a generalisation of Assumption 3.5 (although Assumption 4.1 is stated in
k-weighted norms, whereas Assumption 3.5 is stated in unweighted norms). Indeed, if Assumption
4.1 holds, then the consequence (3.10) of Assumption 3.5 follows from (4.1) with p = 1 and s = 2
and
√

2Cint replaced by Capprox1(1 + hk).

Theorem 4.2. (Conditions under which Assumption 4.1 holds.) Assume that d = 2, 3, and
(Th)0<h≤h0

is a family of quasi-uniform triangulations (in the sense of Definition 3.7). Assume
further that each K ∈ T is the image of a triangle/tetrahedron under the image of a bi-Lipschitz
map (i.e., both the map and its inverse are Lipschitz). Then Hp,1(Th) defined by (3.9) satisfies
Assumption 4.1.

References for the proof. This follows from [108, Theorem B.4] (a result about approximation on
the reference element) and a scaling argument (see [108, Bottom of Page 1895]). The result [108,
Theorem B.4] builds on the results of [117, Theorem 4.1], [153], and [73]; see the discussion at the
start of [108, Appendix B].

Assumption 4.1 is about approximating in k-weighted norms an arbitrary function in Hs for
some s > 0. In contrast, Assumption 4.3 is about approximating in k-weighted norms a function
that depends on k, in the sense that its derivatives satisfy certain k-dependent bounds.

Assumption 4.3. (Approximation of certain analytic functions.) Suppose v ∈ C∞(BR) is
such that, given k0 > 0 there exists C1, C2 > 0 such that∥∥(k−1∂)αv

∥∥
L2(BR)

≤ C1(C2)|α| for all k ≥ k0. (4.2)

Given C̃, there exist σ,Capprox2, depending on C2 and C̃ (but not C1), such that, if k ≥ k0 and
k, h, and p satisfy

h+
hk

p
≤ C̃, (4.3)

then

min
wN∈HN

‖v − wN‖H1
k(BR) ≤ C1Capprox2

[
k−1

(
h

σ + h

)p(
1 + hk

h+ σ

)
+

(
hk

σp

)p
1

σ

(
1

p
+
hk

p

)]
.

(4.4)

We make the following three remarks about Assumption 4.3.

(i) The term in square brackets on the right-hand side of (4.4) is small if both h/(σ + h) and
hk/p are small.

(ii) In Assumption 4.1 one cannot take s→∞ (and hence also p→∞, since p ≥ s−1), since the
constant Capprox1 depends in an unspecified way on s. In contrast, Assumption 4.3 is valid
for arbitrarily large p, with the right-hand side of (4.4) explicit in p; this feature is achieved
by restricting attention to functions satisfying (4.2).

(iii) The term in square brackets on the right-hand side of (4.4) should be dimensionless. Strictly
speaking, the factor of h/(σ + h) should be (h/L)(h/L+ σ) and the factor 1/(σ + h) should
be (1/L)/(h/L + σ) where L is some parameter with dimension length. In writing (4.4) we
have absorbed this parameter L into σ and Capprox2. Similarly, the h in (4.3) should really
be h/L.

The title of Assumption 4.3 is explained by the following result.

Lemma 4.4. (Analyticity from derivative bounds.) If u ∈ C∞(D) and there exist C1, C2 > 0
such that

‖∂αu‖L2(D) ≤ C1(C2)|α||α|! for all α, (4.5)

then u is real analytic in D.

Proof. This is Exercise 1 in §4.9.
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We see that v in (4.2) is better than analytic, in the sense that there is no |α|! on the right-hand
side of (4.2).

Theorem 4.5. (Conditions under which Assumption 4.3 holds.) If (Th)0<h≤h0
satisfies

[108, Assumption 5.2] (informally, (Th)0<h≤h0
is quasi-uniform with the maps from the reference

element analytic), then Hp,1(Th) defined by (3.9) satisfies Assumption 4.3.

Proof. This is proved in [108, Proof of Theorem 5.5], using the results about hp-approximation of
analytic functions in [108, Appendix C] – see the last equation on [108, Page 1896]. Note that (i)
the weighted H1 norm in [108] is k times that in (1.8), and (ii) the term in square brackets on the
right-hand side of (4.4) is not exactly the same as the analogous term in the last equation on [108,
Page 1896], since, in obtaining the latter, [108] estimate 1/(σ+h) . 1 and also absorb an instance
of σ into Capprox2, whereas we do not.

Note that triangulations satisfying [108, Assumption 5.2] can be constructed by refining a fixed
triangulation that has analytic element maps; see [109, Remark 5.2].

4.2 Statement of the main results of this section

4.2.1 Results about the h-FEM with p > 1

Theorem 4.6. (Quasioptimality of the h-FEM for p ≥ 1.) Suppose that Assumption 1.1
holds, Ω− = ∅, both A and n are C∞. Suppose that (HN )∞N=0 satisfy Assumption 4.1. Then, given
p > 0, k0 > 0, there exists Cp (depending on p, A, n, k0, and R, but independent of h and k) such
that the following holds. Given F ∈ (H1(BR))′, let u be the solution of the variational problem
(3.1) with a(·, ·) defined by (1.24) and H = H1(BR). Then if k ≥ k0 and h and k satisfy

(hk)pCsol(k,R+ 2) ≤ Cp, (4.6)

then the Galerkin solution uN exists, is unique, and satisfies the quasi-optimal error bound (3.12).

If Csol ∼ k, then the condition (4.6) is that hpkp+1 is sufficiently small; this implies that the
pollution effect is less pronounced for p large. Numerical experiments indicate that the condition
“hpkp+1 sufficiently small” for quasioptimality is sharp 4.

Theorem 4.7. (Non-sharp bound on the relative-error of the h-FEM for p ≥ 1.) Suppose
that Assumptions 1.1 and 3.9 hold, with additionally hk/p ≤ 1. Suppose that Ω− = ∅, both A and n
are C∞, and (HN )∞N=0 satisfy Assumption 4.1. Then there exist Csplit,H2 , Csplit,A > 0 (depending
on A,n,R, and k0) such that the following holds. Let u be the solution of the variational problem
(3.1) and suppose that Assumption 3.12 holds. If k ≥ k0 and h and k satisfy(

hk

p

)2

Csplit,H2 +

(
hk

p

)p+1

Csol(k,R+ 2)
(
Csplit,A

)p+1 ≤ C1 (4.7)

then the Galerkin solution uN to the variational problem (3.2) exists, is unique, and satisfies the
bound

‖u− uN‖H1
k(ΩR)

‖u‖H1
k(ΩR)

≤ C2
hk

p
+2C3Capprox1

[
Csplit,H2

(
hk

p

)2

+ (Csplit,A)p+1Csol(k,R+ 2)

(
hk

p

)p+1
]
,

(4.8)
where

C1 :=
1

8(Capprox1)2Ccont?CH2?nmax
,

C2 :=
2CcontCapprox1Cosc

Amin
, and C3 :=

4
√

2Ccont?Capprox1Cosc

√
nmax +Amin√

Amin

. (4.9)

4experiments to come
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Recall that by Assumption 4.1, Capprox1 in Theorem 4.7 depends on p. If Csol ∼ k, then the
condition (4.7) is that hp+1kp+2 is sufficiently small. Numerical experiments indicate that the
sharp condition for the relative error of the h-FEM with p > 1 to be controllably small when
Csol ∼ k is actually “h2pk2p+1 sufficiently small”; this has not yet been proved for the Helmholtz
EDP – see the discussion in §4.8.

4.2.2 Results about the hp-FEM

The results in §4.2.1 imply that the larger p is, the less pronounced the pollution effect. A natural
question is then, can the pollution effect be eliminated with a choice of p that → ∞ as k → ∞?
The results in this section show that the answer is yes.

Definition 4.8. (Csol is polynomially bounded in k.) Given k0 and K ⊂ [k0,∞), Csol(k)
is polynomially bounded for k ∈ K if there exists C,M > 0 (independent of k, but depending on
k0,K,A, n, d, and R) such that

Csol(k) ≤ CkM for all k ∈ K. (4.10)

Recalling Theorems 2.7 and 2.11, we see that (i) Csol(k) is polynomially bounded with K =
[k0,∞) when Ω− = ∅ and A and n are nontrapping in the sense of Definition 2.6, and (ii) given
δ > 0, Csol(k) is polynomially bounded with K = [k0,∞) \ J with |J | ≤ δ by Theorem 2.11 for
Lipschitz Ω− and A and bounded n.

Theorem 4.9. (Quasioptimality of the hp-FEM if Csol(k) is polynomially bounded.)
Suppose that Assumption 1.1 holds, Ω− = ∅, both A and n are C∞ and Csol(k) is polynomially
bounded (in the sense of Definition 4.8) for k ∈ K ⊂ [k0,∞). Suppose that (HN )∞N=0 satisfy
Assumptions 4.1 and 4.3. Then there exist C1, C2 > 0, depending on A,n,R, and d, and k0, but
independent of k, h, and p, such that the following holds. Let u be the solution of the variational
problem (3.1). If

hk

p
≤ C1 and p ≥ C2 log k, (4.11)

then, for all k ∈ K, the Galerkin solution uN exists, is unique, and satisfies the quasi-optimal error
bound (3.12).

If h and p are chosen so that hk/p = C1, then the number of degrees of freedom per wavelength is
proportional to 1/C1 (recall the end of Remark 3.16). Theorem 4.9 therefore says that if hk/p = C1

and p ≥ C2 log k then the hp-FEM does not suffer from the pollution effect.
Using in the quasi-optimal bound (3.12) the polynomial-approximation result (4.1) with s = 2

and then the oscillatory-behaviour bound (3.13), we obtain the following corollary of Theorem 4.9.

Corollary 4.10. (Bound on the relative error of the hp-FEM solution.) Let the assump-
tions of Theorem 4.9 hold and, furthermore, suppose that Assumption 3.12 holds. If (4.11) holds,
then, for all k ∈ K,

‖u− uN‖H1
k(BR)

‖u‖H1
k(BR)

≤ 2Ccont

Amin
Capprox1Cosc

hk

p

(
1 +

hk

p

)
≤ 2Ccont

Amin
Capprox1CoscC1

(
1 + C1

)
; (4.12)

i.e. the relative error can be made arbitrarily small by making hk/p small.

4.3 Frequency-splitting of high-frequency Helmholtz solutions

Theorem 4.11. (Frequency-splitting of the Helmholtz solution.) Let Ω− = ∅, let A and
n satisfy Assumption 1.1, let R > 0 be such that supp(I − A) ∪ supp(1 − n) b BR, and assume
further that both A and n are C∞. Given k0 > 0, if Csol(k) is polynomially bounded (in the sense of
Definition 4.8) for k ∈ K ⊂ [k0,∞), then there exist Csplit,H2 , Csplit,A > 0 such that the following
holds. Given f ∈ L2(BR), let u satisfy k−2∇ · (A∇u) + nu = −f in Rd and the Sommerfeld
radiation condition (1.4). Then

u|BR
= uH2 + uA
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where uH2 ∈ H2(BR) with

‖uH2‖H2
k(BR) ≤ Csplit,H2 ‖f‖L2(BR) for all k ∈ K ⊂ [k0,∞), (4.13)

and uA ∈ C∞(BR) with∥∥(k−1∂)αuA
∥∥
L2(BR)

≤ Csol(k,R+2)
(
Csplit,A

)|α| ‖f‖L2(BR) for all α and for all k ∈ K ⊂ [k0,∞),

(4.14)

The key points about this decomposition are that

(i) the bound on uH2 is one power of k better than the bound on u when A and n are nontrapping
– compare (4.13) to (2.4), and

(ii) the bound on uA has the same k dependence as the bound on u – both are governed by Csol

– although uA is C∞ (and indeed analytic by Lemma 4.4).

4.4 Proofs of Theorems 4.6, 4.7, and 4.9 using Theorem 4.11

Lemma 4.12. (Bound on η(HN ) using the splitting of Theorem 4.11 and Assumption
4.1.) Suppose Assumption 4.1 and the assumptions of Theorem 4.11 hold. Then, for all k ∈ K,

η(HN ) ≤ Capprox1

(
1 +

hk

p

)[(
hk

p

)
Csplit,H2 +

(
hk

p

)p
Csol(k,R+ 2)

(
Csplit,A

)p+1
]

(4.15)

Proof. From the definition of η(HN ) (3.21) and Lemma 3.18, it is sufficient to show the following:
given f ∈ L2(BR), there exists wN ∈ HN such that, if u is the solution of k−2∇· (A∇u)+nu = −f
in Rd satisfying the Sommerfeld radiation condition (1.4) (i.e., u is as in Theorem 4.11), then

‖u− wN‖H1
k(BR) ≤ C ‖f‖L2(BR) , (4.16)

where C is the right-hand side of (4.15).
This follows by (i) applying (4.1) with s = 2 to uH2 and using the bound (4.13), (ii) applying

(4.1) with s = p + 1 to uA and using the bound (4.14), (iii) using the triangle inequality and the
decomposition u = uH2 + uA on BR.

Theorem 4.6 follows immediately from using the bound on η(HN ) from Lemma 4.12 in Lemma
3.20. To prove Theorem 4.6 we use this bound on η(HN ) in Lemma 3.21, but we modify Lemma
3.21 to take advantage of the polynomial approximation result (4.1).

Proof of Theorem 4.7. Repeating the argument leading to Lemma 3.21 with the polynomial ap-
proximation result (3.8) replaced by (4.1), and assuming that hk/p ≤ 1, we find that

hk

p
η(HN ) ≤ C1, where C1 :=

1

4Ccont?CH2?Capprox1nmax
,

then the Galerkin solution uh to the variational problem (3.2) exists, is unique, and satisfies the
bound

‖u− uh‖H1
k(ΩR)

‖u‖H1
k(ΩR)

≤ C2
hk

p
+ C3

hk

p
η(HN ),

where C1, C2 and C3 are as in (4.9); the result then follows from using the bound on η(HN )
(4.15).

Theorem 4.9 is proved by using the following bound on η(HN ) in Lemma 3.20.
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Lemma 4.13. (Bound on η(HN ) using the splitting from Theorem 4.11 and Assump-
tions 4.1 and 4.3.) Suppose that Assumptions 4.1 and 4.3 the assumptions of Theorem 4.11

hold. Given C̃, there exist σ,Capprox2, depending on Csplit,A and C̃, such that, if k ≥ k0 and k, h,
and p satisfy

h+
hk

p
≤ C̃,

then, for all k ∈ K,

η(HN ) ≤ Capprox1Csplit,H2

hk

p

(
1 +

hk

p

)
+ Capprox2Csol(k,R+ 2)

[
k−1

(
h

σ + h

)p(
1 + hk

σ + h

)
+

(
hk

σp

)p
1

σ

(
1

p
+
hk

p

)]
. (4.17)

Proof. As in the proof of Lemma 4.12, it is sufficient to show that there exists wN ∈ HN such that
(4.16) holds, where u is as in Theorem 4.11. and C is the right-hand side of (4.17).

We approximate uH2 using Assumption 4.1 and uA by Assumption 4.3. By (4.1) and (4.13),

there exists w
(1)
N ∈ HN such that∥∥∥vH2 − w(1)

N

∥∥∥
H1

k(BR)
≤ Capprox1

(
1 +

hk

p

)(
hk

p

)
|u|H2

k(BR)

≤ Capprox1

(
1 +

hk

p

)(
hk

p

)
Csplit,H2 ‖f‖L2(BR) . (4.18)

By (4.4) and (4.14), there exists w
(2)
N ∈ VN such that∥∥∥vA − w(2)

N

∥∥∥
H1

k(BR)
≤ Capprox2Csol(k,R+ 2)

[
k−1

(
h

σ + h

)p(
1 + hk

σ + h

)
+

(
hk

σp

)p
1

σ

(
1

p
+
hk

p

)]
.

(4.19)

Let wN := w
(1)
N + w

(2)
N . By the triangle inequality, the decomposition u = uH2 + uA on BR, and

the inequalities (4.18) and (4.19), the inequality (4.16) holds with C the right-hand side of (4.17)
and the proof is complete.

Proof of Theorem 4.9. The result follows if we can show that given ε > 0 and k0 > 0, there exists
C1, C2 > 0, depending only on ε, Capprox1, Capprox2, Csplit,H2 , σ, and k0, such that if

hk

p
≤ C1 and p ≥ C2

(
1 + log

(
Csol(k,R+ 2)

))
,

then
η(HN ) ≤ ε for all k ∈ K.

First choose C1 sufficiently small such that C1 < σ and

Capprox1Csplit,H2C1 (1 + C1) ≤ ε

2
.

From the bound on η(HN ) (4.17), it is then sufficient to show that

Capprox2 Csol(k,R+ 2)

[
k−1

(
h

σ + h

)p(
1 + hk

σ + h

)
+

(
kh

σp

)p
1

σ

(
1

p
+
kh

p

)]
(4.20)

can be made ≤ ε/2. Let

θ1 :=
h

σ + h
and θ2 :=

C1
σ
,

so that (4.20) is bounded by

Capprox2 Csol(k,R+ 2)

[
k−1(θ1)p

(
1 + C1p
σ

)
+ (θ2)p

1

σ

(
1

p
+ C1

)]
;

the result then follows since θ1, θ2 < 1.
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4.5 Definition of uH2 and uA

Let χ ∈ C∞comp(Rd, [0, 1]) be such that

χ =

{
1 in B1

0 outside B2.
(4.21)

For µ > 0, let

χµ(·) := χ

(
·
µ

)
, (4.22)

and observe then that

χµ
(
k−2|ζ|2

)
=

{
1 for |ζ| ≤ √µk,
0 for |ζ| ≥

√
2µk.

(4.23)

With the Fourier transform and its inverse defined by

Fϕ(ζ) :=

∫
Rd

exp
(
− ix · ζ

)
ϕ(x) dx and F−1ψ(x) := (2π)−d

∫
Rd

exp
(
ix · ζ

)
ψ(ζ) dζ, (4.24)

we define the low-frequency cut-off ΠL by

ΠLv(x) := F−1
(
χµ
(
k−2|ζ|2

)
Fv(ζ)

)
, (4.25)

and the high-frequency cut-off ΠH by

ΠHv(x) := F−1
((

1− χµ
(
k−2|ζ|2

))
Fv(ζ)

)
, (4.26)

so that ΠL + ΠH = I. This splitting contains the arbitrary parameter µ; we fix this when proving
the bound (4.13) on uH2 .

We let ϕ ∈ C∞comp(Rd, [0, 1]) be equal to one on BR+1 and vanish outside BR+2, and then set

uA :=
(
ΠL(ϕu)

)∣∣
BR

and uH2 :=
(
ΠH(ϕu)

)∣∣
BR
. (4.27)

4.6 Proof of the bound (4.14) on uA

Recall that the Fourier transform satisfies

F
((
− i∂

)α
φ
)
(ζ) = ζα(Fφ)(ζ) (4.28)

and

‖φ‖L2(Rd) =
1

(2π)d/2
‖Fφ‖L2(Rd) . (4.29)

The properties (4.28) and (4.29) and the definition of ΠL (4.25) imply that∥∥∂α(ΠLϕu
)∥∥
L2(Rd)

=
1

(2π)d/2

∥∥(·)αF
(
ΠLϕu

)
(·)
∥∥
L2(Rd)

=
1

(2π)d/2

∥∥(·)αχµ
(
k−2| · |2

)
F(ϕu)(·)

∥∥
L2(Rd)

.

The definitions of χ (4.21) and χµ (4.22) imply that χµ(ξ) = 0 for |ξ| ≥ 2µ, so

χµ
(
k−2|ζ|2

)
= 0 for |ζ| ≥

√
2µk.

Using this fact, and then (in this order) the fact that |χµ| ≤ 1, the property (4.29), the fact that
ϕ = 0 outside BR+2, and the definition of Csol (2.1), we find that

∥∥∂α(ΠLϕu
)∥∥
L2(Rd)

≤ (2µ)|α|/2

(2π)d/2
k|α|

∥∥χµ(k−2| · |2
)
F(ϕu)(·)

∥∥
L2(Rd)
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≤ (2µ)|α|/2

(2π)d/2
k|α| ‖F(ϕu)‖L2(Rd)

≤ (2µ)|α|/2k|α| ‖ϕu‖L2(Rd)

≤ (2µ)|α|/2k|α|Csol(k,R+ 2) ‖f‖L2(BR) .

Since
‖∂αuA‖L2(BR) =

∥∥∂α(ΠLϕu
)∥∥
L2(BR)

≤
∥∥∂α(ΠLϕu

)∥∥
L2(Rd)

,

the bound (4.14) then follows with Csplit,A :=
√

2µ.

4.7 Informal explanation of why the bound (4.13) on uH2 holds

To complete the proof of Theorem 4.11, we need to prove the bound (4.13) on uH2 . We will do
this in §8, using basic results about semiclassical pseudodifferential operators from §7. However,
here we give an informal explanation as to why (4.13) holds.

