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Abstract

This thesis is concerned with new analytical and numerical methods for solving boundary
value problems for the 2nd order linear elliptic PDEs of Poisson, Helmholtz, and modified

Helmholtz in two dimensions.

In 1967 a new method called the Inverse Scattering Transform (IST) method was intro-
duced to solve the initial value problem of certain non-linear PDEs (so-called “integrable”
PDEs) including the celebrated Korteweg-de Vries (KdV) and nonlinear Schrodinger
(NLS) equation. The extension of the IST method from initial value problems to boundary
value problems (BVPs) was achieved by Fokas in 1997 when a unified method for solving
BVPs for integrable nonlinear and linear PDEs was introduced. This thesis applies “the

Fokas method” to the basic elliptic PDEs in two dimensions.

It is perhaps suprising that ideas from the theory of integrable nonlinear PDEs can be
used to obtain new results in the classical theory of linear PDEs. In fact, the new method
has a beautiful connection with the classical integral representations of the solutions of
these PDEs due to Green. Indeed, this thesis shows that the Fokas method provides
the analogue of Green’s integral representation (IR) in the transform, or spectral, space.
Both IRs contain boundary values which are not given as boundary conditions, and the
main difficulty with BVPs is determining these unknown boundary values. In addition to
the novel IR, the Fokas method provides a relation coupling the transforms of both the
known and unknown boundary values known as “the global relation”, which is then used

to determine the contribution of the unknown boundary values to the solution.

One of the conclusions of this thesis is that the new method (applied to these 2nd order
linear elliptic PDEs) does three things: (a) solves certain BVPs which cannot be solved
by classical techniques, (b) yields novel expressions for the solutions of BVPs which have

both analytical and computational advantages over the classical ones, and (c¢) provides
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an alternative, simpler, method for obtaining the classical solutions.

Chapter 2 is about the novel integral representations. Chapter 3 is about the global
relation. In Chapter 4, a variety of boundary value problems in the separable domains
of the half plane, quarter plane and the exterior of the circle are solved. In Chapter
5, boundary value problems are solved in a non-separable domain, the interior of a right
isosceles triangle. Just as Green’s integral representation gives rise to a numerical method
for solving these PDEs (the boundary integral method), the Fokas method can also be
used to design new numerical schemes; Chapter 6 presents these for the Laplace and

modified Helmholtz equation in the interior of a convex polygon.
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Chapter 1

Introduction

1.1 The problem

The most famous second order linear elliptic PDE is
Au(x) + Mu(x) = —f(x), x€Q, (1.1.1)

where \ is a real constant, f(x) a given function, and €2 is some 2 dimensional domain
with a piecewise smooth boundary. For A = 0 this is Poisson’s equation, A\ > 0 the

Helmholtz equation, and A < 0 the Modified Helmholtz equation.

These PDEs appear in a myriad of applications. The Helmholtz equation with A\ = w?/c?
arises from the wave equation

g—;U(w,t) —AAU(z,t) =0

under the assumption that the solution is harmonic in time with frequency w: U(x,t) =
u(zx)e ™!, In unbounded domains the behaviour of u needs to be prescribed as r = |x| —
00: U ~ e IV (multiplied by some function that decays algebraically in r) corresponds

to incoming waves and u ~ iV corresponds to outgoing waves.

For a boundary value problem (BVP) to be well-posed, certain boundary conditions must

be prescribed; the ones of most physical importance are:
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2 1. Introduction

e Dirichlet: u(x) = known, & € 09

e Neumann: 2%(x) = known, = € 9
n

e Robin: 2“(x) + au(x) = known, o = constant, x € 9Q ,

where g—z = Vu - n, where n is the unit outward-pointing normal to €2. More complicated
boundary conditions can involve derivatives at angles to the boundary. One can also pre-
scribe mixed boundary conditions, such as Dirichlet on part of the domain, and Neumann

on another part.

In this thesis we will mainly be concerned with finding “explicit” expressions (i.e. given
in terms of integrals or sums) for the solutions of BVPs involving (1.1.1). Obviously the
class of BVPs for which this is possible is very restrictive, nevertheless it still contains
many problems of physical interest. The penultimate chapter of the thesis (Chapter 6) is
concerned with designing a numerical method for certain BVPs involving (1.1.1) (i.e. a

method that computes an approximation to the solution).

Given that the majority of the thesis is concerned with “analytical” (as opposed to numer-
ical) methods, the introduction will reflect this. A brief discussion of numerical methods
for solving the PDE (1.1.1) is presented in §6.4.1. We note that the distinction between
“analytical” and “numerical” methods is often blurred; for example, even if one has an
expression for the solution of a BVP as an integral, in general this integral must be eval-

uated numerically to obtain the value of the solution at a particular point in the domain

Q.

Outline of this Chapter In Section §1.2 we review the classical “analytical” methods
for finding expressions for the solution of (1.1.1). In Section §1.3 we explain the Fokas
method applied to (1.1.1). In Section §1.4 we compare the Fokas method to classical
techniques. Section §1.5 is concerned with “the bigger picture” of the Fokas method.

Section §1.6 states how the results of this thesis are related to previous results obtained
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with the Fokas method. Section §1.7 summarises the thesis, with several bullet points per

Chapter; these are then repeated at the beginning of the relevant chapters.

1.2 The classical theory and techniques

In this Section we review the classical techniques for finding explicit expressions for the
solution of (1.1.1). We discuss only the techniques that can be applied to the boundary
value problems considered in the thesis (other techniques, such as the Wiener-Hopf tech-
nique, see e.g. [Nob88], and the Sommerfeld-Malyuzhinets technique, see e.g. [BLGO0S],
are discussed in Chapter 7). [Kel79] provides an excellent survey of these techniques, as
well as many other exact and approximate methods for solving boundary value problems

for linear PDEs.

The subsections on separation of variables/transform methods §1.2.2 and the method of
images §1.2.3 contain some historical remarks. In §1.2.2 our aim is not to provide a
comprehensive account of the history, but to highlight the developments since 1918 which
centre on the boundary value problem of the Helmholtz equation in the exterior of the
circle (which is solved using the new method in Chapter 4 §4.3). In §1.2.3 our aim is to
provide an accurate account of the history of this method since results using this method
continue to be rediscovered with the authors seemingly oblivious to what has been done

before!

The Figure 1.1 gives an overview of the classical techniques, and shows how they fit

together.
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Separation of variables Images/reflections Integral equations

(2 bounded) (€ bounded)

Transforms Eigenfunctions of A

(partial e-function expansion)
PDE (either for u or G) to ODE

Formulate integral\equations for D2N using Green IR

Solve ODE for u olve ODE for G

Poisson summation formula

A  a
G:forz G=> > efns GZZjE(€733j)

(full e-fungtion expansion)

D2N map

Green’s IR

v

Solution u

Figure 1.1: The classical techniques and how they are related.
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1.2.1 Green’s integral representation

Green’s theorem gives the following integral representation of the solution of (1.1.1)

ww) = [ (Bo5h© - ueF € o) ds© + [ [OEEa @, vcn
(1.2.1)

where E is the fundamental solution (sometimes known as the free space Green’s function)
satisfying
(Ag + A) E(¢, )= —0(6 —x), £eq. (1.2.2)

For the different values of A\, F is given by

e Laplace/Poisson (A =0): E = —5-log|€ — x|,
e Helmholtz (A > 0): F = (\/_|£ — x|) (for outgoing waves),

e Modified Helmholtz (A < 0): E = 5= Ko(v—A€ — x|),

where Hél) is a Hankel function and K, a modified Bessel function.

The integral representation is obtained by forming the divergence form of (1.1.1) and
(1.2.2)
V- (EVu—uVE) = —fE + ud, (1.2.3)

integrating over €2 and using the divergence theorem (in 2-d Green’s theorem in the plane)

to replace the area integral by an integral over the boundary.

The integral representation (1.2.1) involves both u and its normal derivative on the bound-
ary, that is the Dirichlet and Neumann boundary values respectively. However for a well
posed problem only one of these boundary values (or a linear combination of the two) is
given as boundary conditions. In some applications it is precisely the unknown boundary
values that are required. If Dirichlet boundary conditions are given, the determination of
the unknown Neumann boundary values is achieved by finding the Dirichlet to Neu-
mann (D2N) map. Actually, the term “Dirichlet to Neumann” map is often used to

mean the map from the known to the unknown boundary values in general.
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Consider the Dirichlet problem: (1.1.1) with boundary conditions
u(x) = D(x), x € 09, (1.2.4)

where D(x) is known. If we can find a function G(§€, x) such that

(A€ n )\) G, x) =0 —z), £, (1.2.5a)
G(&,x) =0, €&eoQ, (1.2.5b)

then
u(w) =~ | D(g)gi (€, x)dS(¢ /f G(&, x)dV (€), x €, (1.2.6)

and the problem of finding u has been reduced to that of finding G(§, x) - the Green’s
function. If the eigenvalues and eigenfunctions of the Laplacian are known in {2 then the

problem is solved since the Green’s function can be constructed as the sum

Glgw) = Y ot E)

n
where u,, and ), denote the normalised eigenfunctions and eigenvalues of the Dirichlet

Laplacian in €2 respectively, that is

—Au,(x) = Muy(x), =€ Q,
up(x) =0, x € 0Q,

/ |u(x)Pde = 1.
1.2.2 Separation of variables, a.k.a. transform methods

1.2.2.1 Outline

Starting with a given boundary value problem in a separable domain, i.e. a domain of
the form Q = {a; <& < b} x {az <& < by} where & are the co-ordinates under which
the differential operator is separable, the method of separation of variables consists of

the following steps:
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1. Separate the PDE into two ODEs.

2. Concentrate on one of these ODEs and derive the associated completeness relation
(i.e. transform pair) depending on the boundary conditions. This is achieved by
finding the 1-dimensional Green’s function, g(z,&;v), with eigenvalue v and inte-
grating g over a large circle in the complex v plane:

d(xz—¢) =— lim Lfl_Rg(aL’,f; v)dv. (1.2.7)

R—oc0 271

3. Apply this transform to the PDE and use integration by parts to derive the ODE

associated with this transform.

4. Solve this ODE using an appropriate 1-dimensional Green’s function, or variation

of parameters.

The solution of the boundary value problem is given as a superposition of eigenfunctions
of the ODE considered in step 2 (either an integral or a sum depending on whether the

ODE has a continuous or discrete spectrum).

For each boundary value problem there exist two different representations of the solution
depending on which ODE was considered in step 2. To show that these two representations

are equivalent requires two steps:

1. Go into the complex plane, either by deforming contours (if the solution is given as

an integral), or by converting the series solution into an integral using the identity

i f(n) = j %dk;, (1.2.8)

where C'is a contour which encloses the real k axis (in the positive sense) but no
singularities of f(k), see Figure 1.2. This latter procedure is known as the Watson

transformation since it was first introduced in [Wat18].

2. Deform contours to enclose the singularities of f(k) and evaluate the integral as

residues/branch cut integrals.
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C

-

'

— 0 90-0-000-0-00-66-0-00-0-0-00-0—p

-

Figure 1.2: The contour C' involved in the Watson transformation.

Roughly speaking, there are two different approaches for proving rigorously that a trans-

form derived from the spectral analysis of an ODE (step 2 above) is complete:

(i) Provide a direct proof of the validity of the formula (1.2.7) for a given Green’s
function (for example using integration in the complex plane [Tit62]). There are
some general theorems that guarantee the validity of (1.2.7) for a wide class of both
self-adjoint and non-self-adjoint problems under certain subtle constraints on the

boundary conditions, see for example [Nai67, §5].
(ii) If the operator is self-adjoint, then results about self-adjoint operators on Hilbert

spaces are directly applicable, see for example [Nai68|, [Sta67, §3.3], [RS72, §VII].

The main limitations of this method for solving boundary value problems are the follow-

ing:
e [t fails for BVPs with non-separable boundary conditions (for example, those that
include a derivative at an angle to the boundary).

e The appropriate transform depends on the boundary conditions and so the process

must be repeated for different boundary conditions.
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e The solution is not necessarily uniformly convergent on the whole boundary of the

domain (since it is given as a superposition of eigenfunctions of one of the ODEs).

e A priori it is not clear which of the two representations is better for practical pur-
poses. In many situations, if an integral representation is possible this is preferable
to an infinite series from the point of view of computing the solution*. In the cases
where only an infinite series is possible, many techniques have been used to try and
improve the convergence of this series, an introduction to some of these methods is

given in [Duf01, §5.8 page 344.].

e BVPs involving the Helmholtz equation in unbounded domains, in order to be well
posed, require a radiation condition at infinity. Therefore, at least one of the sepa-
rated ODEs must include a radiation condition, which means that the BVP involv-
ing this ODE is non-self-adjoint, and thus the second approach mentioned above for
proving completeness of the associated transform cannot be applied. In addition,
the general results using the first approach, described in [Nai67, §5], are also not
applicable since they do not apply to problems with a radiation condition. Thus, in
this case the only known approach to investigate completeness is to analyse directly
the given transform, this was performed for a large class of BVPs for the Helmholtz

equation by Cohen [Coh64b, Coh64a, Coh65].

In the author’s opinion the best references on separation of variables/transform methods
are: [Sta67, Chapter 4] (spectral analysis of differential operators), [MF53] S5.1 (separable
co-ordinates), [Fri56] Chapter 4 (spectral analysis), Chapter 5 (transforms and switching
between the alternative representations), [Kee95] Chapter 7 (spectral analysis) Chapter
8 §8.1.3 (transform methods) [OHLMO3] §4.4, 5.7, 5.8 (transform methods)

*Of course there are many exceptions to this, for example the case when the series can be computed

using the Fast Fourier Transform.
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1.2.2.2 Historical remarks

The method of separation of variables was introduced in the 1750’s by d’Alembert and
Euler in their attempts to solve the wave equation. It was further developed by Fourier,
Daniel Bernoulli, Lamé (who introduced curvilinear co-ordinates), and Sturm and Li-
ouville (who investigated general eigenfunction expansions). (This historical material is
recounted in [GGO3, Part 3.15 §5 page 459] and [Jah03, §7.1.2 page 199]). The system-
atic investigation of the co-ordinate systems in which the classic PDEs of mathematical
physics are separable began around 1890 (Chapter 5 of [MF53] gives a detailed account).
The investigation of expanding a function in terms of eigenvalues of a differential operator
began with Sturm and Liouville in the 19th Century and continued with work by, among
others, Birkhoff [Bir08b, Bir08a] (with some authors calling these expansions “Birkhoff
expansions” ), Weyl [Wey10], Titchmarsh [Tit62], and Naimark [Nai67, Nai68§].

One boundary value problem that is of particular significance in the development of trans-
form methods is the Helmholtz equation in the exterior of the circle (in 2-d) or sphere
(in 3-d). Around 1900 there was interest in this problem because it models the propa-
gation of radio waves around the Earth. This BVP is separable in polar co-ordinates,
and an expression for the solution was obtained using the appropriate transform in the
angular variable — a Fourier series. However this series converged extremely slowly for
large frequency (Love estimated that 8000 terms were required for the desired accuracy

[Kel79]).

In 1918 Watson overcame this difficulty by using (1.2.8) to transform the angular series
into an integral, and then evaluate the integral as a second series of which one or two terms
gave the desired accuracy [Watl8]. Around 1950 Sommerfeld showed that this second
series could be obtained directly by considering the radial ODE [Som64b, Appendix 2
of Chapter 5 p.214, Appendix to Chapter 6 p.279]. This led to the realisation that
“the technique of separation of variables has not yet been fully exploited” [Coh64b].
A systematic derivation of the 2 different representations for boundary value problems

in 2-dimensions (3 in 3-d) was undertaken [Marb51], [Fel57], [FM96, Chapters 3 and 6],
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[Coh64b], [Coh64a).

The situation became even more interesting when Cohen proved that the radial transform
for solving the Helmholtz equation in the exterior of the circle is not complete [Coh64al.
Thus, although the best representation of the solution can be obtained by the radial
transform, this procedure is not justified, and this representation must be obtained by
first using the angular transform, replacing the series by an integral using the Watson
transformation, deforming contours, and evaluating the integral on the “radial” poles.
([BSU8T] §1.2.13.6 provides a more detailed account of the history of the Watson trans-

formation.)

1.2.3 The method of images/reflections

1.2.3.1 Outline

This technique can be used to find either the Green’s function or the eigenfunctions and

eigenvalues. We first discuss the former.

Let  be the upper half plane
OQ={-0o<zr<o0,0<y< o}

Since E(&,x) is a function of [§€ — x|, subtracting the fundamental solution at the point
2’ from the fundamental solution at @, where ' = (z, —y) is the reflection of the point
x = (z,y) in the boundary y = 0 (see fig 1.2.3.1), means that this combination satisfies
(1.2.5). Indeed, the differential equation (1.2.5a) is still satisfied as the reflected point is
outside €2, and for £ on the boundary E(&, ) and E(&,x') are equal. Hence

G(ﬁ,w) = E(ng) - E(ﬁ,a:').

For the Neumann problem, adding the fundamental solution at the point @’ satisfies the

Neumann boundary condition, hence

G(& x) = E& z)+ E¢.2).
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X

Figure 1.3: The upper half plane with source and image points.

Half plane Wedge (7/n),n € Z Infinite Strip

Semi infinite strip (m/3,7/3,7/3) (m/2,m/4,7/4) (m/2,7/3,7/6)

Triangles

Rectangle

Figure 1.4: The admissible domains for the method of images in two dimensions.

The domains for which the Green’s function can be found using this method are
those which are fundamental domains of discrete groups of reflections, [Cox73], with the
additional requirement that no image lies inside the domain except the source point «
itself (as this would violate (1.2.5a)),[Kel53]. Thus the admissible domains for the method
of images in two dimensions are given by Figure 1.4. (Alternatively the characterisation

of these domains can be understood in terms of root systems of Lie algebras, see e.g.

[AH10].)

This applies to Dirichlet and Neumann boundary conditions, as well as some mixed

boundary conditions where Dirichlet conditions are posed on part of the boundary and
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Neumann conditions on the rest (the mixed boundary conditions which are allowed for

each domain are detailed in [Kel53]). The Green’s function is then given as a sum
G(& ) = B @)+ ) _a;B(& ) (1.2.9)
J

where x; are the image points obtained by reflecting the source point @ in the bound-
aries of the domain, and a; are chosen such that G(§, ) satisfies the required boundary
condition. For all the domains except for the half plane and wedge, an infinite number of
images is required, and so the Green’s function is given as an infinite sum. In some cases
this sum does not converge, for example for the Helmholtz equation in all 4 bounded
domains.” In the cases where it does, many techniques have been used to try and improve

the rate of convergence, a good introduction is given in [Duf01, §5.8 page 344].

The extension of the method to Robin and oblique Robin boundary conditions in the
upper half plane is given in [GT01] and [Kel81]. The Green’s function is given as the
source, plus one image, plus an semi-infinite line of images. Robin and oblique Robin
boundary conditions in a wedge of angle m/n, n € Z* are considered in [Gau88|. For
the Robin problem the Green’s function is given as a source point, plus infinite lines of
images, plus infinite regions of images. The oblique Robin problem can only be solved if n
is odd and under some restrictions on the angle of derivative in the boundary conditions

(this is to ensure no images lie inside the domain).

For the 4 bounded domains in Figure 1.4, the method of images can be used to find
their eigenfunctions and eigenvalues under Dirichlet, or Neumann, or some mixed
Dirichlet-Neumann boundary conditions (the same ones for which the Green’s function

can be found) by reflecting to one of

e the whole space [TS80a], [TS80b], [MWT0]

e a parallelogram [Pin80],

TA neat way to see this is that the Helmholtz equation has 2 linearly independent fundamental solu-
tions (incoming and outgoing), yet the solution is unique in a bounded domain (for A not an eigenvalue),

so if the sum converged there would be a contradiction.
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e a rectangle [Pradg|,

where one can use separation of variables in cartesian co-ordinates, then reflecting back.
This reflection technique does not work for Robin boundary conditions. However for
the equilateral triangle these have been found by using an ansatz based on the form
of the Dirichlet and Neumann eigenfunctions, and proving completeness using the fact
that the eigenfunctions are analytic functions of the Robin parameter o and using results
about perturbations of spectra in Hilbert spaces to obtain completeness of the Robin

eigenfunctions from completeness of the Neumann eigenfunctions [McC04].

The Poisson equation in polar co-ordinates is unique in admitting another type of image
(other than reflection) known as Kelvin inversion, see e.g. [DK89]. Thus, for this equation
alone, the method of images can be used to find the Green’s function for certain BVPs in

polar co-ordinates.

1.2.3.2 Historical remarks

In 1833 Lamé reflected the equilateral triangle to cover the whole plane, and hence de-
termined its eigenfunctions and eigenvalues [Lam33]. The method of images was first
introduced for the upper half plane problem by Sir William Thompson (Lord Kelvin) in
1847 [Tho47]. In 1953 J.B. Keller wrote the definitive work on the method of images,
characterising exactly which domains and boundary conditions (Dirichlet, Neumann and
mixed) the method is applicable to in both two and three dimensions [Kel53] (incredibly,
despite its importance, this paper has only been cited 11 times!). In 1970 obtaining the
eigenfunctions and eigenvalues of the equilateral triangle by reflecting to the whole plane
appeared in the textbook [MWT70]. In 1979, Terras and Swanson applied the method of
images to find both the Green’s function (reproducing Keller’s result) and eigenfunctions
and eigenvalues [TS80al, [TS80b]. They appear to give the first rigorous proof of com-
pleteness of the eigenfunctions by reflecting to the whole plane, although they state that

completeness for the equilateral triangle was proved by C.G. Nooney “On the vibrations
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of triangular membranes”, dissertation, Stanford University, 1953.

In 1980 Pinsky reflected the equilateral triangle to a parallelogram to obtain the eigen-
functions and proved several number-theoretic results on the eigenvalues [Pin80]. In 1985
he proved completeness via the parallelogram [Pin85]. In 1998 Pragér solved boundary
value problems in the equilateral triangle by first splitting them into odd and even parts
about the midline, then reflecting the corresponding boundary value problems in the half-
equilateral triangle, see Figure 1.4, into boundary value problems in the rectangle [Pra9s].
He also found the eigenfunctions and eigenvalues of the equilateral triangle and proved

completeness in this way.

In 2003 McCartin obtained the eigenfunctions and eigenvalues by introducing a “triangu-
lar co-ordinate system” in which separable solutions to the eigenproblem can be obtained
[McCO03]. To prove completeness he had to use the reflection method, citing [Prads].
He then repeated this for the Neumann problem [McC02]. For the Robin problem Mec-
Cartin introduced the technique discussed above for proving completeness [McC04]. He
investigated the absorbing and impedance boundary conditions in [McCO07] [McCO08al. In
[McCO08b] he obtained the analogue of Keller’s result about Green’s functions for eigen-
functions (although apparently unaware of Keller’s paper), that the only domains with
a complete basis of eigenfunctions which are linear combinations of exponentials with

complex arguments are the four bounded domains in Figure 1.4.

1.2.3.3 Sommerfeld’s extension: non-periodic fundamental solutions

In 1896 Sommerfeld extended the image method to solve the problem of diffraction by a
half-line (in 3-d, a half-plane), that is the Helmholtz equation in the domain

Q={R*\{z>0}}={0<7r<o00,0<6<2r}.

To understand his idea, first consider the solution in the upper half-plane by the method

of images. Viewed in polar co-ordinates, the source is at angle ¢ = 6, the image is at
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¢ = 2w — 0 (the reflection of the source in ¢ = 7), and the fundamental solution is 27
periodic. Sommerfeld’s idea for the solution in {2 was to make the space 47 periodic, since
the half line is to 47 periodic space what the half plane is to 27 periodic space: now the

source is at angle ¢ = 6, and the image is at ¢ = 47 — 6 (the reflection of the source in

¢ = 2m).

Similarly, considering space as non-periodic in 6, i.e. —0o < ¢, 6 < 0o, converts a wedge of
arbitrary angle (less than 27) into an infinite strip, which can be solved using an infinite
number of images. (Of course both the half-line and wedge problems can be solved by

separation of variables in polar co-ordinates.)

Sommerfeld expressed his 47 periodic and non-periodic fundamental solution (called “Rie-
mann surface” or “branched” solutions) as integrals of exponentials over the so-called
Sommerfeld contours, [Som64a, p.249]. Stakgold [Sta68, page 270] expressed them in
expansions using angular eigenfunctions: the 27 periodic fundamental solution is given

by

[e.9]

E(p, ¢;7,0) zi > HO(Bro)J,(Bro)em =0

n=-—o0o
where 7~ = max(r, p), « = min(r, p), whereas the non-periodic fundamental solution,

denoted E by Stakgold, is given as

i[> |
Ey(p, ¢;7,0) = Z/ dk H{y (Br5) i (Br)e™ =), (1.2.10)

We will return to (1.2.10) in Section 2.2.1, because (to give the punchline away) one of
the arguments of this thesis is: the best representations of solutions to boundary value
problems in polar co-ordinates are obtained by considering the angular variable, 6, to be

non-periodic.

1.2.4 Integral equations

Taking the limit of Green’s IR (1.2.1) as @ tends to the boundary of the domain gives a

linear integral equation for the unknown boundary values. Solving this integral equation
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is known as the boundary integral method. In separable domains this equation can
be solved explicitly using the appropriate transform, but since the original problem can
be solved in this way this is not useful. In general the integral equation must be solved

numerically, see e.g. [CK83], and is a major technique in numerical analysis.

1.2.5 Conformal mapping

The Dirichlet and Neumann BVPs for the Poisson equation in two dimensions can be

solved using conformal mapping. This is a consequence of the following two facts:

e the real and imaginary parts of an analytic (complex—differentiable) function satisify

the Laplace equation, and

e the Laplace equation is “conformally invariant”, that is, if ( = f(z), where ( = £+in

and z = x + 1y, then
0? 0? o O 0?
72 57 = VO (58 + 5

Thus, to find an expression for the solution of either the Dirichlet problem or the Neumann
problem for the Poisson equation in a domain D, one only needs to find a conformal map
(i.e. an analytic function f(z) with f'(z) # 0 for z € D) that maps D to the unit circle
(or any other domain where the Green’s function is known explicitly). The existence of
such a map is guaranteed for a large class of domains by the Riemann Mapping Theorem,
which states that if D is simply connected then there exists an analytic function f(z)
such that ¢ = f(z) maps D onto the disc || < 1 and f has a single—valued inverse on
the disc. However, this theorem is not constructive, and thus it does not tell us how to
find the crucial map. For polygonal domains such a map is given as an integral by the
Schwarz-Christoffel transformation, see e.g. [DT02]. (Using conformal mapping to solve
the Poisson equation is covered in many books, in particular [AF03, Chapter 5|, [Hen93,
Chapter 15|, and [OHLMO03, §5.9.1].)
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When the mapping function can be found explicitly, it is extremely hard to compete
with conformal mapping as a method for solving the Poisson equation in two dimensions.
Unfortunately, however, the method does not generalise to other second order elliptic

PDEs, or to the Poisson equation in three dimensions.

1.3 The Fokas method

The Fokas method has two basic ingredients:

1. The integral representation.

2. The global relation.

The integral representation (IR). This is the analogue of Green’s IR in the trans-
form space. Indeed, the solution u is given as an integral involving transforms of the
boundary values, whereas Green’s IR expresses u as an integral involving directly the
boundary values. The IR can be obtained by first constructing particular integral repre-
sentations depending on the domain of the fundamental solution E (“domain-dependent
fundamental solutions”) and then substituting these representations into Green’s integral

formula of the solution and interchanging the orders of integration.

The global relation (GR). The global relation is Green’s divergence form of the equa-
tion integrated over the domain, where one employs the solution of the adjoint equation

instead of the fundamental solution. Indeed

ou ov
- /m (“5)%(5) - Mé@(s)) aS(€) + /Q F(€)v(€)dv (&), (13.1)
where v is any solution of the adjoint of (1.1.1):

Av(z) + \v(x) =0, x e Q; (1.3.2)
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(equation (1.3.2) is (1.2.2) without the delta function on the right hand side). Separation
of variables gives a one-parameter family of solutions of the adjoint equation depending
on the parameter k € C (the separation constant). For example, for the the Poisson
equation equation, separation of variables in Cartesian co-ordinates yields four solutions
of the adjoint equation, v = e***** L € C. All equations (1.3.1) obtained from these
different choices of v shall be refered to as “the global relation”. This relation was called
the global relation by Fokas since it contains global, as opposed to local, information

about the boundary values.

Just like Green’s IR, the new IR contains contributions from both known and unknown
boundary values. However, it turns out that the GR involves precisely the transforms of
the boundary values appearing in the IR. The main idea of the Fokas method is that, for
certain boundary value problems, one can use the information given in the GR about
the transforms of the unknown boundary values to eliminate these unknowns

from the IR. This can be achieved in three steps:

1. Use the GR to express the transforms of the unknown boundary values
appearing in the IR in terms of the smallest possible subset of the other
functions appearing in the GR (if there exist different possibilities, use the one

which yields the smallest number of unknowns in each equation).

2. Identify the domains in the complex k£ plane where the integrands are
bounded and also identify the location of any singularities. At this stage
some unknowns can be eliminated directly using analyticity and employing Cauchy’s

theorem.

3. Deform contours and use the GR again so that the contribution from
the unknown boundary values vanish by analyticity (employing Cauchy’s

theorem).

For certain domains it is possible to solve the given BVP by using only a subset of the
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above three steps. For example, the half plane only requires step 1 §4.1, the quarter plane
steps 1 and 2 §4.2, and both the exterior of the circle §4.3 and right isosceles triangle §5

require all 3 steps.

This method yields the solution as an integral in the complex £ plane involving transforms

of the known boundary values. This novel solution formula has two significant features:

1. The integrals can be deformed to involve exponentially decaying integrands.

2. The expression is uniformly convergent at the boundary of the domain.

These features give rise to both analytical and numerical advantages in comparison with
classical methods. In particular, for linear evolution PDEs, the effective numerical evalu-

ation of the solution is given in [FF08].