Helmholtz equation “modified Helmholtz equation”
PDE Pu = f −k−2∇ · (A∇u)− nu = f −k−2∇ · (A∇u) + nu = f

Symbol k−2Aj`ζjζ` − ik−2ζ`∂jAj` − n k−2Aj`ζjζ` − ik−2ζ`∂jAj` + n
Principal symbol k−2Aj`ζjζ` k−2Aj`ζjζ`

Elliptic? Yes Yes
SC symbol Aj`ξjξ` − ik−1ξ`∂jAj` − n Aj`ξjξ` − ik−1ξ`∂jAj` + n

SC principal symbol Aj`ξjξ` − n Aj`ξjξ` + n
SC elliptic? No Yes

Bound on Pu = f in Rd ‖u‖H1
k(BR) . k‖f‖L2(BR) ‖u‖H1

k(Rd) . ‖f‖L2(BR)

with suppf ⊂ BR (if u satisfies (1.4))

Table 4.1: The Helmholtz and “modified Helmholtz equation”s, their symbols, principal symbols,
semiclassical (SC) symbols, and semiclassical principal symbols.

Table 4.1 compares the Helmholtz equation and the “modified Helmholtz” equation (where the
sign of the term containing n is swapped).

The row labelled “Symbol” gives the symbols of these operators as pseudodifferential operators;
these symbols are obtained by replacing derivatives ∂j that act on u in the PDE by iζj . Recall
that a pseudodifferential operator is called elliptic if its principal symbol is never zero; we see in
the table that both the Helmholtz and modified Helmholtz operators are elliptic.

In §7, we recall the concept of semiclassical pseudodifferential operators; we’ll see that these
are just standard pseudodifferential operators with a small parameter – in our case k−1– where
behaviour with respect to this parameter is explicitly kept track of in the associated calculus. To
obtain the semiclassical (SC) symbol of a PDE operator, one replaces derivatives ∂j that act on u
by ikξj (so that the SC symbol is just the standard symbol under a change of variables).

The Helmholtz operator is not SC elliptic, since its principal symbol vanishes at points (x, ξ)
when (A(x)ξ, ξ)2 = n(x), whilst the modified Helmholtz operator is SC elliptic when A and n
satisfy Assumption 1.1, since then (A(x)ξ, ξ)2 + n(x) ≥ Amin|ξ|2 + nmin > 0.

This difference means that, at least when the equations are posed in Rd, the norm of the
modified-Helmholtz solution operator is one power of k better than the Helmholtz solution operator
(see Theorem 2.7 and Exercise 2 in §4.9).

Nevertheless, the Helmholtz operator is SC elliptic when |ξ| ≥ √µ for µ sufficiently large
(depending on A and n), i.e., when |ζ| ≥ √µk, i.e., the support (in Fourier space) of the high-
frequency cut-off ΠH (4.26). It is this fact that leads to uH2 := ΠH(ϕu)

∣∣
BR

satisfying a bound
that is one power of k better than the bound u itself satisfies when A and n are nontrapping.

4.8 History and context of the results in this section

Quasioptimality of the h- and hp-FEM [108, 109] [93, 94],
[37].
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The error of the h-FEM for p > 1 [151, 154, 50], [122]

4.9 Exercises for Section 4

1. Prove Lemma 4.4 via the following steps.

(a) Show that the result follows if there exists n0 ∈ Z+ such that

‖∂αu‖L∞(D) ≤ C̃1(C̃2)|α|(|α|+ n0)!. (4.30)

Hint: bound the Lagrange form of the remainder in the Taylor-series up to n− 1 terms,
i.e., ∑

|α|=n

(x− x′)α

α!

(
∂αu

(
x′ + c(x− x′)

))
,

for some c ∈ (0, 1), and use the consequence of the binomial theorem that∑
|α|=n

n!

α!
= dn. (4.31)

(b) Prove (4.30) using the Sobolev embedding theorem (see, e.g., [106, Theorem 3.26]).

2. (Proof of the bound on the solution of the “modified Helmholtz equation” in Table 4.1.)
Given f ∈ L2(Rd), and A and n satisfying Assumption 1.1 with Ω− = ∅, let u ∈ H1(Rd) be
the solution of −k−2∇ · (A∇u) + nu = f in Rd. Prove that u exists, is unique, and satisfies
the bound

‖u‖H1
k(Rd) ≤

1

min
{
Amin, nmin

}‖f‖L2(Rd)

for all k > 0. Hint: consider the variational problem satisfied by u.

5 Semiclassical Fourier multipliers

5.1 Plan for the next few sections

To complete the proof of Theorem 4.11, we need to prove the bound (4.13) on uH2 . As discussed in
§4.7, our proof of the bound (4.13) on uH2 uses basic results about semiclassical pseudodifferential
operators; these results are recapped in §7, with the bound on uH2 proved in §8.

As a warm-up, in this section we recap results about (semiclassical) Fourier multipliers, i.e.,
operators defined by multiplication in Fourier space. In §6 we use these results to prove the bound
(4.13) on uH2 when A = I and n = 1. Importantly, the results in this section and the corresponding
proof in §6 only involve basic facts about the Fourier transform (namely, the rule for the Fourier
transform of a derivative, and Plancherel’s theorem).

Since pseudodifferential operators are a generalisation of Fourier multipliers, the goal of this
section and §6 is to provide a “bridge” into the theory and use of pseudodifferential operators,
and to illustrate to an audience unfamiliar with the theory of pseudodifferential operators how
this theory is the natural generalisation of Fourier analysis to study linear PDEs with variable
coefficients.

5.2 The semiclassical parameter ~ = k−1

Instead of working with the parameter k and being interested in the large-k limit, the semiclassical
literature usually works with a parameter h := k−1 and is interested in the small-h limit. So that
we can easily recall results from this literature, we also work with the small parameter k−1, but to
avoid a notational clash with the meshwidth of the FEM, we let ~ := k−1 (the notation ~ comes
from the fact that the semiclassical parameter is related to Planck’s constant, which is written as
2π~; see, e.g., [155, §1.2], [52, Page 82], [105, Chapter 1]).

40



5.3 The semiclassical Fourier transform F~

The semiclassical Fourier transform is defined for ~ > 0 by

F~φ(ξ) :=

∫
Rd

exp
(
− ix · ξ/~

)
φ(x) dx;

i.e.,
F~φ(ξ) = Fφ(ξ/~), (5.1)

where F is defined in (4.24). The inverse of F is given by

F−1
~ ψ(x) := (2π~)−d

∫
Rd

exp
(
ix · ξ/~

)
ψ(ξ) dξ; (5.2)

see [155, §3.3]. Let

S (Rd) :=
{
φ ∈ C∞(Rd) : sup

x∈Rd

∣∣xα∂βφ(x)
∣∣ <∞ for all multiindices α and β

}
; (5.3)

i.e., S (Rd) is the Schwartz space of rapidly decreasing, C∞ functions. Let S ∗(Rd) be the space
of continuous linear functions on S (Rd); recall that F~ : S (Rd) → S (Rd) and then, by duality,
F~ : S ∗(Rd)→ S ∗(Rd) (see, e.g., [106, Page 72]). Recall also the property

F~
((
− i~∂

)α
φ
)
(ξ) = ξα F~φ(ξ) (5.4)

and Plancherel’s theorem (sometimes known as Parseval’s theorem)

‖φ‖L2(Rd) =
1

(2π~)d/2
‖F~φ‖L2(Rd) . (5.5)

5.4 Semiclassical (i.e., weighted) Sobolev spaces

For s ∈ R, let

Hs
~(Rd) :=

{
u ∈ S ∗(Rd), 〈ξ〉sF~u ∈ L2(Rd)

}
, where 〈ξ〉 := (1 + |ξ|2)1/2,

and let

‖u‖2Hs
~(Rd) := (2π~)−d

∫
Rd

〈ξ〉2s|F~u(ξ)|2 dξ; (5.6)

we abbreviate Hs
~(Rd) to Hs

~ and L2(Rd) to L2. Thanks to (5.4), up to dimension-dependent
constants, ‖u‖Hs

~(Rd) defined by (5.6) is equivalent to ‖u‖Hs
k(Rd) defined by (1.7); we use this

clashing notation to avoid writing Hs
~−1(Rd) and ‖ · ‖Hs

~−1 (Rd).

To be more precise about the norm equivalence, let Cj = Cj(s, d) > 0, j = 1, 2, be such that

C1

∑
|α|≤s

ξ2α ≤ (1 + |ξ|2)s ≤ C2

∑
|α|≤s

ξ2α,

then √
C1 ‖u‖Hs

k(Rd) ≤ ‖u‖Hs
~(Rd) ≤

√
C2 ‖u‖Hs

k(Rd) .

Finally, recall that, for s ∈ R, H−s~ (Rd) is an isometric realisation of the dual space of Hs
~(Rd);

i.e.,
H−s~ (Rd) = (Hs

~(Rd))∗; (5.7)

see, e.g., [106, Page 76].
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5.5 Definition of Fourier multipliers

We say that a ∈ C∞(Rd) is a Fourier symbol if there exists m ∈ R such that for any multiindex β
there exists Cβ such that

|∂βξ a(ξ)| ≤ Cβ〈ξ〉m−|β| for all ξ ∈ Rd. (5.8)

We say that m is the order of the Fourier symbol and use the (non-standard) notation that
a ∈ (FS)m.

Example 5.1. (Examples of Fourier symbols.)
(i) a(x, ξ) :=

∑
|α|≤m aαξ

α, where aα are constants, is in (FS)m.

(ii) a(ξ) := |ξ|2 − 1 ∈ (FS)2.
(iii) 〈ξ〉−m := (1 + |ξ|2)−m/2 ∈ (FS)−m.
(iv) If χ ∈ C∞comp(Rd), then χ ∈ (FS)−N for all N ≥ 1.

Given a Fourier symbol a, the Fourier multiplier defined by a is given by(
a(~D)v

)
(x) = F−1

~
(
a(·)(F~v)(·)

)
(x). (5.9)

The rationale for this notation is that, by (5.4), the semiclassical Fourier transform F~ converts
~D, where D := −i∂, into ξ.

Lemma 5.2. a(~D) : S (Rd)→ S (Rd) and S ∗(Rd)→ S ∗(Rd).

Proof. This is Exercise 1 in §5.6. Note that this proof is the only place in this section where (5.8)
with |β| > 0 (i.e., the differentiability property of a) is used.

Example 5.3. (Examples of Fourier multipliers.)
(i) If a(ξ) = 1, then a(~D)v(x) = v(x); i.e., 1(~D) = I.
(ii) If a(ξ) :=

∑
|α|≤m aαξ

α, then a(~D)v(x) =
∑
|α|≤m aα(~D)αv(x).

(iii) If a(ξ) := |ξ|2 − 1, then a(~D)v(x) = (−~2∆− 1)v.

Theorem 5.4. (Composition and mapping properties of Fourier multipliers.) If a ∈
(FS)m1 and b ∈ (FS)m2 then the following hold.

(i) ab ∈ (FS)m1+m2 .
(ii) a(~D)b(~D) = (ab)(~D) = b(~D)a(~D).
(iii) a(~D) : Hs

~ → Hs−m1

~ and there exists C > 0 such that, for all s ∈ R and ~ > 0m

‖a(~D)‖
Hs

~→H
s−m1
~

≤ C.

i.e., a(~D) is bounded uniformly in both ~ and s as an operator from Hs
~ to Hs−m1

~ .

Proof. This is Exercise 2 in §5.6.

5.6 Exercises for §5

1. Prove Lemma 5.2.

2. Prove Theorem 5.4.

6 Proof of the bound on uH2 when A = I and n = 1

Recap of the definition and properties of u when A = I and n = 1. Given f ∈ L2(BR), let
u be the solution of P~u := (−~2∆− 1)u = f in Rd satisfying the Sommerfeld radiation condition
(1.4) (with k = ~−1). Recall that

‖u‖H1
~(BR) ≤ 2~−1R

√
1 +

(
d− 1

2kR

)2

‖f‖L2(BR) for all ~ > 0 (6.1)

by Theorem 2.14 (taking Ω− = ∅).

42



Recap of the definition of uH2 and the bound (4.13) we need to prove. Let ϕ ∈
C∞comp(Rd, [0, 1]) be equal to one on BR+1 and vanish outside BR+2, and set

uH2 :=
(
ΠH(ϕu)

)∣∣
BR
, (6.2)

where ΠH is defined in terms of the Fourier transform by (4.26). More precisely, ΠH contains
the arbitrary parameter µ, and then uH2 is defined by (6.2) with µ chosen sufficiently large (as
prescribed below).

Using the equivalence of ‖ · ‖H2
k

and ‖ · ‖H2
~
, the bound (4.13) is equivalent to

‖uH2‖H2
~(BR) . ‖f‖L2(BR) for all 0 < ~ ≤ ~0. (6.3)

Note that, by (6.1), in the set up we are considering (A = I, n = 1, and Ω− = ∅) Csol is polynomially
bounded for all k (in fact Csol . k), and thus we prove the bound (4.13) with K = [k0,∞).

The Helmholtz operator with A = I and n = 1 and ΠH as Fourier multipliers. By
Example 5.3 (iii), P~ := (−~2∆ − 1) = p(~D) with p(ξ) := |ξ|2 − 1. By the relationship (5.1)
between F and F~ and the definition (5.9) of a Fourier multiplier,

ΠH = F−1
~
(
1− χµ(| · |2)

)
F~ =

(
1− χµ(| · |2)

)
(~D). (6.4)

Proof of the bound (4.13) on uH2 when A = I and n = 1. By (6.4) and Part (ii) of Theorem
5.4,

‖ΠH(ϕu)‖H2
~(Rd) =

∥∥(1− χµ(| · |2)
)
(~D)(ϕu)

∥∥
H2

~(Rd)
=

∥∥∥∥(1− χµ(| · |2)

p(·)

)
(~D) p(~D)(ϕu)

∥∥∥∥
H2

~(Rd)

.

(6.5)

Lemma 6.1. If µ ≥ 4, then (1− χµ(|ξ|2)/p(ξ) ∈ (FS)−2.

Proof. By the definitions of χµ (4.23) (recalling that ξ = ζ/k) and p(ξ) := |ξ|2 − 1,

1− χµ(|ξ|2)

p(ξ)
=


0 for |ξ| ≤ √µ,(
1− χµ(|ξ|2)

)
(|ξ|2 − 1)−1 for

√
µ ≤ |ξ| ≤

√
2µ,

(|ξ|2 − 1)−1 for |ξ| ≥
√

2µ.

Therefore, if µ ≥ 4, then (1 − χµ(|ξ|2)/p(ξ) is bounded for all ξ ∈ R. The derivative bounds in
(5.8) with m = −2 follow by differentiating, essentially using the fact that the symbol equals 1/p
outside a compact set.

By using Lemma 6.1 and Part (iii) of Theorem 5.4 in (6.5), we have

‖ΠH(ϕu)‖H2
~(Rd) . ‖p(~D)(ϕu)‖L2 = ‖P~(ϕu)‖L2 = ‖ϕP~u+ [P~, ϕ]u‖L2 . ‖f‖L2 +‖[P~, ϕ]u‖L2 ,

(6.6)
where we have used the fact that ϕ ≡ 1 on supp f , and where the commutator [A,B] is defined as
AB −BA. By direct calculation,

[P,ϕ]u = −~2
(
u∆ϕ+ 2∇ϕ · ∇u),

so that ∥∥[P~, ϕ]u
∥∥
L2 . ~ ‖u‖H1

~(BR+2) , (6.7)

where the omitted constant depends on ϕ. Therefore, by combining (6.6) and (6.7), and using
(6.1) (with R replaced by R+ 2), we have

‖ΠH(ϕu)‖H2
~(Rd) . ‖f‖L2 + ~ ‖u‖H1

~(BR+2) . ‖f‖L2 ;

since ‖uH2‖H2
~(BR) ≤ ‖ΠH(ϕu)‖H2

~(Rd), the result (6.3) follows.
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Remark 6.2. (The analogue of the elliptic parametrix for Fourier multipliers.) The
above proof uses the fact that if a ∈ (FS)mA , b ∈ (FS)mB , and there exists c > 0 such that
b(ξ) ≥ c for ξ ∈ supp a then

a(~D) = q(~D)b(~D)

where q ∈ (FS)mA−mB is defined by q(ξ) := a(ξ)/b(ξ). The generalisation of this result to pseu-
dodifferential operators is the so-called elliptic parametrix in Theorem 7.24.

7 Semiclassical pseudodifferential operators

This section states results about semiclassical pseudodifferential operators. When the proofs are
straightforward, we give them here, but we postpone the more-involved proofs to §9. The in-
termediate section (§8) then uses these results to prove the bound (4.13) on uH2 . The reason for
separating the more-involved proofs of the pseudodifferential-operator results from their statements
is that I want you to see as soon as possible these results “in action” in the proof of (4.13). I hope
that seeing how these pseudodifferential-operator results naturally lead to the proof of (4.13) will
then provide motivation to tackle the more-involved proofs; we highlight at this stage that our
presentation of the pseudodifferential-operator material is based on those in [155], [52, Appendix
E], and [59].

7.1 Semiclassical pseudodifferential operators vs “standard” pseudodif-
ferential operators

As mentioned in §4, semiclassical pseudodifferential operators are pseudodifferential operators with
a small parameter – in our case k−1– where behaviour with respect to this parameter is explicitly
kept track of in the associated calculus. Semiclassical pseudodifferential operators are effective for
problems where oscillations happen at frequency k (which is assumed to be large); and are thus
tailor-made to study high-frequency Helmholtz problems.

The standard (a.k.a. homogeneous) – as opposed to semiclassical – versions of the results in
this section can be found in, e.g., [145, Chapter 7], [128, Chapter 7], [81, Chapter 6]. The use of
homogeneous pseudodifferential operators in numerical analysis is well established, particular in
the field of boundary integral equations; see, e.g., [44, 143, 45, 43, 132, 98, 128, 99, 5, 81] (for a
selection of well-established results) and, e.g., [47, 22, 10, 4, 6, 67, 32] (for a selection of recent
results). However, perhaps surprisingly, the pseudodifferential operators tailor-made for studying
the Helmholtz equation, namely semiclassical pseudodifferential operators, have been little used in
the numerical analysis of the Helmholtz equation.

7.2 Phase space

The set of all possible positions x and momenta (i.e. Fourier variables) ξ is denoted by T ∗Rd;
this is known informally as “phase space”. Strictly, T ∗Rd := Rd × (Rd)∗, but for our purposes,
we can consider T ∗Rd as {(x, ξ) : x ∈ Rd, ξ ∈ Rd}. (This notation comes from the fact that
pseudodifferential operators on a general manifold M are defined using the notion of the cotangent
bundle T ∗M ; see [155, Chapter 14].)

7.3 Symbols, quantisation, and semiclassical pseudodifferential opera-
tors

A symbol is a function on T ∗Rd that is also allowed to depend on ~ (i.e., it is an ~-dependent
family of functions) Such a family a = (a~)0<~≤~0 , with a~ ∈ C∞(T ∗Rd), is a symbol of order m,
written as a ∈ Sm(Rd), if, for any multiindices α, β, there exists Cα,β such that

|∂αx ∂
β
ξ a~(x, ξ)| ≤ Cα,β〈ξ〉m−|β| for all (x, ξ) ∈ T ∗Rd and for all 0 < ~ ≤ ~0 (7.1)

(i.e., Cα,β does not depend on ~, x, or ξ); see [155, p. 207], [52, §E.1.2]. In these notes, we only
consider these symbol classes on Rd, and so we abbreviate Sm(Rd) to Sm. In the literature, one
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usually omits the ~ dependence of a in the notation, writing a(x, ξ) instead of a~(x, ξ), and we do
the same here.

Example 7.1. (Examples of symbols.) Exercise 1 in §7.11 asks you to show that
(i) a(x, ξ) :=

∑
|α|≤m aα(x)ξα, where aα ∈ C∞ and ∂γaα ∈ L∞ for all γ and α, is in Sm.

(ii) 〈ξ〉−m := (1 + |ξ|2)−m/2 ∈ S−m.
(iii) If χ ∈ C∞comp(T ∗Rd), then χ ∈ S−N for every N ≥ 1.

Remark 7.2. (Kohn–Nirenberg symbols.) The symbol class Sm defined above, where one
gains one power of 〈ξ〉 on differentiation with respect to ξ, and no powers of 〈ξ〉 on differentiation
with respect to x, is known as the Kohn–Nirenberg symbol class [92]; much wider classes of symbols
exist – see, e.g., [145, Chapter 7, §1], [155, §4.4.1], [52, Equation E.1.48].

For a ∈ Sm, we define the semiclassical quantisation of a, Op~(a) by (see, e.g., [155, §4.1] [52,
Page 543]) (

Op~(a)v
)
(x) := (2π~)−d

∫
Rd

∫
Rd

exp
(
i(x− y) · ξ/~

)
a(x, ξ)v(y) dydξ (7.2)

for v ∈ S (Rd), where the integral is understood as an iterated integral, with the y integration
performed first, i.e.,(

Op~(a)v
)
(x) = (2π~)−d

∫
Rd

exp
(
ix · ξ/~

)
a(x, ξ)F~v(ξ) dξ. (7.3)

In analogy with the notation a(~D) for Fourier multipliers (5.9), the semiclassical quantisation
Op~(a) is often denoted by a(x, ~D).

Lemma 7.3. Op~(a) : S (Rd)→ S (Rd).

Proof. This is Exercise 2 in §7.11.

Conversely, if A can be written in the form above, i. e. A = Op~(a) with a ∈ Sm, then A is
a semiclassical pseudodifferential operator of order m and we write A ∈ Ψm

~ (Rd), which we then
abbreviate to A ∈ Ψm

~ .
We say a ∈ S−∞ if a ∈ S−N for all N ≥ 1. We say a ∈ ~lSm if ~−la ∈ Sm; similarly A ∈ ~lΨm

~
if ~−lA ∈ Ψm

~ .