Remark 1.3.1 (Philosophical Remark 1: “Green + Fourier”) As Figure 1.1 shows,
the method of separation of variables/transform is completely independent from Green’s
integral representations. Thus, the Fokas method is the first time these two classical tech-

niques have been genuinely used together.

Remark 1.3.2 (Philosophical Remark 2: “Go into the complex plane.”)
Representations of solutions to ODEs as integrals in the complex plane were pioneered by
Laplace in 1782, following earlier investigation by Euler in 1744, recounted in [GFGGI7,
Chapter 29]. Laplace considered

u(z) = /C dk K (2, %) F(k) (1.3.3)

with the kernel K(z,k) first equal to e** (“the Laplace kernel”) and then k* (“the Mellin
kernel”).

The Fokas method can be considered as the extension of this to PDEs. Indeed, in hindsight
the “moral” of the Watson transformation is that the best representation of the solution to
a separable PDFE is an integral in the complex k plane, which can be deformed to either of
the 2 representations obtained by transforms (which is precisely the representation obtained
by the Fokas method). It is therefore perhaps surprising that no-one tried to find this

representation directly until the advent of the Fokas method.
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Just as Green’s integral representation gives rise to a numerical method for solving these
PDEs (the boundary integral method), the Fokas method can also be used to design new
numerical schemes, which are presented in Chapter 6. The idea is that, for a bounded
domain, the global relation is valid for all k € C. Let the domain have n sides and suppose
we expand the n unknown functions (the unknown boundary value on each side) in some
series such as Fourier or Chebyshev up to N terms. If the global relation is evaluated
at nN points, this yields nN equations for the n/N unknowns, which in principle can be
solved. (Questions immediately arise about how to choose the basis and how to choose

the points k.)

1.4 The Fokas method versus classical techniques

Three questions now arise regarding comparing the Fokas method to classical techniques

for finding explicit expressions for the solution of BVPs:

(a) Is the Fokas method easier or harder to implement than the classical methods?

(b) How does the expression of the solution to a BVP obtained by the Fokas method

compare to the expressions obtained using classical methods?

(c) Can the Fokas method solve (i.e. find an explicit expression for the solution) any

BVP that cannot be solved using classical methods?

In this section we will discuss these questions in the context of three classical methods:
the standard transform method, the method of images, and conformal mapping. We begin

with some general remarks and then discuss each method in detail.

Question (a) is the least important, and the most subjective, question, and it is hard to
give an answer to it except when comparing the Fokas method to the classical transform

method.
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It is difficult to provide a definitive answer to question (b), since much depends on the
specific BVP in question. Indeed, a key factor in answering question (b) is whether the
prescribed boundary conditions are such that their transforms appearing in the Fokas
method solution can be expressed in terms of simple, easily computable, functions. If
this is the case, then the solution from the Fokas method is given as a single integral in
the complex k plane which can be deformed to involve exponentially decaying integrands.
Otherwise, two integrations need to be performed: one to compute the transforms, and a

second to compute the k-integral.

Regarding (c): given a domain for which the solutions of certain boundary value problems
can be found, the Fokas method can solve more complicated boundary conditions than
those that can be solved classically. However, so far the Fokas method has not been able
to extend the set of domains for which explicit solutions of boundary value problem for

(1.1.1) can be found.

1.4.1 Fokas vs. transforms

Since the Fokas method is closely related to the classical transform method, it is relatively

straightforward to compare the two, this is done in Table 1.1.

For some very simple BVPs it is immediately clear which are the appropriate transforms,
as well as which of these (if any) provides the best solution representation; thus for certain
very simple BVPs it may be easier to apply the standard transform procedure instead of
the new method. However, as Table 1.1 shows, in general the Fokas method requires less
mathematical input, is simpler to implement, yields more useful solution formulae, and is

more widely applicable than the classical transform method.
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The Fokas method

Transforms

Mathematical e Completeness relation for each | @ Completeness relation for one
input separated ODE in whole space separated ODE dependent on
(independent of the domain domain and boundary
and boundary conditions) conditions (bcs)
e Green’s theorem
Implementation | @ Same steps independent of bes | e Different transforms for different bes
given a BVP e Algebraic manipulation e Integration by parts
e Unknowns vanish by Cauchy e Solve ODE using 1-d Green’s function
Solution e Uniformly convergent at 0f) e Not uniformly convergent at OS2
e Given as an integral, deform e Either an infinite sum or an integral
contour so integrand decays depending on domain. If an integral,
exponentially can deform contour so integrand
decays exponentially
Boundary e Separable and some e Only separable
conditions non-separable
Domains e Separable and some e Only separable

non-separable

Table 1.1: Comparison of the Fokas method and classical transforms in 2-D
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1.4.2 Fokas vs. conformal mapping

As discussed in Section 1.2.5, it is extremely hard to compete with conformal mapping
as a method for solving the Dirichlet and the Neumann boundary value problems for the
Poisson equation when the appropriate mapping function is known explicitly. The class of
domains for which this is the case is much wider than the class of domains admissible to
the classical transform method, the method of images, and the Fokas method. However,
for a BVP that can be solved both by conformal mapping and by the Fokas method
(such as the Dirichlet problem for the Poisson equation in a right isosceles triangle in
Chapter 5), we expect that the Fokas method may be competitive when the transforms
of the boundary conditions can be expressed in terms of easily computable functions. It
is beyond the scope of this thesis to test this, however, a concrete comparison should be

performed.

Of course, for boundary conditions other than Dirichlet and Neumann conformal mapping
fails in general, and it also cannot be applied to the Helmholtz and modified Helmholtz

equations.

1.4.3 Fokas vs. images

Regarding the question (a): the image method is simpler than the Fokas method in that

it takes place in the physical, as opposed to spectral, space.

Regarding the question (c): the Fokas method is applicable to a wider class of BVPs than
the method of images. Indeed, images fails for boundary conditions other than Dirichlet
and Neumann for all but the simplest of domains, however the Fokas method can solve

many BVPs with Robin and oblique Robin boundary conditions.

Regarding the question (b): there are two different type of solutions obtained by the

method of images:
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(i) the Green’s function given as a sum of eigenfunctions (this is possible only when

the domain is bounded), and

(ii) the Green’s function given as a sum of fundamental solutions evaluated at the image

points.

The solution given by (i) is, by construction, not uniformly convergent at 02 whereas the
Fokas method solution is uniformly convergent on 0f2. Regarding the evaluation of (i)
versus the evaluation of the Fokas solution: at first sight it appears that the expression
for v given by the Fokas method as an integral involving transforms of the boundary
conditions is superior to the expression for u given by (i) as an integral of a bi-infinite
sum. However this sum can be computed using the FFT, so a case-by—case comparison

should be carried out.

When an infinite number of images are required in the solution given by (ii) it appears
the solution given by the Fokas method is superior. When only a finite number of images
are required (the wedge with angle 7/n, n > 1) the situation is less clear. If the boundary
conditions are such that their transforms can be computed explicitly, then the solution
from the Fokas method is given as a single integral over k which can be deformed to
involve exponentially decaying integrands and this is in general superior to the image
solution. If not, both images and the Fokas method yield the kernels against which the
boundary conditions must be integrated in Green’s IR (either the Green’s function or its
derivative evaluated on the boundary): the Fokas method gives them as an integral over
k, and images gives them in terms of the fundamental solution. The question of which
expression is superior boils down to how easily the relevant fundamental solution can
be computed versus how easily the k-integrals in the Fokas solution can be computed.
For the Poisson equation, where the fundamental solution is given as a logarithm, we
expect the image solution will be easier to compute than the Fokas solution. For the
Helmholtz and modified Helmholtz equations, where the fundamental solutions must be
computed via an integral representation, we expect both methods to require comparable

resources to compute, although, again, concrete comparisons on specific examples should
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be performed.

1.4.4 Dirichlet to Neumann map

If one only wants to find the unknown boundary values, the Fokas method has a clear
advantage over classical methods. Indeed, with both transforms and images, to find
the Dirichlet to Neumann map one must first find the solution, then evaluate it (or
its derivative) on the boundary. In the Fokas method manipulating the GR (in a very
similar way to the procedure for finding the solution u) leads immediately to the unknown
boundary values. The expression for the Dirichlet to Neumann map then also has all
the advantages listed above over the corresponding classical solution. This is illustrated

in remark 4.1.4 for the half plane and §5.2.2 for the right isosceles triangle.

1.4.5 The classical techniques reformulated

The two classical techniques of images and transform methods can be reformulated, and

simplified, in the framework of the Fokas method:

1.4.5.1 Images — invariances of the GR in physical space

When ¢ Q the delta function in the definition of E (1.2.2) is zero and hence the left

hand side of (1.2.1) is zero. We supplement (1.2.1) with this additional equation to obtain

[ (Beogie-uaSes) i@+ [ ropeaae - uw). eeo
(1.4.1)
— 0, zgq.

(1.4.2)

Call the first equation the integral representation in the physical space, and call the second

equation the global relation in the physical space.
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The method of images is equivalent to eliminating the unknown boundary values in (1.4.1)

by using the invariance properties of (1.4.2).

For example, let €2 be the upper half plane y > 0 and for simplicity consider Laplace’s
equation ((1.1.1) with A =0 and f = 0). Then (1.4.1) and (1.4.2) become

> Yy 1 5 970U B
/_Oo (u(g’O)Qﬂ'[(f _$)2 +y2] - Elog [(5 _37) +y ]%(6a0)> d& - U’(xay)> Yy > O,
(1.4.3)
=0, y < 0.
(1.4.4)

If we let y — —y in the second equation, the first term on the left hand side changes sign,

whereas the second term remains unchanged, so (1.4.4) becomes

(1.4.5)

Both (1.4.5) and (1.4.3) are valid for y > 0 and subtracting (1.4.5) from (1.4.3) we

eliminate the unknown Neumann boundary value 2%(&,0), to obtain

Y Y
u(x,y)—/_oo (5’0)7?[(5—.75)24—@/2]6[5’ y >0 (1.4.6)

which is equivalent to (1.2.6) with f = 0 and with G(&, x) given by

G(Ev m) = E(gv n, T, y) - E(ga n,, _y) (147)

which is the familiar result obtained using the method of images. In a similar way, all the
boundary value problems solvable using the method of images can be solved by analysing

the invariance properties of (1.4.2).
Thus the “recipe”,

“Construct an integral representation for u in € in terms of the boundary values of u on
0f). Supplement this with the global relation, which is an equation coupling the bound-

ary values. By manipulating these equations, and in particular by using the invariance
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Divergence form

N

PHYSICAL SPACE SPECTRAL SPACE

IR: u as integral of boundary values IR: u as integral of transforms of b.v.s
Global relation Global relation

Method of images: New transform method:

eliminate unknown boundary values eliminate transforms of unknown b.v.s
Boundary integral method: New numerical method:

solve GR numerically solve GR numerically

Figure 1.5: Solution methods in the physical and spectral space.

properties of the global relation, eliminate the unknown boundary values from the integral

representation.”

can be applied in both the physical and spectral spaces, where it is the method of images,
and the Fokas method respectively. We also note that the linear integral equation for the
unknown boundary values, on which the boundary integral method is based, was obtained
by taking the limit of (1.4.1) as @ tends to the boundary from inside 2. We emphasise
that this integral equation could also be obtained from (1.4.2) by taking the limit as @
tends to the boundary from outside 2. Hence, the boundary integral method is

based on the solution of the global relation in the physical space.

This motivates Figure 1.5.

1.4.5.2 Transforms — applying the global relation in subdomain

The classical transform method can be reformulated as the following procedure:

e Split the separable domain €2 along a line of constant co-ordinate and apply the

global relation in the two subdomains.

e Eliminate the transform of unknown functions via algebraic manipulation of the
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GR.

e The result is that a transform of the solution is given in terms of transform of the

known boundary values, which can then be inverted.

This formulation has two advantages over the usual implementation of the classical trans-

form method:

1. One does not need to specify the appropriate transform in advance, it comes out of

the GR.

2. Integration by parts and solving an ODE are replaced by algebraic manipulations.

The only drawback is that one still needs to invert a transform at the end in order to
find the solution. This inversion can be obtained by the classical method, or by a method
which is a spin-off of the Fokas method - a new way to inverting integrals [Fok08] Chapter
6.

These reformulations/simplifications of the classical transform and image methods are
applied to boundary value problems for (1.1.1) in spherical co-ordinates in 3-dimensions

in [DF0S].

1.5 From Green to Lax via Fourier: a unification

This thesis is concerned with the Fokas method applied to (1.1.1). However, this method
solves boundary value problems for many other linear PDEs, and also the so-called “in-

tegrable” PDEs. This section discusses this bigger picture.
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1.5.1 Integrable systems in classical mechanics

There does not yet exist a universally agreed definition of what it means to be “integrable”.
In many contexts, and broadly speaking, the term “integrable” means “linearisable”, that
is, can be solved using linear methods. In the context of Hamiltonian systems of ODEs
the notion of integrability was introduced by Liouville around 1850. This roughly states
that if there are “enough” conserved quantities, there is a change of variables (so-called
“action-angle co-ordinates” under which the flow in phase space is linear. Very few of
these classic integrable systems were known, and so there was little interest in the subject
until it was discovered that the notion of integrability could be extended to certain, widely

applicable, PDEs.

1.5.2 The Korteweg-de Vries (KdV) equation

The KdV equation,

was first written down by Boussinesq in several papers in the 1870s, but it is named after

Korteweg and deVries who derived the same equation in 1895 in the same context as

Boussinesq: the asymptotic limit of the 2-d Euler equations in the case of long waves in

shallow water . It is the “simplest” PDE with both dispersion (spreading) and nonlinearity

(steepening), [DJ89, §1.1] Korteweg and de Vries discovered the travelling wave solution
2

_ p
2 cosh®[2p(z — p2t) + ]’

q(z,t)

which was proposed as an explanation of the British experimentalist J. Scott Russell’s

observations of a “solitary wave” in a canal in 1834.

In 1967 Kruskal and Zabusky were investigating the so-called Fermi-Pasta—Ulam problem
(FPU) of coupled, vibrating, non-linear springs. They obtained the KdV equation from a
simplified model, and solved it numerically. They discovered that the KdV equation had

solutions consisting of several travelling waves (“solitons”), which interacted with each
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transform

q(x,0) , > (k,0)

. T part

|

| time evolution

PDE | t part

|

v inverse transform
q(z,T) = q(k,T)

T part

Figure 1.6: The steps of the Inverse Scattering Transform

other almost as if the equation were linear. This sparked renewed interest in the KdV
equation, and the discovery of an ingenious method of solution of the initial value problem
(IVP), that is the problem of determining the solution, ¢, of the PDE (1.5.1) posed on
x € (—00,00), t € [0,T], and subject to ¢(z,0) equal to some given function, [GGKM67].

This method was called the “Inverse Scattering Transform” (IST) and relied on the fact
that the KdV equation could be written as the compatibility condition of two eigenvalue
equations involving an auxiliary function ¢ and a parameter k, called a “Lax pair” after

Peter Lax, [Lax68],

P + (q + k2)¢ =0,
b1+ (2¢ — 4k by — (qu + 1) =0, k€ C.

The analysis of the first part of the Lax pair (the z-part) produces a transform pair, and
the second part of the Lax pair (the t-part) then immediately gives the time-evolution
of that transform, see Figure 1.6. (The method was called the “Inverse Scattering
Transform” because the x-part of the Lax pair of the KdV is the 1-d time-independent
Schrodinger equation. This method was discovered precisely because there was great

interest in this equation which is the simplest model of scattering in 1-d.)

It was realised that this resembled the solution of the IVP for linear evolution PDEs
in one space and one time variables (eg. the heat/diffusion equation ¢, = ¢,,) by the
Fourier transform, see Figure 1.7, and also that in the linear limit the solution of the KdV

equation by the IST reduced to the Fourier transform solution of the linearised equation;
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F.T.
q(z,0) > q(k,0)
PDE , time evolution
V‘ inverse F.T.
q(z,T) = q(k,T)

Figure 1.7: The solution of linear evolution PDEs in 1 space and 1 time variables by the

Fourier transform

so the IST was declared as the non-linear analogue of the Fourier transform.

In 1971 the KdV was written as an integrable (in the sense of Liouville) Hamiltonian
system by Zakharov and Faddeev, justifying calling it “integrable”. At first the IST was
considered a “fluke”, much like the Cole-Hopf transformation which linearises Burger’s
equation by mapping it to the heat equation. However, in 1972 Zakharov and Shabat

showed that the non-linear Schrodinger equation
i+ qea +2gI*q =0

possesses a Lax pair and could also be solved by the IST, re-invigorating the study of

integrable equations.

1.5.3 Lax pairs

Let q(z,t) satisfy a PDE. This PDE has a Lax pair formulation if the PDE can be written

in the form

Ay — B, +[A, B] =0, (1.5.2)
where [A, B] := AB — BA and both A and B are matrix functions of z,t, ¢(z,t) and
k € C. If (1.5.2) holds, then the PDE is the compatibility condition of the following Lax
pair of equations:

b = Ao, (1.5.3a)
¢ = Bo, (1.5.3b)
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involving a vector function ¢(x,t). The condition ¢+ = ¢, which is equivalent to (1.5.2),
ensures that equations (1.5.3) describe the same ¢. Indeed, to recover ¢ from ¢, and ¢,

one integrates
(z,t)
¢(z,t) = / Gwda’ + ppdt’.

This integral is a well-defined function of z and ¢ if it is independent of the path of

integration, and by Green’s theorem this is the case if and only if ¢, = Pss.

Possessing a Lax pair is a very special property, and it is often said that the integrable
PDEs form a “set of measure zero” in the “space” of PDEs. However, perhaps surprisingly,
they appear in many physical applications. (A possible explanation of this is given in

[Cal91]).

Crucially, the matrices A and B in (1.5.3) are functions of a complex parameter k, and
this allows one to analyse the Lax pair (using Riemann-Hilbert problems, see Section

1.5.4 below) and obtain useful information about the solution u of the PDE (1.5.2).

Possessing a Lax pair can be used as a possible definition of integrability, and since the
investigations into the KdV equation, many other equations/systems have come under

the integrable “umbrella”, such as

e integrable PDEs,

e the Painlevé ODEs,

e integrable difference equations,
e orthogonal polynomials, and

e random matrix models,

see e.g. [ACI1], [Dei00], and [FIKNO6].
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Figure 1.8: A simple example of an oriented contour ¥ C C

1.5.4 The Riemann-Hilbert (RH) problem

When the IST was introduced, the analysis of the Lax pair was conducted via the so-called
Gel'fand-Levitan-Marchenko (GLM) integral equation. In 1975 Zakharov and Shabat
realised this could be conducted via a classic problem of complex analysis, the Riemann-
Hilbert problem, and it was realised that this had several key advantages over the GLM
approach. The RH problem has 2 ingredients:

1. an oriented contour ¥ C C, Figure 1.8 shows a simple example,

2. the “jump matrix” G, a map which assigns a matrix to every point on the contour

(G:X — GL(N,C)).

The problem is to find a matrix Y(z) such that

e Y analytic in C/X (i.e. each entry of Y is a complex—differentiable function in C\ X)),
e Y. (z) =Y_(2)G(2) for z € ¥ (the “jump”), and

o Y(z2) =1 as z — oo,

where Y, (z) is the limit of Y (2) as z tends to the contour from the + region, and Y_(z)
is the limit of Y (2) as z tends to the contour from the - region, see e.g. [AF03]. The
technical aspects of this problem, such as the minimal smoothness restrictions on I, the
allowable functional classes of the matrix G, and the precise sense in which the limits at
infinity and on ¥ are attained, are still the subject of current research (see e.g. [FIKNOG]

for further details).
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Special cases of RH problems are the factorisation problems arising in the Wiener-Hopf

technique, [Nob88|, where the contour X is the real line.

In the IST method, the analysis of the z-part of the Lax pair is conducted by forming a
RH problem in the complex variable k. This is known as “spectral analysis” of the z-part

of the Lax pair.

1.5.5 The Fokas method

After the solution of the IVP for the KdV equation, arguably the most important problem
was the initial-boundary value problem (IBVP) on the half line 0 <z < 00, 0 <t < T..
A method for solving IBVPs for integrable PDEs and linear PDEs was presented in
[Fok97] after a sequence of developments over several years (listed in [Fok08] page 317).
A particularly important one was in 1994 when Fokas and Gel’fand formulated Lax pairs
for linear evolution PDEs and showed that the spectral analysis of the xz-part of the Lax
pair yields the Fourier transform [FG94]; thus the IST is genuinely a non-linear Fourier

transform.

The key idea of the new method was that both parts of the Lax Pair should be analysed
simultaneously, as opposed to the IST where they were analysed sequentially, and the vast
majority of the work was on the z-part. It was later realised that the best way to perform

this simultaneous spectral analysis of the Lax Pair is through the differential form
O.dx + ¢pdt = Apdx + B dt (1.5.4)

which is exact/closed iff g satisfies the PDE. This differential form yields the global relation
in a straightforward manner, for linear PDEs the global relation is the integral of (1.5.4)

over the boundary of the domain.

The Fokas method can be summarised as follows. Given,

e a PDE with a Lax pair,
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e a domain,

perform the simultaneous spectral analysis of the Lax pair in the domain to obtain:

1. an integral representation of the solution as an integral in C of transforms of the
boundary values (for linear PDEs this is the analogue of Green’s integral represen-

tation in the Fourier/transform space),

2. the global relation: an equation coupling the transforms of the boundary values

(some of which are unknown).

Use the global relation either to find the unknown boundary values or to eliminate their

contribution from the integral representation.

1.5.6 From Green to Lax

One of the ideas of the Fokas method is that Lax pairs - an idea which originated in the
theory of nonlinear “integrable” PDEs - are equally applicable to linear PDEs. Moreover,
a posteriori they should have been discovered by Green, since for linear PDEs, Lax
pairs naturally arise from the divergence form of the PDE, which is the starting

point for Green’s integral representation.

In particular, for the PDE (1.1.1), the global relation (1.3.1) arises from the divergence
form

V- (vVu —uVv) =0, (1.5.5)

where v is a one-parameter family of solutions of the adjoint equation (1.3.2) (obtained by
separation of variables). For problems in Cartesian co-ordinates the appropriate family
is exp(ikix + ikoy) where k3 + k3 = A. In two dimensions the divergence form (1.5.5)
becomes

(vuy — uvy), + (vuy — uvy), = 0.
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A Lax pair for the Helmholtz equation is then

Vo = —(vuy — uvy), (1.5.6a)

Py = VU — U, (1.5.6b)

Indeed, it can be verified that the condition 1, = 1, is equivalent to the Helmholtz
equation in Cartesian variables. The pair (1.5.6) can be put in the form (1.5.3), with ¢
replaced by y, by letting

0 wuv, —vu 0 vu, — uv,
o= 4 , A= Y Y1, and B= :
1 0 0 0 0

and then (1.5.3) reduces to (1.5.6).

The Fokas framework for separable linear and integrable non-linear PDEs is shown in
Figure 1.5.6. This thesis includes all the steps in Figure 1.9(a) except for obtaining the
integral representation via the spectral analysis of the global relation (equivalent to the

simultaneous spectral analysis of the Lax Pair), [Fok08] Chapter 11.

1.6 How the results of this thesis are related to pre-

vious work

This Section discusses how the analytical results in this thesis are related to previous work

on the Fokas method. The numerical method of Chapter 6 is related to previous work in

§6.4.

Integral representations of the solution of the homogeneous version of (1.1.1) in a convex
polygon were given in [Fok01] via spectral analysis of the GR. A Lax pair/differential form
was used which did not come from Green’s divergence form, and so involved the Dirichlet
and Neumann boundary values and the derivative of the Dirichlet boundary values. In
addition, for Laplace only, a representation for the derivative of the solution wu, was

found. (In other words, the equation u; = 0 was solved.) In [FZ02] these representations
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Figure 1.9: The framework for linear separable PDEs and nonlinear integrable PDEs
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were re-derived from the physical space integral representation by substituting (2.1.5)
into the integral representation and performing one k integration (this procedure was
first performed for linear evolution PDEs by [Bre97]). In [CDF09] it was realised that
convexity was not essential for obtaining an integral representation in the spectral space,
and an integral representation of u, for Laplace in the exterior of a convex polygon was
obtained using the method of [FZ02]. Boundary value problems for the inhomogeneous

equation
uz = f

were solved in [FP06] by first subtracting off a particular solution and then solving the
homogeneous equation (in general this leads to a more complicated expression for the

solution than if this trick is not employed).

Boundary value problems for u; = 0 and the homogeneous the modified Helmholtz equa-
tion equation were solved in [FKO03],[bAF01],[bAF99],[AF05],[DF05],[FP06]. The main

achievements were

e Solution for non-separable boundary conditions, explicitly for relatively simple ones
in [FKO03],[FP06], and the Dirichlet to Neumann map expressed in terms of a
Riemann-Hilbert problem for more complicated ones in [FKO03],|AF05].

e Solution in non-separable domains as an infinite series (as opposed to a bi-infinite
series classically) for the equilateral triangle in [DF05] and the right isosceles triangle
in [FKO03] (although it was not appreciated at the time that this was an improvement

on the classical).

e For boundary value problems where the solution is given as an integral this expres-
sion is uniform convergent at the boundary and the contours can be deformed to
giwe exponential decay: these 2 achievements were not realised initially, but later

emphasised in the book [Fok08].

The main achievements of this thesis are:
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Integral representations are presented for the inhomogeneous equation (1.1.1).

The integral representations contain transforms of only Dirichlet and Neumann

boundary values.

An integral representation for the solution u of the Poisson equation has been ob-

tained (as opposed to the derivative u,).

The solution in non-separable domains is now given as an integral (as opposed to

an infinite sum in [FK03],[DF05], and a bi-infinite sum classically).

The method has been used to solve boundary value problems in polygonal domains
for the Helmholtz equation for the first time. These are more complicated than for
the modified Helmholtz equation or the Poisson equation because the contours of

integration now involve circular arcs and must be suitably deformed to avoid poles.

The method has been extended from polygonal domains to domains in polar co-

ordinates.

In addition

The connection with Green’s identity is now better understood via the domain-
dependent fundamental solutions, and these have simplified the method of obtaining

the novel integral representations from the physical space.

The process for solving boundary value problems has been stated algorithmically

(Chapter 1 §3).

The invariances of the GR in polygons have been completely understood, which
gives an indication of why the method has not yet been able to solve boundary

value problems in more complicated domains.

Remark 1.6.1 (Shanin) The GR for the Helmholtz equation in the interior of an equi-
lateral triangle was first discovered by Shanin [Sha97] (later published as [Sha00]). He
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considered impedance boundary conditions, found the eigenvalues and eigenfunctions of
the Laplacian in this situation, and solved the associated BVP for the Helmholtz equation,

with the solution given as an infinite series.

1.7 Summary of thesis

Chapter 2: The integral representation

e In this Chapter we use transforms (depending on the co-ordinate system) to ob-
tain integral representations (IRs) of the fundamental solution (“domain-dependent

fundamental solutions”).

e These domain-dependent fundamental solutions are then substituted into Green’s

IR of the solution and the order of integration interchanged.

e This results in a representation of the solution as an integral of transforms of the
Dirichlet and Neumann boundary values — the analogue of Green’s IR in the trans-

form space.
Chapter 3: The global relation

e The global relation (GR) is Green’s divergence form of the equation, integrated
over the domain, with particular solutions of the (homogeneous) adjoint equation

replacing the fundamental solution.

e Separation of variables gives a one-parameter family of solutions to the adjoint

equation depending on the parameter k£ € C (the separation constant).

e When () is infinite, £ must be restricted so that the integral on the boundary at

infinity is zero.

e The GR is useful because it involves the transforms of the boundary values appear-

ing in the IRs, and so gives information about the unknown transforms. In some
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cases this information can be used to eliminate the unknowns from the IR and hence

find the solution to the boundary value problem.

Chapter 4: Solution of boundary value problems in separable domains

e In this Chapter we solve

— the Poisson, modified Helmholtz, and Helmholtz equations in the half plane
for Dirichlet and oblique Robin boundary conditions §4.1,

— the Helmholtz equation in the quarter plane for Dirichlet and oblique Robin
boundary conditions §4.2,

— the Helmholtz equation in the exterior of the circle with Dirichlet boundary

conditions §4.3.

The half plane is included as it is the simplest possible example of applying the new
method, and only involves Step 1 of Chapter 1 §3. No boundary value problems
in the half plane are solved with the new method that cannot be solved classically,

however we include their solution by the new method for pedagogical reasons.

The quarter plane is included as it is the simplest possible case where the new
method solves certain boundary value problems which cannot be solved classically.

The solution involves Steps 1 and 2 of §1.3.

The Helmholtz equation in the exterior of the circle played a prominent role in the
development of classical transforms and the Fokas method sheds new light on this

classic problem. The solution involves Steps 1, 2 and 3 of Chapter 1 §3.

For the half plane and quarter plane we use the IR and GR for polygons from §2.1
and §3.1 respectively. For the exterior of the circle we use the IR and GR in polar

co-ordinates from §3.2 and §3.2 respectively.

Chapter 5: Solution of boundary value problems in a non-separable domain
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e This Chapter presents the solution of the Dirichlet problem for the Poisson and

modified Helmholtz equations in the interior of a right isosceles triangle.

e In this domain the Fokas method, yielding the solution as an integral, has a huge

advantage over the classical solution of a bi-infinite sum of eigenfunctions.
e The solution procedure involves Steps 1-3 of §1.3.

e We also include an example of how to obtain the Dirichlet to Neumann map directly

(without going via the solution) for the Dirichlet problem.

Chapter 6: A new numerical method

e In this Chapter the Dirichlet to Neumann map is solved numerically for the Laplace

and modified Helmholtz equations in general convex polygons (with n sides).

e The main idea is that the global relation is valid for all k € C. Expanding the n
unknown functions (the unknown boundary value on each side) in some series such
as Fourier or Chebyshev up to N terms and then evaluating the global relation at
a properly chosen set of n/V points (collocation points in the spectral space) yields

nN equations for the n/N unknowns.

e Numerical experiments suggest that the method inherits the order of convergence
of the basis used to expand the unknown functions; namely exponential for a poly-

nomial basis, such as Chebyshev, and algebraic for a Fourier basis.

e However the condition number of the associated linear system is much higher for a

polynomial basis than for a Fourier one.
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Chapter 2

The integral representation

Summary:

e In this Chapter we use transforms (depending on the co-ordinate system) to ob-
tain integral representations (IRs) of the fundamental solution (“domain-dependent

fundamental solutions”).

e These domain-dependent fundamental solutions are then substituted into Green’s

IR of the solution and the order of integration interchanged.

e This results in a representation of the solution as an integral of transforms of the
Dirichlet and Neumann boundary values — the analogue of Green’s IR in the trans-

form space.

This chapter is concerned with obtaining the new IRs — the analogues of Green’s IR in
the transform space. Section 2.1 presents these for the solution of (1.1.1) in polygonal

domains, section 2.2 presents them for domains in polar co-ordinates.

45
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2.1 Polygons

Notations We identify R? with C. Let z = x+1y be the physical variable, and 2z’ = £ +in
the “dummy variable” of integration. We will consider u both as a function of (z,y), and

as a function of (z, z) interchangeably. The chain rule implies
0 1/0 0 o 1[0 .0
a. A = — 7 ) a- A — ti1— 9
0z 2\0x Oy 0z 2 \0x Oy

> u+éu——i
020z 4 4

For the Helmholtz equation , A = 432, 3 € R*, and for the modified Helmholtz equa-

so (1.1.1) becomes

tion, A\ = —432, 3 € RT. The subscripts T and N will denote tangential and normal

respectively.

Let Q) be the interior of a polygon in R? , and (°) the exterior. Let 92 denote the bound-
ary of the polygon, oriented anticlockwise, where the vertices of the polygon zy, 29, ..., 2,
are labelled anti-clockwise. Let S; be the side (z;, z;+1) and let ; = arg(z;41 — 2;) be the
angle of S;. Each side divides R? into two open regions: S J(-i) S](.e). If 2/ € S; then

z € S](-i) = a; <arg(z—72) <aq;+m, (2.1.1a)

z € Sj(e) = T+ <arg(z—2') < a; + 2, (2.1.1b)

see Figure 2.1.

2.1.1 Co-ordinate system dependent fundamental solutions

In cartesian co-ordinates, (1.2.2) is
Eee + B+ AE = —6(6 —x)0(n —y). (2.1.2)

The differential operator
d2

——u=\u

a2
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Figure 2.1: Part of the polygon showing the side \S; and regions Sj(e),S](-i)

on (—o00,00) possesses the associated completeness relation

1

§(&—x) = %/ eF1 @O dk, (2.1.3)

i.e. the Fourier transform [Sta67, Chapter 4]. Since the differential operator in 7 is the
same as the one in £ the completeness relation for the n co-ordinate is

2T

—0o0

1 o
Sn—y) = — / ka0 g (2.1.4)

These two completeness relations give rise to the following integral representation of F:

5 1 i etk1(z—&)+ika(y—n)
= — 2.1.
(57777'r7y) (27T)2 //R2 1 2 k% + k% —\ ) ( 5)

where the contours of integration must be suitably deformed to avoid the poles of the

integrand. (Strictly, the contours of (2.1.3) and (2.1.4) should be deformed before using
them to obtain (2.1.5). See Remark 2.1.5 at the end of this section.)

Proposition 2.1.1 (Integral representation of E for the modified Helmholtz
equation) Given 0 € (—m, ), for the modified Helmholtz equation, the fundamental
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Xy

Figure 2.2: The points z, 2z’ and the local co-ordinate system (Xr, Xy)

solution E is given by

B(+, ) = ﬁ /0 h d—: exp (w (k(z _ et - %(m)ew)) | (2.1.6)

where 0 < arg(z — 2') < 0 +m. (Note that if arg(z — 2') = 0 or 6 + m, then the integral in
(2.1.6) is not absolutely convergent.)
Proof Starting with (2.1.5) where A = —43?, define X7, Xy by

=2 ==& +ily—n)=(Xr+iXy)e?, (2.1.7)

so that, if § < arg(z — 2’) <6+, then Xy =Im((z — 2/)e™") > 0, see Figure 2.2,

In a similar way, rotate the (ki, k3) plane by letting
]{71 + Zk’z = (k?T + ikN)eie,
so that

ki(z —&) 4+ ke(y —n) = kr Xy + En X, (2.1.8)
klz + k?22 = ]CT2 + k‘N2

and (2.1.5) becomes

eikTXT"l‘ikNXN

1
E = — dkrdk . 2.1.9
<€7nax7y) (271')2 //]1{2 T Nk%+k]2v+4ﬁ2 ( )

Now perform the ky integral by closing the contour in the upper half plane (as Xy > 0)

to obtain
1 oo eikTXT_\/k%"F—462XN

A7 J_ o \/m
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The substitution ky = (I — 1/1) transforms (2.1.10) to

E(¢ n,xy) = ﬁ/ﬂw%exp (zﬂ (l - %) Xr—p (l + %) XN>, (2.1.11)

which becomes (2.1.6) after using (2.1.7) and relabelling [ as k. The right hand side of
(2.1.6) defines a function of z — 2’ in a half plane. To show that this expression defines a
function of z — 2’ in the whole plane (except zero), we must show that the right hand sides
of (2.1.6) for different values of § are equal for z — 2’ in the common domain of definition.
This is achieved by rotating the contour, using Cauchy’s theorem and the analyticity of

the integrand in k. 0

The main differences between the Helmholtz equation and the modified Helmholtz equa-

tion are that

1. there are two fundamental solutions, and

2. the contour of integrations for both the fundamental solutions contain circular arcs

as well as rays in the complex plane.

These differences follow from the fact that, for A > 0, the integral representation of E
(2.1.5) has poles on the contour; thus it is not well-defined. There are two different choices
of contour that resolve this ambiguity, and then these two choices yield two fundamental

solutions.

Proposition 2.1.2 (Integral representation of E,,, and E;, for the Helmholtz
equation) Given 0 € (—m, ), for the Helmholtz equation, the two fundamental solutions

are given by

Eou(?,2) = iHél)(Qﬁ’Z —2|) = E/ 7 P (iﬁ (k(z —2Ne ¢ E(Z — z’)ew)) )

4’__31(2) _/_i % - _/—z‘@l_/ie
Ein(?,2) = 4HO (20]z z|)—47T/Lmkexp<zﬂ<k(z 2e —i—k(z 2'e ,
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(a) The contour Ly, of integration in the k (b) The contour L;, of integration in the k plane

plane for Hél), i.e. outgoing for H(()Q), i.e. incoming

Figure 2.3: The contours L,,; and Li,.

where 0 < arg(z — 2') < 0 + w, and the contours Ly, and L, are shown in Figure 2.3.
(Note that if arg(z — 2') = 6 or 0 + 7, then the integrals in (2.1.12) are not absolutely

convergent. )

Proof For the Helmholtz equation the fundamental solution is given by (2.1.5) with
A = 43% 3 € R. As before, first perform the ky integral. For |kr| > 23 the poles are
on the imaginary axis (like for the modified Helmholtz equation) at ky = +i~/k% — 432.
For |kr| < 20 the poles are on the real axis, at ky = /4% — k2, and the ky integral
is not well-defined unless the path of integration about the poles is specified. The two
paths around the poles yielding non-zero answers are given in Figure 2.4. The two choices
differ in their asymptotic behaviour at infinity, which correspond to outgoing or incom-
ing waves respectively (with the assumed time dependence e~**). A priori we do not
know which choice leads to which fundamental solution, but once both expressions have

been obtained this can be determined by computing their asymptotics (by the method of

steepest descent). Perform the ky integration to obtain

dkr

47

1 eikTXT—w /k2.—46%| X N| i 203 ez‘kTXTiz',/4ﬂ2—k%|XN\
E(ﬁ?ﬁaxay):_/ dkr £ —
kri>28 N/ kF — 4532 Am Joog  \AP? — K

(2.1.13)
with the top sign corresponding to H(()l) and the bottom HéQ). As for the modified
Helmholtz equation, a change of variables can be used to eliminate the square roots.

In this case this change of variables is kr = [ (Il 4+ 1/1). This is motivated by the fact that
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2 _ k3 _Ju2 g2
452 - 1%, \Vag? =12 m
. 212
—\/48% - k U v VA -k

(a) H(gl) i.e. Outgoing (b) HO(Q) i.e. Incoming

o

Figure 2.4: The contours for the ky integration in the fundamental solution to obtain
HY and HY

if | = €' then kp = 28 cos ¢, and then \/m = +203sin¢ = Fif(l — 1/1). Due to
the square roots there are several choices for the range of integration in [ (but all these
choices lead to equivalent answers). In order to get the same integrand for both integrals
in (2.1.13) we choose | € (1,00) and I € (0,—1) in the first integral, ¢ € (—m,0) in the
second for outgoing and ¢ € (0,7) in the second for incoming. A few lines of calculation,
as well as relabelling [ as k, yields (2.1.12). The proof that (2.1.12) defines a function of
z — Z' in the whole plane follows by contour deformation in a similar way to that for the

modified Helmholtz equation. O

For Poisson, this algorithm of constructing representations of the fundamental solution
results in a representation that is formal, namely it involves divergent integrals. This
is a consequence of the fact that the fundamental solution for Poisson, —% log |€ — x|,
does not decay at infinity, and so its Fourier transform is not well defined in a classical
sense. Nevertheless, when the representation of the fundamental solution is substituted

into Green’s IR, the resulting IR for u is well defined.

Proposition 2.1.3 (Integral representation of £ for the Poisson equation) For

Poisson’s equation, a formal representation of the fundamental solution is given by

> dk . —if / = dk 0T o
/iE & €XP (ike (= — 2')) +/—ia ~ oXP (—zk;e (z — z))) :
(2.1.14)
0 <arg(z—2)<0+m.

1
E(Z,z) =lim — (

e—0 47

(Note that if arg(z — 2') = 0 or 0 + 7 then the integrals in (2.1.14) are not absolutely

convergent. )
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1€

e

Figure 2.5: The deformed contour of integration in the kr plane.

Proof Start with (2.1.5) with A = 0 and perform the same change of variables, (2.1.7)
and (2.1.8), as for the modified Helmholtz equation to obtain (2.1.9) with 8 = 0. Deform
the kr contour above or below the singularity at 0 so it passes through ¢, see Figure 2.5.
Perform the ky integral by closing the contour in the upper half plane to enclose the pole
at ky = ikr for Rkr > 0 and ky = —ikr for Rk < 0, to obtain

0o etk Xr—kr XN e etkr Xr+kr XN
/ dbp ————— +/ dkr —) . (2.1.15)

1
E = —
(57777x7y) 47 ( . kT e _kT
Now let kr — —kr in the second integral and use (2.1.7) to obtain the right hand side of

(2.1.14) without the ¢ — 0 limit (after relabelling kr as k).

The rotation of contours that shows (2.1.6) and (2.1.12) are well defined functions of z — 2’
in the whole plane requires that the contours start from zero and hence fails for (2.1.15).
Taking the ¢ — 0 limit allows this argument to proceed for (2.1.15); however the integrals

do not converge in this limit. [ 0

Remark 2.1.4 (Derivation via one transform) The IRs of E have been obtained by
taking two transforms to obtain (2.1.5), then computing one integral. Alternatively, they
can be obtained by taking one transform, then solving one ODE. For example, after rotat-

ing co-ordinates using (2.1.7), equation (2.1.2) with A\ = —43? becomes
Ex,x; + Exyxy — 40°E = —0(X7)6(Xn).
Taking the Fourier transform in Xt yields

Ex,xy — (482 + K2 E = —e*mX1§( X y),
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which can be solved using a 1-d Green’s function to give

etk XT—1/ k2 +46%| X |
22 +432

Then the inverse Fourier transform yields (2.1.10).

E =

Remark 2.1.5 (The Malgrange-Ehrenpreis theorem) The Malgrange-Ehrenpreis the-
orem states that every linear partial differential operator with constant coefficients has a
fundamental solution. The first proofs of this were presented independently by Malgrange
and Ehrenpreis in 1953 and were non-constructive, using the Hahn Banach theorem (see,
e.g. [Rud91, Theorem 8.5, page 195 in the 1974 edition]. In 1955 an explicit formula
for the fundamental solution was obtained by Hormander. This was obtained using the
Fourier transform, like in (2.1.5). The hardest part of the proof was specifying a contour
which avoided the singularities of the integrand. This was achieved by a construction later
called “Hérmander’s staircase” (e.g. [FJ98, Theorem 10.4.1 page 139]. [OW97T] provides

a good survey of this area.

2.1.2 Domain dependent fundamental solutions

The definitions of Sj(.i/ e), (2.1.1), and the integral representations of E given by Proposi-
tions 2.1.1, 2.1.3 and 2.1.2 immediately imply the following:

Proposition 2.1.6 Consider Q¥. Given 2’ € S;

e for the modified Helmholtz equation

B(,z) = i /lj(z) %exp (w (k:(z — ) - (7))) , (2.1.16)

where

1@ {keC:argk = —a,}, wheanSj(.i),
() = 1) Ak eC:argh =7 — o5}, wh,eanS](.e),

either lj(-i) or lée), when z € S](~e) N S](»i)\aﬂ.

(
J
(
J
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e for the Helmholtz equation

Eou(?',2) = i/,: - %exp <w (k(z -2+ E]{;Z')» , (2.1.17)

out] AkeC:k=1le" 1€ Loy}, when z €
Low () = out] {k €C:k=1e"%) 1€ Loy}, whenz¢€
either LY, . or L' when z € S(e N S N\

out j out 3

where

(@)
SJ( y
S]

Y

e for the Poisson equation

1 dk
, .
E(Z,2) = lm% e (/ljs(z) - &P (ik(z — 2")) +/

d—: exp <—z’k(z — z’))) :

lje(2)

(2.1.18)
where
0 {keCik=1le,l€ (ic,00)},  whenze S8,
lie(2) = l](z) Ak e C: k=1 | € (ic,00)},, when z € S(e),
either lj(» or lja , when z € S(e) N S](-i)\aQ.

Proof For 2/ € S;, (2.1.1a) implies that when z € S](-i) (2.1.6) holds with § = «a;. Let
k +— ke' to get (2.1.16). Similarly when 2 € SJ(-G) (2.1.6) holds with # = o;+m and let k —
ke @5+ to get (2.1.16). When z € @ N @ the transformation k — —1/k shows that
(2.1.16) with ;(z) = l](.i) and (2.1.16) [;(z) = lj(.e) are equal. The representations (2.1.17)
and (2.1.18) follow in a similar way. For the Helmholtz equation when z € @ N @
the transformation k +— 1/k shows that the two expressions are equal. For the Poisson
equation, when z € @ N @ the two expressions are equal after changing the sign of
in one of them (no change of variable is needed as for the modified Helmholtz equation).

0

2.1.3 Green’s integral representations

In this section we derive Green’s IR for the equation (1.1.1). The IRs of the Fokas
method will be obtained from these by substituting in the domain-dependent fundamental

solutions of the previous section.
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Theorem 2.1.7 (Green’s integral representation) Let v be a solution of (1.1.1)
in the domain QO and let u'® be a solution of (1.1.1) in the domain Q' with the

following boundary conditions at infinity:

e A\ =0 (Poisson), u® — 0 as r — oc.
o \ = —4f% (Modified Helmholtz), u'® — 0 as r — oo.

o )\ = 443% Helmholtz,

ou®
vr ( or

(e)> —0asr — o0 (2.1.19)

where r = \/Wy2 With assumed time dependence e~ the boundary condition at
infinity for Helmholtz corresponds to outgoing waves (see the discussion at the begin-
ning of §1.1). Assume also that f has compact support (which implies that the integral
Joyo [ E d& dn is well defined). Then

WS (g Din —uDde) —u? ( Eedny — E,d E déd
ul(z,2) =) ug'dn —u, d§ ) —ut | Eedn — E,d€ | + (_)f Edn,
j=1 Z]' QL

(2.1.20a)

n

Zj41 . . ,
=i Z/ E (uif)dz' - u?di') — (Ezldz’ — E;dz’) + f E d&dn,
z Q@

j=17%

(2.1.20D)
for z € QW and
ZJ+1
u®(z / u£ dn — u d£> —ule (Egdn E,d¢§) + /( ) f Ed&dn,
: Q e

(2.1.21a)

||
Il M

z3+1
/ 2 — u(;)dz') —u) (Eady — ExdZ)+ | fEdédn,
Q(e)

(2.1.21b)

for z € Q)

Proof (standard) In two dimensions the equations satisfied by v and E are

U& + Unn + )\u = —f,

EEE + Enn +AE = _5(5 - 37)5(77 - y)-
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Multiplying the first by FE, the second by u and then subtracting yields the following

divergence form
<Eu5 - uE§> - (uE77 - Eun) =ud— fE. (2.1.22)
3 n

Integral representations for u can now be obtained using (2.1.22) and Green’s theorem in

the plane which states that
oF: oF,
/ Fidx + Fydy = // (—2 - —1) dz dy (2.1.23)
A A\ Oz dy
where the orientation of 0A is anti-clockwise.

Interior: apply (2.1.23) for A = Q@ u = u® to obtain

u(z,y), (z,y) € QW,

0, (z,y) € Q.
(2.1.24)

/(9 B (ug)dn _ u;@dg) —u (Bedny — E,de)+ /Q T Edgdn =

where the orientation of 95 is anti-clockwise.

Exterior: apply (2.1.23) with u = u(® and A the region bounded internally by 9 and
externally by a large circle of radius R. Then the assumed boundary conditions at infinity
imply that the integral over the large circle tends to zero as R — oo, see e.g. [Sta68, §6.5,

page 124, §7.14, page 297|, [Ble84, §6.4 page 180]. Thus,

OJ x, & 9(1)7
_/ FE (uée)dn — u%@d&) —u(e) (E§dn _ End§)+ fEdde/ _ ( y)
0 Q@) u®(z,y), (z,y) € Q)
(2.1.25)

where the orientation of df2 is still anti-clockwise. The equations (2.1.20) and (2.1.21)
now follow from (2.1.24a) and (2.1.25b) using

n

/ag =2 /:Hl (2.1.26)

]:1 J

and

E
Eedn — E,d€) = —i (E,dz — ExdZ) = 9F 2.1.27
3 n 8
n
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where n is the outward normal, and ds the arc length along the 02 which is oriented

anticlockwise (so outward normal points to the right). U

Remark 2.1.8 e If the polygon is open (i.e. extends to infinity), then u') must obey

the same conditions at infinity as u'®.
e By expansion in polar co-ordinates (see e.g. [Sta68, pages 128, 296],

— for X = 0 (Poisson) : if u® — 0 as r — oo then in fact u'® = O (%) as
r — 00.

— for X = —4B% (Modified Helmholtz): if u'® — 0 as r — oo then in fact
u® =0 (e;g/?) as r — oo.

— for A = 43% (Helmholtz): if u'® satisfies the radiation condition (2.1.19) then

ul® ~ g(¢)e?P" /rt/2 as r — oo, where ¢ is the polar angle.

e The boundary conditions at infinity assumed in the theorem appear in many problems
of physical significance. However, other boundary conditions (which lead to a non-
zero contribution from the integral over the large circle) also appear in applications,
see [Sta68, §6.8]. The IR can be suitably modified to apply to these more general

boundary conditions.

Remark 2.1.9 (Rigorous considerations) [CWL07] provides a good, user-friendly,
overview of the formulation in appropriate function spaces of the PDE (1.1.1) posed in

polygonal domains.

2.1.4 The novel integral representations

The novel IRs are obtained by substituting the domain dependent fundamental solutions

into Green’s IRs. Two important things to note are the following:

1. The contours of the new IRs depend on which half-plane z is in relative to each side
of the polygon (for side j these half-planes are Sj(.i) and Sj(.e) defined by (2.1.1)). If
the polygon € is conver, for the interior z is always in one half plane (Sj(-i)), so the

contours in the IR are then independent of z.
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2. In order to obtain a spectral representation of the forcing term in Green’s IR using

(2.1.6) we require that for 2/ € Q@ and z € Q@ 0§ < arg(z — 2') < § + 7 for
some 6. This is impossible unless we split the domain Q) into two regions by a line
through z, where we are free to choose the angle of the split (see Figure 2.6). This
means that the transforms of the forcing term depend on z, which in some ways
is unsatisfactory (but unavoidable). The same result is obtained by the two other
methods for deriving these representations (spectral analysis of the global relation
and applying the global relation in a subdomain) and this is consistent with the
situation for evolution PDEs where the transforms of the forcing term appearing in
the integral representations depend on ¢ [Fok08]; in this case, however, it is expected

by causality and Duhamel’s principle (e.g. [Eva98]).

2.1.4.1 The modified Helmholtz equation

Proposition 2.1.10 (Integral representation of the solution of the modified
Helmholtz equation) Let A = —43%. Let u® be a solution of (1.1.1) in the domain Q¥
and let u'® be a solution of (1.1.1) in the domain Q. Suppose that u'”) and u'® have

the integral representations (2.1.20) and (2.1.21) respectively. Then u'® and u'® have the

alternative representations

u(z,2) = — Z/( =8y (k) + FO(z,2), 2€Q®,  (21.28)
(2 B(ke—2) @) . © (5 (©)
Y 47”2/(2 Jul) (k) + FO(z,2), 2€Q0, (2.1.29)

where 1;(z), j = 1,...,n are rays in the complex k plane, oriented from 0 to oo, and defined

by

l](.i) {keC:arghk=—q;}, whenze€ S(z),
li(z) = l](?) {keC:argh=7m—«;}, whenze€ S(e), (2.1.30)
either ly) or lj(-e), when z € S; () S N0
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where Sj(i/e) are defined by (2.1.1). The transforms of the boundary values of u"/¢) on the
side j, {u/9);(k)}7, are given by

— Zj+1 . /2 . . _
W50 = [ i) — @8+ D)0z, (2131

j 1k

Y s —ip(k='+%) oule : = ld—z @/e) (5

_/zj e g F) B ke o ) (E )| ds,
(2.1.32)

where j =1,..,n, 2,41 = 21, 2 = 2/(s) € S}, and n is the outward-pointing normal to the

polygon (in both interior and exterior cases). The forcing term is given by

PO = [ pen B2 dedn (2.1:33)

where E is the fundamental solution for the modified Helmholtz equation. A spectral

representation of this term is given by

o - ([ B0+ [ St i) @i

Ir
where )
A% //m /9, e ”>f(§ n)dédn, (2.1.35)
and where
Q9 (2) = {2+ 2 € QW) 0 < arg (¢ — 2) < Op + 7}, (2.1.36a)
QW) = {2 : 2 € QW) p — 71 < arg (2 — 2) < 05}, (2.1.36b)

(see Figures 2.6 and 2.7). The angle O € [0,27) is arbitrary, and the rays I, and lg are
defined by

lp:{keC:argk=m—0p}, (2.1.37a)
lp:{keC:argk=—0p}. (2.1.37b)

Remark 2.1.11 (Convex polygons) If Q = QW and QW is convez, then
e Q) = ze 8V V), j=1..n, (2.1.38)

SO
L(z) =1V, j=1,..n, (2.1.39)

so that, in this case, the contours of integration are independent of z.
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Figure 2.7: The regions Q(Le), Qg?

Remark 2.1.12 (Return to physical space) If the order of the k and z' integrals is
interchanged in (2.1.28) and (2.1.29), and the k integration performed, then these IRs
become Green’s IRs (2.1.20) and (2.1.21) as expected.

Proof of Proposition 2.1.10 Consider first the representation for u(?, (2.1.28). Sub-
stituting (2.1.16) into the first term on the right hand side of (2.1.20b) (the boundary

integral) and interchanging the order of integration, this term becomes the first term on

the right hand side of (2.1.28).

In order to obtain a spectral representation of the forcing term using (2.1.6) we require

that for 2/ € Q@ and z € QW, § < arg(z — 2/) < 6 + 7 for some . This is impossible
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unless we split the domain Q) into two regions by a line through z, where we are free to
choose the angle of the split g, see Figure 2.6 and (2.1.36). Once this split is made, the
forcing terms (2.1.34) follow by substituting (2.1.6) with § = 7 + 6p and 6 = 6 into the

integrals over Qg) and Q%) respectively and then interchanging the order of integration.

The integral representation for u(® follows from (2.1.21b) in an identical way. U

2.1.4.2 Helmholtz

For the Helmholtz equation there are two fundamental solutions. When the domain is (¢
we can choose one of these fundamental solutions using the requirement that we require
outgoing waves. However, when the domain is Q) the domain is bounded and “outgoing”
and “incoming” are meaningless, so we have two different fundamental solutions which
then apparently lead to two different w?. If 43% is not an eigenvalue, the solution is
unique (by the Fredholm alternative), so how do we reconcile this apparent contradiction?
Reassuringly, substituting the integral representation of either fundamental solution into

Green’s integral representation yields the same result for Q).

Proposition 2.1.13 (Integral representation of the solution of the Helmholtz
equation) Let A = 432, Let u') be a solution of (1.1.1) in the domain QW and u'®
be a solution of (1.1.1) in the domain Q) satisfying the radiation condition at infinity
(2.1.19). Suppose that u® and u'® have the integral representations (2.1.20) and (2.1.21).

Then u and u'® have the alternative representations

Wz = 2> [ T DD, ) 4 PO, 2@, (2140)

471 = Lout () k

1 - dk‘ : 2\~ %
O(z,2) = —— Y AR ip(ket3) @ (k) + F© (5 2 Q© 91.41
u'®(z, 2) o 1/Lmj(z) ¢ ul® (k) + (2,2), z€ . (2.1.41)

where Loy j(2), j = 1,...,n are rays in the complex k plane, oriented from 0 to oo, and
defined by

Lf’i)‘tj : {k cC:k= le_iajal S Lout}a when z € Sj(l)7

Loutj(2) = Lfﬁftj Ak € C:k=1e""%) 1 € Loy}, when z € Sj(.e),
either ngtj or L(()Z)tja when z € S](-e) N S;“\@Q

(2.1.42)
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where the contour Ly, 1s shown in Figure 2.3 and where Sj(i/e) are defined by (2.1.1). The

transforms of the boundary values of u(/®) on the side j, {u/);(k)}? are given by

— Zj+1 . ;2 . . ) _
ulild) (k) = / ) [ 4 iRz — (ul/) i Wedzr),  (2.1.43)
Zj ? t

Zj+1 .2 (i/e) d 1dz 4
_ iB(k-%) |, 0U dzt LN e
/Z c [z o (s) +if (k 2 ds)u ()| ds,  (2.1.44)

J

where j =1,..,n, 2,11 = 21, 2 = 2/(s) € 5, and n is the outward pointing normal to the

polygon (in both interior and exterior cases). The forcing term is given by

PO = ([ ) Enel ) (2.1.45)

where Eyy is the outgoing fundamental solution for the Helmholtz equation (2.1.12a). A

spectral representation of this term is given by

PO/ (5, 5) = (/ d_:@ Alkat3 )A“/@(/g)Jr/ %ke Bkt )A("/@(k;)) (2.1.46)

r \ b, Lout s
where
Tifi ) //QW e 4%) p(e, p)dgan, (2.1.47)
and Ly 1, and Loy g are defined by
Lowr ={k € C:k=3s""") s € Lo}, (2.1.48)
Lowr={k€C:k=sc"" 5 Ly} (2.1.49)

Proof This follows in ezactly the same way as for the modified Helmholtz equation, using
of course (2.1.17) instead of (2.1.16). If E;, is used in (2.1.20) and (2.1.21) instead of E,;
then we obtain (2.1.40) and (2.1.41) with L, replaced by L;,. For u(® these solutions
are genuinely different (the two u(®)s satisfy different radiation conditions at infinity); but,
as noted at the beginning of this section u(® is unique (when 43? is not an eigenvalue).
To show that the representation (2.1.40) and the corresponding representation with Ly,
replaced by L;, are equivalent, it is necessary to use the global relation for the Helmholtz

equation in this domain,

> ul;(k) +i (FOL(k) + [OR(k)) =0, keC. (2.1.50)
j=1
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This equation is derived in part c¢) of Proposition 3.1.2; §3.1, below. The two representa-

tions differ by

Indeed: adding the circle that is orlented anticlockwise to L,,; transforms L., to L;,.
Similar considerations apply to the Loy, Lowr and Loy g, which are just L, rotated by
certain angles. Due to the global relation (2.1.50), the above integral vanishes since its
integrand is zero. For u(®) there does not exist a corresponding global relation of the form

(2.1.50) and this is consistent with the fact that the two solutions are genuinely different.

O

2.1.4.3 Poisson

The representation of the fundamental solution for Poisson (2.1.18) is formal, since the
integrals do not converge in the limit of ¢ — 0. However, after the domain-dependent
fundamental solution (2.1.18) is substituted into Green’s IR, the ¢ — 0 limit does exist

because the solutions u® and u(® satisfies the following consistency conditions:

(@ | |
o0 agn ds = /8Q ug)dn o ng)dg - o) fdfdm (2151&)
ou'® ©
o 4= / Vdp —ude = | fdedn. (2.1.51D)
o On 0 Qe

These equations can be obtained by integrating (1.1.1) over Q/¢) and applying Green’s
theorem (2.1.23) (remember that 0 is oriented anticlockwise in both cases). These

conditions imply that £ = 0 is a removable singularity.