Example 7.4. (Examples of quantisations.) (Compare to Example 5.3.)
(i) If a(x, ξ) = 1, then (Op~(a)v)(x) = v(x), i.e., Op~(1) = I.
(ii) If a(x, ξ) = a(x), then (Op~(a)v)(x) = a(x)v(x).
(iii) If a(x, ξ) = a(ξ), then (Op~(a)v)(x) = F−1

~
(
a(·)(F~v)(·)

)
(x), i.e., Op~(a) is a Fourier

multiplier (5.9).
(iv) If a(x, ξ) :=

∑
|α|≤m aα(x)ξα, where aα ∈ C∞, then (Op~(a)v)(x) =

∑
|α|≤m aα(x)(~D)α

(recall that D := −i∂).

In the following result, given A : S (Rd)→ S (Rd), its formal adjoint A∗ : S ∗(Rd)→ S ∗(Rd)
is defined by 〈A∗u, v〉Rd = 〈u,Av〉Rd .

Theorem 7.5. (Composition and mapping properties of semiclassical pseudodifferential
operators.) If A ∈ ΨmA

~ and B ∈ ΨmB

~ , then

(i) A∗ : S (Rd)→ S (Rd) and A∗ ∈ ΨmA

~ ,

(ii) AB ∈ ΨmA+mB

~ ,

(iii) [A,B] := AB −BA ∈ ~ΨmA+mB−1
~ ,

(iv) Given s ∈ R and ~0 > 0, there exists C > 0 such that

‖A‖
Hs

~→H
s−mA
~

≤ C for all 0 < ~ ≤ ~0;

i.e., A is bounded uniformly in ~ as an operator from Hs
~ to Hs−mA

~ .
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Theorem 5.4 and Exercise 3 in §7.11 show that Theorem 7.5 is straightforward to prove if the
pseudodifferential operators are Fourier multipliers. In §9 we see that the proof in the general case
is much more involved.

7.4 Residual class

At the level of operators, we say that A = O(~∞)Ψ−∞ if, for any s > 0 and N ≥ 1, there exists
Cs,N > 0 such that

‖A‖H−s
~ →H

s
~
≤ Cs,N~N ; (7.4)

i.e., all of the operator norms are bounded by any algebraic power of ~.
At the level of symbols, we say that

a ∈ ~∞S−∞ if a ∈
∞⋂
N=1

~NS−N ,

that is, for any multiindices α, β and any N ≥ 1, there exists Cα,β,N > 0 so that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,N~N 〈ξ〉−N for all (x, ξ) ∈ T ∗Rd (7.5)

(see [52, E.1.10]).

Lemma 7.6. If a ∈ ~∞S−∞, then Op~(a) = O(~∞)Ψ−∞ .

Proof. This is Exercise 4 in §7.11.

7.5 The principal symbol σ~

Let the quotient space Sm/~Sm−1 be defined by identifying elements of Sm that differ only by an
element of ~Sm−1.

Definition 7.7. (Principal symbol.) For any m, let the principal symbol map

σm~ : Ψm
~ → Sm/~Sm−1,

be defined for a ∈ Sm by
σm~
(

Op~(a)
)

= a mod ~Sm−1. (7.6)

Observe that σm~ is linear and surjective, and that ker(σm~ ) = ~Ψm−1
~ . When applying the map

σm~ to elements of Ψm
~ , we denote it by σ~ (i.e. we omit the m dependence) and we use σ~(A) to

denote one of the representatives in Sm (with the results we use then independent of the choice of
representative).

Exercise 5 in §7.11 asks you to show that if P~u := −~2∇·(A∇u)−nu, then σ~(P~) = (Aξ)·ξ−n,
as claimed in Table 4.1.

The following result involves the Poisson bracket {·, ·} defined by

{a, b} :=
∑
j

(
(∂ξja)(∂xj b)− (∂xja)(∂ξj b)

)
= 〈∂ξja, ∂xj b〉 − 〈∂xja, ∂ξj b〉. (7.7)

Lemma 7.8. (Key properties of the principal symbol.)

σ~(A∗) = σ~(A), (7.8)

σ~(AB) = σ~(A)σ~(B), (7.9)

σ~

(
i

~
[A,B]

)
=
{
σ~(A), σ~(B)

}
, (7.10)

and
if e ∈ ~∞S−∞ then σ~

(
Op~(a+ e)

)
= σ~

(
Op~(a)

)
. (7.11)

Proof. (7.8), (7.9), and (7.10) are proved in §9. (7.11) follows from (7.6), since if a ∈ Sm, then
e ∈ ~Sm−1.
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7.6 Operator wavefront set WF~

Definition 7.9. (Operator wavefront set.) (x0, ξ0) ∈ T ∗Rd is not in the semiclassical operator
wavefront set of A = Op~(a) ∈ Ψm

~ , denoted by WF~A, if there exists a neighbourhood U of (x0, ξ0)
such that for all multiindices α, β and all N ≥ 1 there exists Cα,β,N,U > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,N,U~N for all (x, ξ) ∈ U and 0 < ~ ≤ ~0; (7.12)

That is, outside the semiclassical wavefront set of the operator, the symbol vanishes faster than
any algebraic power of ~.

Lemma 7.10. If a is independent of ~, then WF~(Op~(a)) = supp a.

Proof. This is Exercise 6 in §7.11.

Lemma 7.11. (Key properties of the semiclassical operator wavefront set.) If A ∈ ΨmA

~
and B ∈ ΨmB

~ , then
WF~(A+B) ⊂WF~A ∪WF~B, (7.13)

WF~(AB) ⊂WF~A ∩WF~B, (7.14)

WF~
(

Op~(a)
)
⊂ supp a, (7.15)

and
if e ∈ ~∞S−∞ then WF~

(
Op~(a+ e)

)
= WF~

(
Op~(a)

)
. (7.16)

Proof. By De Morgan’s laws, (7.13) is equivalent to (WF~A)c ∩ (WF~B)c ⊂ (WF~(A+B))c, and
this follows from the definition of WF~ (7.12). (7.14) is proved in §9. (7.15) holds because since
(supp a)c ⊂ (WF~(Op~(a)))c by (7.12), and (7.16) follows from the definitions of ~∞S−∞ (7.5)
and WF~ (7.12).

Recall that the informal explanation in §4.7 of why the bound (4.13) on uH2 holds talked about
“the support (in Fourier space) of the high-frequency cut-off ΠH (4.26)”. The notion of WF~
allows us to formulate this notion of support, and we see in (8.6) below that (as a consequence of
Lemma 7.10) WF~(ΠH) =

{
ξ : |ξ|2 ≥ µ

}
.

7.7 Schwartz kernel

Let D(Rd) := C∞comp(Rd) (i.e. the set of test functions) and let D′(Rd) denote the set of linear

functionals on D(Rd) (i.e. the set of distributions).

Theorem 7.12. (Schwartz kernel.) Given a bounded, sequentially-continuous operator A :
D(Rd)→ D′(Rd) there exists a Schwartz kernel KA ∈ D′(Rd × Rd) such that

Av(x) =

∫
Rd

KA(x, y)v(y) dy,

in the sense of distributions.

References for the proof. See, e.g., [78, Theorem 5.2.1].

7.8 Compactly supported and properly supported operators

Definition 7.13. (Compactly supported and properly supported operators.)
A is compactly supported if its Schwartz kernel KA is compactly supported.
A is properly supported if, for any compact X,Y ⊂ Rd,{

(x, y) ∈ suppKA : x ∈ X
}

is compact (7.17a)

and {
(x, y) ∈ suppKA : y ∈ Y

}
is compact. (7.17b)
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The name “properly supported” comes from the fact that the conditions (7.17) can be written
as the x and y projections being proper maps from suppKA to X and Y , where a proper map is
one such that the preimage of any compact set is itself compact; see [52, Page 482].

Lemma 7.14. (Definitions of compactly and properly supported in terms of cut-off
functions.)

(i) A is compactly supported iff there exist χ1, χ2 ∈ D such that A = χ1Aχ2.
(ii) A is properly supported iff for any χ ∈ D there exist χ1, χ2 ∈ D such that

χA = χAχ1, Aχ = χ2Aχ.

Proof. This is Exercise 6 in §7.11.

The following lemma collects properties of compactly- and properly-supported operators that
can all be proved in a straightforward way using either the Definition 7.13 or Lemma 7.14.

Lemma 7.15. (Key properties of compactly- and properly-supported operators.)
(i) If KA(x, y) = K(x− y)L(x, y), then A is properly supported if K has compact support.
(ii) Any differential operator is properly supported.
(iii) The operation of multiplication by φ ∈ D(Rd) is compactly supported (since KA(x, y) =

φ(x)δ(x− y)).
(iv) The composition of two properly supported operators is properly supported.
(v) The composition of a compactly supported operator with a properly supported operator is

compactly supported.

Lemma 7.16. If A ∈ Ψm
~ , then there exists a properly-supported Ã ∈ Ψm

~ and e ∈ ~∞S−∞ such

that A = Ã+ Op~(e) = Ã+O(~∞)Ψ−∞~
. Furthermore

σ~(Ã) = σ~(A) and WF~(Ã) = WF~(A). (7.18)

Observe that, once we establish that A = Ã + Op~(e), then the properties in (7.18) follow
immediately from (7.11) and (7.16) respectively.

7.9 A restricted class of symbols

Definition 7.17. (Symbol class Smphg.) a ∈ Smphg if a ∈ Sm and there exist aj ∈ Sm−j, indepen-

dent of ~, such that, for all N ∈ Z+,

a−
N−1∑
j=0

~jaj ∈ ~NSm−N . (7.19)

If A = Op~(a) for a ∈ Smphg, we write A ∈ Ψm
phg.

If a ∈ Sm satisfies (7.19) for aj ∈ Sm−j , we write a ∼
∑∞
j=0 ~jaj .

Remark 7.18. (Why “phg”?) The subscript “phg” stands for “polyhomogeneous”, since the
symbols in Definition 7.17 are similar to the class of semiclassical polyhomogeneous symbols
defined in [52, Definition E.3]; our class is actually slightly simpler than than in [52, Definition
E.3], since this latter class imposes conditions on the behaviour of the ajs as |ξ| → ∞, and we
don’t need these conditions for the results in these notes.

Example 7.19. (i) if a ∈ Sm is independent of ~, then a ∈ Smphg with a0 = a. Therefore, all the
symbols in Example 7.1 are in Smphg.

(ii) If aαj ∈ C∞ and ∂γaαj ∈ L∞ for all γ, α, and j, then

a(x, ξ) =
∑
|α|≤m

m−|α|∑
j=0

~jaαj(x)

 ξα ∈ Smphg.
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When d = 1, this symbol is

a20ξ
2 +

(
a10 + a11~)ξ + (a00 + a01~ + a02~2)

so
a0 = a20ξ

2 + a10ξ + a00, a1 = a11ξ + a01, and a2 = a02.

(iii) a = ~ξ2 /∈ S2
phg.

The big advantage of working in the class Smphg is that the principal symbols are both independent
of ~ and can be understood as actual functions (as opposed to equivalence classes).

Corollary 7.20. If a ∈ Smphg then

σ~
(

Op~(a)
)

= a0. (7.20)

Furthermore, if A ∈ Ψm
phg is such that σ~(A) = 0, then A ∈ ~Ψm−1

phg .

Proof. This follows from Definitions 7.7 and Definition 7.17.

Lemma 7.21. Parts (i)-(iii) of Theorem 7.5 hold with Ψm
~ replaced by Ψm

phg.

Proof. This is proved in §9.

Theorem 7.22. (Borel’s theorem.) Given aj ∈ Sm−j, j = 0, 1, . . ., there exists a ∈ Sm such
that a ∼

∑∞
j=0 ~jaj (in the sense of (7.19)).

Proof. This is Exercise 8 in §7.11.

Lemma 7.23. Suppose a ∈ Sm and aj ∈ Sm−j j = 0, 1, . . . are such that a ∼
∑∞
j=0 ~jaj. If

aj ∈ Sm−jphg , then a ∈ Smphg.

Proof. This is Exercise 9 in §7.11.

7.10 Ellipticity

We say that B ∈ Ψm
~ is elliptic on X ⊂ T ∗Rd if there exists c > 0 such that

〈ξ〉−m
∣∣σ~(B)(x, ξ)

∣∣ ≥ c for all (x, ξ) ∈ X and for all 0 < ~ ≤ ~0. (7.21)

A key feature of elliptic operators is that, up to a term in the residual class, they are invertible.

Theorem 7.24. (Elliptic parametrix.) Let A ∈ ΨmA

phg and B ∈ ΨmB

phg be such that B is elliptic

on WF~(A). Then there exist QR, QL ∈ ΨmA−mB

phg such that

A = BQR +O(~∞)Ψ−∞ = QLB +O(~∞)Ψ−∞ . (7.22)

(Compare to Remark 6.2.)
We have avoided defining the elliptic set of B, i.e., the points in phase space where 〈ξ〉−m|σ~(B)|

is positive, to avoid dealing with the issues of uniformity of this property as either |x| or |ξ| → ∞;
this issues can be dealt with by compactifying (i.e., introducing “the point at infinity”); see [52,
§E.1.3] for this done in the ξ variable (so-called fibre-radial compactification) and [59] for this done
in both x and ξ variables (so-called fiber-radial and radial compactification).

Theorem 7.25. (Elliptic estimate.) Let A ∈ ΨmA

phg, B1 ∈ ΨmB

phg, and P ∈ ΨmP

phg be such that
B1P is elliptic on WF~(A).

(i) Given s,N,M > 0, if v ∈ D′ and B1Pv ∈ Hs−mB−mP then Av ∈ Hs−mA and there exists
Cs > 0, CN,M,s > 0 (independent of v and ~) such that, for all 0 < ~ ≤ ~0,

‖Av‖
H

s−mA
~

≤ Cs ‖B1Pv‖Hs−mB−mP
~

+ CN,M,s ~M ‖v‖H−N
~

. (7.23)

(ii) If, in addition, A and B1 are compactly supported and P is properly supported, then there
exists χ̃ ∈ C∞comp (independent of v, M , N , and s) such that, for all 0 < ~ ≤ ~0,

‖Av‖
H

s−mA
~

≤ Cs ‖B1Pv‖Hs−mB−mP
~

+ CN,M,s ~M ‖χ̃v‖H−N
~

. (7.24)
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Idea of the proof. For Part (i), use the elliptic parametrix. For Part (ii), follow the proof of Part
(i), and then use the properties of compactly and properly supported operators to show that the
O(~∞)Ψ−∞ remainder is compactly supported.

Proof. (i) Applying Theorem 7.24 with B = B1P ∈ ΨmB+mP

~ and using the definition of the

residual class (7.4), we have that there exists QL ∈ Ψ
mA−(mB+mP )
~ such that

‖Av‖
H

s−mA
~

≤ ‖QLB1Pv‖Hs−mA
~

+ CN,M,s ~M ‖v‖H−N
~

≤ ‖QL‖Hs−mB−mP
~ →Hs−mA

~
‖B1Pv‖Hs−mB−mP

~
+ CN,M,s ~M ‖v‖H−N

~
.

(ii) By Lemma 7.16 and (7.22), we can assume that Q′ is properly supported. By Theorem
7.24, A−QLB1P = E with E = O(~∞)Ψ−∞ . Then, since P and QL are properly supported, and A
and B1 are compactly supported, Parts (iv) and (v) of Lemma 7.15 imply that A−QLB1P = E is
compactly supported; therefore there exists χ such that E = Eχ. The proof of (7.24) then follows
in a similar way to the proof of (7.23) in Part (i).

Remark 7.26. (Why did we work in Smphg for the elliptic parametrix?) We see below that
the proof of Theorem 7.24 requires that suppσ~(A) ⊂WF~(A). This is true when A ∈ ΨmA

phg, since
then σ~(A) = a0 is independent of ~, but this inclusion need not be the case in general (with our
definition of WF~).

For example, if a = exp(−1/~), then a ∈ S0, and σ~(Op~(a)) = exp(−1/~) mod ~S−1.
However, WF~(Op~(a)) = ∅. Let B = 0; then B is elliptic on WF~(Op~(a)) = ∅, but the re-
sult of Theorem 7.24 does not hold since exp(−1/~) 6= O(~∞)Ψ−∞~

. Our way of ensuring that

suppσ~(A) ⊂WF~(A) (and thus excluding this example) is to work in Smphg.

Remark 7.27. (Summary of results to be proved in §9.)

• Theorem 7.5,

• the composition properties (7.9) and (7.14) of, respectively, the principal symbol and operator
wavefront set,

• the relation (7.8) between the principal symbol of the adjoint and the principal symbol of the
operator,

• Lemma 7.21,

• Lemma 7.16, and

• Theorem 7.24.

7.11 Exercises for §7

1. (i) Show that a(x, ξ) =
∑
|γ|≤m aγ(x)ξγ , where aα ∈ C∞ and ∂γaα ∈ L∞ for all γ and α, is

in Sm.

(ii) Show that 〈ξ〉−m ∈ S−m for m ∈ Z+.

(iii) Show that if χ ∈ C∞comp(T ∗Rd), then χ ∈ S−N for every N ≥ 1.

2. Prove Lemma 7.3. Hint: start with the expression (7.3) and then use the definition of S(Rd)
(5.3).

3. Prove Lemma 7.6. Hint: given s > 0, N ≥ 1, choose an appropriate M ≥ 1, and use that
a ∈ ~MS−M .

4. If P~u := −~2∇ · (A∇u)− nu, show that

(i) P~ is the quantisation of a symbol in S2
phg, and

(ii) σ~(P~) = (Aξ) · ξ − n ∈ S2.
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5. Prove that if a(x, ξ) is independent of ~, then WF~(Op~(a)) = supp a (i.e., Lemma 7.10).

6. Prove Lemma 7.14.

7. Prove Theorem 7.22 via the following steps.

(a) Let χ ∈ C∞comp(R) with χ ≡ 1 on [−1, 1]. Show that if {λj}∞j=0 ⊂ R with λj → ∞, the
sum

a(x, ξ) :=

∞∑
j=0

χ

(
λj~
〈ξ〉

)
~jaj(x, ξ)

converges.

(b) Show that, given β and χ ∈ C∞comp(R), there exists Cβ,χ such that

∂βξ

(
χ

(
λj~
〈ξ〉

))
≤ Cβ,χ

λj~
〈ξ〉1−|β|. (7.25)

(c) Show that there is an increasing sequence {λj}∞j=0 with λj → ∞ such that for any

multiindices α, β ∈ Nd with |α|+ |β| ≤ j,∣∣∣∣∂αx ∂βξ (χ(λj~〈ξ〉
)
aj

)∣∣∣∣ ≤ 2−j~−1〈ξ〉m−j−|β|+1.

(d) With the choice of λj from (c), show that for any α, β ∈ Nd with |α|+ |β| ≤ N ,∣∣∣∣∣∣∂αx ∂βξ
(
a(x, ξ)−

N∑
j=0

aj(x, ξ)

)∣∣∣∣∣∣ ≤ CαβN~N 〈ξ〉m−|β|−N , (7.26)

and conclude that a ∼
∑
j h

jaj .

8. Prove Lemma 7.23.

8 Proof of the bound on uH2 (i.e., the end of the proof of
Theorem 4.11)

8.1 Restatement of bounds on the solution operator in semiclassical
notation

Let P~u := −~2∇ · (A∇u) − nu, so that the Helmholtz equation k−2∇ · (A∇u) + nu = −f is
P~u = f .

Given f ∈ L2(Rd) with supp f ⊂ BR, let u ∈ H1
loc(Rd) be the solution to P~u = f satisfying

the Sommerfeld radiation condition (1.4) (with k = ~−1). The definition of Csol (Definition 2.1)
and (2.1) imply that

‖u‖H1
~(BR) . Csol(~−1, R) ‖f‖L2(BR) for all ~ > 0; (8.1)

the reason we have . and not ≤ is that ‖ ·‖H1
~(BR) is not equal to ‖ ·‖H1

k(BR), only equivalent (with

constant only depending on d).
The bound (4.13) on uH2 is proved under the assumption that Csol(k) is polynomially bounded

for k ∈ K ⊂ [k0,∞) (in the sense of Definition 4.8); see Theorem 4.11. This implies that there
exists M > 0 such that, given ψ ∈ C∞comp(Rd), there exists C > 0 such that

‖ψu‖L2(Rd) ≤ C~
−M ‖f‖L2(BR) for all ~ ∈ H ⊂ (0, ~0], (8.2)

where ~0 := k−1
0 and H := {k−1 : k ∈ K}. The bound (8.2) also holds with ‖ψu‖L2 replaced by

‖ψu‖H1
~
, but we only need it in the form (8.2) for what follows.
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By the definitions of uH2 (4.27) and ‖ · ‖H2
~

(5.6), it is sufficient to prove that, given ~0 > 0,

there exists C ′split,H2 > 0 such that

‖ΠHw‖H2
~(Rd) ≤ C

′
split,H2 ‖f‖L2(BR) for all ~ ∈ H ⊂ (0, ~0], (8.3)

where w := ϕu, where ϕ ∈ C∞comp(Rd, [0, 1]) is defined in §4.5 to be equal to one on BR+1 and
vanish outside BR+2. (The constant Csplit,H2 in (4.13) will then equal C ′split,H2 multiplied by the

d-dependent constant coming from the equivalence of ‖ · ‖H2
~

and ‖ · ‖H2
k
.)