Proposition 2.1.14 (Integral representation of the solution of Poisson’s equa—
tion) Let A = 0. Let u” be a solution of (1.1.1) in the domain QW and let u'® be a
solution of (1.1.1) in the domain Q©) . Suppose that u® and u'® have the integral rep-
resentations (2.1.20) and (2.1.21) respectively. Then u'? and u'® have the alternative

representations

, 1 — dk .. — 1 — dk
(@) 7\ — 2 ikz, () k) — — / —ikZz () k F(z)
u(z, 2) m;/lj(z) "ol () MZ [ e+ PO, ),

(2.1.52)
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for z € QW and
1 dk R dk . ——
M I SRt of B S I
7j=1 J 7j=1 J
(2.1.53)

for z € Q) respectively. The transforms of the boundary values of u/¢) on the side j,
{ul@/e) (k) }1 and {ul/9);(k)}} are defined by

—= Y g T Gle) G ife) 17, .
uli/e) (k) = / e = (ui,/ )+ zku(l/e)> dz — ui—,/ )dz’] , o J=1.n, zZpy =2,

J

(2.1.54)
Zj+41 _y M a (z/e d
:/Zj e = _z’ lén (s )+zkd ul/®) (s )} ds, Z =27(s) €S
and by
~7e T ke [ G/e) ; i/e) 7]
uli/e); (k) = / e [(u; ) —ikuNdz — 2|, j =10, Zeyr = 21,
Zj -
(2.1.55)
Zi+r ouli/e) dz . )
= /zj e'k= {—z’ u@n (s) — ikd—Zu(’/e)(s)_ ds, 2 =2(s) e
The contours lj(z), j = 1,...,n are the same as in Proposition 2.1.10, i.e. given by

(2.1.30), and l;(2), j = 1,...,n, are the complex conjugates of 1;(z), j = 1,...,n, that is,
the rays in the complex k-plane oriented toward infinity defined by

ZJ(Z {k e C:argk=q,}, whenzGSJ(Z :
li(z) = lj(.e {keC:argh=7+q«;}, whenze Sj(e , (2.1.56)
either lj(-i) or lj(-e), when z € S on S(Z \OQ

where Sj(i/e) are defined by (2.1.1).
The forcing term is given by

PO = [ sen B acy (2.1.57)

where E is the fundamental solution for the Poisson equation. A spectral representation

of this term is

1 Ak iy 2tise) / Ak _irz #i/e) / dk ik 70 /e) / Ak _irz #(i/e)
Ples) = o ([ FeeRw e [ Feriiows [ TR+ [ Fer i

lr lr

(2.1.58)
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where

F(i/e) _ —ikz’ 7(i/e) i iks
fL/R(k)//Qme f(&,m)d&dn, fL/R(k)//Qg;ge f(&,m)dedn,  (2.1.59)

with Q(L%e%) given by (2.1.36), Ip,lr given by (2.1.37), and with I and lp given by the
complex conjugates of I, and lp respectively, i.e. 1y, is the ray from 0 to oo with argk =

—7 + 0p and similarly for lg.

Remark 2.1.15 (Removable singularity at £k = 0 and consistency conditions) In
the integral representations (2.1.52) and (2.1.53) there appear to be poles at k = 0 which
would mean that the integrals are not well-defined. However, the consistency conditions
(2.1.51) imply that

—~

S0 =i 0 = (R0 + £0) =~ (Fo+Fo), Lo

—iiaj@(o) = izn:Uf)(O) = (f/f\)(O) +;§)(O)) = <ff)(0) +f§_-§>(0)) . (2.1.61)

and due to these conditions, when the integrals are grouped together, the singularity at

k = 0 is removable.

Remark 2.1.16 (Short-cut when solving BVPs for the Poisson equation) If the
boundary values of u'/®) are real, the second term of (2.1.52) is the complex conjugate
of the first term, and similarly for (2.1.52). If the forcing f is real then the second term
of (2.1.58) is the complex conjugate of the first, and the fourth the complex conjugate
of the third. (Thus, if both the boundary values and the forcing are real then u is real.)
This provides a useful shortcut when solving boundary value problems with this integral
representation - we can assume that u is real, work with half the terms, and then recover
the other terms by complex conjugation. The final answer is then valid even if u is not

real.

Proof of Proposition 2.1.14 This is identical to the proof of prop. 2.1.10 using (2.1.18)
instead of (2.1.16), and also letting ¢ — 0 at the end. This limit exists due to remark
2.1.15. 0
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2.2 Polar co-ordinates

Notations Let (r,6) be the physical variable, and (p,#) be the “dummy variable” of

integration.

We will consider only the Poisson equation, A = 0, and the Helmholtz equation, A = 3.
(Note that this is different to A = 432 used for the Helmholtz equation in polygonal

domains in the previous section.)

2.2.1 Co-ordinate system dependent fundamental solutions

In polar co-ordinates (1.2.2) becomes

19 (pa_E) LPE oy _8p=r)5(6—0)
pOp \" dp

0<r,p<oo, 0, ¢ 2w periodic.
(2.2.1)

P? 99* p |

For reasons which will be explained later (see Remark 2.2.4), consider the non-periodic

fundamental solution, denoted by FE,, defined by

1 E 1 0’°F — —
—3 (pa s)—f— 0 8+52E8:—(5(p r)o(¢ 9>, O0<r,p<oo, —00<6b ¢<o0.
pOp \" Op

p? 0¢? p
(2.2.2)

The outgoing radiation condition for the Helmholtz equation (3 # 0) is

ou

NG (E - iﬁu) — 0 as r — oo. (2.2.3)

Proposition 2.2.1 (Integral representation of F, for the Helmholtz equation)
For the the Helmholtz equation equation, the outgoing non-periodic fundamental solution
Es can be expressed in terms of radial eigenfunctions (the radial representation) in the

form
E,(p, ¢;7,0) = lin%i( / dk e H'D (8p) J,(Br)e™10—4! (2.2.4)
E—> 0

T / T eekQH,ﬁ”<6p>Jk<ﬁT>e_ik'9_¢) | 227
0
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Alternatively, it can be expressed in terms of angular eigenfunctions (the angular repre-

sentation) in the form

Bup.60) = | (/ "k B (8 ) T 0 4 / ar Hé”(ﬁr>>Jk(ﬁr<>e—”“(9_¢)),

0 0

(2.2.6)
where r~ = max(r, p), r« = min(r, p) and —oo < 0, ¢ < co.
Proof The differential operator
d2
— gt = A\ (2.2.7)
on (—o0,00) possesses the completeness relation
L™ ikao-0)
(0 — o) = o e dks, (2.2.8)
m —0o0

i.e. the Fourier transform([Sta67, Chapter4]). The completeness relation associated with

0 ou
- Bou =\ 2.2.9
dp ( 8p) g p (229)

on 0 < p < oo, with the additional condition that the eigenfunctions satisfy the outgoing

the operator

radiation condition, is
100

po(r—p) = lim1 dky ky M H (ﬁrl)Jkl (Bra), (2.2.10)

—> .
e—0 ico

where either vy = r,79 = p or vice versa, see Remark 2.2.2. The completeness relations

(2.2.8) and (2.2.10) give rise to the following integral representation of E:

zkz 0—9) k: skl H J
E(p, é;7,0) _g%——/ dk‘l/ dhy” - B kéﬁ”) w7 o910y

Choose 1, = p and ry = r, so that F, satisfies the outgoing radiation condition in p.
(In fact, r and p can be interchanged in the right hand side of (2.2.5) using an identity
involving integrals of Bessel functions, equation (4.3.12) below.) If 8 > ¢, close the ko
integral in the upper half ks plane, enclosing the pole at ky = ky for Sky > 0 and at
ky = —kp for Sk; < 0. Relabel k; as k to obtain (2.2.5) for 8 > ¢. Similarly, if 0 < ¢,
close in the lower half k; plane to obtain (2.2.5) for 6 < ¢.
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Figure 2.8: The deformed contour in the k; plane.

Evaluating the ki integral requires knowledge of the asymptotics of the product of the

Bessel functions as k — oo. For x,y fixed, the following formulae are valid:

1 i Y\ T T
kjk(y)H]E; )(SU) ~ <E> ; k| — oo, —3 < argk < 5
(2.2.12)
inkr . (—2k\ " =2\ 7" 3
S0~ n S (TE)(SE) o g < <
(2.2.13)

(these can be established using standard results about the asymptotics of Bessel functions
of large order, see e.g. [AS65, §9.3], [Wat66]). Hence the product ka(y)H,gl) (x) is bounded
at infinity only when Rk > 0 and = > .

For ry > ry deform the k; contour to some contour in the right half plane, enclosing the
pole at ky = |ky|, with § < arghk; < § as [k| — oo for Sk; > 0 and —F < argh; < —7F as
|k| — oo for Sky < 0, see Figure 2.8. Now the k; integral converges absolutely even with

¢ = 0, so by the dominated convergence theorem ¢ can be set to zero in the integrand.
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After calculating the residue, this results in

i o
Eu(p, ¢:1.6) = Z/ dky Hy (Br=) Ty (Br<) 2=,

Relabel ky as k and let k — —Fk for & < 0 to obtain (2.2.5). The proof that (2.2.5)
and (2.2.6) define the same function follows by deforming the integrals on (0,i00) and
(0, —i00) to (0,00) using (2.2.12) and the fact, mentioned earlier, that r and p can be
interchanged in the right hand side of (2.2.5). O

Remark 2.2.2 (The Kontorovich-Lebedev transform) Spectral analysis of (2.2.9)
yields

g(k) = / "y f)H (), (2.2.14)

xzf(z) = j:% / dk k Jp(x)g(k), (2.2.15)
with H,gl) and the plus sign in equation (2.2.15) if the eigenfunctions satisfy the outgoing
radiation condition (2.2.3) and H,EQ) and the minus sign if the eigenfunctions satisfy the
incoming radiation condition (i.e. (2.2.3) with the sign of the second term changed). D.S.
Jones produced a counterexample of the very “nice” function e, Ra > 0, for which
the inversion integral (2.2.15) diverged, [Jon80]. Essentially, the reason for this is that
the product of Hy and Jy is unbounded on iR. However, most of the solutions to BVPs
obtained by using (2.2.15) are correct because the contour is deformed (albeit illegally) and
the resulting expression converges. Jones proposed the inversion integral

100

xf(:c)::l:li_rgl | dk ek Ji(2)g(k), (2.2.16)

and proved the validity of the resulting transform pair rigorously. The e term in the
new inversion formula justifies rigorously the contour deformation previously used, after

which € can be set to zero.

Reciprocity in r and p in (2.2.10) follows from properties of the delta function on the left
hand side. To prove it using only the right hand side, the following identity allows the
swapping of the arguments of the Hy and Jy:

/ e ) HO ()Q(R) = / e ) B )00 (2.2.17)

—100 —1300
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where Q(k) = —Q(—k). To prove this identity, expand the Hy, as a linear combination of
Jr and J_j (from its definition), and then let k — —k in the term involving J_j. This
identity is used when solving problems using the Kontorovich-Lebedev transform [Jon80),
[Jon86, §9.19, page 587, and we will use a similar identity when solving a BVP for the
Helmholtz equation later in §4.35.

Proposition 2.2.3 (Integral representation of F for Poisson) For the the Poisson
equation equation the non-periodic fundamental solution E, can be expressed formally ei-

ther in terms of radial eigenfunctions (the radial representation) in the form

1 0 dk P\* ik|0—g| 10 dk P\* —ik|0—g|
<Pv¢?“9>—llﬁm</g 2 () +/ T (5) e o (2218)

£

or in terms of angular eigenfunctions (the angular representation) in the form

1 < dk (rs\ " (O dk 1\ e
0) = lim — = ik(0—¢) / = k(0—9) 2219
Es(p, ¢i7.0) = 50 4 </z€ k (7“<) ‘ —ie K \r< ‘ ¢ )

where r~ = max(r, p), r« = min(r, p), —0o0 < 6, ¢ < 0.

Proof The operator in 6 is the same as for the Helmholtz equation, namely (2.2.7), and

so the appropriate completeness relation is (2.2.8). The differential operator

9 (p@) _
dp \' dp p

on 0 < p < 0o, possesses the completeness relation

po(r—p) = — /ioo (£>k1 dki, (2.2.20)

21t J o0 \T

i.e. the Mellin transform([Sta67, Chapter4, p.308]). After rewriting (2.2.2) in the form

o ( OB, OB,
"3, (p 9 ) o —pd(r—p)é(0 — ¢),

the above two completeness relations give rise to the following integral representation of

E:
'Lkz 0—9)

dk1 dk;Q (—)k . (2.2.21)

Ey(p, ¢;7,0) =

47T2
If & > ¢, deform the k; integral off iR near the origin so that it passes through ¢ # 0.
Then close the ks integral in the upper half ks plane, enclosing the pole at ko = ki for
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Sk > 0 and at ke = —kp for Sk; < 0. Relabel ky as k to obtain (2.2.18), without the
limit, for 6 > ¢. Similarly, if # < ¢, close in the lower half ky plane to obtain (2.2.18),
without the limit, for 6 < ¢.

If p > r, deform the ko integral off R near the origin so that it passes through ic, ¢ # 0.
Then close the k; integral in the left half k; plane enclosing the pole at ky = —ko for
REky > 0 and at ky = ko for Rky < 0. Let ky — —ky for Rk; < 0 and relabel ks as k to
obtain (2.2.19) for r > p. Similarly, if p < r, close in the right half k; plane to obtain
(2.2.19) for p < r without the limit. The proof that (2.2.18) and (2.2.19) define the same
function follows by contour deformation in a similar manner to the analogous proof for

the Helmholtz equation, except that the differences become zero in the limit ¢ — 0. [

Remark 2.2.4 (Periodicity) For polar co-ordinates, periodicity in the angle co-ordinate
is more natural. The operator (2.2.7) on (0,27) with 6 periodic has the associated com-

pleteness relation

5(0 —¢) = % > e, (2.2.22)

n=—oo

Using this, the analogues of (2.2.21) and (2.2.11) are

Ep, ¢;7,0) = —L./m dk, f: et (’—))kl (2.2.23)

Ar%i ) oo = kP —m? \r
and
. 1 0o % in(6—9) peki ky H}S)(ﬁrl)Jkl (ﬁ?“g)
E(p, ¢:r.6) = lim ——— . dky n;)o e (2.2.24)
and as before the ki integrals can be computed to yield the angular expansions
1 1 ‘ 1 .
E(p, d;r,0) = ——8> | = N7 ein(0=0) (< (2.2.25)
27 A In| \rs
n#0
and .
Blp,¢ir,0) =7 3 HO(Bra)Ju(5r)ene (2:2.26)

which are the analogues of (2.2.19) and (2.2.5). However, the sum in n cannot be com-

puted and so there do not ezist analogues of the representations (2.2.18), (2.2.5). Another
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way to see this fact is to try and obtain the “radial” representations by taking the appro-
priate transform in p of (2.2.1) (see Remark 2.1.4): For Poisson the Mellin transform in
p of (2.2.1) yields
P°E
d?

For solutions periodic in ¢ we need k € Z (instead of k € R), but under this restriction

(k, &) + K2E(k, ¢) = —5(¢ — 0)r*.

the Mellin transform cannot be inverted.

The fact that there do not exist radial representations under periodicity implies that there
do not exist IRs in the transform space with periodicity in the angular variable for any
domains other than the interior and exterior of the circle. The so-called “hybrid method”
of [DF08] for solving boundary value problems in the interior and exterior of the sphere,
uses the analogue of (2.2.26) in 3-d to obtain an IR in the transform space (the construc-
tion of the GR and the solution of boundary value problems in 3-d follow steps similar to
the method in 2-d described in this thesis).

Remark 2.2.5 (Derivation of both co-ordinate dependent fundamental solu-
tions using only one completeness relation) In the proof of Proposition 2.2.1 it was
shown that (2.2.5) and (2.2.6) can be obtained from each other by contour deformation.
Combining this with Remark 2.1.4 shows that both (2.2.5) and (2.2.6) can actually be
obtained using either one of the completeness relations (2.2.8) or (2.2.14), although this
approach is less algorithmic than the approach in the proof of Proposition 2.2.1.

2.2.2 Green’s integral representation

In this thesis we only consider one domain in polar co-ordinates, the exterior of a circle, and
so for simplicity we only formulate Green’s integral representation and the new integral
representation in this domain. Since we use the non-periodic fundamental solution E; we

must consider the exterior of a circle as the domain
D={a<r<oo, 0<60<al, (2.2.27)

see Gigure 2.9, with o = 27 and prescribe boundary conditions so that the sides § = 0

and 0 = 27 are the same.



2.2 Polar co-ordinates

73

\ o R

. =

// =

. [N
R S
a

Figure 2.9: The domain D (shaded).

Theorem 2.2.6 (Green’s Integral Representations) Let u be the solution of (1.1.1)

for = D where D is given by (2.2.27) see Figure 2.9, with the boundary conditions at
infinity:

e A\ =0 (Poisson), u — 0 as r — oo.
e )\ = (32 (Helmholtz), u satisfies (2.2.3).

Assume also that f has compact support (so that fD
u admits the following integral representation:

o[ o 4 )

96 06

(p, @) pdpde is well defined). Then

—a/ d < 82; . ) / F(p, OV Eo(p, di7,0) pdpde.  (2.2.28)
Proof (Standard) In polar co-ordinates the equations satisfied by u and E; are
%a% <pg—z> + %% +B%u=—f(p,9) (2.2.29)
: gp <pa§j) L a@f \ o, = O =)0 -0)

Multiple the first by pFEj, the second by pu and subtract to obtain the divergence form of
the PDE:

ou OF 10u 10F, B
(pa—pEs—p = u)p+ (;a—éEs—; o u)¢ — u(p, 6)8(p—r)6(6—0) — [ p Eu. (2.230)
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Integrate over D and use Green’s theorem (2.1.23) to obtain the integral representation

ou oL, 1 oF,
U(rﬁ):/aDp(Esap )d¢> ( - a¢)dp+//fp, (9, 657,0) pdpdd,
(2.2.31)

Parametrise the sides of D by {¢ = a,00 > p > a}, {p=a,a > ¢ > 0}, and {¢ = 0,0 <
p < oo} to yield (2.2.28). O

2.2.3 The novel integral representation

The novel integral representation follows from Green’s integral representation (2.2.28)

using the representations of the fundamental solutions of propostions 2.2.3 and 2.2.1.

Proposition 2.2.7 Let u be the solution of (1.1.1) for Q = D where D is given by
(2.2.27). Suppose that u has the integral representation (2.2.28). Then u has the alterna-

tive representations

e \ =0 (Poisson),

u(r, ) = 471m ( /0 m dk r~Feik0 {Do(k) + %No(k)]
- /O T ke [Do(k:) - %No(k)]
/0 T dhrhe g {Da(k’) - %Na(k)}
_ /0 T ket [Da(k:) + %Na(k)D
_i (/Ooo dke™® (2)_k [%N(—z’k) - D(—ik)}
[ ) [evan )
+//ded¢pf(p7¢)Es(p, ¢;r,0) (2.2.32)

where

*“d *<d
Dx(k?)z/ ?ppkU(p,x% Nx(k)=/ ?ppkw(p,x), x=0ora, (2233)
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and
D(+ik) = / " dp e u(a,¢), N(xik) = / ) do e*** u,(a, ¢), (2.2.34)
0 0

o \ = (3? (Helmholtz),

=t ([ ke e ik Du(h) — i)
<[ T e (e ik Do(h) — No(h)
/0 e Ty (Br)e e ik Da(k) — Na(h)
/0 T ke g () [—z’k:Da(k)—Na(k)]>
([ anetm ) [AGaN(-it) - 55,50 D(-it)
/ dke= ™ H" (5r) [Jk(ﬁa)N(ik:)—ﬁJ;;(ﬁa)D(ik)D
// dpdo p f(p, &) Es(p, b1, 0) (2.2.35)
where
D0 = [ LHPGpulp). N0 = [ LHO G w0, x=0ora,

(2.2.36)
and D(+ik), N(+ik) are given by (2.2.34),

and where Eg is the non-periodic fundamental solution for Poisson and the Helmholtz
equation respectively. A spectral representation of the forcing term can be obtained by
using either the radial (2.2.18),(2.2.5) or the angular (2.2.19),(2.2.6), representations of

E for the Poisson equation and the Helmholtz equation respectively.

Proof On {¢ = o, 00 > p > a}, use the radial representations of E (2.2.18) and (2.2.5)
with @ < ¢ for the Poisson equation and the Helmholtz equation respectively. On {p =
a,a > ¢ > 0} use the angular representations of E; (2.2.19) and (2.2.6) with r > a for the
Poisson equation and the Helmholtz equation respectively. On {¢ = 0,0 < p < oo}, use
the radial representations of Fy (2.2.18) and (2.2.5) with 6 > ¢ for the Poisson equation

and the Helmholtz equation respectively. For the Poisson equation the singularity at
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k = 0 on the contours of integration is removable (after using a spectral representation of

the forcing term). Like the cartesian case, this is due to the consistency condition

r?d@ — 1@dr +/ flr,0)rdrdd =0
r

which written in terms of the transform of the boundary values is

“No(0) + No(0) — aN(0) =~ [[ dpdsps(p.0)
D
this is the GR for this problem, (3.2.6), evaulated at k = 0. O
2.3 Relation to classical results

The idea of obtaining integral representations of the fundamental solution F is certainly
not new. However, the representations presented here contain certain novel features which

are stated in this section, and contrasted with the classical representations.

2.3.1 Cartesian

The integral representations of the different fundamental solution, (2.1.6),(2.1.14), and

(2.1.12) differ from the classical in two novel ways:

e rotation to half-planes,

e change of variables to eliminate square roots,

which we now explain.

Rotation to half-planes Starting with (2.1.5), one of the following operations is usu-

ally performed:
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1. Rotate the ky, ks co-ordinates so ks lies in direction of (x — &,y —n); for the modified
Helmholtz equation this yields

. it/ e
E = —— | dhdk .
&n2.9) = oy //R TR K+ 402

Computing the ko integral, this becomes

1 [ o= VE+H/ (-6 +y—n)?

Bl =g [ e
Such integral representations appear in [Sta68, p.56-57 and 279] and [AS65, equa-
tions 9.6.23, 9.6.24, p. 376]

(2.3.1)

2. Compute the k5 integral without first performing a rotation; for the modified Helmholtz
equation this yields
1 [ etk(@=9—/k3+4B2ly—n|
E(f,n,x,y)zﬂ . \/m dky,

which is (2.1.10) with § = 0 in (2.1.7). This appears in [AF03, p.298]; the analogue

for Helmholtz, which is (2.1.13) with 6 = 0 in (2.1.7), appears as equation (5.1.22)
of [Duf01, p. 278] (actually, the equation (5.1.22) has a error in the sign of the
square root in the exponent, but the equation (5.1.21), from which it is obtained, is

correct.)

Change of variables to eliminate square roots The transformations kr = 5(I—1/1)
for the modified Helmholtz equation and kr = (I + 1/1) for the Helmholtz equation,
take /452 + kZ and \/k% — 432 into B(1+1/1) and B(I—1/1) respectively (modulo a sign
depending on the range of 1). These transformations eliminate the square roots at the
cost of introducing a pole at [ = co. These transformations have been used earlier but
only in polar co-ordinates, in particular using them in the two analogues of (2.3.1) for the
Helmholtz equation yields the IRs for Hél) and HSQ) involving the contours of integration
Low and Ly, respectively, see [Wat66, §6.21p. 179]. It is surprising that apparently these
transformations have not been used before in the solution of the Helmholtz equation in

cartesian co-ordinates. Indeed, [OHLMO3, §5.8.3 page 191] states that “in a half plane
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transform methods for the Helmholtz equation equation ... are cursed by the presence of

branch points in the transform plane”.

It is important to note that it is not possible to obtain the integral representations of
propositions 2.1.10-2.1.14 using the representations of E of the form (2.3.1), without first
transforming (2.3.1) into the representations of propositions 2.1.1-2.1.3. This is because
the integrand of (2.3.1) cannot be written as a function of (x,y) multiplied by a function
of (¢,7), and thus it is not possible to interchange the physical and spectral integrals when

(2.3.1) is substituted into Green’s integral representation.

2.3.2 Polar

The novel idea in section §2.2.1 is since a radial representation is impossible under
periodicity, consider the non-periodic fundamental solution, F,, instead of E.
As discussed in the introduction §1.2.3, Sommerfeld was led to consider E; for different
reasons, and the angular representation for F for the Helmholtz equation (2.2.6) appears
in [Sta68, p. 268]. However, perhaps due to the unfamiliarity with the Kontorovich-

Lebedev transform, the radial representation (2.2.5) does not appear to be known.

The periodic angular representations (2.2.25),(2.2.26) and their analogues in 3d are well
known, e.g. [MF53, vol 1 p.827], and the authors of [MF53] are also aware of the non-
availability of a radial representation (vol. 1 p.829).



Chapter 3

The global relation

Summary:

e The global relation (GR) is Green’s divergence form of the equation, integrated
over the domain, with particular solutions of the (homogeneous) adjoint equation

replacing the fundamental solution.

e Separation of variables gives a one-parameter family of solutions to the adjoint

equation depending on the parameter k£ € C (the separation constant).

e When () is infinite, £ must be restricted so that the integral on the boundary at

infinity is zero.

e The GR is useful because it involves the transforms of the boundary values appear-
ing in the IRs, and so gives information about the unknown transforms. In some
cases this information can be used to eliminate the unknowns from the IR and hence

find the solution to the boundary value problem.

This chapter is concerned with the second ingredient of the Fokas method: the global
relation. In §3.1 we consider polygonal domains and §3.2 we consider domains in polar

co-ordinates.

79
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3.1 Polygons

First consider bounded domains.

3.1.1 The GR for bounded domains

Proposition 3.1.1 Let u be a solution of (1.1.1) for 2 some bounded domain D. Let v
be any solution of the adjoint of (1.1.1), that is,

Av(z) + M v(x) =0, €D (3.1.1)
Then
/ u (v, d€ — vedn) — v (upd — uedn) = — [ fodédn; (3.1.2)
oD D
or
/ uw(vydz —vpdz') — v (uydz' —uzdz’) =i [ fvdédn (3.1.3)
oD D

in complex co-ordinates.

Proof In two dimensions the equations satisfied by v and E are

Uge + Upy + A = — f,

Ugg—i-v,m +/\7J =0.

Multiply the first by v, the second by u and then subtract to obtain the following diver-

(vu§ - uvg) — (uvn - vu,7> =—fo. (3.1.4)
3 n

Now apply (2.1.23) with Fy = vue — uve, Fy = uv, — vu, to obtain (3.1.2). Use (2.1.27)

gence form

to convert this to (3.1.3). O O

Proposition 3.1.2 (Global relation for Q), where Q¥ is bounded.) a) Modified
Helmholtz: Let u') be a solution of (1.1.1) for A = —4/2%, B € R, and Q = QO where
Q@ s bounded. Then the transforms of the boundary values of u, {u(i/;(k)}?, and the

transform of the inhomogeneous term f, ﬁz)(k) satisfy the following relation

S ul(k) +if@(k) =0, keC, (3.1.5)
j=1
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—_—

where {ul/¢);(k)}} are defined by (2.1.31) and ]?(Z)(k) is defined by
o = [[ e 0 pie e, (3.1.6)

(so f(’)(k:) = J/”El)(k) + fg)(k) where fL/R( ) are defined by (2.1.35)).
b) Poisson: Let u”) be a solution of (1.1.1) for A = 0 and Q = QO where QO

bounded. Then the transforms of the boundary values of u, {12(7)]-(1{:)}?, QRZ/)](k) and the

transform of the inhomogeneous term f, fL?R( ), fg//;( ) satisfy the following relations

Zu k) +if@ (k) = 0, (3.1.7a)
Zu k) —if@(k) =0, keC, (3.1.7b)

where {@J(k)}?, {JZ/)](I{:)}?, ﬂz)R(k) are defined by (2.1.54) and (2.1.55) respectively,
and ]?(?)(k), FO(k) are defined by

o = [[ e pemdsan, Fow = [[ o remden  (318)

(so [O(k) = A(Z)(k:) + fg)(k‘) where fL/R( ) are defined by (2.1.59) and similarly for
k)

¢) Helmholtz: Let u") be a solution of (1.1.1) for X\ = 4%, B € R, and Q = Q) where

Q@ is bounded. Then the transforms of the boundary values of u, {u®;(k)}}, and the

transforms of the inhomogeneous term f, ﬂZ)R(k) satisfy the following relation

Zu k) +if@(k)=0, keC, (3.1.9)
where {@J(k‘)}? are defined by (2.1.43) and f\(l)(k) is defined by
Fot = [[ ) piemyagan, (31.10)
Q)

(so fO(k) = fi (k) + fi; (k) where f})(k) are defined by (2.1.47)).

Prop. 3.1.2 follows from prop. 3.1.1 and the following lemma:
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Lemma 3.1.3 (Adjoint solutions) Particular solutions of the adjoint equation (3.1.1)
are giwven by (3.1.11).

A=0, v= cither e=** or ¢'*?, (3.1.11a)
A= 4, = e T, (3.1.11b)
A= dp? oy 0(E) (3.1.11c)
Proof By separation of variables, the exponential
v = e™Etman (3.1.12)
satisfies (3.1.1) if
mi +m3+ A= 0. (3.1.13)

For A = 0 a natural way to parametrize this 1-parameter family of solutions is by m; =

+ik, mo = £k which leads to the solutions
e IREHRn | gikEtRn (3.1.14)

and two more obtained by letting k& — —k. In complex co-ordinates these become

(3.1.11a).

For A = —4(? a natural parametrization of (3.1.13) is m; = +23sin ¢, m; = +20 cos ¢;
then let k = €' to obtain

This parametrisation leads to four particular solutions: (3.1.11)b and three obtained from

(3.1.11b) using the transformations k — —k and k — 1/k.

In a similar way, for A\ = 43 a natural parametrization of (3.1.13) is m; = +2i3sin ¢, my =
+2i[3 cos ¢ which leads to the particular solution (3.1.11c), and three more obtained from

(3.1.11c) using the transformations k — —k and k — 1/k.



3.1 Polygons 83

Remark 3.1.4 (Why there are two global relations for Poisson but only one
for modified Helmholtz and Helmholtz) In the particular adjoint solution v for the
modified Helmholtz equation, let k — k/3 to obtain

7ikz’+i&
v=e R (3.1.16)

which reduces to e~ i.e. the first v for Poisson, when 3 = 0. (3.1.16) also contains the
second v for Poisson: first let k — (32/k, and then let 3 = 0 to obtain ¢*?, the second v
for Poisson. Thus the ‘information’ contained in the two adjoint solutions for Poisson is

contained in one adjoint solution for the modified Helmholtz equation. (3.1.16)

3.1.2 The GR for unbounded domains

If the domain is unbounded, k£ must be restricted so that the integral at the boundary at
infinity is zero. Unbounded domains contain at least one of an infinite arc, considered in

lemma 3.1.5 or a semi-infinite strip, lemma 3.1.9.

If the domain is not convex at infinity (in the chordal metric of the Riemann sphere, then
the restriction on k is too great and (3.1.5), (3.1.7), (3.1.9) are only valid for &k = 0 (see
corollary 3.1.7). In this case, the best one can do is have (3.1.2) in subdomains of 2 which

are convex at infinity.

Lemma 3.1.5 (Infinite arc) Let
I(R) = / u (vyd€ — vedn) — v (uyd€ — uedn) (3.1.17)
Cr(01,02)

where
C’R(91,02) = {Z =2z + Rew : 91 < 0 < 92,25 S (C}, (3118)

and u satisfies (1.1.1). Then
a) if A\ =0, u(r,0) — 0 as r — oo and v = e~** then
I(R) — 0 as R — o0, <= fork e Kp(01,062)

where
Kp1<91,62> = {k ceC:m— 91 S argk S 2m — 92, ‘k| Z O}, (3119)
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and if v = e™** then
I(R) — 0 as R — oo, <= fork € Kpy(0y,6,)

where
Kp2(91,92) = {k’ e C: 92 < argk’ < 6, +m, |k‘| > 0} (3120)

b) if X =—40% u(r,0) — 0 as r — oo and v = e_w(kzl_%) then
I(R) - 0 as R— o0, <= fork e Kyp(01,02)
where

KMH(el,QQ) = {k cC:mn—-0, < argk <27 — ‘92, |]€| > 0} (3121)

c) if X\ =432, u(r,0) satisfies the radiation condition

u:(’)(ﬂ%) , %—Ziﬁu:(?(#) , as T — 00, (3.1.22)
and v = e_w(kzur%) then
I(R) — 0 as R — oo, <= fork e Kg(6,0,)
where

KH(el,QQ) = {‘k| > 1,71'—61 < argk < 271'—92} U {’k" < 1,—61 < argk < 7T—92}
(3.1.23)

U{|kz| =1,—-6, <argk < 27r—92},

see Figure 3.1.

Remark 3.1.6 For Helmholtz, if u') satisfies the incoming radiation condition, i.e. (2.1.19)
with the sign of the second term changed, then Ky must be changed so that

Corollary 3.1.7 If 0, — 01 > m then I(R) does not tend to zero for any k with |k| > 0.
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Figure 3.1: The region in the complex k plane where the integral over Cr(61,02) tends to
zero as k — oo for the Helmholtz global relation when 6; = 0.

Remark 3.1.8 (Radiation conditions for the Helmholtz equation) As discussed in
§2.1.3, BVPs involving the Helmholtz equation in unbounded domains require a radiation
condition to be well-posed. For domains that are the exterior of a bounded obstacle (e.q.
QW) it is a standard result that the problem is well-posed under the condition (2.1.19).
The situation is more complicated in wedge domains, especially when Robin boundary con-
ditions are imposed (see e.g. [BLGO0S, §2.4-8§2.7]). The BVPs for the Helmholtz equation
n a wedge domain considered in Chapter 4 are well-posed under the radiation conditions

(3.1.22) and so in this Section we only obtain the global relation under these conditions.

Proof The main ingredient of the proof is the argument of the well-known Jordan’s lemma,

see e.g. [AF03, p.222, Lemma 4.2.2], which relies on the fact that

/2 )
/ e snlqey = O <}%> , as R — o0 (3.1.24)
0

which follows from the inequality

sing >, 0<¢<m. (3.1.25)
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For case ¢) a more delicate argument is required: for |k| = 1 the integral must be estimated

using the method of stationary phase, see e.g. [AF03] §6.3.

a) first consider the case when v = e~*#. In complex co-ordinates
I(R) = / e (1 + i) 4 — uzd?].
Cr(01,02)

Without loss of generality z, = 0. Parametrise Cr(6;,60;) by z = Re?, 0, < 0 < 0,,
change variables to ¢ = argk + € — 7 and take the modulus to obtain
0o+arg k—m
II(R)] < RM(R) / e IkIRsng g (3.1.26)
O1+arg k—m

where M (R) depends on u and its derivatives and so tends to zero as R — oo. This integral
tends to zero as R — oo for m — 0; < argk < 2w — 6y, |k| > 0, that is, k € Kp1(0y,65).
Indeed split the range into [0y + argk — m,7/2| , [1/2,05 + argk — 7], use (3.1.25) in
the first integral and again in the second integral after first making a change of variable

¢ =7 — ¢. The two integrals are then O (R™!) by (3.1.24) and so
[I(R)| < eM(R),

where ¢ is a constant, and hence [(R) — 0 as R — oo. If the range of the integral in
(3.1.26) is not in [0, 7] then sin ¢ is negative in part of the range and this means that the
integral tends to infinity as R — co. When k& =0, I(R) = fCR 9u S which tends to zero
ifu=0(R®)as R— oc.

k

For v = €% an almost identical argument results in the analogue of (3.1.26) being

arg k—6s .
I(R)| < RM(R) / -IHiRsnG 4y
arg k—6;

and proceeding as before yields I(R) — 0 as R — oo for 0 < argk < m+ 64, |k| > 0, that
iS, k S Kpg(el,eg).

b) The analogue of (3.1.26) is now

Ox+targk—m ) .
’[(R)‘ < RM(R)/ 67(|k‘+m)Rsm¢d¢.
0

1t+arg k—m
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For |k| > 0, (lk\ + ﬁ) > 0, so the situation is identical to the first Poisson case; and
[(R) —0as R— oo for k € Kp1(01,92) = KMH(el’HQ).

c¢) The analogue of (3.1.26) is now

O2+arg k—m

I(R)| < RM(R) / e~ (FI=rir) Reind g, (3.1.27)

01+arg k—m

For |k| > 1, <|k| - ﬁ) > 0, and the situation is identical to that for the modified

Helmholtz equation, and the integral tends to zero for 6, < argk < 7w + #;. However, for
k| <1, (\k\ — ﬁ) < 0 and so now the integral tends to zero when its range is in [—, 0],
which occurs when —6; < argk < m — 0, using a similar argument as before. For |k| =1
the exponent is zero and (3.1.27) cannot be used to determine for what range of arg k the

integral tends to zero.

The definition of I(R), (3.1.17), and (2.1.27) imply that

I(R) = /: <u (g—; - zwv) oy (% - 2iﬁu)) Rdb, (3.1.28)

where the term 2¢Suv is both added and subtracted in the integrand. The particular
solution v given by (3.1.11c) becomes e~2#Fcos0+are k) which is O(1) as R — oo. Using the
radiation condition (3.1.22), the limit of the integral of the second term in the integrand
of (3.1.28) is zero. Denote the rest of (3.1.28) by Iy, substitute in the expression for v,
and change variables ¢ = # + arg k, to obtain

02+arg k

L(R) = —2i3R / u (cos ¢ + 1) e PR O g (3.1.29)
0

1 +arg k
This integral has points of stationary phase when sin ¢ = 0, that is, at ¢ = nmw, n € Z. If
none of these lies in the range of the integral then the integral is O (R*3/2) as R — oo
by integration by parts (remember that u = O (R~'/?)), and so I;(R) = O (R~'/?) and
tends to zero as R — oo. Suppose that ¢; is a stationary point in [0; + arg k, 05 + arg k|,
then, by the usual stationary phase calculation

O2+arg k
—2iBR cos ¢ CU(R7 ¢) (COS Qbs + 1) 1
/91+argk u(cosp+1)e dgp ~ RI2 +0 )
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where ¢ is a constant. Thus [;(R) = O(1) as R — oo (remember again that u =
O (R7'?)) unless cos ¢; = —1. This occurs when ¢, = (2n + 1)1, n € Z, in which case
I(R) = O(R™/?) as R — oo.

In summary, if the range of integration contains one of the stationary points 2nm,n € Z
then I;(R) = O(1) as R — oo, otherwise I;,(R) = O(R™/?) as R — oo. Thus, I;(R) — 0
as R — oo if and only if the range is contained in (0, 27), that is, —0; < argk < 27 — 0.
Note that both 0 and 27 are not allowed to be an endpoints of the range of integration,

which results in strict inequalities for arg k. 0

The second way a domain can be unbounded is to contain a semi-infinite strip:

Lemma 3.1.9 (Semi-infinite strip) Let

IF(R) = /Sw) u (vyd€ — vedn) — v (uyd€ — uedn) (3.1.30)

where

Ch(Y) = {z = (R+is)e™ :a<s<b e (0, 277)}, (3.1.31)
and u satisfies (1.1.1). (‘s” standing for ‘strip’.) Then
a) if \=0, u(r,0) — 0 as r — oo and v = e~ then
IF(R) — 0 as R — o0, <= fork e K (¢)

where
Kfal(@/i):{kGC:ﬂ—wﬁarng%—w}; (3.1.32)
and if v = e™** then

I'(R) = 0 as R — o0, <= fork e Kpjy(¢)

where

Ky (¥) = {ke@:@bgargkgw—w}. (3.1.33)

Z/

b) if \=—45% u(r,0) — 0 asr — oo and v = e_m(kzl ) then

I'(R) = 0 as R — o0, <= fork € Ky;;(¢)
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where

K]SWH(@D):{kEC:W—@DSargk‘gQW—@/)}. (3.1.34)

c) if X =432, u(r,0) satisfies (2.1.19) as r — oo and v = e_w<kzl+%> then
I*(R) - 0 as R — o0, <= for k € K§(v)

where

K%@Oz{%V>Lw—¢§a@ks—w}u{mp<L—¢§a@kg—w+w}(3L%)

u{my:1}.

Proof Since the range of integration is finite, the proof for the semi-infinite strip is easier
than for the arc — the exponentials need only be bounded over the range of integration

for I°(R) to go to zero because of the decay of w.
ikz

a) when v = e~

?

| ’ < M ‘/ —ik(R+is) e“l’ ds

< CM( ) —ikRe¥

Y

where ¢ is a constant and M (R) depends on u and its derivatives and so tends to zero as

R — oo.
For v = e**2 the exponential which needs to be bounded is
pikRe™
b) Proceeds exactly as in a) - as k — 0 the k~! term in the exponent behaves in the same

way as the k term behaves as k — oo.

c¢) The exponential which needs to be bounded is now

keliw ) .

e—wR(ke'
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3.1.3 The invariances of the global relation

Summary:

e In order to solve BVPs by eliminating the transforms of the unknown BVs from the
IR, the global relation (3.1.5)/(3.1.7)/(3.1.9) must be supplemented with equations

derived from it by certain transformations.

e In this subsection a proposition is proved (prop. 3.1.11) which gives an algorithmic

process, given a domain, to determine these transformations.

e As stated earlier, this method has not yet been used to solve any BVPs in domains
with more than four sides. The result of this section perhaps gives an indication
of why this is the case: for regular polygons with n sides the number of equations

resulting from this process is O(n) but the number of unknowns is O(n?).

First consider the Poisson equation. Let Q) be either bounded or unbounded but convex

at 0o so both (3.1.7a) and (3.1.7b) hold, each for some non-zero k € C (by corollary 3.1.7).

Parametrise each side by

2=z +shj, hj= M, s € (0,1), (3.1.36)
|Zi41 = 2]
so that (3.1.7a) and (3.1.7b) become
Z e~k (Nj(—ikeiaj) + k’thj(—ikemj)> = —FO k), (3.1.37a)
j=1
Z ek (Nj(z'ke_mj) + kh;D; (z’ke—i%‘)> = — fO(k), (3.1.37b)
j=1

|2j+1—2] b QU@ |25+1 =21 ey
N;(k) = i e (2'(s))ds, D;(k)= i e ul (2 (s))ds.  (3.1.38)

on
If z, = oo, write f;p“ = — fZZ”H and let 2/ = 2,1 + se(™5) s € (0,00), to obtain
4 P

Up(k) = e ™=+ (N, (ike' ") — kh,D,(ike'?)) . (3.1.39)
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Uy(k) = ™1 (N, (—ike "*P) — kh,D,(—ike 7)) . (3.1.40)
All the results in the rest of this section are unaffected by this change of sign in the

argument of the N,,, D,,. (If both z;, ;11 = oo then without loss of generality the domain

is either the upper half plane or the infinite strip. Treat these on a case by case basis.)

If w is real then (3.1.37b) can be obtained from (3.1.37a) by taking the complex conjugate,
and then letting k — k. We will refer to this prodecure as “Schwartz conjugation”. If
u is complex (3.1.37b) cannot be obtained in this way (but this equation still holds by
Proposition 3.1.2). Because of this fact, in the rest of the thesis we will call (3.1.37a) the
global relation (GR) and (3.1.37b) the Schwartz conjugate (SC).

The structure of the equations (3.1.37) is unchanged when one considers the modified
Helmholtz equation and the Helmholtz equation. Indeed, for the modified Helmholtz
equation using the above parametrisation in (3.1.5) and the equation obtained from it by

k — 1/k yields the pair of equations

ie"'ﬁ(’“ﬁ‘?)( (—ike™) + g( | —J) ma%):—f(k), (3.1.41a)

k
(5= ) (N ike™) + 3 ( ?j) (ike " ) — —f(1/k), (3.1.41b)
1

where
|zj+1—2;] . Ou® |2 412
= P+) Z'(s))ds = B(k+5)s 4O (2 (5))ds
N = | s, itk = [ <<(;>f4,2)
and
k) = F(1/k). (3.1.43)

Again, (3.1.41)b can be obtained from (3.1.41)a by Schwartz conjugation. For Helmholtz
the only difference to the modified Helmholtz equation is that the signs of 1/k terms

are changed, so the second equation is obtained by k +— —1/k, and hence in this case

f(k) = F(—=1/k).

For either the Dirichlet or the Neumann problem one of D; and N; is known and the

other unknown. Without loss of generality consider the Dirichlet problem. Then Dj,
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'
zz3 =1l 3
o .
Figure 3.2: The right isosceles triangle.
ﬁ),ﬁ;) are known and N; are unknown.
Consider side p. Applying the transformations
ks —ke 2or, (3.1.44a)
ks —ke*or, (3.1.44b)

in (3.1.37)a and (3.1.37)b respectively means the argument of N, and D, in (3.1.37)a

becomes the argument of N,, D, in (3.1.37)b and visa versa.

It is helpful to consider a concrete example:

Example 3.1.10 (The invariances of the GR for the right isosceles triangle)

Consider the right isosceles triangle, Figure 3.2, where the angles of the sides are a; = 0,
ay = 37m/4, ag = —m/2. Parametrise sides 1 and 2 using (3.1.36). For side 3, instead of
parametrising 2’ = i(l—s), 0 < s <1 (from z3 to z1) it is more convenient to parametrise

2 =1is,0<s <1 (from z to z3, as in (3.1.39)).
Thus, (3.1.37) become
Ny (—ik) 4+ e Ny (™4 k) + Ny(k) = G(k), (3.1.45a)

Ny (ik) 4+ €™ Ny(e7"™/*k) + Na(k) = G(k), (3.1.45b)
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where G (k) is the known function given by
G(k) = —kDy(—ik) + ke ™ 4e= ™ Dy(™/*k) + ik D3 (k) + f(k).

(3.1.45) are two equations for five unknown functions Ni(—ik), N1(ik), No(e™*k), Ny(e™""/*k),
Ny(k).

The pair {Ny(e"™*k), Ny(e~"™/*k)} in (3.1.45) is invariant under the transformations
{k — —ik,k — ik} and applying these to (3.1.45a), (3.1.45b) respectively we obtain

Ni(=k) 4 e M Ny(e ™4k) + Ny(—ik) = G(—ik), (3.1.46a)
Ni(=k) + e M Ny(e™/*k) 4+ Ns(ik) = G(—ik), (3.1.46b)
The pair {N1(—ik), N1(ik)} in (3.1.45) is invariant under the transformation k — —k
and so we obtain another pair of equations by letting k — —k in (3.1.45):
Ny (ik) 4+ €™ Ny(e7™/*k) + N3(—k) = G(—k), (3.1.47a)
Ny (—ik) 4+ e ™ Ny(—e ™E) + Ny(—k) = G(—Fk). (3.1.47D)
We now repeat this process with (3.1.46): the pair {Nay(e="/*k), No(e™*k)} is invariant
under the transformations {k — ik, k — —ik}, but these bring us back to (3.1.45). The
pair {N3(—ik), N3(ik)} is invariant under the transformation k — —k and so we obtain
another pair of equations
Ny (k) 4 e Ny(—e ™4k + Ny(ik) = G(ik), (3.1.48a)
Ny (k) 4 e Ny(—e™ k) + Ny(—ik) = G(ik). (3.1.48b)
One can check that applying the process to (3.1.47) and (3.1.48) yields no more new pairs
of equations. Thus, we end up with eight equations (3.1.45), (3.1.46), (3.1.47), (3.1.48)
for twelve unknowns: N;(+ik), N;(£k),j = 1,3 and No(£e™/*k), No(Le /4k).

We now consider the general case:

Proposition 3.1.11 Given a polygon QW either bounded or unbounded but convex at oo,
let I denote the pairs of transformations applied to the GR (3.1.37a) and SC (3.1.37b)
(including the identity k — k). Let Rg be the rotation by angle 3. Without loss of
generality, orientate the polygon such that oy = w/2 or 3w/2, so Ry_9a, = Ro, i.e. the
tdentity. Then

12 (Re oo, j=1,..,n) (3.1.49)
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by the mapping

k> ke

ko ket
( e )HRQS (3.1.50)

That is: I is isomorphic (as a group) to the group of rotations generated by Ry_on,;,j =

1,...,n.

Corollary 3.1.12

1| <00 <= (Rr_2a,,j =1,...,n) is cyclic. (3.1.51)
— o;€mQ, j=1,...,n, (3.1.52)

Corollary 3.1.13 If |I| < oo, let the generator of <R7r_2a].,j =1, ,n> be Rorx/m. Then

I consists of
k — k€27ril/m
( ks ke 2mil/m i=1...m, (3.1.53)

where the first acts on the GR and the second acts on the SC. This results in a system of

2m (m pairs) of equations involving nm unknowns.

Proof of Proposition 3.1.11 Since the second of each pair of transformations can be
obtained from the first by Schwartz conjugation, only consider the first of these transfor-
mations acting on the GR. Call the GR “state (0)” and “state (p)” the equations resulting
when the transformation (3.1.44a) is applied to the GR. Call “state (pq)” the equations
resulting when the transformation (3.1.44a) with p replaced by ¢ is applied to (p), and so

on. To condense notation let r, = Ry _oq,.

Define N;(—ike') to have “angle” «;, then the transformation (3.1.44) rotates angle o,

in (3.1.37a) by m — 2a,, to become 7 — a, in (3.1.37b).
By direct computation the “angles” of the functions N; in the GR in states (p), (pg),and
(pgs) are given by:
state (p) angles: a; + (7 —20y),j =1,...,n, (3.1.54)
state (pq) angles: a; — (m — 2a,) + (7 — 20),j =1,...,n, (3.1.55)

state (pgs) angles: a; + (7 — 2a,) — (7 — 20) + (7 — 205),7 = 1,...,n.  (3.1.56)
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and so it is clear that the action of these transformations on the GR is isomorphic to

1. -1
rqrs T¢ and so on.

the rotation group containing words of the form r,, r, Yr, Tply Ly, T,
Choose ¢ = 1 in the word rprq_lrs to see that the element r,r, is in the group for any p, g,

and hence the group is that generated by the r;,j =1,...,n. [ 0
Proof of Corollary 3.1.12

Let G = <Rw,2aj,j =1, ,n> First we prove that |G| < oo implies a € 71Q, 5 =1, ..., n.
Assume |G| < co. Let V4 be a two-dimensional vector space. Then every finite subgroup
of SO(V,) (rotations) is cyclic, [NST02, Theorem 15.3, p.174]. Applying this to our
example, implies that G = <R¢> for some ¢. So there exists an n € N such that n¢ =0
(where = denotes mod 27). So ¢ = % for some k£ € N. Then for every a;,j = 1,...,n,

w(n—kt—2sn

there is a t; € N such that Ry 9y, = Ry;p <= 7 —20; =19 < a; = 5 ) for

some kj,s; € Ny thatis o; € Q,5 =1,...,n.

Next we prove that a; € 7Q,7 = 1,...,n implies |G| < co. If a, € 7Q then o, = WZ—’;
for some r, € Z, s, € N. We claim there exists ¢ € mQQ such that Va;, 3t; € Z such that
T —2a; = t;¢. If this is true then G = <R¢> and we are done. A simple calculation shows

that

¢ = Hﬂsj, t, = (H sj> (sp — 2r,) (3.1.57)

J#p
do the job. ([l

Proof of Corollary 3.1.13 Supplementing the GR with the m transformations (3.1.53)a
(one being the identity) yields a set of m equations involving nm unknowns. Similarly,
supplementing the SC with the m transformations (3.1.53)b yields a set m equations
involving nm unknowns. Since [ includes the transformations (3.1.44) and is cyclic,
the nm unknowns in each set of equations are the same. To see that the two sets of
m equations are disjoint, note that the second set can be obtained from the first by
Schwartz conjugation. If an equation were in both sets then it would imply the conjugation

transformation could be obtained as a composition of rotations, which is false. 0J
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Sides  Generator Equations Unknowns

n odd 2 2n n?
2T n?
n even n_/2 n >

Table 3.1: Regular polygons: number of equations and unknowns

Sides Equations Unknowns

3 6 9
4 4 8
) 10 25
6 6 18

Table 3.2: Regular polygons: examples

Example 3.1.14 (Regular polygons) Consider the reqular polygon with n sides. Then
o =7/24 (j — )2 and m — 205 = —(j — 1)*=. Hence the group (Rr_s4,,j = 1,...,n)
is generated by Rog/m where m = n for n odd (since (%) 4 = 22) and m = n/2 forn

even. Table 3.1 displays the numbers of equations and unknowns given by Cor. 3.1.13,

and Table 3.2 displays some specific examples.

Remark 3.1.15 Ezample 3.1.14 perhaps gives an indication of why no BVP in a domain
with more than 4 sides has been solved using this new method: for reqular polygons with
n sides the number of equations resulting from this process is O(n) but the number of
unknowns is O(n?). For example, the hexagon has the same number of equations as the

equilateral triangle but twice as many unknowns.

Remark 3.1.16 (Separable domains) For separable domains the «; are multiples of
7/2, I 2< Ry, R, > so the only transformation is k — —k which results in 4 equations —
the GR, SC and two more obtained from using k — —k. These are exactly the equations
obtained from using separation of variables to find particular solutions of the adjoint (see
Lemma 3.1.11 and Remark 3.1.4).
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3.2 Polar co-ordinates

In this thesis we only consider one domain in polar co-ordinates, the exterior of a circle, and
so for simplicity we only formulate Green’s integral representation and the new integral

representation in the domain D, see Figure 2.9.

Proposition 3.2.1 (Global relation in polar co-ordinates) Let u be a solution of
(1.1.1) for Q some domain D. If D is unbounded assume u satisfies the boundary condi-

tions at infinity:

e A\ =0 (Poisson), u — 0 as r — oo.

o )\ = (32 (Helmholtz), u satisfies (2.2.3)

Let v be any solution of the adjoint of (1.1.1),(3.1.1). Then

ou v 1/ ov ou
== = —p=— : = 2.1
/aDT(Uar u@r) dé’—i—r (uae vae)d?"—{—//Df(r,e)v(r,@,rﬁ)rdrd@ 0 (3.2.1)

Proof In polar co-ordinates the adjoint equation is

10 [ ov 10% .,

22 (== g =0 3.2.2

ror (T8r>+r286’2+ﬁv ( )
and the divergence form (2.2.30) holds with E replaced by v and without the first term
on the right hand side. Integrate over D and use Green’s theorem (2.1.23) to obtain the
(3.2.1). O

Lemma 3.2.2 (Adjoint solutions) There are four particular solutions of the adjoint

equation obtain by separation of variables in polar co-ordinates, two given by

B=0, wv=e"Hpk (3.2.3a)
B#0, v=eE v (8r), (3.2.3b)
and two more obtained by k — —k, where x(r) denotes a solution of the Bessel equation

of order k (i.e. a linear combination of the Bessel functions Jy, and Yy ). (If v is required
to be periodic in 0 then k € 7Z.)
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Proof Letting v(p, 0, k) = O(6; k)R(p; k), it follows that ©, R satisfy the ODEs

0?0 9
0 + k0 =0, (3.2.4)
5 (?) F(P - )R=0, keC. (3:25)
O

Remark 3.2.3 (The restrictions on £ in the adjoint solutions) Depending on

whether the domain contains the origin or is unbounded, some of the particular solutions
for v are disallowed. Indeed, first consider the Poisson equation. At infinity, assume
u(r,0) = O(r=¢) as r — oo where ¢ > 0; actually u(r,0) = O(r~™7) as r — oo, where v

is the angle of the wedge the domain makes at infinity [Jon86]. Then,

1
/(;RT(U%_U%)CZQ—i_;<u%_v%)dr—>o as R — 00 < Rk <e¢,

with v given by (3.2.3a). At the origin, assume u(r,0) = O(r°) as r — 0 where € > 0;
actually u(r,0) = O(r™7) as r — 0, where v is the angle of the wedge the domain makes
at 0 [Jon86]. Then, for the integral in the global relation to exist, we require Rk > —e.

For Helmholtz, fCR — 0 as R — oo iff u and v satisfy the radiation condition (2.2.3).
Therefore if the domain is unbounded, v must be either eiikeH,gl)(ﬁr), or a similar expres-
sion with k — —k. At the origin, assume u(r,0) = O(r°) as r — 0 where € > 0; actually
u(r,0) = O(r™7) as r — 0 where 7 is the wedge angle [Jon86]. Then, for the integral
to exist, B(fBr) must be bounded as r — 0. Recall that Jp(0r) is bounded as r — 0 for
Rk >0 and H,E,l)(ﬁr) is bounded as r — 0 for Rk = 0.

Proposition 3.2.4 (Global relation for domain D defined by (2.2.27)) Letu be the
solution of (1.1.1) for Q = D where D is given by (2.2.27) see Figure 2.9. Then

e \ =0 (Poisson),
+ikDo(k) — No(k) — e*™* [+ik D, (k) — No(k)] — a” [aN (£ik) — kD(=%ik)]
= —// dpds f(p,§)p" k0, Rk < =
D «
(3.2.6)

where D(+ik), N(Lik) are given by (2.2.34),D,(k), Ny(k), x =0 or « are given by
(2.2.33).
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e \ = (3* (Helmholtz),
+ikDy(k) — No(k) — =% [£ikDo(k) — No(k)] — aH" (Ba) N (xik) + aH\" (Ba) D(+£ik)
-/ /D dpdo p f(p,6)HY (Bp)e=™, ke T
(3.2.7)

where D(+ik), N(Lik) are given by (2.2.34),D,(k), Ny (k), x =0 or o are given by
(2.2.36).

Proof Substitute (3.2.3a) and (3.2.3b) where By = ngl) into (3.2.1) for the Poisson
equation and the Helmholtz equation respectively (remark 3.2.3 tells us that for the
Helmholtz equation v must satisfy the radiation condition). Parametrise the sides of
Dby {¢p=a,00>p>a},{p=a,a>¢ >0} and {¢ =0,0 < p < co}. The regions of
validity are given by remark 3.2.3. O
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Chapter 4

Solution of boundary value problems

in separable domains

Summary:

e In this Chapter we solve

— the Poisson, modified Helmholtz, and Helmholtz equations in the half plane
for Dirichlet and oblique Robin boundary conditions §4.1,

— the Helmholtz equation in the quarter plane for Dirichlet and oblique Robin
boundary conditions §4.2,

— the Helmholtz equation in the exterior of the circle with Dirichlet boundary

conditions §4.3.

e The half plane is included as it is the simplest possible example of applying the new
method, and only involves Step 1 of Chapter 1 §3. No boundary value problems
in the half plane are solved with the new method that cannot be solved classically,

however we include their solution by the new method for pedagogical reasons.

e The quarter plane is included as it is the simplest possible case where the new
method solves certain boundary value problems which cannot be solved classically.

The solution involves Steps 1 and 2 of §1.3.

101
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e The Helmholtz equation in the exterior of the circle played a prominent role in the
development of classical transforms and the Fokas method sheds new light on this

classic problem. The solution involves Steps 1, 2 and 3 of Chapter 1 §3.

e For the half plane and quarter plane we use the IR and GR for polygons from §2.1
and §3.1 respectively. For the exterior of the circle we use the IR and GR in polar

co-ordinates from §3.2 and §3.2 respectively.

Remark 4.0.5 (Rigorous considerations) In this chapter we obtain expressions for
the solutions of several boundary value problems using the Fokas method. These are given
as integrals in the k plane involving certain transforms of the given boundary conditions

and forcing.

As with any expression of a solution to a differential equation, the rigorous proof that it
1s indeed the solution proceeds as follows:

1. Define u by the expression. In our case we must give appropriate function spaces for
the boundary conditions and forcing such that their transforms exist for appropriate
k € C (but we will not do this here).