8.2 The frequency cut-offs as semiclassical pseudodifferential opeators
and choosing the parameter µ

8.2.1 The frequency cut-offs as semiclassical pseudodifferential operators.

With ΠL and ΠH defined by (4.25) and (4.26), the definition of Op~ (7.2), the change of variable
ζ = ξ/~, and the relationship (5.1) between F and F~ imply that

ΠL = Op~
(
χµ(| · |2)

)
. (8.4)

By Part (iii) of Exercise 1 in §7.11, ΠL ∈ Ψ−∞~ (Rd) := ∪N≥0Ψ−N~ (Rd). Since

ΠH = I −ΠL = Op~
(
1− χ(| · |2)

)
(8.5)

and I ∈ Ψ0
~(Rd), ΠH ∈ Ψ0

~(Rd).

8.2.2 The operator wavefront set of ΠH

Since 1− χµ(|ξ|2) = 0 for |ξ|2 ≤ µ, Lemma 7.10 implies that

WF~(ΠH) =
{

(x, ξ) : |ξ|2 ≥ µ
}
. (8.6)

8.2.3 Choosing the parameter µ

Recall from Exercise 5 in §7.11 that

σ~(P~) = (Aξ) · ξ − n. (8.7)

Let µ0 = µ0(A,n) be defined by

µ0(A,n) :=

(
1 +

2nmax

Amin

)
. (8.8)

Lemma 8.1. If µ ≥ µ0, then P~ is elliptic on WF~(ΠH).

Proof. It is sufficient to prove that

if |ξ|2 ≥ µ0 then 〈ξ〉−2σ~(P~) ≥ Amin

2
> 0; (8.9)

i.e., P~ is elliptic on {|ξ|2 ≥ µ0}.
By (8.7),

〈ξ〉−2σ~(P~) ≥ Amin|ξ|2 − nmax

1 + |ξ|2
= Amin

(
(1 + |ξ|2)/2 + (|ξ|2 − 1)/2− nmax/Amin

1 + |ξ|2

)
=
Amin

2
+

(
Amin

2

)(
|ξ|2 − 1− 2nmax/Amin

1 + |ξ|2

)
,

and (8.9) follows.
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8.3 Proof of (8.17) under the assumption that Csol(k) . k

This proof follows very closely the proof in §6 for the case when A = I and n = 1, with the elliptic
parametrix replacing the argument in Remark 6.2.

As highlighted in §4.7, the main idea behind the bound on uH2 is that P~ is (semiclassically)
elliptic on the “support” of ΠH (now understood as WF~(ΠH)), provided that µ is sufficiently
large. Throughout the rest of this section, we therefore assume that µ ≥ µ0, so that the result of
Part (i) of Lemma 8.1 holds.

We seek to apply Part (i) of Theorem 7.25 with A = ΠH (so mA = 0), B1 = 1 (so mB = 0),
and P = P~ (so mP = 2); observe that these are quantisations of elements of S0

phg, S
0
phg, and S2

phg,
respectively (for P~ this is shown in Exercise 5 in §7.11). By Part (i) of Lemma 8.1, B1P is elliptic
on WF~(A). We can therefore apply Part (i) of Theorem 7.25 with s = 2 and obtain that, given
N,N ′ > 0, ∥∥ΠHw

∥∥
H2

~(Rd)
. ‖P~w‖L2(Rd) + ~N

′
‖w‖H−N

~ (Rd) , (8.10)

where the omitted constant in . depends on N and N ′. Since P~u = f ,

P~w = [P~, ϕ]u+ ϕf,

where [·, ·] is the standard commutator defined by [A1, A2] := A1A2−A2A1, so that (8.10) becomes∥∥ΠHw
∥∥
H2

~(Rd)
. ‖[P~, ϕ]u‖L2(Rd) + ‖f‖L2(Rd) + ~N

′
‖w‖H−N

~ (Rd) . (8.11)

Direct calculation, using the fact that suppϕ ⊂ BR+2, implies that

‖∇ · (A∇(ϕu))− ϕ∇ · (A∇u)‖L2(Rd) . ‖∇u‖L2(BR+2) + ‖u‖L2(BR+2) ,

where the omitted constant depends on A and ϕ; therefore,∥∥[P~, ϕ]u
∥∥
L2(Rd)

. ~ ‖u‖H1
~(BR+2) . (8.12)

Combining (8.11) and (8.12), and recalling that suppϕ ⊂ BR+2, we have∥∥ΠHw
∥∥
H2

~(Rd)
. ~ ‖u‖H1

~(BR+2) + ‖f‖L2(BR) + ~N
′
‖u‖H−N

~ (BR+2) .

Choosing N = 0 and N ′ = 1, and then using (8.1), we obtain∥∥ΠHw
∥∥
H2

~(Rd)
.
(

1 + ~Csol(~−1, R+ 2)
)
‖f‖L2(BR) . (8.13)

If Csol(~−1) . ~−1, i.e., Csol(k) . k, then (8.13) implies (8.3). However, if Csol(~−1) � 1 (as
occurs when Csol is polynomially bounded in the sense of Definition 4.8 with M > 1) then (8.13)
is a weaker bound than (8.17).

8.4 Proof of (4.13) under the assumption that Csol(k) is polynomially
bounded (i.e., the end of the proof of Theorem 4.11)

8.5 The ideas of the proof.

Inspecting the argument in §8.3, we see that the assumption that Csol(k) . 1 is needed to get a
good bound on the commutator term [P~, ϕ]u.

Idea 1: remove the commutator term by, instead of using that

P~ is elliptic on WF~(ΠH),

use that
P~ is elliptic on WF~(ΠHϕ) ⊂WF~(ΠH) ∩WF~(ϕ)

(by (7.14)); i.e., we apply the elliptic estimate (7.23) to u and not w := ϕu. This gives

‖ΠHϕu‖H2
~(Rd) . ‖P~u‖L2(Rd) + ~N

′
‖u‖H−N

~ (Rd) . (8.14)

However, the issue now is that we only have control of χu (via (8.2)), but the remainder term in
(8.14) is not compactly supported.

53



Idea 2: aiming to use the elliptic estimate (7.24), we introduce a compactly supported B1 in
front of P~: let ψ ∈ D be such that ψ = 1 on suppϕ and use that

ψP~ is elliptic on WF~(ΠHϕ) ⊂WF~(ΠH) ∩WF~(ϕ).

Indeed, this follows since (by the definition of ψ) ψP~ = P~ on suppϕ = WF~(ϕ) (by Lemma 7.10)
and P~ is elliptic on WF~(ΠH) (by Lemma 8.1).

We now want to apply (7.24) with A = ΠHϕ, B1 = ψ, and P = P~; observe that these are
quantisations of elements of S0

phg, S
0
phg, and S2

phg, respectively. By Lemma 7.15, B1 is compactly
supported, and P is properly supported; however, for A to be compactly supported we need ΠH to
be properly supported, which it isn’t. We therefore use Lemma 7.16 to replace ΠH by a properly-
supported operator, up to an O(~∞)Ψ−∞~

remainder, which is controlled by the assumption that

Csol is polynomially bounded; for simplicity, we work with this properly-supported frequency cut-
off from the beginning. Finally, the (now compactly-supported) O(~∞)Ψ−∞~

remainder coming

from the elliptic estimate is controlled using the assumption that Csol is polynomially bounded.

8.5.1 The details of the proof

The following result is a direct corollary of Lemma 7.16

Corollary 8.2. (Properly-supported frequency cut-offs.) There exist a properly-supported

operator Π̃H such that
ΠH = Π̃H + E, with E = O(~∞)Ψ−∞ . (8.15)

Furthemore,
WF~(ΠH) = WF~(Π̃H), (8.16)

To prove (8.3) it is now sufficient to prove that there exists C ′′split,H2 > 0 such that∥∥Π̃Hϕu
∥∥
H2

~(Rd)
≤ C ′′split,H2 ‖f‖L2(BR) for all ~ ∈ H ⊂ (0, ~0]. (8.17)

Indeed, given (8.17), for any N > 0 there exists CN (by the definition of O(~∞)Ψ−∞ (7.4)) so that

‖ΠHϕu‖H2
~(Rd) ≤

∥∥Π̃Hϕu
∥∥
H2

~(Rd)
+
∥∥Eϕu∥∥

H2
~(Rd)

≤ C ′′split,H2 ‖f‖L2(Rd) + CN~N ‖ϕu‖L2(Rd) ,

Using the bound on the solution operator (8.2) and taking N = M + 1, we obtain (8.3).

Given ϕ (defined in §4.5), let ψ ∈ D be such that ψ ≡ 1 on suppϕ.

Lemma 8.3. If µ ≥ µ0, then ψP~ is elliptic on WF~(Π̃Hϕ).

Proof. By (7.14), Lemma 7.10, and (8.16),

WF~(Π̃Hϕ) ⊂WF~(Π̃H) ∩WF~(ϕ) = WF~(Π̃H) ∩ suppϕ = WF~(ΠH) ∩ suppϕ.

The result then follows by recalling that, by the definition of ψ, ψP~ = P~ on suppϕ and, by
Lemma 8.1, P~ is elliptic on WF~(ΠH).

Let A = Π̃Hϕ, B1 = ψ, and P = P~ (so mA = 0, mB = 0, and mP = 2); observe that these
are quantisations of elements of S0

phg, S
0
phg, and S2

phg, respectively. Lemma 8.3 implies that B1P
is elliptic on WF~(A). Furthermore, A and B1 are compactly supported (by Parts (iii) and (v) of
Lemma 7.15, and P is properly supported (by Part (ii) of Lemma 7.15)

Therefore, by Part (ii) of Theorem 7.25, there exists χ ∈ D such that, given N,N ′ > 0,∥∥Π̃Hϕu
∥∥
H2

~(Rd)
. ‖ψP~u‖L2(Rd) + ~N

′
‖χu‖H−N

~ (Rd) = ‖f‖L2(BR) + ~N
′
‖χu‖H−N

~ (Rd) ,

since P~u = f and supp f ⊂ BR ⊂ {ϕ ≡ 1} ⊂ {ψ ≡ 1}.
Choosing N = 0 and N ′ = M + 1, and then using (8.2), we obtain (8.17) and the proof is

complete.
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8.6 Bibliographical remarks

9 The remaining proofs of the results in §7

Recall from Remark 7.27 that we need to prove the following.

• Theorem 7.5 and Lemma 7.21 (with the latter the specialisation of the former from Sm to
Smphg),

• the composition properties (7.9) and (7.14) of, respectively, the principal symbol and operator
wavefront set,

• the relation (7.8) between the principal symbol of the adjoint and the principal symbol of
the operator,

• Lemma 7.16, and

• Theorem 7.24.

We prove these roughly in reverse order, since the proof of Theorem 7.5 is by far the most technical.
(Note that we avoid circular reasoning – whereas the proof of, e.g., Theorem 7.24 uses most of the
earlier results in §7, the proofs of these earlier results do not use Theorem 7.24.)

When the proofs can be summarised in a short “idea”, we do so between the statement of the
result and the proof. For longer proofs (where such “idea” summaries can become unwieldy) we
split the proofs into steps (with the “idea” then formed by combining the instructions for each
step).

9.1 Proof of Theorem 7.24 (the elliptic parametrix)

We give the proof of the existence of QL; the proof of existence of QR is very similar.

Step 1: Define the principal symbol of QL by “dividing” A by B at the level of principal
symbols. Let

q0 := σ~(A)/σ~(B). (9.1)

Observe that suppσ(A) ⊂ WF~(A) (since the former is independent of ~). Since B is elliptic
on WF~(A), |σ(B)| ≥ c > 0 on suppσ(A). Then, by Exercise 1 in §9.6, q0 ∈ SmA−mB . Since
σ~(A) and σ~(B) are independent of ~, so is q0, and thus q0 ∈ SmA−mB

phg . Observe further that
supp(q0) ⊂ suppσ(A) ⊂WF~(A). Let Q0 := Op~(q0); by (7.9),

σmA

~ (Q0B −A) = q0σ
mB

~ (B)− σmA

~ (A) = 0

Therefore, by the fact that Q0B − A ∈ ΨmA

phg and Corollary 7.20, there exists R1 ∈ ΨmA−1
phg such

that Q0B −A = ~R1.

Step 2: “Divide” the remainder by B. Suppose we have found qi ∈ SmA−mB−i
phg , i =

0, 1, . . . , N − 1, such that supp qi ∈WF~(A) and

QN−1 :=

N−1∑
j=0

~j Op~(qj) ∈ ΨmA−mB

phg (9.2)

is such that there exists RN ∈ ΨmA−N
phg such that

QN−1B −A = ~NRN . (9.3)

We now construct a qN ∈ SmA−mB−N
phg with supp qi ∈ WF~(A) such that (9.3) holds with N

replaced by N + 1. By (9.3),

WF~(RN ) = WF~
(
~−N (QNB −A)

)
⊂WF~(A),
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where we have used (i) the fact that WF~(~−NC) = WF~(C) by (7.12), (ii) the union and com-
position and properties (7.13) and (7.14), (iii) the support property (7.15), and (iv) the fact that
supp qi ⊂WF~(A). Since B is elliptic on WF~(A), B is elliptic on WF~(RN ) and thus, similar to
above (i.e., using Exercise 2 in §9.6 and the fact that principal symbols in Smphg are independent of
~)

qN := −σ~(RN )

σ~(B)
∈ SmA−N−mB

phg . (9.4)

Therefore, (
QN−1 + ~N Op~(qN )

)
B −A = ~N

(
RN + Op~(qN )B

)
(9.5)

but
σmA−N
~ (RN + Op~(qN )B) = 0

by the definition of qN , so that (by Corollary 7.20 again) there exists RN+1 ∈ ΨmA−N−1
phg such that

RN + Op~(qN )B = ~RN+1. Using this in (9.5), we have proved that (9.3) holds with N replaced
by N + 1.

Step 3: Define QL via Borel’s theorem. We have therefore shown that there exist qi ∈
SmA−mB−i

phg , i = 0, 1, . . ., such that, with QN−1 defined by (9.2), (9.3) holds for any N . By Theorem

7.22 there exists q ∈ SmA−mB such that q ∼
∑∞
j=0 ~jqj ; since qi ∈ SmA−mB−i

phg , q ∈ SmA−mB

phg by
Lemma 7.23. The proof is then completed by setting QL := Op~(q).

9.1.1 Two natural questions regarding the elliptic parametrix

Can one easily write down qL (i.e., the symbol of QL) explicitly (or at least an expan-
sion of it)? Unfortunately no, and this is shown by the formula for symbol of the composition
of two pseudodifferential operators in Theorem 9.4 below. Indeed, in the elliptic parametrix proof,
we are essentially seeking qL ∈ SmA−mB such that

qL#b− a ∈ ~∞S−∞, (9.6)

where qL#b is defined by (9.32). The expansion (9.34) shows that, given a and b, it is difficult to
write down an explicit expansion for qL satisfying (9.6).

Does anything simplify in our use of the elliptic parametrix in §8.4 to prove (4.13)?
Unfortunately also no. Indeed, here A = Op~(a) and B = Op~(b) with

a(x, ξ) :=
(
1− χµ(|ξ|2

)
ϕ(x) and b(x, ξ) := ψ(x)

(
(A(x)ξ) · ξ − n(x)− i~ξ`∂jAj`(x)

)
.

The symbol q0 is defined by (9.1), and the symbol q1 is defined in terms of R1 by (9.4). Suppose
we want to write down an expansion of R1 := ~−1 Op~(q0#b− a). In our case,

q0#b(x, ξ) =

 (1− χµ(|ξ|2)ϕ(x)

ψ(x)
(

(A(x)ξ) · ξ − n(x)
)
#

(
ψ(x)

(
(A(x)ξ) · ξ − n(x)− i~ξ`∂jAj`(x)

))
;

the expansion of this symbol has infinitely-many terms, since (without further assumptions on χµ,
ψ, and n) all derivatives of the first argument in ξ are non-zero and all derivatives of the second
argument in x are non-zero.

9.2 Proof of Lemma 7.16 (any pseudo is the sum of a properly supported
pseudo and an O(~∞)Ψ−∞~

operator)

Idea of the proof. Write the Schwartz kernel KA(x, y) as

(1− ψ0)(x− y)KA(x, y) + ψ0(x− y)KA(x, y),
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where ψ ∈ C∞(Rd) with ψ0 = 0 on B1 and ψ0 = 1 outside B2. By Part (i) of Lemma 7.15,
the operator with Schwartz kernel (1− ψ0)(x− y)KA(x, y) is properly supported. We then show,
by repeated integration by parts, that the symbol of the operator with Schwartz kernel ψ0(x −
y)KA(x, y) is in ~∞S−∞, and thus the operator is in O(~∞)Ψ−∞~

. 5

Details of the proof. By the definition (7.2) of Op~,

Av(x) =

∫
Rd

KA(x, y)v(y) dy (9.7)

where

KA(x, y) :=
1

(2π~)d

∫
Rd

exp
(
i(x− y) · ξ/~

)
a(x, ξ) dξ. (9.8)

Let

Ãv(x) :=

∫
Rd

(1− ψ0)(x− y)KA(x, y)v(y) dy, (9.9)

where ψ0 ∈ C∞(Rd) with ψ0 = 0 on B1 and ψ0 = 1 outside B2; by Part (i) of Lemma 7.15, Ã has

proper support. Then A = Ã+ E where

Ev(x) :=

∫
Rd

ψ0(x− y)KA(x, y)v(y) dy. (9.10)

We now claim that E = Op~(e) with

e(x, ξ) =
1

(2π~)d

∫
Rd

∫
Rd

exp
(
i(x− y) · (ζ − ξ)/~

)
a(x, ζ)ψ0(x− y) dy dζ (9.11)

(note that if a(x, ζ) does not decay sufficiently fast as |ζ| → ∞, then the ζ integral does not
converge, and this oscillatory integral is understood in a distributional sense; see, e.g., [155, §3.6]).
Indeed, by the definition (7.2) of Op~, e(x, ξ) is such that

1

(2π~)d

∫
Rd

exp
(
i(x− y) · η/~

)
e(x, η) dη = ψ0(x− y)KA(x, y)

= ψ0(x− y)
1

(2π~)d

∫
Rd

exp
(
i(x− y) · ζ/~

)
a(x, ζ) dζ;

multiplying both sides by exp(−i(x− y) · ξ/~) and then integrating in y (using that F−1
~ (1) = δ)

gives (9.11).
We need to show that e ∈ ~∞S−∞, i.e., for any multiindices α, β and for any N there exists

Cα,β,N > 0 so that

|∂αx ∂
β
ξ e(x, ξ)| ≤ Cα,β,N ~N 〈ξ〉−N ; (9.12)

observe that it is sufficient to prove this for N sufficiently large (i.e., that there exists N0 > 0 such
that (9.12) holds for all N ≥ N0); we show that (9.12) holds for N > d.

From (9.11)

∂αx ∂
β
ξ e(x, ξ) =

1

(2π~)d

∫
Rd

∫
Rd

ei(x−y)·(ζ−ξ)/~
(

i(ζ − ξ)
~

)α(
i(y − x)

~

)β
ψ0(x− y) a(x, ζ) dζ dy

(9.13)
(where again the integral is understood in a distributional sense).

5This latter property is well known; see, e.g., [155, Page 204, Step 2], [155, Theorem 9.6(iii)], and, e.g., [145,
Chapter 7, Proposition 2.1], [81, Theorem 6.1.2] for related homogeneous – as opposed to semiclassical – results
proved in the same way.
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Overview of the rest of the proof. The plan is to now integrate by parts in (9.11), using the
multidimensional version of exp(iλt) = (iλ)−1∂t(exp(iλt)), with t “equal” to either y or ζ. We first
integrate by parts in ζ; this obtains

• positive powers of ~,

• negative powers of |x − y|, which make the y integral converge (note that there is not a
problem at x = y since |x− y| is bounded away from zero on the support of ψ0), and

• negative powers of 〈ζ〉 (via the differentiation of a(x, ζ) ∈ Sm), which make the ζ integral
converge.

We then integrate by parts in y to obtain negative powers of 〈ζ − ξ〉. Peetre’s inequality (proved
below) implies that

1

〈ζ − ξ〉〈ζ〉
≤ 2

〈ξ〉
, (9.14)

and thus negative powers of 〈ζ〉 and 〈ζ − ξ〉 can be converted into negative powers of 〈ξ〉 to show
that (9.12) is satisfied.

Integration by parts in ζ. With D = −i∂, let

L := ~
(x− y)

|x− y|2
·Dζ so that L

(
ei(x−y)·(ζ−ξ)/~) = ei(x−y)·(ζ−ξ)/~.