2. Prove that u satisfies the PDE (1.1.1).
3. Prove that u satisfies the boundary conditions.

4. Once uniqueness is established by other PDE techniques, u is then the solution.
Regarding Step 2: our expression for the solution consists of

e the forcing term which satisfies (1.1.1) by construction, and

e integrals where the dependence on the physical co-ordinates, (z,z) or (r,0), is con-
tained within eigenfunctions of the homogeneous problem (e.g. ew(kz_%), Pkt ),
Therefore to prove these terms satisfy the homogeneous equation we only need to
Justify interchanging the operations of differentation and integration (but we will
not do this here).

For each boundary value problem we solve we shall do Step 3. The fact that the Fokas

method yields solutions which are uniformly convergent at the boundary means this is, in
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principle, straightforward. We emphasise that the solutions obtained by classical trans-

forms are not uniformly convergent at the boundary, which makes Step 3 difficult.

4.1 The half plane

In this section we use the integral representations in propositions 2.1.10, 2.1.13, 2.1.14,
applied to the polygon defined by z; = —o00, 25 = oo. In this case, and this case alone,
the interior and exterior of the polygon are essentially the same domain, so w.l.o.g. we

use the integral representations for the interior (2.1.28),(2.1.52),(2.1.40).

Since Q = QW is convex, the contours of integration do not depend on the position of
z (see remark 2.1.11). For the modified Helmholtz equation and the Poisson equation

l; = (0,00), and for the Helmholtz equation l; = Ly, shown in Figure 2.3(a).

4.1.1 Dirichlet boundary conditions

Proposition 4.1.1 Let the complez-valued function u(z,y) satisfy (1.1.1) in the upper
half plane
Q={-c0o<z<00,0<y< o0}, (4.1.1)

with the condition that uw — 0 at infinity, and the Dirichlet boundary conditions
u(z,0) =d(z), —oo<x< o0, (4.1.2)
where d has sufficient decay at infinity (e.g. d € LY(R)NL*(R)). Then the solution u(z,y)

15 given by

1. if A = —403? (the modified Helmholtz equation)

w(z,7) = — /Ooo %eiﬂ(kz—@ (2@ (k + %) D(—ik) — f(-k)) +F(2,7), (4.1.3)

4z

where

and
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o~

where f(k) is defined by (3.1.6), and F(z,2) is given by (2.1.33).

2. if A\ =0 (the Poisson equation)

)

u(z,7) = ﬁ /OOO d—:eikz (2hD(=ik) — F(~k)) + ﬁ /OOO %eikz (2kD(ik) ~ Fl—H)
b F(z5) (4.1.4)

where .
D(k) = / ds e d(s), (4.1.5)

o~ ~

and f(k), f(k) are given by (3.1.8) and F(z,z) is given by (2.1.57).

3. if X =402 (the Helmholtz equation) and u satisfies the radiation condition (3.1.22)
for 0 < argz < m, then

u(z,7) = % /L %eiﬂ@“%) (25 (k: - %) D(—ik) — f(—k)) b F(2%), (416)
o D(k) = / Z ds ") d(s),
and

~

f(k) = F(=1/k),
where f(k) is defined by (3.1.10) and F(z,2) is given by (2.1.45).

Proof

1. Parametrise 02 by z = s,—00 < s < 00, so that (2.1.31) becomes
1
uy (k) = iN(—ik) 4+ 6 <k + E) D(—ik), (4.1.7)

where

The GR (3.1.5) is then

N(—ik)+ 3 (k; + %) D(—ik) = —f(k), keR", (4.1.8)
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where the region of validity is dictated by lemma 3.1.5 part b) as the domain contains
the infinite arc 0 < 0 < 7. Let k — —1/k (or equivalently take the Schwartz

conjugate) to give the second equation
1 ~
N(ik:)+ﬁ<k+g) D(ik) = —f(k), keR". (4.1.9)

The pair {N(—ik), N(ik)} is invariant under k — —k, and applying this transfor-
mation to (4.1.8) and (4.1.9) gives

N(ik) -3 <k + %) D(ik) = —f(—k), k€R", (4.1.10)

1 ~
N(—ik) — (k + E) D(—ik) = —f(—k), keR", (4.1.11)
The spectral function u;(k) contains the unknown function N(—ik), and is inte-

grated over (0,00) in the IR (2.1.28). However (4.1.11) gives N(—ik) on R* in

terms of the known transforms D(—ik), f(—k). Thus
(k) =28 (k + %) D(—ik) — f(—k).
Substituting this into (2.1.28) gives (4.1.3).
2. Parametrise 02 by z = s,—00 < s < 00, so that (2.1.54),(2.1.55) become
uy (k) = iN(—ik) + ikD(—ik),
uy (k) = —iN(ik) — ik D(ik),

where

N(k) = /_OO ds &5 (—uy(s,0).

o0

The two GRs (3.1.7) are
N(—ik) + kD(—ik) = —f(k), keR", (4.1.12)

N(ik) + kD(ik) = —f(k), keR", (4.1.13)

where the regions of validity are dictated by lemma 3.1.5 part (a). Letting k — —k

in these two equations gives

N(ik) — kD(ik) = —f(—k), k€ R™, (4.1.14)
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N(—ik) — kD(—ik) = —f(~k), k€ R*. (4.1.15)

The IR (2.1.52) contains the unknowns N(—ik), N (ik) both integrated over (0, c0).
(4.1.15) gives N(—ik) on R* in terms of the known transforms D(—ik), f(—k) and
(4.1.14) gives N(ik) on RY in terms of the known transforms D(ik), f(—k;) Substi-
tuting these into (2.1.52) gives (4.1.4). The singularity at & = 0 on the contour is

removable once F is expressed using (2.1.58).

3. This follows in exactly the same way as for the modified Helmholtz equation except
the signs of all the 1/k terms are reversed. This affects the regions of validity of
(4.1.8)-(4.1.11). Lemma 3.1.5 part (c) implies the GR (4.1.8) is valid for %k in the
set

{(k€Cik=—1,1€ Low}\ {£1}, (4.1.16)

where the contour L, is given by Figure 2.3(a). k +— —1/k maps this domain to
itself, so (4.1.9) is valid here too. Thus (4.1.11) is valid on L,,; where it is used to
give N(—ik) in terms of known functions. The fact that the expression for u (4.1.6)
satisfies the radiation condition (3.1.22) can be verified using the method of steepest

descent.

O

Remark 4.1.2 (Rigorous considerations — verifying the boundary condition) This
proceeds by evaluating the solution on the boundary. Regarding the forcing term: in §2.1.4
we noted that a spectral representation of the forcing term could only be obtained by split-
ting the ). However, when z is on the boundary, no splitting is necessary since ) is

convex, hence F(z,Z) is given in terms of integrals of the transforms of f appearing in

~ ~

the GR, f(k) (and also f(k) for the Poisson equation).

1. Using (2.1.34), F(x,0) is given by

F(z,0) = i /0 - %ew('f—i)f(k). (4.1.17)

Using k — —1/k this cancels with the integral of f(—k) in (4.1.3) to leave

u(r,0) = - /OOO d—:eW-i)% (k + %) D(—ik). (4.1.18)
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The boundary condition (4.1.2) follows from

5o — &) = % OOO % (k n %) eiB(k—5)@=6). (4.1.19)

This completeness relation can be obtained from the usual Fourier transform com-

pleteness relation

[~ .
Sz—&==— [ de"" 4.1.20
@ =g [ (41.20)
by letting | = B (k — 3) and noting that when k € (0,00) then | € (—00,0).
2. Using (2.1.58), F(z,0) is given by
1 dk 1 [dk _,.~
F(z,0) E/o P k) + 47T/0 (] (4.121)

~ o~

which cancels with the integrals of f(—k) in f(—k)(4.1.4) using k — —k to leave

u(z,0) = L ( /O h dke™ ™ D(—ik) + / N dke““”D(z’k)) : (4.1.22)

2m 0

The boundary condition (4.1.2) follows from the usual Fourier transform inversion

after using k — —k in the second term.

3. Using (2.1.46), F(z,0) is given by

1 —~

dk 1
F(z,0) = — St 1)7 (k). 4.1.23
w0 =g [ et (11.23)

Using k +— 1/k this cancels with the integral of f(—k) in (4.1.6) to leave

1 dk 1 1
== | ZEest)eg (-~ ) D(—i 4.1.24
u(z,0) o /Lm e z ﬁ(k k:) (—ik). (4.1.24)
The boundary condition (4.1.2) follows from
& dk LY (b1 @-¢)
—§&)=— — - = ’ . 4.1.2
o= [ (k) e (4.0.25

This completeness relation can be obtained from the usual Fourier transform com-
pleteness relation (4.1.20) by letting | = (k—i— %) There are several choices of
integration contour in k (which all lead to equivalent answers). One is k € Lyy,
that is if k in the set

(0,—1)U{e?, —7 <06 <0}U(1,00) (4.1.26)

then | € (—oo,00) (Note that proposition 2.1.2 contains a similar discussion).
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Remark 4.1.3 (Orientation of half plane) Here we chose the half plane domain to
be y > 0, i.e. 21 = —00, 2o = 00 because this is the usual convention. However in
Proposition 3.1.11 we decided to orient Q0 so that oy = w/2, which would be the choice of
half plane x < 0, (21 = —00, 22 = —00). In this case the GR is valid in iR* and the SC
in iR™, which immediately gives N(=£ik) on the integration contours in terms of known

functions, without needing to use any transformation such as k — —k.

Remark 4.1.4 (The Dirichlet to Neumann map) For simplicity consider the Laplace
equation. The GR (4.1.12) and SC (4.1.15) immediately give the Dirichlet to Neumann

map

N(—ik) = |k|D(—ik), k€R, (4.1.27)

which can be inverted to give either the Neumann or Dirichlet boundary values in terms
of the other. Classically this relation is only obtained after solving both the Neumann
and Dirichlet problems: [OHLMO03, §5.5.1.2 page 178].

Remark 4.1.5 (Comparison with classical transforms) Consider the Poisson equa-

tion. The Dirichlet problem can be solved using either the Fourier transform in x, giving

1 oo _ . 1 Ik . oo - - oo »
) = 5 [ dbet (i) - - [ SRk [Cage it [ et pen)
(4.1.28)

which converges uniformly at y = 0, or the sine transform in y, giving

u(z,y) = 1 /Ooo dk sin ky (/OO d¢ e~ Fla=¢l (u(g, 0) + /OOO dn sin lmf(g,n))) (4.1.29)

™ —0o0

which does not converge uniformly at y = 0. The expression (4.1.4) is easily shown
to be equal to (4.1.28). Indeed, the terms involving D(—ik) in (4.1.4) are equal to the
term involving D(—ik) in (4.1.28) using k — —k. To show the forcing terms of (4.1.4)
are equal to those of (4.1.28), use (2.1.58) to obtain a spectral representation of F(z, %)
by splitting the domain for n < y (@p = 0). The sine transform solution (4.1.29) can
be shown to be equivalent to the Fourier transform solution (4.1.28) only by deforming
contours. Similar statements hold for the modified Helmholtz and Helmholtz equations,
although for the Helmholtz there is the additional difficulty of ensuring that the branches
of the square roots in the exponentials are such that the solution satisfies the radiation

condition.
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!

Figure 4.1: The upper half plane with the angle of the oblique boundary condition.

4.1.2 Oblique Robin boundary conditions

One of the advantages of the Fokas method is that the solution Steps are independent of
the boundary conditions, which makes this section very similar to the previous section on

Dirichlet boundary conditions.

Proposition 4.1.6 Let the complez-valued function u(z,y) satisfy (1.1.1) in the upper
half plane
Q={-00<z<o00,y>0} (4.1.30)

with the condition that w — 0 at infinity, and the oblique Robin boundary conditions
—sinawu,(z,0) + cos auy,(z,0) + yu(z,0) = g(x), —oo <z < o0, (4.1.31)

where g has sufficient decay at infinity (e.g. g € Li). This problem is well-posed if
0 < a< mand~y > 0 (see Remark 4.2.10). The first two terms correspond to the
derivative of u at angle o to the boundary, see Figure (4.1). The Neumann and Robin

problems correspond to the folowing particular choices of o and ~y:
Neumann: o = g, v =0; Robin: o = g, v > 0. (4.1.32)
Then the solution u(x,y) is given by

1. if A = —403? (the modified Helmholtz equation)

~—

= 4w
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where -
G(k) :/ dseﬁ(“%)sg(s), (4.1.34)
. 1 ,
H(k)=p <k:em — — ) — 7, (4.1.35)
ket
and
f(k) = f(1/k) (4.1.36)
where f(k:) is defined by (3.1.6), and F(z,Z2) is given by (2.1.33).
2. if A\ =0 (the Poisson equation)
1 (®dk g, [ —2kG(—ik) +iH(k)f(—
dmi Jo K H(—k)
1 [®dk _,. [—2kG(ik) — iH(k)f(—k) )
_ ZeTikz F 4.1.37
ami Jy k© ( H(—k) + 2, (4.1.37)
where -
G(k) = / ds e g(s), (4.1.38)
H(k) = ke™ — iy, (4.1.39)
and f(k:),f(k) are given by (3.1.8), and F(z,z) is given by (2.1.57). If vy =0 then
a solution exists if and only if g and f satisfy the solvability condition
G(0) = —sinaf(0). (4.1.40)
3. if X =40 (the Helmholtz equation) and u satisfies the radiation condition (3.1.22)

for 0 < argz < m, then

ulz 5) = L dk ig(kerz) (=20 (k — 1) G(—ik) + iH (k) f(—k) L
=g ) g ( e YR 2)
(4.1.41)
where .
Gk = [ dsetHg(o) (4.1.42)
H(k)=p (kem + k;a) — 47, (4.1.43)
and
k) = F(=1/k), (4.1.44)

~

where f(k) is defined by (3.1.10), and F(z, z) is given by (2.1.45).
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Proof This is very similar to that of Proposition 4.1.1.

1. Rearrange (4.1.31) to give the Neumann boundary value —u,(x,0) in terms of
u$($70)7 U(I,O), and g(‘x)
1

sin «

—uy(z,0) = (g9(x) — cos aug(x,0) — yu(z,0)), —oo<z<oo, (4.1.45)

integrate by parts the term involving u,(x,0) (using © — 0 at infinity) to yield
H(k)D(—ik) + iG(—ik)

Ul(k’) = Sin o s (4146)
where
D(k) = / ds P35y (s, 0). (4.1.47)
The GR (3.1.5) is then
H(k)D(—ik) + iG(—ik) = —isinaf(k), keR", (4.1.48)

where, as for the Dirichlet problem, the region of validity is dictated by lemma
3.1.5 part b). Let k — 1/k (or equivalently take the Schwartz conjugate) to give

the second equation

H(k)D(ik) — iG(ik) = isinaf(k), keR". (4.1.49)

k — —Fk yields the analogues of (4.1.10) and (4.1.11) as

~

H(—k)D(ik) +iG(ik) = —isinaf(—k), ke R, (4.1.50)

H(—k)D(—ik) —iG(—ik) = isinaf(—k), ke€R". (4.1.51)
(4.1.51) gives D(—ik) on RT in terms of the known transforms G(—ik), f(—k).

Substituting this into (2.1.28) gives (4.1.33). There is the possibility that H(—k)

has zeros on the contour, which would mean that (4.1.33) is not well-defined. The

two zeros of H(—k) are at

. 2
_ ﬂ _ l 1
= 5E\! (25) e, (4.1.52)

For % < 1 these are on the unit circle, but never on R since —a < argk < 7+ «

and 0 < a < 7. For % > 1 these are on iR*e' so never on RT.
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2.

Proceeding identically as in case 1 we find that (4.1.48) — (4.1.51) are valid for H (k)
given by (4.1.39), G(k) given by (4.1.38), and
D(k) = / ds eF*u(s,0). (4.1.53)

o0

(4.1.51) gives D(—ik) on R™ in terms of the known transforms D(—ik), f(—k) and
(4.1.50) gives D(ik) on RT in terms of the known transforms D(ik), f(—k). Sub-

stituting these into (2.1.52) gives (4.1.37). Now H(—k) has its zero at k = iye™®
and H(—Fk) has its zero at k = —iye™*®, both of which are never on R except in
the case v = 0 (oblique Neumann boundary conditions) when both are zero. In this
case evaluating the GR (4.1.48) at k = 0 gives (4.1.40) and so the parts of the two
integrals in (4.1.37) near k£ = 0 are equal to

—% 08 % (f(o) + f(O)) (4.1.54)

~ -~

(remember f(0) = f(0)). This singularity at £ = 0 is removable once F' is expressed

using (2.1.58).

. This follows in exactly the same manner as the modified Helmholtz equation except

the signs of all the 1/k terms are reversed. As for the Dirichlet problem the GR
(4.1.48) and SC (4.1.49) are valid for k in the set

(k€ Cik=—1,1€ Ly} (4.1.55)

where the contour Lo, is given by Figure 2.3(a). Now the two zeros of H(—k) are

at

2
A v ;
k= — £4/1 — . 4.1.56

A=+ (3) ) 159
One (+) is on iR*¢e™ and has modulus greater than one, the other (—) is on iRTe™*
and has modulus less than one; so both are never on L,,. The fact that the

expression for u (4.1.41) satisfies the radiation condition (3.1.22) can be verified

using the method of steepest descent.
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Remark 4.1.7 (Rigorous considerations — verifying the boundary condition) This

follows in an identical way to Remark 4.1.2 using

(— sina(% +cosa% —|—fy) ePlkai) = —iH(=k), (4.1.57)

0 0 — 1 > dk . 1\ A
dina = il F — iH(—k)— O iB(k=1)= 4.1.
( sin o 9 + cos 5 —I—’y) (x,0) iH ( k:)47r/0 e f(k), (4.1.58)

and

H(1/k) = —H(k), (4.1.59)

for the modified Helmholtz equation, and similar expressions for the Poisson and Helmholtz

equations.

Remark 4.1.8 (Comparison with the classical solutions) There does not exist an
appropriate transform in y for solving (1.1.1) in the upper half plane with the boundary
conditions (4.1.31), except for the case of Robin boundary conditions, o = /2, where the
appropriate transform is obtained by spectral analysis of the differential operator
d2

e 0<y<oo, u(0)+~u(0)=0 (4.1.60)
and appears in [Sta67, p. 295, Ex. 4.24]. The appropriate transform in x is the Fourier
transform, which yields an expression equivalent to (4.1.33),(4.1.37) and (4.1.41) (although
for the Helmholtz equation, ensuring that the branches of the square roots are such that

the solution satisfies the radiation condition is awkward).

The solution of this boundary value problem by the method of images is given in [GT01]
for the Laplace equation and [Kel81] for other PDEs including the modified Helmholtz and

Helmholtz equations. The Green’s function is given by

G(& mxy) =E&n;x,y) — E& nx,—y)

+ 2sina % /0 dse E(&,n;x + scosa, —y — ssina). (4.1.61)
(In [Kel81] his a equals our —v, and his b = (—cosa,sin«).) Extending the discussion
of §1.4.3 to the case where the image solution is given as a finite sum plus a semi-infinite
integral of images: if the boundary conditions are such that their transforms can be com-
puted explicitly then the solutions (4.1.33), (4.1.37) and (4.1.41) are the best possible
representations of the solution. If the boundary conditions are such that their transforms

cannot be computed explicitly, for the Poisson equation both (4.1.61) and (4.1.37) give
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the Green’s function as an infinite integral of elementary functions, so neither has a clear
advantage. For the modified Helmholtz and Helmholtz equations, (4.1.33) and (4.1.41)
give the Green’s function as an integral of elementary functions, whereas (4.1.61) gives
it as an integral of special functions (which themselves must be computed via an integral
representation), thus the Fokas method solutions (4.1.33) and (4.1.41) are superior to the
image method solution (4.1.61).

Remark 4.1.9 (Solvability conditions) The existence of a solvability condition for the

Poisson equation is well known for Neumann boundary conditions:

—ds = /fdfdn, 4.1.62
/8 = (4162)
which in this case s

—/ dx uy(z,0) / dy/ dx f(z,y). (4.1.63)

Surprisingly the existence of a solvability condition for obligue Neumann boundary condi-
tions(4.1.31) with v = 0 appears not to be well known (for example, [GT01] and [Kel81]
do not mention it). For these boundary conditions the appropriate condition is obtained
by multiplying (4.1.63) by —sin« and adding
Cosa/ dx uy(z,0)

which equals zero by integration. In general, the global relation provides the easiest way for
determining whether the given boundary conditions and forcing must satisfy a solvability
condition. This is achieved by seeing whether there exist any k in the region of validity at
which the coefficients of the unknown boundary values vanish, leaving a condition on the

known boundary values and forcing.

4.2 The Helmholtz equation in the quarter plane

In this section we use the integral representation of propositions 2.1.13 applied to the

interior of the polygon defined by 2z; = 0, 20 = 00, 23 = i00, see Figure 4.2.

Since ©Q = QO is convex, the contours of integration do not depend on the position
of z (see remark 2.1.11). The contour Ly, 1 is just Ly, and ly is Ly, rotated by 7/2

anticlockwise. To simplify notation we write L; instead of Loy ;, see Figure 4.3.
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23 = 100

Iy

z1 =20 29

Figure 4.2: The quarter plane.

(a) The contour Ly (b) The contour Ls

Figure 4.3: The contours in the IR of the Helmholtz equation in the quarter plane
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4.2.1 Dirichlet boundary conditions

Proposition 4.2.1 Let the complez-valued function u(zx,y) satisfy the Helmholtz equation
in the quarter plane,
Q={0<z<00,0<y< o0}, (4.2.1)

with the Dirichlet boundary conditions
u(z,0) =di(z), 0 <z <oo, u(0,y)=d(y), 0<y < oc; (4.2.2)

where the complez-valued functions di and dy have sufficient decay at infinity (e.g. d; €
LYR™) N L?(RY)), and with the radiation condition (3.1.22). Then the solution u(x,y)

s given by

u(z,5) =~ /L %ew(k”@ [25 (k - %) Dy (—ik) + 2if (k + %) Do(—F)

4r

+ ﬁ ; %keiﬁ(’“%) [—Qﬁ (k: - %) Di(ik) —2ip (k + %) Dy(k) — f(k)]
+ F(z,2) (4.2.3)
where
Dy (k) = / A= (s)ds,  Dy(k) = / eB=1)sd, (5)ds, (4.2.4)
f(k) = F(=1/k), (4.2.5)

-~

where f(k) is defined by (3.1.10) and F(z, 2) is given by (2.1.45).

Proof Parametrise side 1 by z = s, 0 < s < 0o, and side 2 by z = is, 0 < s < 00, to give

i1 (k) = iNy (—ik) + 8 (k: _ %) Dy(—ik), (4.2.6)
(k) = iNo(k) + 3 (k: + %) Dy(k), (4.2.7)

where
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4 N
\l (M

D D
Figure 4.4: The domains D and D.

The global relation (3.1.9) is

Ny(—ik) + 8 <k - %) Dy (—ik) + No(k) — i3 (k: + %) Do(k) = —f(k), ke D, (4.2.8)

where the domain D is given by

3 3
D:{|k|>1,7r§argk§§}u{|k|<1,0§argk§g}u{|k|:1,0<argk<§}

(4.2.9)
using Lemma 3.1.5 part ¢) with 6, = 0, 6y = 7/2, see Figure 4.4 Let k — —1/k to give

the second equation

Ny(ik) + 6 <k — %) D (ik) + No(k) + i (k; + %) Dy(k) = —f(k), keD, (4.2.10)

where D is obtained from D via the transformation k — —1/k:
~ T T T
D= {|k‘| <1, ) SargkgO} U{|k| > 1, B) §argk§7r}U{|k‘| =1, D) <argk:<7r},

see Figure 4.4. Note that the second equation (4.2.10) cannot be obtained from (4.2.8) by
Schwartz-conjugation (as in the case of the Poisson and modified Helmholtz equations)

since the act of complex conjugation does not preserve the radiation condition (3.1.22).

In the IR we have two unknown functions N;(—ik) and Ny(k) on Ly and L, respectively.

We have four equations: the GR, SC and k +— —Fk in both. The SC and k£ — —k in the
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GR are valid on Ls, and k — —Fk in the SC and k — —k in the GR are valid on L;.
Following steps 1 and 2 of the solution procedure outlined in §1.3, our plan is to express
both Ni(—ik) and No(k) in terms of one unknown (here we chose Nj(ik)) and known

functions, and for the contribution from that one unknown to vanish by analyticity.

Both (4.2.8) and (4.2.10) are valid in the intersection of D and D which is {k = —[,1 €
Ly} \ {£1}. Subtract (4.2.10) from (4.2.8) to eliminate Ny(k) and obtain

Ny(—ik) — N (ik) + 3 (k - %) (Dy(—ik) — Dy(ik)) — 28 (k: + %) Dy(k)

o~ ~

— —F(k) + f(k), {k=—l1€L}.

Let k — —k and rearrange to find

Ny (—ik) = Ny(ik)—p3 <k - 1) (D1(—ik) — D1 (ik))+2i3 (k + %) Ds(k)+f(—k)—F(=k),

k
(4.2.11)
for k € Ly. Substitute this into (4.2.6) to give

(k) = Ny (ik) + 2i3 <k _ %) Dy(—ik) — i (k - %) Dy(ik) — 28 (k; + %) Dy(—k)

~

+i(f(=k) = f(=k)), k€ Li.

The SC (4.2.10) gives Ny(k) in terms of known functions and Ny (ik), and is valid on Lo,
hence

(k) = —iNy (ik) + 23 (k + %) Dy(k)— i (k - %) Dy(ik)—if(—k), k€ Ly, (4.2.12)

Substitute these expressions for @ (k) and g (k) into (2.1.13) to yield the solution in terms

of integrals of known functions plus

1 dk ; :
= AN iB(k=+3) N, (ik 4.2.1
) e #) Ny (ik). (4.2.13)

This term equals zero by Cauchy’s theorem. Indeed Ni(ik) is analytic and bounded at

infinity in D; given by

D, = {|/<;| <1, %k:go}u{yk] > 1, %kzo} (4.2.14)
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S

D1 D2

Figure 4.5: The domains D, and Ds.

see Figure 4.5, Now, ¢ (k=+%) g analytic for all £k € C and bounded at infinity in 0 <
argk < 7 and at zero in m < arghk < 37” What remains is equal to (4.2.3) after using the
analyticity considerations above to deform the contour for the D;(ik) term on Ly to L.
The fact that the expression for u (4.2.3) satisfies the radiation condition (3.1.22) can be

verified by the method of steepest descent. ([l

Remark 4.2.2 (Rigorous considerations — verifying the boundary condition) When
y=20
1 dk 1 1
= = | ZEeslki)eg (- —) D(—ik 42.1
u(zx,0) QW/lee ﬁ( ’ (—ik). (4.2.15)

which equals di(x) by (4.1.25). This follows from the following considerations: When
k — 1/k then

Ly — — Ly (ie. Loy oriented the other way),
o Dy(k) — Dy(—k),
° D1<Zl€) — Dl(Zk’),

e C

and
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e Dy(ik) and eBETR)T e analytic in Dy .
o Dy(—k) is analytic in Ds.

~

e f(k) is analytic in Dy N Ds.

where
Dy = {k; eC {|k| <1}N{Rk >0}, {|k|>1}n{Rk < 0}}. (4.2.16)

see Figure 4.5. Using these facts, when y = 0:

the Dy(k) term on Ly combined with the Do(—k) term on Ly are equal to zero using

k — 1/k and analyticity.

the Dy(ik) term on Ly equals zero (kv 1/k shows it equals minus itself).

~ ~

the f(—k) term on Ly combined with the f(k) term on Lo are equal to zero using

k — 1/k and analyticity.

o using (2.1.46), F(x,0) is given by
1 , ~
F(z,0) = — / 9k ok ) F ), (4.2.17)
4m {k=—1lleL} k

and using k — 1/k this cancels with the f(—k) term on L.

All that remains is (4.2.15).

When x =0
i8 [ dk 1\ _pes
0,y) = = [ Z(k+ =) ePE)vDy(k 4.2.18
o) = 52 [ F (k7)) (1218
which equals ds(y) by
i dk 1\ a1V
Sty —m) =2 2 B 421
w=m =g [ (kg (1.2.10)

which can be obtained from (4.1.25) by letting k — ik. This follows in a very similar way

to y = 0 with the following additional considerations: when k — —1/k

e Ly — —Ly (ie. Ly oriented the other way),

o Dy(k)— Dy(k),



4.2 The Helmholtz equation in the quarter plane 121

L4 D1<—Z]€) — D1<Zl{?>,

o e Phi)v iy o Blh—)y,
and
o ¢ A1)y 4 analytic in Ds.
Using these facts we deduce that, when y =0,

o the Di(—ik) term on Ly combined with the Di(ik) term on Li are equal to zero

using k +— —1/k and analyticity,

o the Dyo(—k) term on Ly equals zero (k — —1/k shows it equals minus itself),

~ ~

o the f(—k) term on Ly and the f(—k) term on Ly cancel using k — 1/k.

e using (2.1.46) F(0,y) is given by

1 1

dk .
F(z.0) = — O =8(k=1)v F (K 4.2.20
R N ! (4.220)

and using k — —1/k this cancels with the f(k) term on Ls.

All that remains is (4.2.18).

Remark 4.2.3 (Comparison with classical) The Dirichlet problem can be solved us-
ing the Sine transform in x or in y, However the resulting expressions are not uniformly
convergent on the boundary, either at x = 0 if the x transform is used, or at y = 0 if the
y transform s used. These two expressions can be obtained from the solution obtained by

the Fokas method (4.2.3) by using appropriate contour deformations.

The Dirichlet problem can be solved using the method of images,

G=E(nxy) —E¢&nz,—y) — EEn—2,y)+ E(&n —x,—y), (4.2.21)

and the solution is uniformly convergent at the boundary. By the discussion of §1.4.3, if
the boundary conditions are such that their transforms can be computed explicitly, then
the Fokas method solution (4.2.3) is superior to the image method solution (4.2.21). In

all other cases, neither (4.2.21) nor (4.2.3) has a clear advantage over the other.
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4.2.2 Oblique Robin boundary conditions

As for the half plane, the method of solution for oblique Robin boundary conditions is

very similar to that for Dirichlet boundary conditions. There are two main differences:

1. The transforms of the boundary values in the GR are now multiplied by rational

functions of k involving «;,; (H;(k)). This has two effects:

(a) The H;(k) must satisfy a certain condition for the transform of the unknown
boundary values to vanish by analyticity, this imposes some restrictions on

aj,7; (given by (4.2.25) and (4.2.26) below, see also Remark 4.2.6).

(b) The contours of integration L; must be deformed to avoid poles of the integrand

at zeros of the H;(k).

2. The solution contains the value of u at the corner of the domain. This arises from
the fact that the boundary conditions involve u,(z,0), u,(0,y) (derivatives of the
Dirichlet data) which are integrated by parts, introducing u(0,0). For certain o
these contributions cancel. Exactly the same situation arises if the problem can be

solved in the physical space (by images), see remark 4.2.8.

Proposition 4.2.4 Let the complez-valued function u(zx,y) satisfy the Helmholtz equation
in the quarter plane,
Q={0<z<00,0<y<o0}, (4.2.22)

with the radiation condition (3.1.22) and the oblique Robin boundary conditions
—sinay uy(,0) + cos ag uy(z,0) + u(z,0) = g1(x), 0<z < oo, (4.2.23a)

—sin ag u,(0,y) + cos ag uy (0,y) + 12u(0,y) = ¢2(y), 0<y < oo, (4.2.23Db)
where g; have sufficient decay at infinity (e.g. g; € L*(RT) N L*(RY)). This problem
is well-posed if 0 < a; < m and v; € RT (see Remark 4.2.10). The first two terms in
each boundary condition correspond to the derivative of w at angle o to the boundary,

see Figure (4.6) The Neumann and Robin problems correspond to the following particular

choices of o and ;:

Neumann: o; = g, v = 05 Robin: o = g, v > 0. (4.2.24)
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Figure 4.6: The quarter plane with the angle of the oblique Robin boundary conditions.

Suppose the a; and v; satisfy the following two conditions:
ay+ ag = % n=1,2,3, (4.2.25)

and
2 2 _
V5 sin 2a; — 77 sin 2 = 0, (4.2.26)

then the solution u(x,y) is given by

Hy(—k)
(k) (25 sinay (k + 1) (Ga(—k) + cot agdy) + f(—k:))

Hy(—Fk)Hy(—k)

() =g [ ed [—25 sinan (k= ) (Ga(ih) + cotandy) + (B (=)

“4ri .k

L[k e [_ 26sinay (k + 1) (Ga(k) + cot asds) — Ha(k) f (k)
Hy(k)

47y Lo k

_HQ(k)2/6 sin (65} (]{3 — %) (G{(lk) + cot Oéldl) n F(Z, 2)7 (4227)
Hy(—k)Hs(k)
where . -
(k) = Bk=1)s .
G,(k) = Sna, /0 ds P(h=%) g;(s), (4.2.28)
, 1
Hy(k) = 3 (keml i keml) —im, (4.2.29)
HQ(k) _ B (ke—iaz _ ke}w&) — Yo, (4230)

~

Flk) = F(1/k) (4.2.31)
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Figure 4.7: The zeros of Hy(k) in the k plane for |a| < 1 where a = 75

-~

where f(k) is defined by (3.1.10)and F(z, z) is given by (2.1.45), and where the contours
L1 and Ly are deformations of L1 and Lo, which depend on «aw, and are shown in Figures
4.2.4 and 4.2.4 for 0 < ag < /2 and 7/2 < ay < 7 respectively, where the black dots are
zeros of Hy(k) shown in Figure 4.7.

Proof Parametrise side 1 by z = s, 0 < s < oo and rearrange (4.2.23a) to give the
Neumann boundary value —u,(z,0) in terms of u,(x,0), u(z,0), and g (z):

1

—uy(w,0) = sin o

(g91(z) — cos ayuy(z,0) — yu(z,0)), 0<z < oo, (4.2.32)

integrate by parts the term involving u,(z,0) (using © — 0 at infinity) to yield

ﬂl(k) = Hl(k’)Dl(—Zk’) + ZGl(—Zk‘) + 2 cot Oéldl, (4233)
where
1 o 1
_ B(k—1)s
Dy (k) o /0 ds e”\""%)*u(s, 0) (4.2.34)
and
dy = u(07,0). (4.2.35)

Parametrise side 2 by z = is, 0 < s < oo, and rearrange (4.2.23b) to give the Neumann
boundary value —u,(0,y) in terms of u,(0,y), u(0,y), and g2(y):
1

sin ag

—u,(0,y) = (g2(y) — cos anuy(0,y) —y2u(0,y)), 0<y < oo, (4.2.36)
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Figure 4.8: The contours £; and Ly for 0 < as < /2 (black dots are zeros of Hs(k)
shown in Figure 4.7)

Figure 4.9: The contours £, and Ly for 7/2 < ay < 7 (black dots are zeros of Hy(k)

shown in Figure 4.7)
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integrate by parts the term involving w,(0,y) (using u — 0 at infinity) to yield

where
Dy(k) = — / s - 1)ay0, ) (4.2.38)
sinag J, ’
and
dy = u(0,0%). (4.2.39)

The global relation (3.1.9) is

Hl(k?)Dl(—Zk)+ZG1(—Zk>+l cot Oéld1+lH2(k’)D2(k)+ZG2(]€)+Z cot OéQdQ = —']/C\(k?), ke D,
(4.2.40)
where the domain D is given by (4.2.9) as for the Dirichlet problem. Let k — —1/k (or

equivalently take the Schwartz conjugate) to give the second equation

Hl(];')Dl (Zk’) — ZGl (Zk) —1cot Oéldl — ZHQ(]%)DQ(]{) — ZGQ(k) —1cot agdg = —]?(k), ke 5
(4.2.41)

Eliminate Do(k) from (4.2.40) and (4.2.41), let k — —Fk and rearrange to give D;(—ik)

in terms of Dj(ik) and known functions on L;:

D= =5 [ mh 2 o)
. 1 1 (k) f(=k)
+i(cot apdy + cot aads) <H2(—k;) — HQ(—k)> = T (—F) = (k) kel
(4.2.42)

Rearrange (4.2.41) to give Dy(k) in terms of D;(ik) and known functions on Ly@

iDa(k) = [Hl(k;)Dl(zk) —iG4 (ik) — icot aydy — iGa(k) — i cot cuads + f(k;)} .

Hy(k)

(4.2.43)

Substitute (4.2.42) into (4.2.33) and (4.2.43) into (4.2.37) to yield the solution in terms
of integrals of known functions plus

1 dk gk o H (k) Hy (< k) Hy(—F) Ak ip(1= \ Ha (k) Hy (k)
S - eBb+5) D, (i eBk+7) p, (1) 2220 )
47r< /1:1 k Diik) Hy(—k)Hy(—k) +/L2 k Dileh) Hy( )
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Now, Dy (ik) is analytic in D, ¢Bkat3) s analytic in Dy N Dy, so (4.2.44) equals zero by

Cauchy’s theorem if and only if

1. the factors multiplying D (ik) and the exponential in both integrals are equal, that

18

Hy(k) Hy(—k) Hy(k) Hi(—k) = Hy(k) Hy(—k) Hy(k) Hy(=k), Vk € C,  (4.2.45)

2. the integrand has no non-zero poles in the intersection of Dy and Dy (poles at zero
i,B(szr%))‘

pose no problem due to the decay of e
Regarding 1: the condition (4.2.45) is a polynomial with powers of k and 1/k up to k*
and 1/k*. Satisfying the condition imposes some constraints on «;,7;. The O(k), O(1/k),
O(k?), O(1/k?*) and O(1) terms are all identities with no additional constraints on a;, ;.
The O(k*) and O(1/k*) terms both impose the condition

ghilantaz) — 1 (4.2.46)

which is equivalent to (4.2.25) (n = 0 is ruled out since a; > 0); and the O(k?), O(1/k?)

terms impose the condition (4.2.26).

Regarding 2: under the condition (4.2.45), the non-zero poles of (4.2.44) lie at the zeros
of HQ(]?})

2
— ;—;i (;—;) —1], (4.2.47)

which are on e "*2RT if ;% > 1 and on the unit circle with —7/2 —ay < arghk < 7/2 — ay
if 35 < 1, see Figure 4.7. Given the IR (2.1.40), we have the freedom to deform the
contours anywhere in C provided that the directions of approach to zero and infinity are
unchanged. With the deformations £; and L5 of L; and Ly shown in Figures 4.2.4 and
424 for 0 < ag < /2 and 7/2 < ay < 7 respectively, the integrand in (4.2.44) is analytic
in the region bounded by £; — L5 (the deformation of D; N D) and so the integral is zero

by Cauchy’s theorem.



128 4. Solution of boundary value problems in separable domains

\j

\Ql\ Xz

Figure 4.10: Particular oblique Robin boundary conditions satisfying the constraints
(4.2.25),(4.2.26).

Finally it is straightforward to check that the zeros of Hi(—k), Hi(—k) and Hy(—k) do
not lie on £4 or L, and so the solution (4.2.27) is well-defined. O

Remark 4.2.5 (The value of u at the corner) If the g; are such that di = d, i.e.

u(07,0) = u(0,07) then the corner contributions vanish if cot ay = — cot ag, that is
a) +ay =mm, m € Z. (4.2.48)
This is not easy to see from (4.2.27). The easiest way to see it is that if cot ay = — cot ag

then the d; terms cancel in the GR (4.2.40) and hence in every equation derived from it.

This leaves the only contribution from the d; to the solution as

dy cot 041/ %ez’,@(kz-l-%) (4.2.49)
4 Li—Lo> k

(from (4.2.33),(4.2.37)), and this integral is zero by analyticity.

Remark 4.2.6 (The constraints on «a;,7;) A particular solution of (4.2.25),(4.2.26)

15

Qg =T —0q, 71 =72 (4-2'50)

see Figure 4.10. Under these conditions the corner terms cancel, see remark 4.2.5. These

boundary conditions are considered in [Gau88], see remark 4.2.9.
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Remark 4.2.7 (Rigorous considerations — verifying the boundary conditions)

This follows in a similar way to remark 4.2.2 using

. a a i 22 . -
(— S11 v a—y + cos % + ’)/1) € B(k +k) = —’lHl(—k’), (4251)
. a 8 i 22 =
(—SIHOZQ%—FCOSOQa—y—F'}/g) eﬁ(k "Fk) = —Hg(]{?) (4252)

Remark 4.2.8 (Green’s integral representation in the physical space) This is given

by

u(x,y)—/Oood£<uEn—Eun>(f,O)—/Ooodn(Eug—uE§>(O,n)+/Ooodf/ooodnfE

In order to bring it into the form for which an appropriate Green’s function eliminates the
unknown boundary values, use (4.2.32) and (4.2.36) for the Neumann boundary values,

and integrate by parts to eliminate the uy(x,0) and u,(0,y) terms to yield

u(zx,y) :/000 dg ( Eg _ (—sinay £, — cos oy B +71E)) (£,0)

sinay  sinag

o0 E
_/ dn (_ g2 Y (— cos azE, — sin as E¢ + ”YQE)) (0,7)
0

Sinag  sinap

CoS (1

+ E(0,0;2,y) (u(0+,0) : —u(0,0+)c_080‘2) +/ df/ dn fE.
sin ay sin a 0 0
(4.2.53)

This shows that the appropriate Green’s function for the obligue Robin boundary conditions
(4.2.23) must satisfy the same boundary conditions but with o replaced by ™ — «j, see
Figure 4.11. In addition, even if the Green’s function can be found, the resulting IR
(4.2.53) still contains the value of u at the corner, unless the o satisfy (4.2.48).

Remark 4.2.9 (Comparison with the classical solutions) If one of the «; equals
/2, with loss of generality s, then the problem can be solved using the transform in the x
co-ordinate discussed in remark 4.1.8. However the solution is not uniformly convergent
at x = 0. Otherwise this boundary value problem cannot be solved using a classical

transform.

The application of the method of images to a wedge of angle /N with Robin and oblique
Robin boundary conditions is considered in [Gau88]. For the Robin problem (both a; equal

to w/2) the Green’s function is given as a source point, plus infinite lines of images, plus
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Figure 4.11: The quarter plane with oblique Robin boundary conditions for the Green’s
function in order that the solution satisfy the boundary conditions (4.2.23) shown in
Figure 4.6.

infinite regions of images. Furthermore [Gau88] shows that the method of images can
solve the oblique Robin problem with ag = m — aq # /2 only if N is odd and under some
additional restrictions on ay. Thus, the boundary value problem considered in this section

(with N = 2) cannot be solved using images.

Remark 4.2.10 (Impedance boundary conditions) In §4.1.2 and §4.2.2 we consid-
ered oblique Robin boundary conditions with v € R™. We did this so that we could compare
our expressions for the solutions with those obtained by the method of images in [Kel81]
and [Gau88] — see Remarks 4.1.8 and 4.2.9. However, in the case of the Helmholtz equa-
tion impedance boundary condtions, i.e. v € iR™, are physically more interesting. The
relevant BV P with these boundary conditions can be solved by the new method in a similar

way.

4.3 The Helmholtz equation in the exterior of the

circle

As explained in §1.2.2 this particular boundary value problem played a significant role in

the development of the classic theory. We now revisit it with the Fokas method.

For simplicity consider the Dirichlet problem. Other boundary conditions can be consid-
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ered similarly.

Proposition 4.3.1 Let Q) be the domain exterior to a disc of radius a centered at the
origin, i.e. be given by

Q={a<r<oo, 0<6<2r}. (4.3.1)

Let u(a,0) satisfy the PDE (1.1.1), the radiation condition (2.2.3), and the Dirichlet
boundary conditions

u(a,d) =d(0), 0<86<2m, (4.3.2)

where d(0), f(r,0) are given. Furthermore let u satisfy the following boundary conditions

on 0 =0 (which ensure the solution is periodic).

u(r, 2m) = u(r,0), wug(r,2m) = ug(r,0). (4.3.3)
Then u 1s given by
1 00 H(l) . 1 H(l) ing ik 7ik9D n
21 J_o H,”(Ba) 27 Japc HY (Ba) 1_ e
' HY ik P (L _j k0 (1 g

— lim L dk I(g)wjk(ﬁa)e (k, —ik) ‘i:f | (k,ik)

e—04 ABD H]i )(ﬁa) 1 — g—2m

L[ HO(6r) 4
—— | dk Ji(Ba) L (" F(k, —ik) + e~ ™ F (k, ik

7, i o (i (k. )

where the known functions { D(+ik), F(k, +ik), I(¢)} and the contours { ABC, ABD} are
defined as follows:

27
D(+ik) = / dp e d(¢), keC, (4.3.5)
0
00 2 ]
Flkit) = [ dp [ aop (00 1p.0). ke (43.6)

(4.3.7)

1 otherwise,

ek? r |k 1
[(8):{6 if |Sk| > 1,

the contours ABC and ABD are shown in Figure 4.12, where B < k1, where ki is the
zero of H,gl) (Ba) in the first quadrant of the complex k plane with the smallest imaginary

part. The function Eg appearing in the last term of (4.3.2) is given by either (2.2.6) or
(2.2.5).



132 4. Solution of boundary value problems in separable domains

D/ D D//

R

|
! [ ] kn
' °
I °
' °
|
| °
| °
C = A
|
/ /
—e0-90-000-00l0eFoleeooeeoee-p A
|
! A

Figure 4.12: The poles of the integrands of (4.3.4) and the contours of integration in the
complex k plane.

Proof The integral representation of u in the domain 2 is given by

u(r,0) = llir(l)% (/Oioo dk e=** Je(0r) [— (eike + eik(2”_9)) ikDo(k) — (eike — eik(%_e)) No(k)}
+ /0 - e Ju(Br) [(e7™ + e *CT=0) il Dy (k) — (e7™M — emik(2m=0)) No(k)])
- %“ ( /0 " dke™ O (6r) (Je(Ba)N(~ik) = 37 (Ba) D(~ik))

+ / " dke=* O (1) (Je(Ba)N (k) — B, (5a)D <ik>)>

0
+ Adpd¢pf(p,¢)Es(p,¢;r,9) (4.3.8)
where
Dut) = [ LaO G e 0, Moo= [ LHOGo w0, (439
N(&ik) = / " do e** u,(a, p). (4.3.10)
0

This follows from (2.2.35) with a = 27 and w periodic (4.3.3).
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The GR is given by (3.2.7), again with a = 27 and u periodic (4.3.3),

—aH" (Ba)N(ik)+aBH" (Ba)D(%ik)+(1—e=>™*) (£ik Do(k) — No(k)) = —F(k, +ik)
(4.3.11)

We use the three Steps (1)-(3) outlined in Chapter 1 §3 to eliminate the unknown trans-
forms Dy, Ny, and N from the representation (4.3.8).

Before we proceed we note the following three facts: First, H(Jk) (r) = e*"H ,gl)(m), which

implies that Do(—k) = e Dy(k) (and simliarly for Np).
Second, the following identity holds for any function B(k) (provided the integrals exist):
/ dk Jo(Br)H" (Ba) B(k) + / dk Ji(Br)H" (Ba) B(—k)
0 0

-/ k(50 HY (51)B(:) + / TanEoHonBer. 0812

This identity can be derived by expanding H ,gl) as a linear combination of J, and J_j
(using its definition), and then by letting k +— —Fk in the term involving J_j, (this identity
shows reciprocity in 7 and p in the expression (2.2.5), and a similar identity ((2.2.17)) is
used when solving problems using the Kontorovich-Lebedev transform [Jon80, §5], [Jon86,

§9.19, page 587]).

Third, the zeros of H ,il)(ﬁa) are in the 1st and 3rd quadrants of the complex k plane
[KRG63]. If the zeros in the first quadrant are denoted by k,, then the zeros in the third
quadrant are given by —k, (using the symmetry property of Hankel functions mentioned
earlier). For our purposes the only fact that we will require about these zeros is that
argk, — m/2 as n — oo; more detailed information about their behaviour (including

their asymptotics as fa — o0) is given in [KRG63].

Step 1 The two global relations (4.3.11) involve four unknown functions: N(=%ik), No(k),
and Dy (k) (treating N (%ik) as two unknowns). These two equations can therefore express

any one unknown in terms of two others. Here we shall use (4.3.11) to express N(%ik) in
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terms of Ny(k) and Dg(k), however if one takes another choice (such as expressing Ny(k)
and Dy(k) in terms of N(%ik)) and goes through the steps this will also yield the solution
(4.3.4).

Solving (4.3.11) for N(=+ik)

aN (k) = (aﬁH,g”’(ﬁa)D(ﬂk) 4 (1 — 2Ry (2ik Do (k) — No(k)) + F(k, iz’k)) ,

H"(Ba)

and substituting these expressions into (4.3.8) the unknown parts of the integrals over

(0,00) in (4.3.8) are

i OO , Mgy a ,
E </ ke 0 (kD) Vo)

4 (Ba)
> —zkeﬂ(l (BT)Jk(ﬁa) o2mik )
dke 1kDo(k) — No(k ) 4.3.13
+ /0 D 50) (1 — ™) (ik Do(k) (k) ( )

(For brevity of presentation, we will focus only on the unknown terms in (4.3.8) and not

display the known terms involving D(+ik) and F(k, +ik).)

Since u is a solution of (1.1.1) with the outgoing radiation condition (2.2.3) we expect
the r dependence of the solution to be of the form H )(Br). The integrals over (0, 0)
in (4.3.8) are of this form, but those over (0,i00) are not. To rectify this situation we
multiply and divide by H (ﬁa) in the first two terms of (4.3.8) and use the identity
(4.3.12). Indeed, introducing H (ﬂa) in this way, and noting that there are no zeros of
ngl)(ﬁa) on the contour, we find

iy & /OioodkeEkQJk(ﬁT)Hél)(ﬁa)A(k)+ / T ke () HD (Ba) A~ 0)

e—0

where
; ; Dy(k . , No(k
A(k) - _ (ezke + 62]4:(27779)) ik 0( ) . (elkO . ezk(27r70)) (8( ) ’
H, " (Ba)

and then the identity (4.3.12) with B(k) = e** A(k) allows the arguments of H) and .Jj,

to be interchanged. When the resulting terms are combined with (4.3.13), the unknowns
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in the IR (4.3.8) are given by

ko —1kDo(k) — No(k)

imwm—wDam+Aum]

. ()
gg—<A®D%Makam@me g e i
dk (1) _ikg kDo (k) — No(k) —ik(2ﬂ—6)ikD0(k) + No(k) .
+/A’B’E I(e)H, ' (Br)Ji(Ba) [e H,il)(ﬁa) +e H]il)(ﬂa)

(4.3.14)

Our aim is to show that this expression is equal to integrals only involving the known

transforms D(=+ik) and F(k, tik).

Step 2 We now look at the analyticity and decay properties of the integrands of (4.3.14).
The branch cuts of H ,gl) and J; as functions of k are taken on the negative imaginary
axis, and thus Dy(k) and Ny(k) are analytic in the cut plane. Recall that, as |k| — oo
for RE > 0, H,gl)(ﬁr)Jk(ﬁa) decays exponentially and Do(k)/H,gl)(ﬁa) is bounded (except
at zeros of H ,5,1) (Ba)) (these facts can be established by using (2.2.12) and other standard

results about the asymptotics of Bessel functions for large orders, see e.g. [AS65, §9.3]),

Other than the branch cuts on the negative real axis, the only singularities of the in-
tegrands of (4.3.14) are poles at the zeros of H ,gl)(ﬁa), which are in the first and third
quadrants of the complex k plane. Since there are no zeros in the fourth quadrant, the
integral on A’B'FE in (4.3.14) is zero. Indeed, deform the contour of this integral from
A'B'E to A"B"E' where —m/2 < arg E' < —7/4 (so ¥ still decays). This integral now
converges absolutely even when ¢ = 0 and by the dominated convergence theorem ¢ can
be set to zero. When the contour is closed at infinity in the fourth quadrant, this term
equals zero by Cauchy’s theorem (the contribution from the integral at infinity is zero

since the integrand decays exponentially).

Step 3 Deform the contour of the first integral in (4.3.14) from A’B’D to ABD. (Note
that we cannot deform off iR* and get rid of the regularizing factor I(¢) as we did for the

integral over A’B’E above since the zeros of H ,gl)(ﬁa) are arbitrarily close to iR*.) The
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GR (4.3.11) implies that

o (H" (Ba)N(~ik) = BH (Ba)D(~ik) ~ F(k, ~ik))

1 — e—2mik ’

—ikDy(k) = No(k) =

—a (H{" (Ba)N(ik) — BH{ (3a) D(ik) — F (k. k) )

1 — 627rik

—ikDo(k) + No(k) =

and these can be used in the integral over ABD since 1 — e*** =£ () on this contour.
When these expressions are substituted into the integral over ABD, the terms involving
N(+ik) vanish by analyticity. Indeed, when the contour ABD is closed at infinity in the
first quadrant there are no poles of the integrand inside the contour: the H él)(ﬁa) term
in the denominator is cancelled by the same term appearing in the numerator, and the

+27ik

contour does not enclose any of the zeros of 1 — e which are on the real axis. The

contribution from the integral at infinity is zero since the asymptotics

EFIN(—ik) oo 7™ i o (us(a,2m) — €™ ug(a, 0))
2 ik(2m—¢ ik6 ) )
1 — e—2mik ~ e /O e’k )Ue(a> ¢)d¢ ~ € ik , (4.3.15&)
e RIN(GR) ooy [P . (e ug(a, 2m) — ug(a, 0))
ik(2m— iko ik(2m—0 ) )
1 — o—2mik € #r=0) /0 e™ug(a, )dg ~ ™m0 ik
(4.3.15b)

show the integrand decays exponentially as |k| — oo, Sk > 0 for 0 < 6 < 27.

In summary, we have eliminated all the unknown transforms from the IR. The remained

terms equal (4.3.4). To show this, we use the Wronskian

/ / 2
W(Ba)H (Ba) = J(Ba) H (Ba) + — (4.3.16)
to simplify both integrals on (0, 00) as well as the integral over ABD. The latter integral
equals
4 HW )20l , ‘
lim © dlI(e) =" ((f r)JelBa)H,_(Sa) (M D(~ik) + e ™ D(ik)) . (4.3.17)
=04 Japp H,”(Ba)(1 — e2mik)

When (4.3.16) is substituted into (4.3.17), the resulting term involving H,gl) (Ba) in the
numerator is zero; this can be shown by deforming the contour to ABD"” and then setting

e =0, the H ,gl)(ﬁa) terms in the numerator and the denominator cancel and the resulting
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integrand is analytic and exponentially decaying at infinity in the first quadrant. The
contour of the remaining term can be deformed to ABD’, € can be set to zero, and then
the contour of the resulting integral can be deformed to ABC' to yield the second term of

(4.3.4). O

Remark 4.3.2 (Rigorous considerations - verifying the boundary condition) 7o
show the boundary condition (4.3.2) note that when r =a, 0 <0 < 2m, the first term of

(4.3.4) equals d(0) by the Fourier transform inversion theorem. The second term equals

zero by analyticity (closing the contour in the upper half plane). To deal with the terms

involving the forcing, use the angular expansion of E, (2.2.6), to write E(p, ¢;a,0) as

| .

Bup.0.0) = 5 ([T kO Gy acaeeo [k @ 0-0)

0
(4.3.18)
SO

?

/ / f(p,Ql)ES(p,Q’;a,Q)pddeI:Z / dk Jy(Ba) (e* F(k, —ik) + e * F(k,ik)) e~
Q

’ (4.3.19)

which cancels with the penultimate term of (4.3.4) when r = a, leaving the only contribu-

tion from the forcing as

. ikd o —ikf [ ;
lim —~ / 0 1(2) Ji(fa) R =) + e T F (R, ik) (4.3.20)
4 ABD 1—c¢ 2mik

which is zero by analyticity. Indeed, deform ABD to ABD", set ¢ = 0 and close the
contour in the first quadrant. The integrand is analytic here and the asymptotics (4.3.15)
and (2.2.12) imply that

ek P (k, —ik) + e *F(k, ik)

1— e—27rik

Jr(Ba)

—0as k| 500, O<argk<m/2, 0<0<2m.
(4.3.21)
Finally, to show (4.3.3), take the differences

u(r,2m) —u(r,0), wug(r,2m) — ug(r,0).

The terms involving D(=£ik) cancel in a straightforward way by deforming ABC to R, and
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using k — —k. For the forcing terms use (2.2.5) to give

//Q dpdopf E, = i (/0 dke““’H,i”(ﬁr)/a dp p Je(Bp) f (p, —ik)
- /0 dk e H (Br) / dpp Ju(Bp)f (p, ik)

a

; / Sk (o) [ dpp D (3 f(p b
t[Care e [TapnlGnfen)  as)
0 r

where
Floi) = [ = 1(p. 0)d0,
0

(This expression involves several different transforms of f, but they combine to give
F(k,+xik) later). Then deform all the integrals over (0,00) to either (0,i00) or (0, —ico)
depending on whether the integrands are analytic and decay at infinity in either the upper
or lower half planes (the factor 1(€) must be added to ensure convergence of the resulting

integrals on iR ). Then the differences are equal to zero using (4.3.12) and k — —k.

Remark 4.3.3 (Proving completeness of classical transforms) FEvaluating the ex-
pression for the solution of a given BVP obtained by the new method on part of the
boundary of the domain yields a completeness relation. If this completeness relation has
not been used to obtain the solution, then this process gives a proof that the associated
transform is complete. For example, in our case evaluating the solution (4.3.4) onr =a
yields the completeness relation in the angular variables (2.2.8) (see the previous remark),
but of course this completeness relation was used to obtain the expression for Es (2.2.6)
which was then used to find the solution (4.3.4).

4.3.1 Recovery of the classical representations of the solution

In this section we show how the two classical representations of the solution to the BVP of
Proposition 4.3.1 (via the radial and angular eigenfunction expansions) can be obtained

from the expression for the solution given by the new method (4.3.4).
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4.3.1.1 Derivation of the radial series expansion

The classical radial series expansion is given by

ﬁernﬂa
——WZ )i (50)

o i(kn, 0). (4.3.23)

where

ik 0) = [ doton6)( ~ a3l Gauta. )~ [ dop 0.0 50) @320

and
iklo—9| | p2mik o —ik|o—g|
9 — | _ 432
'lU((b, ) 2Z'k(1_62mk) ( 3 5)

Indeed, the spectral analysis of the radial ODE (2.2.9) on (a,00) with the boundary

condition u(a,f) = 0, and with the additional condition that the eigenfunctions satisfy

the outgoing radiation condition (2.2.3), yields

W (Bp)Hy) (Br)Jy,, (Ba)

po(r—p)=—mi : : (4.3.26)
Z Hé? (Ba)
where
: d
1Y (Ba) = - H{" (Ba)
dk ki,

and k, are the zeros of H (ﬁa) in the first quadrant.

Integration by parts implies that the ODE satisfied by the transform

> d
ik, 0) = / L)1 B0)

is given by
d*d

o T = —aBH,) (Ba)u(a,0) — p2f (k).

Solving this ODE by employing an appropriate Green’s function yields (4.3.23).
Note that (4.3.24) can be rewritten as

U(ky,0) =

s (L, 0)e™® = I(=ik,, 6) =) (aﬁH,gi>’<ﬁa)u(a, &) + p*f (kn, ¢))
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where the integral operator I(ik, ) is defined by

e kb 0 ' 2

The Wronskian (4.3.16) evaluated at k = k,, implies that

i (o) LY (6) = =

and furthermore
I(ik, 0)e™® —I(—ik,0)e "
i 2m i i 2m — ™
e R LST dgete 4 e [T dpe ke _ ik /2 dpeih® _ ikt /9 dpe— .
9 0

1— 6—27rik

Hence the solution (4.3.23) can be written as

H( m) ( 0 D (—ik,) + e~ *0 D(ik,)
g
k

1 — 6727rikn

- e_ikneDR(il{n) - eikneDL(—i/{in)>

n=1
T i (Ba) [ €*nF(k,, —iky) + e * O F(k,, ik,)
2 Z >

1 — e—2mikn
e—ikneFR(kn, iky) — e*O Fy (K, — z‘kn)), (4.3.27)
where
Dy(ait) = [ C06 (), Dilik) = / " dp e (g),
and

00 0 )
Fyu(k, +ik) = /O dp /0 do p Hy" (Bp)e™™ f(p, ).

o0 2m
Fr(k, +ik) = / dp / do p HY (Bp)e™™ f(p, ¢).
0 0
The above series solution is not uniformly convergent at » = a since each term contains

H 181) (Ba) which equals zero.