Note that L is well defined on the support of the integrand of (9.13) since ψ0 is supported away
from zero, and thus |x − y| is bounded below on the support of the integrand. Then, for any
M ∈ Z+,

∂αx ∂
β
ξ e(x, ξ)

=
1

(2π~)d

(
i

~

)|α|+|β| ∫
Rd

∫
Rd

ei(x−y)·(ζ−ξ)/~ (− L)M((ζ − ξ)α(y − x)βψ0(x− y) a(x, ζ)
)

dζ dy

=
~M−d−|α|−|β| (i)|α|+|β|

(2π)d

∫
Rd

∫
Rd

ei(x−y)·(ζ−ξ)/~ (y − x)βψ0(x− y)

×
(
− (x− y)

|x− y|2
·Dζ

)M (
(ζ − ξ)αa(x, ζ)

)
dζ dy. (9.15)

Now (
− (x− y)

|x− y|2
·Dζ

)M (
(ζ − ξ)α a(x, ζ)

)
= f(x− y) ã(x, ζ), (9.16)

where
|f(x− y)| . |x− y|−M and |∂γy f(x− y)| . |x− y|−M−γ (9.17)

and, using the fact that a ∈ Sm,∣∣ã(x, ζ)
∣∣ . c0|ζ − ξ||α|〈ζ〉m−M + . . .+ c|α|〈ζ〉m−M+|α|, (9.18)

where cj = cj(m,α) can be expressed in terms of multinomial coefficients

Integration by parts in y. Now let

L̃ :=
1− ~(ζ − ξ) ·Dy

1 + |ζ − ξ|2
so that L̃

(
ei(x−y)·(ζ−ξ)/~) = ei(x−y)·(ζ−ξ)/~.

Therefore, using (9.15) and (9.16), we find that, for any M ′ ∈ Z+,

∂αx ∂
β
ξ e(x, ξ) =

~M−d−|α|−|β| (i)|α|+|β|

(2π)d

∫
Rd

∫
Rd

ei(x−y)·(ζ−ξ)/~ (y − x)βψ0(x− y)f(x− y)ã(x, ζ) dζ dy
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=
~M−d−|α|−|β| (i)|α|+|β|

(2π)d

∫
Rd

∫
Rd

ei(x−y)·(ζ−ξ)/~ ã(x, ζ)(
1 + ~(ζ − ξ) ·Dy

1 + |ζ − ξ|2

)M ′ (
(y − x)βψ0(x− y)f(x− y)

)
dζ dy.

(9.19)

Therefore, using in this last expression the bounds (9.17) and (9.18), we obtain that

∣∣∂αx ∂βξ e(x, ξ)∣∣ . ~M−d−|α|−|β|
∫
Rd

∫
Rd

c0|ζ − ξ||α|〈ζ〉m−M + . . .+ cα〈ζ〉m−M+|α|

〈ζ − ξ〉2M ′ |x− y|M−|β|
dζ dy

. ~M−d−|α|−|β|
∫
Rd

∫
Rd

1

〈ζ〉M−m−|α| 〈ζ − ξ〉2M ′−|α| |x− y|M−|β|
dζ dy, (9.20)

where we have used (i) that |ζ− ξ| ≤ 〈ζ− ξ〉, and (ii) the fact that the least decay in |x− y| occurs
when all the derivatives in y in (9.19) fall on ψ0).

We now choose M so that
M ≥ N + d+ |α|+ |β|; (9.21)

this ensures that we obtain ~N in (9.12); in addition, since M > d+ |β|, the integral in y converges.
Therefore, to prove (9.12), we only need to bound the terms in the integrand in (9.20) that depend
on ζ and ξ by

1

〈ξ〉N 〈ζ〉N
; (9.22)

indeed, this bound obtains the 〈ξ〉−N in (9.12), and, when N > d, this bound ensures convergence
of the ζ integral.

Peetre’s inequality is usually stated in the form that, for all x, y ∈ Rd,

〈x〉
〈y〉
≤
√

2〈x− y〉; (9.23)

6 letting x = ξ and y = ζ we see that (9.14) holds. Thus, to bound the terms in the integrand in
(9.20) that depend on ζ and ξ by (9.22), it is sufficient to bound them by

1

〈ζ − ξ〉N 〈ζ〉2N
; (9.24)

we therefore choose
M ′ ≥ N/2 + |α|/2 and M ≥ 2N +m+ |α|. (9.25)

Therefore, to ensure (9.21) and (9.25), we choose

M ′ := N/2 + |α|/2 and M := max
{

2N +m+ |α| , N + d+ |α|+ |β|
}
,

and the proof of (9.12) is complete.

9.3 Proof of Part (iv) of Theorem 7.5 (Hs
~ → Hs−m

~ boundedness of ele-
ments of Ψm

~ )

Lemma 9.1. (The Schur test for boundedness.) If A has Schwartz kernel KA,

sup
x∈Rd

∫
Rd

|KA(x, y)|dy ≤ C1, and sup
y∈Rd

∫
Rd

|KA(x, y)|dx ≤ C2,

then
‖A‖L2(Rd)→L2(Rd) ≤

√
C1C2.

6This follows from

1 + |x|2 = 1 + |(x− y) + y|2 = 1 + |x− y|2 + |y|2 + 2(x− y) · y ≤ 1 + 2|x− y|2 + 2|y|2 ≤ 2(1 + |x− y|2)(1 + |y|2).
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Idea of the proof. Starting from the definition of |Au(x)|2, use the Cauchy–Schwarz inequality.

Proof. By the Cauchy–Schwarz inequality,

|Au(x)|2 ≤
(∫

Rd

|KA(x, y)u(y)|dy
)2

=
(∫

Rd

∣∣KA(x, y)
∣∣1/2|u(y)|

∣∣KA(x, y)
∣∣1/2dy

)2

≤
(∫

Rd

∣∣KA(x, y)
∣∣|u(y)|2dy

)(∫
Rd

|KA(x, y)
∣∣dy)

≤ C1

∫
Rd

∣∣KA(x, y)
∣∣|u(y)|2dy.

Therefore,

‖Au‖2L2(Rd) ≤ C1

∫
Rd

(∫
Rd

∣∣KA(x, y)
∣∣|u(y)|2 dy

)
dx.

By Tonelli’s theorem,

‖Au‖2L2(Rd) ≤ C1

∫
Rd

(∫
Rd

∣∣KA(x, y)
∣∣dx) |u(y)|2 dy ≤ C1C2‖u‖2L2(Rd).

We first prove L2 boundness for A ∈ Ψm
~ with m < −d, and then use “Hörmander’s square

root trick” (see [79, Proof of Theorem 18.1.11]) to convert this to L2 boundedness for A ∈ Ψ0
~.

Lemma 9.2. If A ∈ Ψm
~ with m < −d, then A : L2(Rd) → L2(Rd) is uniformly bounded for

0 < ~ ≤ ~0.

Idea of the proof. By the Schur test, it is sufficient to bound both supx
∫
|KA(x, y)|dy and

supy
∫
|KA(x, y)|dx independently of ~, where

KA(x, y) =
1

(2π~)d

∫
Rd

ei(x−y)·ξ/~a(x, ξ) dξ. (9.26)

Since m < −d and a ∈ Sm, the ξ integral converges absolutely (
∫
Rd〈ξ〉mdξ < ∞ when m < −d).

Integrate by parts in ξ to bring down enough powers of (1 + ~−1|x − y|)−1 to make the x and y
integrals converge and get rid of the ~−d.

Proof. We show that supx
∫
|KA(x, y)|dy is bounded independently of ~; the proof that supy

∫
|KA(x, y)|dx

is bounded independently of ~ is very similar, and then the result follows from Lemma 9.1.
We now integrate by parts the expression (9.26) for the Schwartz kernel; a convenient way to

do this is to let

L :=
1 + (x−y)

|x−y| ·Dξ

1 + ~−1|x− y|
so that L

(
ei(x−y)·ξ/~) = ei(x−y)·ξ/~. (9.27)

Therefore, for any N > 0,

KA(x, y) =
1

(2π~)d

∫
Rd

LN
(
ei(x−y)·ξ/~)a(x, ξ) dξ =

1

(2π~)d

∫
Rd

ei(x−y)·ξ/~(L∗)Na(x, ξ) dξ.

By the definition of L and the fact that a ∈ Sm, given N ∈ Z+ there exists CN > 0 such that

|(L∗)Na(x, ξ)| ≤ CN
〈ξ〉m

(1 + ~−1|x− y|)N
.

Therefore, since m < −d,

∣∣KA(x, y)
∣∣ ≤ CN

(2π~)d
1

(1 + ~−1|x− y|)N

∫
Rd

〈ξ〉m dξ ≤ C ′N
(2π~)d

1

(1 + ~−1|x− y|)N
.
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for some C ′N > 0. Therefore,∫
Rd

∣∣KA(x, y)
∣∣dy ≤ C ′N

(2π)d
~−d

∫
Rd

1

(1 + ~−1|x− y|)N
dy =

C ′N
(2π)d

~−d~d
∫
Rd

1

(1 + |w|)N
dw,

where we have used the change of variables y = x+ ~w. Choosing N > d (so that the last integral
is finite), we obtain that supx

∫
|KA(x, y)|dy . 1 and the proof is complete.

Remark. Exercise 4 in §9.6 asks you to prove Lemma 9.2 using a less-sophisticated integration-
by-parts operator L, albeit then splitting the integral to deal separately with the regions |x− y| ≤ ~
and |x− y| ≥ ~. The point of this exercise is to demonstrate that, even if one can’t come up with a
clever choice of L to deal with everything (i.e., ~ dependence and convergence) together, the results
can still be obtained with simpler L.

Lemma 9.3. If A ∈ Ψ0
~, then A : L2(Rd) → L2(Rd) is uniformly bounded for 0 < ~ ≤ ~0.

Moreover, given δ > 0 and ~0 > 0 there exists C > 0 such that, for all 0 < ~ ≤ ~0,

‖A‖L2(Rd)→L2(Rd) ≤ (1 + δ) sup
T∗Rd

|σ~(A)|+ C~1/2. (9.28)

In fact, an improved bound holds with ~1/2 replaced by ~; see [155, Theorem 13.13].

Proof.
Step 1: Use Parts (i) and (ii) of Theorem 7.5 and that ‖A‖2 = ‖A∗A‖ to show that the result

of Lemma 9.2 holds in fact for all m < 0.
We first prove that for all m < 0

any A ∈ Ψm
~ is bounded on L2 uniformly for 0 < ~ ≤ ~0. (9.29)

By Lemma 9.2, (9.29) is true for m < −d. We now show that if (9.29) holds for m = m1, then
(9.29) holds for m = m1/2; the fact that (9.29) then holds for all m < 0 follows. Let m1 < 0 and

suppose that (9.29) holds for m = m1. Let A ∈ Ψ
m1/2
~ ; then, by Part (i) of Theorem 7.5, A∗ ∈ Ψm1

~
and, by Part (ii) of Theorem 7.5, A∗A ∈ Ψm1

~ . By assumption therefore, A∗A is bounded on L2

uniformly for 0 < ~ ≤ ~0. Since ‖A‖2 = ‖A∗A‖, A : L2 → L2 is also bounded uniformly for
0 < ~ ≤ ~0.

Step 2: Let M := (1 + δ) supT∗Rd |σ~(A)|, let B = Op~(b) where

b(x, ξ) :=
(
M2 − |σ~(A)(x, ξ)|2

)1/2
, (9.30)

and consider σ~(B∗B−(M2−A∗A)). We first claim that we can assume, without loss of generality,
that supT∗Rd |σ~(A)| > 0. Indeed, if supT∗Rd |σ~(A)| = 0, then σ~(A) = 0 and thus A ∈ ~Ψ−1

~ (by
(7.6)). Then, by Step 1, ‖A‖L2→L2 ≤ C ′~ ≤ C~1/2 for 0 < ~ ≤ ~0.

Therefore,
M2 − |σ~(A)|2(x, ξ) ≥ (2δ + δ2) sup

T∗Rd

|σ~(A)| > 0

for all (x, ξ); by Exercise 2 in §9.6, b ∈ S0. Let B = Op~(b); by (7.8) and (7.9),

σ~
(
B∗B − (M2 −A∗A))

)
= b2 −

(
M2 − |σ~(A)|2

)
= 0.

Therefore, by the definition of σ~ (Definition 7.7),

B∗B = M2 −A∗A+ ~R

for some R ∈ Ψ−1
~ . Acting this last equality on u, and then pairing with u, we find that

‖Bu‖2L2(Rd) + ‖Au‖2L2(Rd) = M2 ‖u‖2L2(Rd) + ~〈Ru, u〉;

and thus
‖Au‖2L2(Rd) ≤M

2 ‖u‖2L2(Rd) + ~〈Ru, u〉.
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Step 3: By Step 1, R : L2 → L2 is uniformly bounded; hence get result.
Since R ∈ Ψ−1

~ , by the fact that (9.29) holds for all m < 0, R : L2 → L2 is uniformly bounded
for 0 < ~ ≤ ~0; thus, given ~0 > 0 there exists C ′ > 0 such that, for all 0 < ~ ≤ ~0,

‖Au‖2L2(Rd) ≤ (M2 + C ′~) ‖u‖2L2(Rd) ;

the result (9.28) follows with C =
√
C ′ by recalling that

√
a+ b ≤

√
a+
√
b.

Remark. Bounds of the type (9.28), i.e., of the L2 operator norm in terms of properties of the
principal symbol, go back to [27]; see, e.g., the discussion in [82].

We now prove Part (iv) of Theorem 7.5.

Idea of the proof. Prove that

‖u‖2Hs
~(Rd) = ‖Op~(〈ξ〉s)u‖2L2(Rd) (9.31)

and then use the L2 → L2 boundedness of elements of Ψ0
~ (proved in Lemma 9.3).

Proof of Part (iv) of Theorem 7.5. By (5.6), (5.5), and (7.3),

‖u‖2Hs
~(Rd) := (2π~)−d ‖〈ξ〉sF~u‖2L2(Rd) =

∥∥F−1
~
(
〈ξ〉sF~u

)∥∥2

L2(Rd)
= ‖Op~(〈ξ〉s)u‖2L2(Rd) ,

and (9.31) follows. By (9.31),

‖Au‖Hs−m
h

=
∥∥Op~(〈ξ〉s−m)Au

∥∥
L2(Rd)

=
∥∥Op~(〈ξ〉s−m)AOp~(〈ξ〉−s) Op~(〈ξ〉s)u

∥∥
L2(Rd)

,

where we have used that
Op~(〈ξ〉−s) Op~(〈ξ〉s) = Op~(1) = I,

by Part (ii) of Theorem 5.4. Since 〈ξ〉−m ∈ S−m (by Exercise 1 in §7.11), Op~(〈ξ〉s−m)AOp~(〈ξ〉−s) ∈
Ψ0

~ by Part (ii) of Theorem 7.5. Then, by Lemma 9.3,

‖Au‖Hs−m
h
≤ C ‖Op~(〈ξ〉s)u‖L2(Rd) = C ‖u‖Hs

~(Rd) .

9.4 The proofs of Parts (ii) and (iii) of Theorem 7.5 and the composition
properties

The basis of all these results is the following composition property for symbols.

Theorem 9.4. (Composition property for symbols.) Given a ∈ SmA and b ∈ SmB , let

a#b(x, ξ) :=
1

(2π~)d

∫
Rd

∫
Rd

exp
(
− ix̃ · ξ̃/~

)
a(x, ξ + ξ̃) b(x+ x̃, ξ) dξ̃ dx̃. (9.32)

Then a#b ∈ SmA+mB ,
Op~(a) Op~(b) = Op~(a#b), (9.33)

and, for all N ∈ Z+,

a#b(x, ξ)−
∑

|α|≤N−1

(i~)|α|

α!

(
Dα
ξ a(x, ξ)

)(
Dα
x b(x, ξ)

)
∈ ~NSmA+mB−N . (9.34)

Proofs of the composition properties (7.9) and (7.14) using Theorem 9.4. The composition prop-
erty (7.9) of the principal symbol follows immediately from (9.34).

σ~(AB) = σ~(Op~(a#b)) = a(x, ξ)b(x, ξ) = σ~(A)σ~(B).

For the composition property (7.14) of the operator wavefront set, observe that, by (9.34), if either

∂αx ∂
β
ξ a(x, ξ) or ∂αx ∂

β
ξ b(x, ξ) is superalgebraically small in ~ for all α, β, then ∂αx ∂

β
ξ a#b(x, ξ) is

superalgebraically small in ~ for all α, β. The result (7.14) is equivalent to

(WF~A)c ∪ (WF~B)c ⊂ (WF~(AB))c,

and thus follows from the definition of WF~ (7.12).
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Proofs of Parts (ii) and (iii) of Theorem 7.5 and (7.10) using Theorem 9.4. Part (ii) follows im-
mediately from the fact that a#b ∈ SmA+mB . Part (iii) follows since (9.34) implies that

Op~(a) Op~(b)−Op~(b) Op~(a) = Op~(a#b)−Op~(b#a)

= Op~(ab)−Op~(ba) + ~SmA+mB−1 = ~SmA+mB−1.

Furthermore,

Op~(a#b)−Op~(b#a)

=
∑
|α|=1

i~
(
Dα
ξ a(x, ξ)

)(
Dα
x b(x, ξ)

)
−
∑
|α|=1

i~
(
Dα
xa(x, ξ)

)(
Dα
ξ b(x, ξ)

)
+ ~2SmA+mB−2

= −
∑
|α|=1

i~
(
∂αξ a(x, ξ)

)(
∂αx b(x, ξ)

)
+
∑
|α|=1

i~
(
∂αx a(x, ξ)

)(
∂αξ b(x, ξ)

)
+ ~2SmA+mB−2

= −i~{a, b}+ ~2SmA+mB−2,

by the definition of the Poisson bracket {·, ·} (7.7), so that (7.10) follows.

The idea of the proof is to

• first consider the case when a, b ∈ S ,

• prove (9.33) by manipulating the definition of the left-hand side (with these manipulations
straightforward to justify since a, b ∈ S ),

• observe that the integral defining a#b in (9.32) is an oscillatory integral (with a large pa-
rameter ~−1), and use results about such integrals to prove that the appropriate analogue of
(9.34) (see (9.43) below), and

• use the density of S in the symbol class S(m) (defined in Definition 9.11 below) to prove
the result for a, b ∈ S(mAmB), and

• prove the result for a ∈ SmA and b ∈ SmB via the relationship between the classes Sm and
S(〈ξ〉m) encapsulated by Lemma 9.12 below.

We highlight here that a similar strategy is used in the proof of the results about the adjoint
(Part (i) of Theorem 7.5 and (7.8)); see §9.5.

Since the plan above involves using results about asymptotics of oscillatory integrals, we collect
these results first.

9.4.1 Asymptotics of oscillatory integrals and related results

Theorem 9.5. (Asymptotics of oscillatory integral with quadratic phase.) Let Q be a
non-singular, symmetric, real matrix. Let sgnQ be the number of positive eigenvalues of Q minus
the number of negative eigenvalues. For a ∈ S , let

I(~, a) :=

∫
Rd

exp

(
i〈Qx, x〉

2~

)
a(x) dx.

Then, for all N ∈ Z+,

I(~, a) = (2π~)d/2
exp

(
i(π/4) sgnQ

)
|detQ|1/2

N−1∑
j=0

~j

j!

((
〈Q−1D,D〉

2i

)j
a

)
(0) +

~N

N !
RN (~, a)

 , (9.35)

where

RN (~, a) :=
N

(2π)d

∫ 1

0

(1− t)N−1
(

exp
(
− it~〈Q−1D,D〉/2

)(
− i

2
〈Q−1D,D〉

)N
a
)

(0)dt (9.36)
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We make two remarks: (i) the operator 〈Q−1D,D〉j in (9.35) and analogous operators in (9.36)
are understood as Fourier multipliers; i.e.(

〈Q−1D,D〉ja
)
(x) = F−1

ξ→x
(
〈Q−1ξ, ξ〉jFx→ξa

)
(x)

(compare to (5.9)), and (ii) compare the asymptotics (9.35) to the well-known stationary phase
asymptotics in the 1-d case: if ϕ is real-valued, the only zero of ϕ′ is at zero, and ϕ′′(0) 6= 0, then∫ ∞

−∞
exp

(
iϕ(x)/~

)
a(x) dx = exp

(
iϕ(0)~

)
exp

(
i(π/4) sgn(Q′′(0))

)√ 2π~
|ϕ′′(0)|

(
a(0) +O(~)

)
;

(9.37)
see, e.g., [17, §6.5].

To prove Theorem 9.5 we recall that, for Q as in the theorem and F the (non-semiclassical)
Fourier transform defined by (4.24),

F
(

exp
(
i〈Qx, x〉/2

))
=

(2π)d/2 exp
(
i(π/4) sgnQ

)
|detQ|1/2

exp
(
− i〈Q−1ξ, ξ〉/2

)
(9.38)

(see Exercise 7) and, for u, v ∈ S , ∫
Rd

u v =
1

(2π)d

∫
Rd

FuFv; (9.39)

i.e., Plancherel’s theorem (cf. the consequence (5.5), written in terms of F~).

Proof of Theorem 9.5. Using (9.39) (with v = a) and (9.38) (the latter letting Q 7→ Q/~), we find

I(~, a) =

(
~

2π

)d/2 exp
(
i(π/4) sgnQ

)
|detQ|1/2

∫
Rd

exp
(
− i~〈Q−1ξ, ξ〉/2

)
Fa(ξ) dξ.

Recalling that Fa(ξ) = Fa(−ξ), and then making the change of variables ξ 7→ −ξ, we obtain that

I(~, a) =

(
~

2π

)d/2 exp
(
i(π/4) sgnQ

)
|detQ|1/2

∫
Rd

exp
(
− i~〈Q−1ξ, ξ〉/2

)
Fa(ξ) dξ.

Taylor’s theorem implies that

f(~)−
N−1∑
j=0

~j

j!
f (j)(0) =

1

(N − 1)!

∫ ~

0

(~− s)N−1f (N)(s) ds =
~N

(N − 1)!

∫ 1

0

(1− t)N−1f (N)(~t) dt,

so that

exp
(
− i~〈Q−1ξ, ξ〉/2

)
=

N−1∑
j=0

~j

j!

(
−i〈Q−1ξ, ξ〉

2

)j

+
~N

(N − 1)!

∫ 1

0

(1− t)N−1 exp
(
− it~〈Q−1ξ, ξ〉/2

)(−i〈Q−1ξ, ξ〉
2

)N
dt.

Therefore,

I(~, a) =

(
~

2π

)d/2 exp
(
i(π/4) sgnQ

)
|detQ|1/2

N−1∑
j=0

~j

j!

∫
Rd

(
−i〈Q−1ξ, ξ〉

2

)j
Fa(ξ) dξ +

~N

N !
(2π)dRN (~, a)

 ,

with

RN (~, a) :=
N

(2π)d

∫ 1

0

(1− t)N−1

(∫
Rd

exp
(
− it~〈Q−1ξ, ξ〉/2

)(
− i

2
〈Q−1ξ, ξ〉

)N
Fa(ξ) dξ

)
.

7to be created
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By the Fourier inversion theorem u(0) = (2π)−d
∫
Rd Fu(ξ) dξ, and thus∫

Rd

(
−i〈Q−1ξ, ξ〉

2

)j
Fa(ξ) dξ =

((
−i〈Q−1D,D〉

2

)j
a

)
(0),

and similarly,∫
Rd

exp
(
− it~〈Q−1ξ, ξ〉/2

)(
− i

2
〈Q−1ξ, ξ〉

)N
Fa(ξ) dξ

=

(
exp

(
− it~〈Q−1D,D〉/2

)(
− i

2
〈Q−1D,D〉

)N
a

)
(0),

and the result (9.35) follows.

We now use Theorem 9.5 to obtain the asymptotics of an integral of the form (9.32).

Corollary 9.6. If a ∈ S (R2d) then, for all N ∈ Z+,∫
Rd

∫
Rd

exp
(
i〈x, y〉/~

)
a(x, y) dxdy = (2π~)d

N−1∑
j=0

~j

j!

((
− i〈Dx, Dy〉

)j
a
)

(0, 0) +
~N

N !
RN (~, a)

 ,

(9.40)

where

RN (~, a) :=
N

(2π)d

∫ 1

0

(1− t)N−1
(

exp
(
− it~〈Dx, Dy〉

)(
− i〈Dx, Dy〉

)N
a
)

(0, 0) dt.

Proof. We apply Theorem 9.5 with d 7→ 2d and (x, y) denoting a point in R2d. Let

Q :=

(
0 I
I 0

)
∈ R2d×2d,

and observe thatQ = QT = Q−1, |detQ| = 1, sgn(Q) = 0, Q(x, y) = (y, x), and thus 〈Q(x, y), (x, y)〉/2 =
〈x, y〉. Since D = (Dx, Dy), 〈Q−1D,D〉/2 = 〈Dx, Dy〉. The result then follows from Theorem
9.5.

Lemma 9.7.

〈Dx, Dy〉ja(x, y) =
∑
|α|=j

j!

α!
Dα
xD

α
y a(x, y). (9.41)

Proof. The multinomial theorem states that

(x1 + . . .+ xd)
j =

∑
|α|=j

(
j

α

)
xα, where

(
j

α

)
:=

j!

α1! . . . αd!
=
j!

α!
. (9.42)

Therefore, by its definition as a Fourier multiplier,

〈Dx, Dy〉ja(x, y) = F−1
(ζx,ζy)→(x,y)

(
〈ζx, ζy〉jF(x,y)→(ζx,ζy)a

)
(x, y).

Now, by (9.42) and the definition of multiindices,

〈ζx, ζy〉j =
(
ζx1

ζy1
+ · · ·+ ζxd

ζyd
)j

=
∑
|α|=j

j!

α!
ζαx ζ

α
y .

Therefore

〈Dx, Dy〉ja(x, y) =
∑
|α|=j

j!

α!
F−1

(ζx,ζy)→(x,y)

(
ζαx ζ

α
y F(x,y)→(ζx,ζy)a

)
(x, y) =

∑
|α|=j

j!

α!
Dα
xD

α
y a(x, y).
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9.4.2 Proof of the analogue of Theorem 9.4 when a, b ∈ S

Lemma 9.8. (Composition property for Schwartz symbols.) Given a, b ∈ S , let a#b be
defined by (9.32). Then a#b ∈ S , Op~(a) Op~(b) = Op~(a#b) (i.e., (9.33) holds), and, for all
N ∈ Z+,

a#b(x, ξ) =
∑

|α|≤N−1

(i~)|α|

α!

(
Dα
ξ a(x, ξ)

)(
Dα
x b(x, ξ)

)
+

~N

N !
RN , (9.43)

where

RN :=
N

(2π)d

∫ 1

0

(1− t)N−1 exp
(
it~〈Dx̃, Dξ̃〉

)(
i〈Dx̃, Dξ̃〉

)N
a(x, ξ+ ξ̃) b(x+ x̃, ξ)

∣∣∣∣
x̃=0,ξ̃=0

dt. (9.44)

Proof. By the definitions (7.2) and (7.3),

Op~(a) Op~(b)v(x) =
1

(2π~)d

∫
Rd

∫
Rd

exp(i〈x− y, η〉/~)a(x, η)
(

Op~(b)v
)
(y) dy dη

=
1

(2π~)d

∫
Rd

∫
Rd

∫
Rd

exp(i〈x− y, η〉/~)a(x, η) exp(iy · ξ/~)b(y, ξ)(F~v)(ξ) dy dη dξ

=
1

(2π~)d

∫
Rd

exp(i〈x, ξ〉/~)c(x, ξ)(F~v)(ξ) dξ

= Op~(c)v(x),

where

c(x, ξ) :=
1

(2π~)d

∫
Rd

∫
Rd

exp
(
− i〈x− y, ξ − η〉/~

)
a(x, η)b(y, ξ) dy dη.

Using the change of variables y = x+ x̃ and η = ξ+ ξ̃, we find that c(x, ξ) = (a#b)(x, ξ) as claimed.

Letting ξ̃ 7→ −ξ̃ in (9.32), we obtain that

a#b(x, ξ) :=
1

(2π~)d

∫
Rd

∫
Rd

exp
(
ix̃ · ξ̃/~

)
a(x, ξ − ξ̃)b(x+ x̃, ξ) dξ̃ dx̃,

which has the same form as the left-hand side of (9.40). Observe that (9.41) implies that(
− i〈Dx̃, Dξ̃〉

)j
a(x, ξ̃ − ξ)b(x+ x̃, ξ)

∣∣∣∣
x̃=0,ξ̃=0

=
∑
|α|=j

j!(−1)j(−i)j

α!

(
Dα
ξ a(x, ξ)

)(
Dα
x b(x, ξ)

)
.

Therefore, by the asymptotics in (9.40),

a#b(x, ξ) =
∑

|α|≤N−1

(i~)|α|

α!

(
Dα
ξ a(x, ξ)

)(
Dα
x b(x, ξ)

)
+

~N

N !
RN ,

where

RN :=
N

(2π)d

∫ 1

0

(1− t)N−1 exp
(
− it~〈Dx̃, Dξ̃〉

)(
− i〈Dx̃, Dξ̃〉

)N
a(x, ξ − ξ̃) b(x+ x̃, ξ)

∣∣∣∣
x̃=0,ξ̃=0

dt.

Making the change of variables ξ̃ 7→ −ξ̃, we find (9.44).

9.4.3 Lemmas about converting between symbol classes

Definition 9.9. (Order function.) m is an order function if there exist C,N > 0 such that

m(w) ≤ C〈z − w〉Nm(z) for all w, z ∈ R2d.

Example 9.10. The following are order functions:
(i) m(w) = 1.
(ii) m(w) = 〈w〉 (by Peetre’s inequality (9.23)),
(iii) m((x, ξ)) = 〈x〉a〈ξ〉b for any a, b ∈ R.

Furthermore, if m1 and m2 are order functions, then so is m1m2.

66



Definition 9.11. (The symbol class S(m).) Given an order function m on R2d, let

S(m) :=
{
a ∈ C∞(R2d) : for all α there exists Cα such that, for all 0 < ~ ≤ ~0,

|∂αm(w)| ≤ Cαm(w)
}
.

Lemma 9.12. (Converting between Sm and S(〈ξ〉m).)
(a) For all m ∈ Z,

Sm ⊂ S(〈ξ〉m)

(b) Let c be a symbol and assume that there exists a sequence (σj)j∈N of symbols such that

(i) σj ∈ Sm−j for all j ∈ Z+,

(ii) For each N ∈ Z+,

c−
N−1∑
j=0

~jσj ∈ ~NS(〈ξ〉)m−N .

Then c ∈ Sm and, for all N ∈ Z+,

c−
N−1∑
j=0

~jσj ∈ ~NSm−N .

Proof. Part (a) follows immediately from the definitions of S(m) (Definition 9.11) and Sm (7.1).
For Part (b), given α, β, let N = |β|. By Property (ii), for all 0 < ~ ≤ ~0,

∣∣∂αx ∂βξ c∣∣ ≤ N−1∑
j=0

~j0
∣∣∂αx ∂βξ σj∣∣+ ~N0

∣∣∂αx ∂βξ RN ∣∣, (9.45)

where

RN := ~−N
(
c−

N−1∑
j=0

~jσj
)
.

By assumption
RN ∈ S

(
〈ξ〉m−N

)
= S

(
〈ξ〉m−|β|

)
.

Therefore, using this last inclusion and the fact that σj ∈ Sm−j in (9.45), we see that there exists
Cαβ > 0 such that, for all 0 < ~ ≤ ~0,

|∂αx ∂
β
ξ c~(x, ξ)| ≤ Cαβ〈ξ〉m−|β| for all (x, ξ);

i.e., c ∈ Sm. We now argue similarly to show that RN ∈ Sm−N . By definition, for any M ∈ Z+,

~NRN = c−
N−1∑
j=0

~jσj =

N+M−1∑
j=N

~jσj + ~N+MRN+M ,

for some RM+N ∈ S(〈ξ〉m−N−M ). Rearranging, we find that

RN =

M−1∑
`=0

~`σN+` + ~MRM+N ,

Differentiating and arguing similar to above (using that σN+` ∈ Sm−N−`), we find that RN ∈
Sm−N .
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9.4.4 Proof of Theorem 9.4

Lemma 9.13. Let Q be a symmetric non-singular matrix and let m be an order function. Then
exp(i~〈QD,D〉/2) : S → S has a unique extension to an operator exp(i~〈QD,D〉/2) : S(m) →
S(m).

Proof of Theorem 9.4 using Lemma 9.13. Since a ∈ SmA and b ∈ SmB , Part (a) of Lemma 9.12
implies that a ∈ S(〈ξ〉mA) and b ∈ S(〈ξ〉mB ). Using this, the density of S in S(m), and Lemma
9.13, we find that (9.43) holds with RN given by (9.44).

Our plan now is to show that the assumptions of Part (b) of Lemma 9.12 are satisfied with
m := mA +mB and

σj :=
∑
|α|=j

(i~)|α|

α!

(
Dα
ξ a(x, ξ)

)(
Dα
x b(x, ξ)

)
.

Since a ∈ SmA and b ∈ SmB , one can show using the Leibnitz rule that σj ∈ SmA+mB−j .
To apply Part (b) of Lemma 9.12, from which the result follows, we therefore only need to

show that RN defined by (9.44) is in S(〈ξ〉mA+mB−N ). Using Lemma 9.7 and the assumptions
that a ∈ SmA and b ∈ SmB , we have

(
i〈Dx̃, Dξ̃〉

)N
a(x, ξ + ξ̃) b(x+ x̃, ξ)

∣∣∣∣
x̃=0,ξ̃=0

∈ S
(
〈ξ〉mA+mB−N 〉

)
.

By Lemma 9.13,

exp
(
it~〈Dx̃, Dξ̃〉

)(
i〈Dx̃, Dξ̃〉

)N
a(x, ξ + ξ̃) b(x+ x̃, ξ)

∣∣∣∣
x̃=0,ξ̃=0

∈ S
(
〈ξ〉mA+mB−N 〉

)
;

thus RN defined by (9.44) is in S(〈ξ〉mA+mB−N ), Part (b) of Lemma 9.12 applies, and the result
follows.

Proof of Lemma 9.13. 8

9.5 Proof of Part (i) of Theorem 7.5 and (7.8)

Part (i) of Theorem 7.5 and (9.46) follow from the following result.

Theorem 9.14. If A = Op~(a) ∈ Ψm
~ , then A∗ ∈ Ψm

~ with A∗ = Op~(a∗), where

a∗(x, ξ) =
1

(2π~)d

∫
Rd

∫
Rd

exp
(
− i〈x̃, ξ̃〉/~

)
a(x+ x̃, ξ + ξ̃) dx̃ dξ̃. (9.46)

Furthermore, for every N ∈ Z+,

a∗(x, ξ)−
∑

|α|≤N−1

(i~)|α|

α!
Dα
xD

α
ξ a(x, ξ) ∈ ~NSm−N . (9.47)

Observe the similarity of Theorem 9.14 to Theorem 9.4, and of (9.46) to (9.32). Similar to the
proof of Theorem 9.4, we first prove the result when a ∈ S .

Lemma 9.15. If a ∈ S and A = Op~(a), then A∗ = Op~(a∗) where a∗ is defined by (9.46), and

a∗(x, ξ) =
∑

|α|≤N−1

~|α|(−1)|α|

α!
Dα
xD

α
ξ a(x, ξ) +

~N

N !
RN (9.48)

where

RN :=
N

(2π)d

∫ 1

0

(1− t)N−1 exp
(
− it~〈Dx̃, Dξ̃〉

)(
− i〈Dx̃, Dξ̃〉

)N
a(x+ x̃, ξ − ξ̃)

∣∣∣∣
x̃=0,ξ̃=0

dt. (9.49)

8to come
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Proof. Recall that, given A : S (Rd) → S (Rd), its formal adjoint A∗ : S ∗(Rd) → S ∗(Rd) is
defined by 〈A∗u, v〉Rd = 〈u,Av〉Rd .

By the definition of Op~ (7.2),

〈Au, v〉Rd =

∫
Rd

Au(x) v(x) dx

=
1

(2π~)d

∫
Rd

(∫
Rd

∫
Rd

exp
(

i〈x− y, ξ〉/~
)
a(x, ξ)u(y) dξ dy

)
v(x) dx

=
1

(2π~)d

∫
Rd

u(y)

(∫
Rd

∫
Rd

exp
(

i〈x− y, ξ〉/~
)
a(x, ξ) v(x) dξ dx

)
dy.

Since we want to obtain Op~(c)v(y) under the y integral, and since this can be written in terms
of F~v by (7.3), we use the Fourier inversion formula (5.2) to write

〈Au, v〉Rd =
1

(2π~)2d

∫
Rd

u(y)

(∫
Rd

∫
Rd

∫
Rd

exp
(

i〈x− y, ξ〉/~− i〈x, η〉/~
)
F~v(η) a(x, ξ)dxdξ dη

)
dy

=
1

(2π~)d

∫
Rd

u(y)

(∫
Rd

exp
(

i〈y, η〉/~
)
c(y, η)F~v(η) dη

)
dy,

where

c(y, η) =
1

(2π~)d

∫
Rd

∫
Rd

exp
(
− i〈x− y, ξ − η〉/~

)
a(x, ξ) dxdξ.

Relabelling x→ x̃, ξ → ξ̃, y → x, and η → ξ, we obtain

c(x, ξ) =
1

(2π~)d

∫
Rd

∫
Rd

exp
(
− i〈x̃− x, ξ̃ − ξ〉/~

)
a(x̃, ξ̃) dx̃dξ̃.

The expression (9.46) then follows by changing variables x̃ 7→ x̃+ x and ξ̃ 7→ ξ̃ + ξ.

Changing variables ξ̃ 7→ −ξ̃, we find that

a∗(x, ξ) =
1

(2π~)d

∫
Rd

∫
Rd

exp
(
i〈x̃, ξ̃〉/~

)
a(x+ x̃, ξ − ξ̃) dx̃dξ̃.

The expansion (9.48) with remainder (9.49) then follow from the asymptotics (9.40) and Lemma
9.7.

The proof of Theorem 9.14 using Lemma 9.15 follows the same steps as the proof of Theorem
9.4 in §9.4.4.

9.6 Exercises for §9

1. Show that if a ∈ SmA and b ∈ SmB with |b(x, ξ)| ≥ c〈ξ〉mB on supp a for some c > 0, then
a/b ∈ SmA−mB .

Solution: We prove by induction on N = |α|+ |β| that∣∣∂αx ∂βξ (a/b)
∣∣ ≤ Cαβ〈ξ〉mA−mB−|β|. (9.50)

For N = 0 this bound holds by the lower bound on b and the fact that a ∈ SmA .

Assume that (9.50) holds for some N . By the Leibniz rule,

∂xi
∂αx ∂

β
ξ

(
a/b
)

= ∂αx ∂
β
ξ

(
(∂xi

a)/b− a(∂xi
b)/b2

)
.

Since ∂xi
a ∈ SmA , (9.50) with a 7→ ∂xi

a and b 7→ b implies that∣∣∂αx ∂βξ ((∂xi
a)/b

)∣∣ ≤ Cαβ〈ξ〉mA−mB−|β|. (9.51)
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Now a∂xi
b ∈ SmA+mB and b2 ∈ S2mB with |b(x, ξ)2| ≥ c2〈ξ〉2mB on supp(a∂xi

b) ⊂ supp a.
Therefore, (9.50) with a 7→ a∂xib and b 7→ b2 implies that∣∣∂αx ∂βξ (a(∂xib)/b

2
)∣∣ ≤ Cαβ〈ξ〉mA+mB−2mB = Cαβ〈ξ〉mA−mB . (9.52)

The combination of (9.51) and (9.52) implies that∣∣∂xi∂
α
x ∂

β
ξ (a/b)

∣∣ ≤ Cαβ〈ξ〉mA−mB−|β|.

The bound ∣∣∂ξi∂αx ∂βξ (a/b)
∣∣ ≤ Cαβ〈ξ〉mA−mB−|β|−1

can be proved similarly, and this completes the proof.

2. Show that if F ∈ C∞(R) and a ∈ S0 is real valued, then F (a) ∈ S0.

Solution: Similar to the proof in Question 1, we prove by induction on N = |α|+ |β| that∣∣∂αx ∂βξ F (a)
∣∣ ≤ Cαβ〈ξ〉−|β|. (9.53)

For N = 0 this bound holds since |a| ≤ C (since a ∈ S0).

Assume that (9.50) holds for some N . By the Leibniz rule,

|∂xi∂
α
x ∂

β
ξ F (a)

∣∣ =
∣∣∣∂αx ∂βξ (F ′(a)(∂xia))

∣∣∣
=

∣∣∣∣∣∣
∑

(α′,β′)≤(α,β)

(
(α, β)

(α′, β′)

)
∂α
′

x ∂
β′

ξ (F ′(a)) ∂α−α
′

x ∂β−β
′

ξ (∂xi
ak)

∣∣∣∣∣∣
≤ Cαβ〈ξ〉−|β

′|〈ξ〉−|β|+|β
′| ≤ Cαβ〈ξ〉−|β|,

where we have used (9.53) applied with F replaced by F ′ and the fact that ∂xia ∈ S0.

3. Show that if a ∈ S0 and a is real valued with a(x, ξ) ≥ c > 0 for all (x, ξ), then
√
a ∈ S0.

Hint: use the result of Question 2.

Solution: We cannot apply the result of Question 2 directly since
√
· is not C∞. However, if

I := a(T ∗Rd), then I ⊂ R \ (−c, c) and
√
· is C∞ on I. We now construct a C∞ extension

F of
√
·. Let

F (x) := φ(x)
√
x,

where φ = 1 on Rd \ (−c, c) and φ = 0 on (−c/2, c/2). Then F (a) =
√
a and F (a) ∈ S0 by

the result of Question 2.

4. Prove Lemma 9.2 by considering the cases |x− y| ≤ ~ and |x− y| ≥ ~ separately, and, in the
latter case, integrating by parts using

L :=
~(x− y) ·Dξ

|x− y|2
. (9.54)

Solution: As in the proof above, we show that supx
∫
|KA(x, y)|dy is bounded independently

of ~; the proof that supy
∫
|KA(x, y)|dx is bounded independently of ~ is very similar, and

then the result follows from Lemma 9.1.

If |x− y| ≤ ~, we estimate

|KA(x, y)| ≤ 1

(2π~)d

∫
Rd

|a(x, ξ)|dξ . 1

(2π~)d

∫
Rd

〈ξ〉mdξ . ~−d,

since m < −d. Then ∫
|x−y|≤~

|KA(x, y)|dy . ~d~−d . 1.
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If |x − y| ≥ ~, we integrate by parts the expression (9.26) for the Schwartz kernel. With L
defined by (9.54)

L
(
ei(x−y)·ξ/~) = ei(x−y)·ξ/~;

therefore, for any N > 0,

KA(x, y) =
1

(2π~)d

∫
Rd

LN
(
ei(x−y)·ξ/~)a(x, ξ) dξ =

1

(2π~)d

∫
Rd

ei(x−y)·ξ/~(L∗)Na(x, ξ) dξ.

By the definition of L and the fact that a ∈ Sm, given N ∈ Z+ there exists CN > 0 such
that

|(L∗)Na(x, ξ)| ≤ CN
~N

|x− y|N
〈ξ〉m−N .

Therefore, since m < −d,

∣∣KA(x, y)
∣∣ ≤ CN

(2π~)d
~N

|x− y|N

∫
Rd

〈ξ〉m−N dξ ≤ C ′N
~N−d

|x− y|N
,

for some C ′N > 0. Therefore,∫
|x−y|≥~

∣∣KA(x, y)
∣∣dy ≤ C ′N~N−d

∫
|x−y|≥~

1

|x− y|N
dy. (9.55)

Now ∫
|x−y|≥~

1

|x− y|N
dy = Cd

∫ ∞
~

1

rN
rd−1 dr = Cd~d−N

∫ ∞
1

1

tN
td−1dt, (9.56)

where Cd is the surface area of the unit sphere in d dimensions (i.e., Cd = 2πd/2/Γ(d/2)).
Choosing N > d (so that the last integral is finite) and combining (9.55) and (9.56), we
obtain that supx

∫
|KA(x, y)|dy . 1 and the proof is complete.

10 The Hamiltonian flow defined by the principal symbol
of the Helmholtz equation

10.1 Recap of Hamilton’s equations

Given a function H(x, ξ) (the Hamiltonian), Hamilton’s equations are

dxi
dt

(t) =
∂

∂ξi
H
(
x(t), ξ(t)

)
,

dξi
dt

(t) = − ∂

∂xi
H
(
x(t), ξ(t)

)
. (10.1)

One usually thinks of the variable x as corresponding to position, and the variable ξ corresponding
to momentum.

Lemma 10.1. (Evolution of quantities along the flow.) For a function f(x, ξ; t), if (x(t), ξ(t))
satisfies Hamilton’s equations (10.1), then

d

dt

(
f(x(t), ξ(t); t)

)
=

(
{H, f}+

∂f

∂t

)(
x(t), ξ(t); t

)
, (10.2)

where the Poisson bracket {·, ·} is defined by (7.7).

We write (10.2) more succinctly as

df

dt
=

(
{H, f}+

∂f

∂t

)
. (10.3)
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Proof of Lemma 10.1. By the chain rule and the definition (7.7) of {·, ·},

d

dt

(
f(x(t), ξ(t); t)

)
=
∑
j

(
∂f

∂xj

dxj
dt

+
∂f

∂ξj

dξj
dt

)
+
∂f

∂t

=
∑
j

(
∂f

∂xj

∂H

∂ξj
− ∂f

∂ξj

∂H

∂xj

)
+
∂f

∂t
= {H, f}+

∂f

∂t
.

Since {H,H} = 0, Lemma 10.1 has the following corollary.

Corollary 10.2. H(x(t), ξ(t)) is constant as a function of t.

Notation 10.3. (The flow ϕt(ρ).) Given ρ = (x0, ξ0),

ϕt(ρ) := (x(t), ξ(t)),

where (x(t), ξ(t)) is the solution of (10.1) with initial condition (x(0), ξ(0)) = (x0, ξ0).

Given a(x, ξ), (10.2)/(10.3) can therefore be rewritten as

d

dt
(a ◦ ϕt) = {H, a}. (10.4)

10.2 The case when the Hamiltonian is the semiclassical principal sym-
bol of the Helmholtz equation

Let P~ := −~2∇·(A∇·)−n, so that σ~(P~) = 〈Aξ, ξ〉−n (as in (8.7)). Hamilton’s equations (10.1)
with H = σ~(P~) are then

dxi
dt

(t) = 2(A(x)ξ)i,
dξi
dt

(t) = −
〈
∂A

∂xi
(x)ξ, ξ

〉
+
∂n

∂xi
(x). (10.5)

As in Definition 2.6, we assume that A and n are both C1,1, which implies that, given an initial
condition, the solution of (10.5) is unique (by the Picard–Lindelöf theorem).

As noted below Definition 2.6, if A = I and n = 1, then σ~(P~) = |ξ|2 − 1 and (10.5) become
ẋi = 2ξi and ξ̇i = 0, with solution

x = x0 + 2tξ0, ξ = ξ0,

i.e., straight-line motion with speed 2|ξ0|. Special importance is played by the flow with σ~(P~) = 0,
which in this case implies that |ξ0| = 1; i.e., the flow has speed 2.

Let πx denote projection in the x variables; i.e. πx((x, ξ)) = x.

Lemma 10.4. (“Going backwards with reversed speed = going forwards”.)

(i) If (x(t), ξ(t)) is a solution to (10.5) then so is (x̃(t), ξ̃(t)) := (x(−t),−ξ(−t)).
(ii) πx(ϕt(x0, ξ0)) = πx(ϕ−t(x0,−ξ0)).

Proof. (i) This proof relies on the fact that σ~(P~) is even in ξ (and its ξ derivative is therefore
odd in ξ). therefore Since x̃(t) = x(−t),

dx̃i
dt

(t) = −dxi
dt

(−t) = −2
(
A(x(−t))ξ(−t)

)
i

= 2
(
A
(
x̃(t)

)
ξ̃(t)

)
i

and since ξ̃(t) = −ξ(−t),

dξ̃i
dt

(t) =
dξi
dt

(−t) = −
〈
∂A

∂xi

(
x(−t)

)
ξ(−t), ξ(−t)

〉
+
∂n

∂xi

(
x(−t)

)
= −

〈
∂A

∂xi

(
x̃(t)

)
ξ̃(t), ξ̃(t)

〉
+
∂n

∂xi

(
x̃(t)

)
;
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i.e. (x̃(t), ξ̃(t)) solve (10.5).
(ii) By definition ϕt(x0, ξ0) is (x(t), ξ(t)) satisfying (10.5) with initial condition (x0, ξ0). By

uniqueness of the solution and Part (i), ϕ−t(x0,−ξ0) is then (x̃(t), ξ̃(t)) := (x(−t),−ξ(−t)). Since
{x(t)}t≥0 = {x(−t)}t≤0, the result follows.

Definition 10.5. (The forward and backward trapped sets.) Let

Γfw :=
{

(x, ξ) :
∣∣(πx(ϕt(x, ξ)

)∣∣9∞ as t→∞
}

(10.6)

i.e., Γbw is the forward trapped set. Let

Γbw :=
{

(x, ξ) :
∣∣(πx(ϕt(x, ξ)

)∣∣9∞ as t→ −∞
}

(10.7)

i.e., Γbw is the backward trapped set.

Using the notation Γ for the trapped sets is common (see, e.g. [52, Definition 6.1]) and so we
use it here, despite the slight notational clash of ΓD for the Dirichlet boundary and ΓR := ∂BR.

Lemma 10.6. (Forward trapping ⇐⇒ backward trapping.) Γfw 6= ∅ iff Γbw 6= ∅.

Proof. We prove the forward implication; the proof of the reverse implication is very similar. Since
Γfw 6= ∅, by (10.6) there exists (x, ξ) such that∣∣(πx(ϕt(x, ξ)

)∣∣9∞ as t→∞.

By Part (ii) of Lemma 10.4, ∣∣(πx(ϕ−t(x,−ξ)
)∣∣9∞ as t→∞;

thus, letting t 7→ −t, ∣∣(πx(ϕt(x,−ξ)
)∣∣9∞ as t→ −∞,

so that Γbw 6= ∅ by (10.7).

Corollary 10.7. (Forward nontrapping ⇐⇒ backward nontrapping.) Γfw = ∅ iff Γbw = ∅.

The definition of nontrapping in Definition 2.6 says that coefficients A and n are nontrapping
if Γfw = ∅ and all trajectories escape uniformly; we now show that the latter condition is ensured
by A and n satisfying Assumption 1.1.

Lemma 10.8. (Definition 2.6 ≡ (Γfw = ∅) ≡ (Γbw = ∅).) Suppose Ω− = ∅ and A and n satisfy
Assumption 1.1 and consider the flow with σ~(P ) = 0. Then A,n are nontrapping in the sense of
Definition 2.6 iff Γfw = ∅ iff Γbw = ∅.

Proof. By Corollary 10.7, the only thing we need to prove is that if Γfw = ∅, then all trajectories
starting in BR leave BR in a uniform time. This follows if we can show that ‖dxi/dt‖ ≥ C for
all i, with C > 0 independent of x. The first equation in (10.5), the fact that A(x) is symmetric
positive definite for each x, and the lower bound in (1.1) imply that∥∥∥∥dxi

dt

∥∥∥∥ ≥ 2Amin ‖ξ‖ .

However, since σ~(P ) = 〈Aξ, ξ〉 − n = 0, the bounds in (1.1) and (1.2) imply that

nmin ≤
∥∥A1/2ξ

∥∥ ≤ (Amax)1/2 ‖ξ‖ , and thus

∥∥∥∥dxi
dt

∥∥∥∥ ≥ 2Aminnmin

(Amax)1/2
,

which is the desired lower bound on ‖dxi/dt‖.
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11 Defect measures

11.1 Functions that are locally bounded, uniformly in ~
Definition 11.1. {u(~)}0<~≤~0

is uniformly locally bounded if given χ ∈ C∞comp(Rd) there exists
C > 0 such that

‖χu(~)‖L2(Rd) ≤ C for all 0 < ~ ≤ ~0.

The theory of defect measures is simpler for functions that are uniformly bounded in L2(Rd),
instead of in L2

loc(Rd). The reason we consider the latter is that the outgoing solution of (~2∆ +
1)u = 0 is not in L2(Rd) but is in L2

loc(Rd).

Definition 11.2.

Scomp :=
{
a ∈ C∞comp(T ∗Rd) : supp a ⊂ K for K an ~-independent compact set

}
⊂ S−∞.

11.2 An important technicality

For the results in this section, we use the quantisation(
Opps

~ (a)v
)
(x) := (2π~)−d

∫
Rd

∫
Rd

exp
(
i(x− y) · ξ/~

)
a(x, ξ) v(y)χ0

(
|x− y|

)
dy dξ (11.1)

where χ0 is a fixed function in C∞comp(R) that is equal to one in a neighbourhood of zero; without
loss of generality, we assume that χ0(t) = 0 for |t| ≥ 1/2.

The advantage of using this quantisation is that Opps
~ (a) is properly-supported (hence the “ps”

superscript) for all symbols a by Part (i) of Lemma 7.15. In fact, in the proof of Lemma 7.16, we
saw that

Op~(a) = Opps
~ (a) +O(~∞)Ψ−∞~

; (11.2)

(observe that Opps
~ (a) is essentially Ã defined by (9.9) with χ0 = 1−ψ0; the only difference is that

the cut-off χ0 is a function of |x− y|, whereas in (9.9) ψ0 was a function of x− y).
The reason having properly-support operators is useful is given by the following lemma.

Lemma 11.3. If a ∈ Scomp then Opps
~ (a) is compactly supported with

Opps
~ (a) = χ1 Opps

~ (a) = χ1 Opps
~ (a)χ2 (11.3)

for any real-valued χ1 ∈ D with χ1 ≡ 1 on πx(supp a), and any real-valued χ2 ∈ D with χ2(y) = 1
for all y such that dist(y, suppχ1) ≤ 1/2.

Proof. Since χ0(t) = 0 for |t| ≥ 1/2,

a(x, ξ) v(y)χ0

(
|x− y|

)
= χ1(x) a(x, ξ)

(
χ2(y) v(y)

)
χ0

(
|x− y|

)
,

and the result follows from the definition (11.1) of Opps
~ .

In the theory of defect measures, we consider pairings of the form〈
Opps

~ (a)u, u
〉

for a ∈ Scomp and u ∈ L2
loc(Rd). The property (11.3) ensures such pairings make sense; indeed,〈

Opps
~ (a)u, u

〉
=
〈
χ1 Opps

~ (a)χ2u, u
〉

=
〈

Opps
~ (a)χ2u, χ1u

〉
. (11.4)

By Lemma 9.3, for a ∈ Scomp, ‖Opps
~ (a)‖L2(Rd)→L2(Rd) is bounded independently of ~. Using this,

and the fact that χju ∈ L2(Rd), j = 1, 2, we see that the pairing 〈Opps
~ (a)u, u〉 is well defined; i.e.,∣∣〈Opps

~ (a)u, u
〉∣∣ <∞.
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11.3 Definition, existence, and positivity

11.3.1 Statement of results

Defect measures give a precise notion of where a sequence of functions {u(~)}0<~≤~0
lives in phase

space in the limit ~→ 0.

Definition 11.4. (Defect measure.) Given {u(~)}0<~≤~0
, uniformly locally bounded, and a

sequence ~n → 0, {u(~)}0<~≤~0 has defect measure µ if, for all a ∈ Scomp,

lim
n→∞

〈
Opps

~ (a)u(~n), u(~n)
〉

=

∫
T∗Rd

a dµ. (11.5)

Observe that (11.5) implies that if A is the quantisation of a symbol a ∈ Scomp, then

lim
n→∞

〈
Au(~n), u(~n)

〉
=

∫
T∗Rd

σ~(A) dµ;

indeed, this follows since A−Op~(σ~(A)) ∈ ~Ψ−∞~ , by the definition of the principal symbol and
the fact that A ∈ Ψ−∞~ .

Example 11.5. (Defect measure of plane wave.) Let uI(x) := exp(i〈x, â〉)/~ with |â| = 1
(note this in not in L2(Rd), but is in L2

loc(Rd)). Then

〈Op~(b)uI , uI〉

=
1

(2π~)d

∫
Rd

exp
(
− i〈x, â〉)/~

)(∫
Rd

∫
Rd

exp
(
i〈x− y, ξ〉)/~

)
exp

(
i〈y, â〉)/~

)
b(x, ξ) dy dξ

)
dx

=

∫
Rd

exp
(
− i〈x, â〉

)
/~)

(∫
Rd

δ(ξ − â) exp
(
i〈y, â〉)/~

)
b(x, ξ) dξ

)
dx

=

∫
Rd

b(x, â) dx

=

∫
Rd

∫
Rd

b(x, ξ) δ(ξ − â) dxdξ,

where we have first performed the y integral to obtain δ(ξ − â). This calculation shows that, for
any ~n → 0, uI has defect measure equal to the product of δ(ξ − â) and Lebesgue measure in x.

In the above calculation we used Op~ and not Opps
~ . Unlike above, 〈Op~(b)uI , uI〉 cannot be

calculated exactly (because of the χ0(|x− y|) in the integrand), but its asymptotics as ~→ 0 can be
obtained by using stationary phase. Indeed, after changing variables ξ 7→ ξ − â and y 7→ y− x, the
integral in y and ξ is of the form considered in Corollary 9.6. The asymptotics (9.40) then imply
that 〈

Opps
~ (b)uI , uI

〉
=

∫
Rd

b(x, â) dx+O(~) as ~→ 0.

Theorem 11.6. (Existence of defect measures.) Suppose that {u(~)}0<~≤~0
is uniformly

locally bounded and ~n → 0. Then there exists a subsequence {~n`
}∞`=1 and a Radon measure µ on

T ∗Rd such that {u(~n`
)}∞`=1 has defect measure µ.

Remark 11.7. (Our use of Radon measures.) For the precise definition of a Radon measure,
see, e.g., [54, Chapter 1], [58, Chapter 7]. The only facts we use about such measures on Rd in
what follows are the following.

(i) Given a bounded, positive functional on Ccomp(Rd) there exists a Radon measure such that
the action of the functional is integration against the measure – this is a version of the Riesz
representation theorem (see, e.g., [54, §1.8], [58, §7.2]), and is used in the proof of Theorem 11.6.

(ii) If µ is a Radon measure on Rd, then Ccomp(Rd) is dense in L1(Rd;µ) [58, Prop. 7.9].

Lemma 11.8. (Positivity of defect measure.) Suppose that ~n → 0 and {u(~n)}∞n=1 is uni-
formly locally bounded with defect measure µ. Then µ is positive; i.e., if a ≥ 0, then

∫
a dµ ≥ 0.
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11.3.2 Proofs of Theorem 11.6 and Lemma 11.8

11.4 Defect measures and PDEs

Lemma 11.9. (If Pu = 0, then defect measure supported in {σ~(P ) = 0}.) Let P ∈ Ψm
~ be

properly supported. Suppose that {u(~n)} has defect measure µ, and satisfies

‖Pu(~n)‖L2(Rd) → 0 as n→∞.

Then µ({σ~(P ) 6= 0}) = 0; i.e., if supp a ⊂ {σ~(P ) 6= 0}, then
∫
a dµ = 0.

The interpretation of this result is that solutions of Pu = 0 “live” in {σ~(P ) = 0}. Two
examples:

(i) we saw in Example 11.5 that the defect measure of a plane wave was supported in {|ξ|2−1 =
0}, i.e., {σ~(−~2∆− 1) = 0}, and

(ii) if p(~D)u = 0, where p(~D) is a semiclassical Fourier multiplier (as in §5.5), then p(ξ)(F~u)(ξ) =
0, and thus supp(F~u) ⊂ {p(ξ) = 0}.

Recall that in §10.2 we stated that the flow with σ~(P ) = 0 plays a special role; Lemma 11.9
is the reason for this.

Proof. If we can show that ∫
b σ~(P ) dµ = 0 for all b ∈ Scomp, (11.6)

then the result follows. Indeed, given a ∈ Scomp with supp a ⊂ {σ~(P ) 6= 0}, let b := a/σ~(P )
(which is in Scomp) and apply (11.6).

Idea of the rest of the proof: first show that
〈

Opps
~ (b)Pu, u

〉
→ 0 using that Pu → 0 and

Opps
~ (b) is bounded, then use (11.5) to show that

〈
Opps

~ (b)Pu, u
〉
→
∫
b σ~(P ) dµ. The difficulty

comes in dealing with the cut-off functions needed to deal with u ∈ L2
loc(Rd) (if u ∈ L2(Rd) then

the proof is simpler; see [59, Lemma 4.4]).
By Lemma 9.3, if a ∈ Scomp then Op~(a) is L2 → L2 bounded, uniformly in ~. Using this and

Lemma 11.3, we have that, on the one hand,∣∣〈Opps
~ (b)Pu, u

〉∣∣ =
∣∣〈χ1 Opps

~ (b)χ2 Pu, u
〉∣∣ ≤ C ‖Pu‖L2(Rd) ‖χ1u‖L2(Rd) → 0 as n→∞.

(11.7)
On the other hand, by the composition formula (Theorem 9.4) and the definition of σ~ (Definition
7.7), Op~(b)P = Op~(b σ~(P )) + ~E1, where E1 ∈ Ψ−∞~ . Therefore, by (11.2),

Opps
~ (b)P = Opps

~ (b σ~(P )) + ~E2, where E2 ∈ Ψ−∞~ .

Since Opps
~ (b) and P are properly supported and b ∈ Scomp, Part (iv) of Lemma 7.15 and Lemma

11.3 imply that there exist χ1 ∈ D, with χ1 ≡ 1 on πx(supp b), and χ2 ∈ D such that Opps
~ (b)P =

χ1 Opps
~ (b)Pχ2. Inspecting the proof of Lemma 11.3, we see that

χ2(y) = 1 on
{
y : dist(y, πx(supp b)) ≤ 1/2

}
(11.8)

(in fact χ2 will be equal to one on a larger set). Therefore,〈
Opps

~ (b)Pu, u
〉

=
〈
χ1 Opps

~ (b)Pχ2u, u
〉

=
〈
χ1

(
Opps

~
(
b σ~(P )

)
+ ~E2

)
χ2u, u

〉
=
〈
χ1 Opps

~
(
b σ~(P )

)
χ2u, u

〉
+O(~n),

=
〈

Opps
~
(
b σ~(P )

)
u, u

〉
+O(~n), (11.9)

where we have used that E2 : L2 → L2 is bounded uniformly in ~, that u is uniformly locally
bounded, that χ1 ≡ 1 on πx(supp b) (and hence on πx(supp (b σ~(P )))), and (11.8). The equation
(11.6) then follows by combining (11.5), (11.7), and (11.9), and the proof is complete.
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Theorem 11.10. (Invariance of defect measure under the flow.) Suppose that P ∈ Ψm
~ is

properly supported and formally self adjoint, {u(~n)} has defect measure µ, and

‖Pu(~n)‖L2(Rd) = o(hn) as n→∞. (11.10)

Then ∫ {
σ~(P ), a

}
dµ = 0 for all a ∈ Scomp. (11.11)

Interpretation of (11.11): By (10.4),∫ {
σ~(P ), a

}
dµ =

∫
d

dt

(
a ◦ ϕt

)
dµ =

d

dt

∫ (
a ◦ ϕt

)
dµ, (11.12)

so that (11.11) is the statement that
∫

(a ◦ ϕt) dµ is constant as a function of t; i.e., the defect
measure is invariant under the flow.

Corollary 11.11. (Invariance under the flow written in terms of sets.) Given a Borel set
B ⊂ T ∗Rd,

µ
(
ϕt(B)

)
= µ(B) for all t, i.e.,

∫
1ϕt(B) dµ =

∫
1B dµ for all t (11.13)

Idea of the proof of Theorem 11.10. The idea is that, by (7.10),

{
σ~(P ), a

}
= σ~

(
i

~
[P,Opps

~ (a)]

)
.

If u ∈ L2(Rd), then, by the formal self-adjointness of P , L2 → L2 boundedness of Opps
~ (a), and

(11.10), 〈
[P,Opps

~ (a)]u, u
〉

=
〈
P Opps

~ (a)u, u
〉
−
〈

Opps
~ (a)Pu, u

〉
=
〈

Opps
~ (a)u, Pu

〉
−
〈

Opps
~ (a)Pu, u

〉
= o(~);

the result then follows from (11.5). The difficultly in the proof comes from dealing with the
contributions from the cut-offs we need to insert to deal with the fact that u is only in L2

loc(Rd)
(and not L2(Rd)).

Proof of Theorem 11.10. Since a ∈ Scomp and P ∈ Ψm, b := {σ~(P ), a} ∈ Scomp. By (11.5),∫ {
σ~(P ), a

}
dµ = lim

n→∞

〈
Opps

~ (b)u, u
〉
; (11.14)

our goal is to prove that the limit on the right-hand side of (11.14) is zero.
By (7.10) and the definition of the principal symbol,

Op~(b)− i

~
[P,Op~(a)] ∈ ~Ψ−∞~ ,

so that, by (11.2),

Opps
~ (b) =

i

~
[P,Opps

~ (a)] + ~E1, with E1 ∈ Ψ−∞~ . (11.15)

Then, by Lemma 11.3 there exist χ1, χ2 ∈ D with χ1 ≡ χ2 ≡ 1 on supp a such that〈
Opps

~ (b)u, u
〉

=
〈
χ1 Opps

~ (b)χ2u, u
〉

=
i

~
〈
χ1[P,Opps

~ (a)]χ2u, u
〉

+ ~
〈
χ1E1χ2u, u

〉
.

Since E1 is uniformly bounded L2 → L2, to prove that the limit on the right-hand side of (11.14)
is zero, it is sufficient to prove that∣∣〈χ1[P,Opps

~ (a)]χ2u, u
〉∣∣ = o(~n) as n→∞.
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Now〈
χ1[P,Opps

~ (a)]χ2u, u
〉

=
〈
χ1P Opps

~ (a)χ2u, u
〉
−
〈
χ1 Opps

~ (a)Pχ2u, u
〉

=
〈

Opps
~ (a)χ2u, [P, χ1]u+ χ1Pu

〉
−
〈
χ1 Opps

~ (a)
(
[P, χ2]u+ χ2Pu

)
, u
〉
.

Therefore, since u is uniformly locally bounded, Op~(a) is uniformly bounded L2 → L2, and (11.10)
holds, it is sufficient to prove that∣∣〈Opps

~ (a)χ2u, [P, χ1]u
〉∣∣+

∣∣〈χ1 Opps
~ (a)[P, χ2]u, u

〉∣∣ = o(~n) as n→∞,

and this follows if∥∥(Opps
~ (a))∗[P, χ1]

∥∥
L2(Rd)→L2(Rd)

= o(~) and
∥∥Opps

~ (a)[P, χ2]
∥∥
L2(Rd)→L2(Rd)

= o(~). (11.16)

By Part (iii) of Theorem 7.5, a commutator is O(~); this is not quite enough, but we show below
that the fact that πx(supp a) and supp∇χj are disjoint gives faster decay.

By the definition of the principal symbol and the fact that χ2 ∈ Ψ−∞~ (since it has compact
support),

i

~
[P, χ2] = Op~

({
σ~(P ), χ2

})
+ ~E2 for E2 ∈ Ψ−∞~ . (11.17)

Therefore, by the composition formula (9.33),

Op~(a)
i

~
[P, χ2] = Op~

(
a#
{
σ~(P ), χ2

})
+ ~Op~(a)E2.

Since supp a ∩ supp∇χ2 = ∅, the definition of # (9.34) implies that

a#
{
σ~(P ), χ2

}
∈ ~∞S−∞; (11.18)

the second bound in (11.16) then follows from combining the last two displayed equations and
using the composition and mapping properties of Theorem 7.5 (to show that Op~(a)E2 is uniformly
bounded L2 → L2).

The first bound in (11.16) follows similarly, except that we use the adjoint expansion (9.47) to
deal with (Op~(a))∗. Indeed, by (9.47),

(Op~(a))∗ = Op~(a) + ~Op~(a1) + ~2E3,

where supp a1 ⊂ supp a and E3 ∈ Ψ−∞~ . Therefore, by similar arguments to those in (11.17) and
(11.18),

(Op~(a))∗
i

~
[P, χ1] =

(
Op~(a) + ~Op~(a1) + ~2E3

)(
Op~

({
σ~(P ), χ2

})
+ ~E4

)
= ~

(
Op~(a) + ~Op~(a1)

)
E4 + ~2E5,

where E4, E5 ∈ Ψ−∞~ ; the first bound in (11.16) therefore follows from the composition and map-
ping properties of Theorem 7.5 (similar to in the proof of the second bound in (11.16)).

Proof of Corollary 11.11. By (11.11) and (11.12),∫
(b ◦ ϕs)(ρ) dµ =

∫
b(ρ) dµ for all s.

By approximating 1B by smooth symbols and using that Ccomp(Rd) is dense in L1(Rd;µ) when µ
is a Radon measure (see, e.g., [58, Prop. 7.9], we have that∫

1B
(
ϕs(ρ)

)
dµ =

∫
1B(ρ) dµ for all s.

Now ϕs(ρ) ∈ B iff ρ ∈ ϕ−s(B), so that 1B(ϕs(ρ)) = 1ϕ−s(B)(ρ). The result (11.13) then follows
by letting s = −t.
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11.5 Defect measures of outgoing Helmholtz solutions

We first recap results about the outgoing solution of (−~2∆−1)u = f in Rd (where f has compact
support); i.e., the so-called free resolvent. Let(

R0(~)f
)
(x) :=

∫
Rd

Φ~(x, y) f(y) dy, (11.19)

where Φ~ is the outgoing fundamental solution satisfying (−~2∆− 1)Φ~(x, y) = δ(x− y), i.e.,

Φ~(x, y) := ~−2 i

4

(
~−1

2π|x− y|

)(d−2)/2

H
(1)
d/2−1

(
~−1|x− y|

)
; (11.20)

see, e.g., [106, Theorem 9.4] (note that (11.20) is ~−2 multiplied by the outgoing fundamental

solution of (−∆− k2)u = f). The definition of the Hankel function H
(1)
d/2−1 implies that

Φ~(x, y) =


~−2 i

4
H

(1)
0

(
~−1|x− y|

)
, d = 2,

~−2 exp
(
i~−1|x− y|)

4π|x− y|
, d = 3.

Lemma 11.12. (Properties of the free resolvent.) For all ~ > 0,

R0(~) : L2
comp(Rd)→ H2

loc(Rd).

Furthermore, given χ ∈ C∞comp(Rd) and ~0 > 0, there exists C > 0 such that

‖χR0(~)χ‖L2(Rd)→L2(Rd) ≤
C

~
for all 0 < ~ ≤ ~0. (11.21)

Proof. Boundedness from L2
comp(Rd)→ H1

loc(Rd) and the bound (11.21) both follow from Theorem
2.14; recall that this theorem is proved by integration by parts using the Morawetz multiplier (see
Exercise 3 in §2.5). Boundedness from L2

comp(Rd) → H2
loc(Rd) can then be obtained by elliptic

regularity (see §2.3). Alternatively, boundedness and (11.21) can (at least in odd dimensions) be
proved by expressing R0 in terms of the wave propagator; see [52, Theorem 3.1].

Remark 11.13. (Why is the Helmholtz solution operator called the “resolvent”?) Recall
that the resolvent of an operator P is the operator (P −z)−1, and the set of z such that this inverse
is exists is the resolvent set. If P = −∆ and z = k2, then (P −z)−1 = (−∆−k2)−1; the Helmholtz
solution operator is therefore often called the resolvent (of the Laplacian).

Theorem 11.14. (The “outgoing” condition at the level of defect measures.) Given
~n → 0 and {g(~n)}∞n=1 with supp g(~) ⊂ BR, let u(~n) := R0(~n)g(~n). If u(~n) has defect
measure µ and

I :=
{

(x, ξ) : |x| > R+ 1, 〈x, ξ〉 < 0
}
,

then µ(I) = 0.

Observe that I consists of “incoming” directions to the ball BR (and thus I is sometimes called
the directly-incoming set [64, Lemma 3.4], [60, §3.1]). Therefore, Theorem 11.14 (first given as [26,
Prop. 3.5]) expresses the fact that the mass in phase space of Helmholtz equations satisfying the
Sommerfeld radiation condition (1.4) is concentrated in “outgoing”’ directions.

To prove Theorem 11.14 we need the following lemma, which can be proved by integration by
parts (see Exercise 1 in §11.6).

Lemma 11.15. (Asymptotics of oscillatory integral with no stationary points.) Given
ϕ ∈ C∞(Rn), a ∈ S (Rn), let

I(~) :=

∫
Rn

exp
(
iϕ(x)/~

)
a(x) dx. (11.22)

If ∇φ 6= 0 on supp a, then
I(~) = O(~∞).
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(Compare to Theorem 9.5.)

Proof of Theorem 11.14. We’ll prove this result for d = 3. The proof for general d ≥ 2 is similar,
using asymptotics of Hankel functions to write the fundamental solution Φ~(x, y) as exp(i|x−y|/~)
multiplied by a (weakly-singular) function.

Step 1: consider Opps
~ (a)R0g with the symbol a concentrated near (x0, ξ0) ∈ I.

By approximating indicator functions by smooth functions (as in the proof of Corollary 11.11), it
is sufficient to prove that, given (x0, ξ0) ∈ I,

∫
a dµ = 0 for a ∈ Scomp such that a ≥ 0, a(x, ξ) = 1

in an open neighbourhood of (x0, ξ0), and supp a ⊂ I.
By (11.5), the result that

∫
adµ = 0 follows if we can show that (Opps

~ (a))R0(~n)g(~n) = o(1)
as n→∞; in fact we show that

Opps
~ (a)R0(~n)g(~n) = O(~∞n ) as n→∞. (11.23)

By the definitions of Opps
~ (11.1) and R0(~) (11.19),(

Opps
~ (a)R0(~n)g(~n)

)
(x)

=
1

(2π~)d

∫
Rd

∫
Rd

exp

(
i〈x− y, ξ〉

~

)
a(x, ξ)

(
R0(~)g(~)

)
(y)χ0

(
|x− y|

)
dy dξ

=
~−2

(2π~)d

∫
supp f

(∫
Rd

∫
Rd

exp

(
i
(
〈x− y, ξ〉+ |y − z|

)
~

)
a(x, ξ)

g(~)(z)

4π|y − z|
χ0

(
|x− y|

)
dy dξ

)
dz,

(11.24)

We now show that |y − z| is bounded below on the support of the integrand, and thus, since, in
addition, a, f , and χ0 all have compact support, the integral in (11.24) exists as a standard integral
(i.e., it does not need to be understood as an oscillatory integral in the sense of TK). Without loss
of generality, we can assume that the cut-off function χ0 in the definition of Opps

~ (11.1) satisfies
χ0(t) = 0 for t ≥ 1/2. Therefore |x − y| ≤ 1/2 in the integrand of (11.24). Since z ∈ supp f ,
|z| ≥ R, and by assumption |x| > R+ 1 on supp a; therefore |y − z| ≥ 1/2.

Step 2: show the phase has no stationary points, and integrate by parts using Lemma 11.15.
The integral (11.24) is of the form (11.22) with

ϕ(y, ξ) := 〈x− y, ξ〉+ |y − z|.

Then

∂yjϕ = −ξj +
yj − zj
|y − z|

and ∂ξjϕ = xj − yj ,

and ∇ϕ = 0 iff ξ = (x − z)/|x − z|. This cannot hold, however, since (x − z)/|x − z| is pointing
“outwards” from BR and ξ is pointing “inwards”. Therefore, Lemma 11.15 implies the asymptotics
(11.23), and the proof is complete.

Remark 11.16. (Wavefront set of a family of functions.) The operator wavefront set of
Definition 7.9 measures where in phase space a semiclassical pseudodifferential operator is non-
negligible. A related concept is the semiclassical wavefront set of a family of functions, which
measures where in phase space a family of functions is supported in the ~ → 0 limit (see [155,
§8.4.2], [52, Def. E.36]); defect measures then measure “how concentrated” the family is at these
locations.

The reason we mention this concept here is that the asymptotics (11.23) actually show that
I 6⊂ WF~(R0f); furthermore, the ideas behind the proof of (11.23) can be used to calculate the
wavefront set of a general oscillatory integral (i.e., not just R0f); see [52, Prop. E.37].

11.6 Exercises for §11

1. Prove Lemma 11.15. (Hint: construct L such that L(exp(iϕ(x)/~)) = exp(iϕ(x)/~).)
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12 Proof of Theorem 2.7 (bound on solution operator under
nontrapping) using defect measures

We now prove Theorem 2.7 using defect measures, with this proof due to Burq [26, Theorem 2].
We assume throughout this section that Ω− = ∅; the same ideas can be used to prove the result
for nontrapping Ω−, although the proof is more technical due to the presence of a boundary – see
[26, §4], [64, §4].

Let P (~) := −~2∇ · (A∇·) − n, P0(~) := −~2∆ − 1. As in §11.5, let R0(~) denote the free
resolvent.

Lemma 12.1. (Outgoing Helmholtz solutions and the free resolvent.) Let R > 0 be such
that supp(I − A) ∪ supp(1 − n) b BR. Given {f(~)}0<~≤~0

with supp f(~) contained inside an
~-independent compact set, let u(~) be the outgoing solution to P (~)u(~) = ~ f(~).

(i) If χ1 ∈ C∞comp(Rd) with BR b {χ1 ≡ 1}, then

(1− χ1)u = R0(~)
(

(1− χ1)~f − [P0(~), χ1]u
)

(12.1)

(i.e., outside the support of the scatterer, u can be written as a free resolvent).
(ii) Suppose further that ‖f(~)‖L2 . 1 and there exists χ ∈ C∞comp(Rd) with BR b {χ ≡ 1} and

C > 0 such that
‖χu‖L2(Rd) ≤ C for all 0 < ~ ≤ ~0.

Then, given χ̃ ∈ C∞comp(Rd) there exists C̃ > 0 such that∥∥χ̃u∥∥
L2(Rd)

≤ C̃ for all 0 < ~ ≤ ~0

(i.e., if u is locally bounded for one cut-off function, then it is locally bounded for all cut-off
functions).

Remark 12.2. (Alternative definition of outgoing via free resolvent.) Part (i) of Lemma
12.1 shows that, at least outside the support of the scatterer, an outgoing Helmholtz solution can be
written as a free resolvent. Being expressible as a free resolvent is sometimes used as the definition
of outgoing (instead of the Sommerfeld radiation condition (1.4)); see, e.g., [52, Definition 3.32],
[97, Equation 4.19].

Proof of Lemma 12.1. (i) Since BR b {χ1 ≡ 1},

P0

(
(1− χ1)u

)
= P

(
(1− χ1)u

)
= (1− χ1)~f + [P, 1− χ1]u = (1− χ1)~f + [P0, 1− χ1]u

(where we have suppressed the dependence of P and P0 on ~ for brevity). Since the right-hand
side of this last equation has compact support, the result (12.1) then follows by applying R0.

(ii) Given χ as in the statement of the result, let χ1 ∈ C∞comp(Rd) be such that suppχ1 b {χ ≡ 1}
and BR b {χ1 ≡ 1} (i.e., the support of the derivatives of χ1 is between BR and {χ ≡ 1}).

Given χ̃, since

χ̃u = χ̃(1− χ)u+ χ̃χu and
∥∥χ̃(1− χ)u

∥∥
L2 ≤

∥∥χ̃(1− χ1)u
∥∥
L2 ,

it is sufficient to prove that ‖χ̃(1− χ)1)u‖L2 . 1.
By (12.1) (i.e., the result of Part (i)),

χ̃(1− χ1)u = χ̃R0(~)
(

(1− χ1)~f + [~2∆, χ1]u
)

= χ̃R0(~)g

where
g := (1− χ1)~f + 2~2∇u · ∇χ1 + ~2(∆χ1)u. (12.2)

By the bound (11.21) on R0(~), it is sufficient to prove that ‖g‖L2 . ~. Since ‖f‖L2 . 1, it is
sufficient to prove that ‖(∆χ1)u‖L2 . ~−1 and ‖~∇u · ∇χ1‖L2 . 1. Since supp (∆χ1) ⊂ {χ ≡ 1},
‖(∆χ1)u‖L2 ≤ ‖χu‖L2 ≤ C. Now, since ‖Pu‖L2 . ~ and ‖χu‖L2 ≤ C, ‖~∇u ·∇χ1‖L2 . 1 by Part
(i) of Lemma 2.18.
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Proof of Theorem 2.7. Let R(~) be the resolvent, i.e.,

R(~) : L2
comp(Rd)→ H2

loc(Rd)

with both P (~)R(~)f = f and R(~)f outgoing for f ∈ L2
comp(Rd).

The bound (2.4) is therefore equivalent to: given χ ∈ C∞comp(Rd) there exists ~0 > 0 and C > 0

such that for all 0 < ~ ≤ ~0 and all f ∈ L2(Rd)

‖χR(~)χf‖L2(Rd) ≤
C

~
‖f‖L2(Rd) .

Let R > 0 be such that supp(I−A)∪ supp(1−n) b BR. Without loss of generality we can assume
that {χ ≡ 1} c BR. (If we prove the bound for such a χ, then the bound for a smaller χ follows
easily.)

Seeking a contradiction, we assume that the bound does not hold; i.e., for all ~0 and C there
exists an f ∈ L2(Rd) and 0 < ~ ≤ ~0 such that

‖χR(~)χf‖L2(Rd) >
C

~
‖f‖L2(Rd) .

Choosing C = n, we see that for all n there exists ~n → 0 and fn ∈ L2(Rd) such that

‖χR(~n)χfn‖L2(Rd) >
n

~n
‖fn‖L2(Rd) .

We now divide fn by a constant so that

‖χR(~n)χfn‖L2(Rd) =
1

~n
and ‖fn‖L2(Rd) <

1

n
.

Let
un := R(~n)χfn~n.

Then

‖χun‖L2(Rd) = 1, P (~n)un = χfn~n, and ‖P (~n)un‖L2(Rd) <
~n
n
. (12.3)

Observe that {un}∞n=0 satisfies the assumptions of Part (ii) of Lemma 12.1, and thus {un}∞n=0 is
uniformly locally bounded (in the sense of Definition 11.1). Theorem 11.6 therefore implies that
there exists a subsequence {~n`

}∞`=0 such that un`
has defect measure µ. For brevity, we denote

the subsequence by {~n}∞n=0.
By the last equation in (12.3), ‖P (~n)un‖L2(Rd) = o(~n). Therefore Lemma 11.9 implies that

µ is supported on {σ~(P ) = 0} and Theorem 11.10 and Corollary 11.11 imply that the measure is
invariant under the flow.

We now show that µ 6= 0. Using (11.5) and Lemma 11.3, there exist χ1, χ2 ∈ D with χ1 ≡
χ2 = 1 on suppχ such that∫

χ2 dµ = lim
n→∞

〈
Opps

~ (χ2)un, un
〉

= lim
n→∞

〈
χ1 Opps

~ (χ2)χ2un, un
〉

= lim
n→∞

〈
Opps

~ (χ2)χ2un, χ1un
〉
.

(12.4)
Now, by (11.2),

Opps
~ (χ2) = Op~(χ2) +O(~∞)Ψ−∞~

= χ2 +O(~∞)Ψ−∞~
. (12.5)

Combining the fact that χ1 = χ2 = 1 on suppχ, (12.4), (12.5), and the first equation in (12.3), we
see that ∫

χ2 dµ = lim
n→∞

〈
χ2un, un

〉
= lim
n→∞

∥∥χun∥∥2

L2(Rd)
= 1;

i.e., µ 6= 0 as claimed.
We now show that un can be written as a free resolvent away from suppχ using Lemma

12.1, and then apply Theorem 11.14 to show that the measure of the incoming set is zero. Let
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χ1 ∈ C∞comp(Rd) be such that suppχ1 b {χ ≡ 1} and {χ1 ≡ 1} c BR, i.e., the support of the
derivatives of χ1 is between BR and {χ ≡ 1} (just as in the Proof of Part (ii) of Lemma 12.1). Let
g(~n) be defined by (12.2) with u replaced by un and f replaced by χfn. By Part (ii) of Lemma
12.1,

(1− χ1)un = R0(~n)g(~n),

and supp g(~n) ⊂ suppχ. By assumption, there exists R̃ such that suppχ b BR̃. The assumptions

of Theorem 11.14 therefore hold with R replaced by R̃. Therefore, µ(I) = 0 with

I :=
{

(x, ξ) : |x| > R̃+ 1, 〈x, ξ〉 < 0
}
.

We now show that µ = 0, which is the desired contradiction. By Corollary 10.7, the assumption
that the forward trapped set Γfw is empty implies that the backward trapped set Γbw is empty. This
combined with the fact that the flow is just straight-line motion outside supp(I −A)∪ supp(1−n)
imply that, given any bounded Borel set B ⊂ T ∗Rd, there exists t0 > 0 such that if t ≤ −t0 then
ϕt(B) ⊂ I, and thus µ(ϕt(B)) = 0. By Corollary 11.11 (i.e., invariance of µ under the flow),
µ(B) = 0. Since B was arbitrary, µ = 0 and the proof is complete.
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[25] N. Burq. Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de
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[111] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. II. Communications on Pure and
Applied Mathematics, 35(2):129–168, 1982.

[112] A. Moiola. Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. PhD thesis, Seminar
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