Convergence of the radial series. Cohen considered the case of d = 0 and showed that
this series does not converge outside the geometric shadow of f [Coh64al. That is, if f
has support in a1 < € < ay then (4.3.27) is only valid for 0 < 0 < a3, as < 6 < 27, see
Figure (4.13). The same proof can be used to show the analogous result for d(6): if d has
support in 7 < 6 < 7, then (4.3.27) is only valid for 0 < 0 < vy, 7, < 6 < 27.
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-
A

Figure 4.13: The circle and support of the forcing f.

In what follows we show that (4.3.27) can be obtained from (4.3.4). This can be achieved
by closing the contours in the upper half complex k-plane and evaluating the integrals via
the residues at the zeroes of H,gl)(ﬁa) in the first quadrant. Recall that H,gl) (67‘)/]{,9)(5@)

decays exponentially as |k| — oo for argk # m/2, thus the above construction requires

that the terms involving e**? e~ and the transforms of d or f must have appropriate

decay on iR*. The asymptotics (4.3.15) imply that the second term of (4.3.4) can be
evaluated via residues to yield the first term on the first line of (4.3.27). Regarding the
first term of (4.3.4), we first split D(—ik) = Dp(—ik) + Dg(—ik) and then let k — —Fk in
the second term to obtain

1 o0 ) )

— dk (e™ Dy (—ik) + e~ Dg(ik))

2 J_

1 (5r)
H{Y(Ba)
This term will yield the last two terms on the first line of (4.3.27) if both e™*® Dy (—ik)
and e~* Dp(—ik) decay faster than O(1/k) as |k| — oo for argk = 7/2. (The residues

(4.3.28)

give the sum, and this condition is required for the integral at infinity to be zero.) By
integration by parts, both ¢®* Dy (—ik) and e~ Dp(—ik) are O(1/k) as Sk — oo where
the coefficient of this term is proportional to d(#). Thus (4.3.28) can be evaluated purely
via residues to give the relevant sum in (4.3.27) only if 0 is not in the support of d

(and thus d(f) = 0), which confirms Cohen’s result. However, we emphasise that if the

ek?

regularising factor e**” is inserted in the integral (4.3.28), then the resulting integral can

be evaluated purely as residues to give a series involving terms similar to the terms in

ek

(4.3.27) involving Dy, and Dp, where now the term e**» is included in the sum and the
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limit € — 0 is outside.

Regarding the terms involving the forcing in (4.3.4), we first split the integral over 2

depending on whether § < ¢ and then use the radial representation (2.2.5) to obtain
/ / dpdop f E, = 111%2 < / dk e T (Br) [e™ Fy(k, —ik) + e~ Fp(k, ik)]
Q = 0
+ / dk e T (Br) [e 0 Fy (K, ik) + ™ Fg(k, —z'k;)]> :
0

Introducing H,gl)(ﬁa)/ngl)(ﬁa) in the integrands and using (4.3.12) we obtain

i ([ e BB H(Br) | L |
//Szdpdqﬁprs—lng(/o di H,§1>(;a) (€% Fy (k, —ik) + e~ Fy(k, ik)]

e ek2 ) (5G)H(1)(57“> —i : i -
+/0 dk e 2 H,(Cl)(;a) [e "™ Fy(k,ik) + ™ Fr(k, —ik)] | .

Combining this expression with the third and fourth terms of (4.3.4), using F(k, £k) =
Fr(k,£k) + Fr(k,+k), we find that the terms involving the forcing equal

hmi —/ dkI(e) Ji(Ba) B (Br) [eOF (e, —ik) + eﬂ.keF(k,ik)]
=04 ABD

H,gl)(ﬁa) 1 — e—2wik
H(l)(ﬁT) . . |
o e 5 2SO 0, i)+ )]
H(l)(ﬁT) p i |
+/A’B’E dkI(e) Jk(ﬁa)m (e~ Fy (K, ik) + e* F(k, —ik)] | . (4.3.29)

The third term in (4.3.29) vanishes by analyticity (by deforming A’B'E to A'B’'E’ and
setting € = 0). The first term can be evaluated via residues and gives the second line
of (4.3.27): the asymptotics (4.3.21) imply that the contour can be closed at infinity in
the first quadrant. The second term in (4.3.29) can be evaluated in terms of an infinite
number of residues: we deform A’B’'D to A’B’'D", set € = 0, close the contour in the first
quadrant, and evaluate the resulting integral as residues. Thus the contribution from the

second term in (4.3.29) equals

oo

T~ HYY (Br) Ik (Ba) e
D T

(€7 Fr(kn, iky) + """ Fr(ky — ika)) . (4.3.30)
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Integration by parts of Fj, and Fr shows that if 6 is not in the support of f then this sum
converges absolutely even with ¢ = 0 producing the result (4.3.27). Otherwise (4.3.27)

does not converge, again in agreement with Cohen.

Remark 4.3.4 (A complete radial eigenfunction expansion) The discussion above

shows that the radial expansion of the solution (4.3.27) is valid provided that the regqular-

k2

1sing factor e"n is inserted in the sums. This suggests that the following completeness

relation 1s valid:

2 e b HY (kp) HYY (kr) Ty, (ka)
po(r—p)=—milim ekn R =
e H)nz_; A (ka)

. (4.3.31)

However there is no boundary in r on which to evaluate the solution (4.3.4) and there-
fore we cannot use Remark 4.3.3 to prove the validity of (4.3.31). Newvertheless, the new
method can indeed be used to prove that (4.3.31) holds by solving a BVP for the Helmholtz
equation in the domain D defined by (2.2.27): if arbitrary Dirichlet boundary conditions
are prescribed on 0 = 0 and, for simplicity, zero Dirichlet boundary conditions are pre-
scribed elsewhere on 0D, then evaluating the solution to this BVP obtained by the new
method on 6 = 0 yields (4.3.31) (solving this BVP in D is very similar to solving the BVP
in Q of Proposition 4.3.1). Thus, there does exist a complete eigenfunction expansion for
the radial ODE (2.2.9), albeit with a regularising factor.

4.3.1.2 Derivation of the angular series expansion

Spectral analysis of the angular ODE (2.2.7) on 0 < 6 < 27 under periodicity (4.3.3)

yields the completeness relation



144 4. Solution of boundary value problems in separable domains

i.e. the standard Fourier series. The classical angular solution obtained using this trans-

form is
Lo~ H(B) g
(7‘ 9) o n_zoo 7(3 (ﬁa D( )
' Jn(ﬁa) 1 o —imn
+ = nz_:ooe { () 57" dPP (Jn(ﬁp) - MHéMﬁp)) /Odgbe ¢f(p, ¢)
r) — Jn(fa) 1 r ' (1) o o—ing
+<‘W> w0 >>/ oo (Gp) [ a0 f(mb)},

(4.3.32)

[Coh64a],[KL59]. This expression can also be obtained from (4.3.4) in the following way:
We first consider the term involving the integral over ABC. We deform the contour down
to the real axis, indented above the poles at k = n, n € Z; we denote this contour by
(0,00™) and we denote the corresponding contour indented below the poles as (0,007).

We split the integral into f:o + [ and let k — —k in the integral on (—oo, ie) to obtain

1 oot H(l) ) k(0-2m) D (_ik —ik0 D) (i L

- dk (1)(ﬁ7n) (eszD(_Z»k) + € ( t )_;_: (Z )>
2m Sy H,"’(B8a) 1 —e—=m
1 om g ‘ ik(0-2m) (4 —ik0 ) (;

_ = dk ]Zl (8r) (e—zkﬂD(ik) € ( @k):’]f (Zk)) ‘
2m J e H(Ba) 1 — e—2m

oD k0 D) (5 b a (pr) o0 D (i
(M D(—ik) + e~ D(ik)) /wdk—H(l)(ﬁ) D(—ik)

€ 1) 00 (1)
1 H . 1 H . ‘ y '
N dklzl)—ﬁrelkeD(Zk’) 4+ — Z o (ﬁ?”) (ezn(9727r)D<_Zn) +e MLGD(ZTI,))
2o H (B o 2 B (pa)
1 " H,gl)(ﬂr) <€ik(9—2w)D(_Z’k> + e_ikeD(ik))
27 Jih=coiv, —n<o<my  HL(Ba) 1 — e—2nik :

where the sum arises by evaluating an integral as residues at its poles at Z*. Taking the
limit as € — 0 the first term cancels with the first term of (4.3.4) (using k — —k), the
second and third terms tend to zero, and the final term tends to

1 HY(Br)

o
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giving rise to the first term of (4.3.32).

For the terms involving the forcing, the contours in the second and third terms of (4.3.4)
cannot be deformed. Instead, we first split the area integral depending on whether r < p
and then use the angular representation (2.2.6) to obtain (4.3.22). and we then introduce

poles using

1 1
1= 1 — e—2itk + 1 _ p2ink (4.3.33)
~ 1 _ e—2i7rk’ |]€| — o0, Sk < 0.

For simplicity, in what follows we will ignore the pole at kK = 0. The same argument can
be modified to include this pole by introducing a parameter € and letting ¢ — 0, as we did
for the terms involving D(=+ik). In (4.3.22) we deform all contours from (0, co) to (0, 00™)
(slightly above the real axis), use (4.3.33) and combine terms to write the integrand as
two fractions, one decaying at infinity in the first quadrant and the other decaying in
the fourth quadrant. By deforming the contours from (0,00") to (0,i00) and (0, —ico)
respectively, we obtain an infinite number of residues from the poles at Z* of the second

term. Thus [, dpd¢ p f E, equals

1 I
7 m 1 — e—2ink

/ioo dk 1(c) (eikﬁ HM(Br) [T dpp Ju(Bp) f(p, —ik) + J(Br) [ dpp HO (Bp) f (p, —ik)
0

+e 1 — €—2i7rk

o (B7) [T dp p Ju(Bp) [ (p.ik) + Je(Br) [ dp p H" (Bp) [ (p, z‘k))

1 — 62i7rk

+ / Tk (e) <€ik9 H(Br) [7 dp p Ju(Bp)f (p. —ik) + Ju(Br) [ dpp H  (3p) f (p, —ik)
0

+e

1— 62z7rk:

+- Z < me( HM( ﬁr)/ dpp Jn(Bp)f (p, —m)+Jn(ﬁT)/ dpp H , —im

+e7in0 (H}f)(ﬁr)/ dpp Ju(8p) f(p,in) + Jn(ﬁr)/ dpp H f(p,in )

(4.3.34)

o B (Br) [7 dp p J(Bp) f (p,ik) + +J(Br) [ dp p H" (Bp) f (p, ik) )]

)
)
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Letting k — —Fk in the integral over (0, —ico) and combining this term with the integral

over (0,i00) (using the definition of Hy, in terms of J; and J_; to combine the transforms

of f) we find

LR P bl ) S G (e““"F(k, —ik) +e““9F(k:,z'k)>

4 -0 J, 2 H}S)(ﬁa) 1 — e—2mik

which looks similar to the third term of (4.3.4). Introducing Hél)(ﬁa)/H,il)(ﬁa) into the
integrand and using the identity
1— e27rik:

o B (00 (Ba) = B () Ju(Ba) — HE(Br)] +(5a) (4:3.35)

(which follows from the definition of Hj, in terms of J;, and J_j) we see that the first term
cancels with the third term of (4.3.4). Using k — —k in the second term and deforming
from (0, —ioco) to (0,007) (there are no poles of H,il)(ﬁa) in the third quadrant), we see
that the contribution from the forcing to the solution is given by the sum in (4.3.34) plus

the term

e .

=t gY(Br) e F(k, —ik) + e~ F (k, ik)
(/0 dk Hgl)(ﬁa) Ji(Ba) < 1 _ o—2wik )

° 7Y (8r ; , » ,
— /O kok(ﬁa)m(ekﬁF(k,—zkHe MF(k,ik))

oo~ H(l) k0P (k. —ik —ik0 (L ik
/0 dk H’;TEZ;J;C(@) (e (&, il;ik (k, 4 >)> (4.3.36)
k

Using (4.3.33) in the third term of (4.3.36), the two integrals over (0, 00) cancel leaving
one integral which can be evaluated via the residues at the poles on Z™:

i o~ HY(Br)
4;1%%”(6@

Jn(Ba) (e F(n,—in) + e "™ F(n,in)). (4.3.37)

The above sums, together with the n = 0 term obtained by introducing € near £k = 0 and

letting ¢ — 0, equal the forcing contribution in the classical angular solution (4.3.32).



Chapter 5

Solution of boundary value problems

in a non-separable domain

Summary:

This Chapter presents the solution of the Dirichlet problem for the Poisson and

modified Helmholtz equations in the interior of a right isosceles triangle.

In this domain the Fokas method, yielding the solution as an integral, has a huge

advantage over the classical solution of a bi-infinite sum of eigenfunctions.

The solution procedure involves Steps 1-3 of §1.3.

We also include an example of how to obtain the Dirichlet to Neumann map directly

(without going via the solution) for the Dirichlet problem.

In this chapter we implement the Fokas method to the Poisson and modified Helmholtz
equations in the interior of a right isosceles triangle. The Helmholtz equation can be

considered similarly, see remark 5.3.3.

147
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Zgzil

21:0

Figure 5.1: The right isosceles triangle.

5.1 The global relation

We use the integral representations of chapter 2, (2.1.28), (2.1.52) and global relations
of chapter 3, (3.1.5), (3.1.7). We begin by parametrising the transforms of the boundary
values following §3.1.3. Parametrising side (1) by z = s, 0 < s < [, side (2) by z =
[+ e™/4s, 0 < s < V/2l, and side (3) by z = is, 0 < s < [, the spectral functions ;(k)

become

Gy (k) = iNy(—ik) — H(—ik) D, (—ik), (5.1.1)
tg(k) = E(—ik) (ZNQ(@”/%) — H(ke”“)pg(e”/%)), (5.1.2)
ts(k) = iNs(k) + H(k)Ds(k), (5.1.3)

where N; are transforms of the Neumann boundary values and D; are transforms of the

Dirichlet boundary values given by (3.1.38) for the Poisson equation and (3.1.42) for the
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modified Helmholtz equation, where

H(k) = 8l (k: - %) . E(k) = o)L (5.1.4)

for the modified Helmholtz equation and
H(k)=Fk, FE(k)=-¢e", (5.1.5)

for the Poisson equation. We note that on side 1, u,(s) = —u,(s,0), u(s) = u(s,0), on
side 3, u,(s) = —u,(0, s), u(s) = u(0, s) and on side 2, u,(s) = (u, +u,)(s, V2l — 5)/V2,
u(s) = u(s, V2l — s).

From example 3.1.10, the GR and SC are

Ni(—ik) + E(—ik)Ny(e™/*k) + Ns(k) = G(k), (5.1.6a)

Ny (ik) + E(ik)Ny(e ™*E) + Ns(k) = G(k), (5.1.6b)

where G(k) is the known function given by

-~

Gk) = —i [H(—ik)Dl(—z’k:) + H (Y E(—ik) Da(¢/ k) — H(K)Ds(k) +if (k)

(5.1.7)
and the additional equations we require are
Ny (=k) 4+ E(=E)Ny(e ™*E) + N3(—ik) = G(—ik), (5.1.8a)
Ny (=k) + E(—=k)No(e™*E) + Ny(ik) = G(—ik), (5.1.8b)
N (ik) 4+ E(ik)No(e ™*k) + N3(—k) = G(—k), (5.1.9a)
Ny (—ik) + E(—ik)Ny(—e 4k) + N3(—k) = G(—k). (5.1.9b)
Ni(k) + E(k)Ny(—e~™/*k) 4+ Ns(ik) = G(ik), (5.1.10a)

Ny (k) + E(k)Ny(—e™4k) + Ny(—ik) = G(ik). (5.1.10b)
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SR

| l2

(a) The contours [; for the Poisson equation and  (b) The contours I; for the Poisson equation.

the modified Helmholtz equation.
Figure 5.2: The contours for the right isosceles triangle

That is, 8 equations (5.1.6), (5.1.8), (5.1.9), (5.1.10) for 12 unknowns: N;(%ik), N;(£k),j =
1,3 and No(£e™4k), Ny(de ™/4k).

The contours [; and l; in the integral representation for the right isosceles triangle are

illustrated in Figure 5.2.

5.2 The symmetric Dirichlet problem

In preparation for the Dirichlet problem, first consider particular Dirichlet boundary con-
ditions in addition to forcing f(z,y) = f(y, x), so that the solution is symmetric in x and
y, that is

u(z,y) =u(y,x), 0<z,y<l. (5.2.1)

We do this because under these conditions, the system of equations derived from the GR

(5.1.6), (5.1.8), (5.1.9), (5.1.10) simplifies.

First we find the solution u, then we find the Dirichlet to Neumann map
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5.2.1 The solution u

Proposition 5.2.1 (The symmetric Dirichlet problem for the modified Helmholtz
equation) Let the complex-valued function u(z,y) satisfy (1.1.1) with X = —43? in the
right isosceles triangle, see figure 5.1, with the Dirichlet boundary conditions
u(s,0) =u(0,s) =d(s), 0<s<lI, (5.2.2)
u(s, V2l — s) = dy(s), 0<s <2, (5.2.3)

where dy(s) = dy(v/21 — s), and forcing

flz,y) = fly, ). (5.2.4)
Then
1 dk  G(k) ) o Gl ) |
N { fie T s 629 0 ?W“’%W—W—zm}
@) (5.2.5)

where A1(k) and Ay(k) are defined by
A (k) = E(—ik) + E(—k) (5.2.6)

and
Aq(k) = E(ik) + E(—k), (5.2.7)
Q1(z) is given by

P
—_—~—

1 dk , G(k) dk G(h) )
Ql(z)_E{/h?e(k’z’z)E(—ik)+E(—k)+/12 ? e(k,z,2)E(— zk:) 0+

dk
—i—/—ekzz }+Qo
l3

(5.2.8)
where Qo(2) is given by
Qo(2) = — ﬁ { /l dkk (k, 2, 2 H(—ik) Dy (—ik) + /l %e(k,z,z)E(—ik)H(kem/‘*)DQ(e”/%)
- /l d: (. » z)H(k)Dg(k)} + F(2 %), (5.2.9)

—~—

and 5(\16/) and 5(\/:) are given in terms of the known function G(k) (5.1.7) by

G(k) = G(k) — G(k) — G(—ik) + G(—ik), (5.2.10)
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(a) The contours ABC and ABC"  (b) The contours DEF and DEF’

Figure 5.3: The contours ABC and DEF of proposition 5.2.1.

and

G(k) = B(—ik)(G(—ik) — G(—ik)) + E(—k)(G(k) — G(k)). (5.2.11)

In addition
e(k,z,z) = ew(’”*%), (5.2.12)

and the contours ABC" and DEF' are given by figure 5.2.1.

Proof The symmetry properties (5.2.2), (5.2.3), (5.2.4) imply that u satisfies (5.2.1), and

the transform functions satisfy

Ny(k) = Ns(k) = N(k), (5.2.13)
E(—ik)Ny(e™*k) = E(k)Ny(—e™4k). (5.2.14)
Di(k) = Dy(k) = D(k), (5.2.15)
E(—ik)Dy(e"™4k) = E(k)Dy(—e™k), (5.2.16)
and
Fk) = F(ik), (5.2.17)
so that

G(k) = G(ik). (5.2.18)
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Then the system of equations (5.1.6), (5.1.8),(5.1.9),(5.1.10) becomes

N(—ik) + E(—ik)Na(e™/*k) + N(k) = G(k), (5.2.19)
N(ik) 4+ E(ik)Ny(e ™*k) + N (k) = G(k), (5.2.20)
N(—k) + E(=k)Nao(e~™/*k) + N(—ik) = G(—ik), (5.2.21)
N(—k) + E(—k)Ny(e™/*k) + N(ik) = G(—ik). (5.2.22)

Hence we have four equations for six unknown functions N(+k), N(%ik), N3(e*™/4k).

We begin the solution procedure by performing Step 1 of §1.3: use the GR, and equations
derived from it, to express the transforms of the unknown boundary values appearing in
the IR, N(—ik), N(k) and Ny(ei™/*k), in terms of the smallest possible subset of the
functions appearing in the GR.

Having four equations and six unknowns implies that each of the unknowns N(—ik), N (k)
and Ny(e™™/*k) can be expressed in terms of two other unknown functions. We have three

choices:

1. N(ik) and No(e "™/4k),
2. N(—Fk) and Ny(e™""/1k),

3. N(—k) and N (ik).

However, the symmetry of the system means that we can get one equation only involving
two unknowns, Ny(e™*k) and Ny(e™/*k) ((5.2.24) below), and it seems sensible to use
this through either using choices 1 or 2. Here we proceed using choice 1, and note that
choice 2 proceeds in a similar way. It appears that under choice 3, the unknown boundary
values cannot be eliminated from the IR, hence the explicit requirement in Step 1 of §1.3
that we express the functions appearing in the IR in terms of the smallest possible subset

of the functions appearing in the GR.
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Simple algebra gives

N(k) = —N(ik) — E(ik)No(e k) + G(k), (5.2.23)
iy BGR)+ B=R) G(k)

No(ei™/ k) = E(_ik)_i_E(_k)Ng(e M) + Bk + B (5.2.24)

N(—ik) = N(ik) + E(—k) EE ((12)_ fé:’% Ny(e™ /) + e ]g(f)E ) (5.2.25)

Using the definitions of u;(k), (5.1.1),(5.1.2),(5.1.3), the integral representation for u

becomes
"= ﬁ { /l %e(k, 2 2N (—ik) + /l %e(k, 2. ) B(—ik) Ny(e™/1F) + /l d—:e(k, z,Z)N(k)}
+ Qo(2), (5.2.26)
where the known function Qq(2) is given by (5.2.9).
Using (5.2.23),(5.2.24),(5.2.25) we find
"= % (L(2) + I(2) + I(2) + I(2)} + Qi (2), (5.2.27)
where
I(z) = /Z . etk 2, 2N (),
I(z) = /l . Felk,2.2) % i (@;)klEg(k_)k) Na(e—m/k),
lo(z) = /12_53 d_/fe(k’ Z’§>E(]—\[z2'/$f/E4](€)—k)’
L) = /l . d—:e(k, 2 3) E?::))f g(if)k)zvz(e”/%). (5.2.28)

Step 2 of §1.3 (look at the analyticity of the integrands): N (ik) is analytic and bounded at
k = oo and k =0 for Im £ > 0, and e(k, z, z) is analytic and bounded for 0 < argk < 7/2

(since z is in €,

0 < argz < m/2).

So, closing the contour of I; at co in the first

quadrant I;(z) = 0 by Cauchy’s theorem — the contribution from the integral at oo is

zero by Jordan’s lemma, see e.g. [AF03, Lemma 4.2.2, page 222] (in fact the full strength
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of Jordan’s lemma is only needed if z € 92). We now use Cauchy’s theorem again to

evaluate I, I3 and 1.

Using the definition of A;(k), (5.2.6), straightforward calculations and integration by
parts for Ny(e="/*k) yield

1 . 1 .
~ E(i N. —im/41) = kl—ikl — /4 4
AR (ik), 5 (e k) O(ke ), k— oo, arghke (—m/4,3m/4),
1 , 1
~E No(e™™g) = O — — 4,7 /4].
A h) (k), 5 (e k) O(k)’ k — oo, argk € [3m/4,7m/4]

(5.2.29)

These facts imply as k£ — oo:

e the integrand of I, for argk € [0,7/2] is asymptotic to £+,

e the integrand of I3 for argk € [0, 57 /4] is asymptotic to e~

)

e the integrand of I, for argk € [—37/4,0] is asymptotic to (=0,

By considering the right isosceles triangle (see Figure 1):

arg(z +1) € (0,7/4),
arg(z —il) € (—7/2,—m/4),

arg(z — 1) € (3w /4,7),

and so, closing the contour of the integral I at oo in the first quadrant, its integrand is
bounded in the interior of the closed contour. In a similar way, closing the contours of I3
and I, at oo for argk € (7/2,57/4) and arg k € (—3m/4,0) respectively, the integrands are
bounded in the interior of the closed contours. (All the contributions from the integrals
at oo are zero by Jordan’s lemma.) The only singularities of the integrands are at the

zeros ky, of Ay(k) given by

se (20 +1 M + 1)27?
kn:e‘1<(”+ L MH), nez (5.2.30)

152+/2 81232

that is, on eI R. Since none of the k, is in the first quadrant, I, = 0.
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Figure 5.4: The lines on which the zeros of A;(k) and Ay (k) lie

Step 3 of §1.3 (deform contours and use the GR again): focus on 3. Equation (5.2.24)

can be rewritten as

Ny i) |G
NN ORI OINDk (5.2.31)

where Ay (k) is given by (5.2.7). The zeros of A;(k) are on exp(2%*)R and those of Ay (k)

are on exp(Z)R, see Figure 5.4.

We deform the contour of I3 as shown in Figure 5.3(a) from ABC to ABC’ and use
(5.2.31) to give

dk Ny(eim/ %) , dk G(k) ]
e T e [ T a e 62)

The first integral in (5.2.32) is zero. Indeed, similar calculations to those in (5.2.29) show
that the integral can be evaluated by closing the contour at infinity, and since the zeros
of Ay(k) are outside the contour (this was achieved by deforming from ABC to ABC'),
the integral is zero by Cauchy’s theorem. Hence, I3 is given by

= - %—é@/) ek, 2,2
b= Emam D (5:2.33)
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In exactly the same way,

—~—

_ dk  G(k) _ :
I, =— /DEF/ ?me(l@,z, Z)E(—k)E(—ik), (5.2.34)

see Figure 5.3(b). Hence we arrive at the (5.2.5). O

Remark 5.2.2 (Series solution) Evaluating the integrals in (5.2.5) over the contours
ABC" and DEF'" as residues in the 2nd and th quadrants respectively yields the solution
as integrals plus an infinite series which is given in [FK03, Example 2.2].

Using the short—cut of remark 2.1.16, it is straightforward to convert this result into the

corresponding one for the Poisson equation.

Proposition 5.2.3 (The symmetric Dirichlet problem for the Poisson equation)
Let u satisfy the conditions of proposition 5.2.1 except with A = 0. Then u is given by
(5.2.5) with the following changes:

o e(k,2,2) = e,
o H(k) and E(k) are given by (5.1.5) instead of (5.1.4),
e to every term, except for F(z,Z), one must add its complex conjugate,

o D;(k) are given by (3.1.38) instead of (3.1.42).

Proof This is identical to that of proposition 5.2.1. The only difference is that the zeros

of Ay(k) are now at

kp = €'7 i (2n+1), ne€Z,

V2

but these are still on eBTWR, so the proof is unchanged. [l

5.2.2 The Dirichlet to Neumann map

We now solve the problem of finding the unknown boundary values directly without

finding the solution in 2. For simplicity, consider the Poisson equation.
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G/l

Figure 5.5: The contours GHI,G'HI' and G"HI"

Proposition 5.2.4 (The Dirichlet to Neumann map for the symmetric Dirichlet
problem of the Poisson equation) Let u satisfy the conditions of Proposition 5.2.1
except with X\ = 0. Then the unknown Neumann boundary values on sides (1)/(3) un(s)
and side (2) ug)(s) are given by

—~— —~—

1 o G(R) 1 o G(R)
unv(s) = —— dk ezks kl+ikl +_/ dk ezks kl—ikl
N() 21 JykL Al(k)A2(k) 27 JukN Al(k)A2(k)
1 > iks 5@/)
x| TR Gy
(5.2.35)
—im/4 é\k'/)
(2) — € _ —6”/4ksE (
v (8) = =52 [ /G,HI, ak (R) R ) A h)
s G (k) oo™t e, G(R)
- dk:ee/’“E—k—Jr/ dk e~ ks
Lo, TR 080 T A, (F)
(5.2.36)

where the contours are shown in Figures 5.6 and 5.5 and E(k) and H(k) are given by
(5.1.5).

Proof
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M

Figure 5.6: The contours JKL and M KN
Side (2) Letting k +— ik in the definition of Ny(k), the equation (3.1.38), we obtain
Vil
Ny (ik) :/ elksuﬁ)(s)ds.
0
The Fourier inversion formula gives

u'd (s) L / h dk e *5Ny(ik), s € [0,V/2l]. (5.2.37)

T or o

Multiplying (5.2.24) by A;(k) we have

Ay (k)No(e™/4k) = (E(ik) + E(—k))No(e~™/4k) + G (k), (5.2.38)

—~—

where G(k) is given by (5.2.10). This motivates us to let k +— e~"/4k in (5.2.37) (so that
ik — ¢™/*k) and use (5.2.38) to obtain
e*iw/4

ooei™/4 —eim/4s o
uD(s) = / . dkreAlW [(BGk) + EC-R)No(e™*8) + GB)| . (5.2.39)

The contour (—ooe™/*, coe’™/*) splits the complex k-plane into two halves

D+:{k€C:%<argk<%}, (5.2.40)

D‘z{ké@:—%<argk<%}, (5.2.41)
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Figure 5.7: The regions D and D" in the complex k plane
see Figure 5.7.

Using (5.2.29) we find that

1

e=""ks B(ik) Ny (e~/*k) is bounded for k € D™, (5.2.42)
Ay (k)
]_ i )
e B(—k)Ny(e"™*k) is bounded for k € D (5.2.43)
Ay (k)

(This follows from considering the asymptotic behaviour of the integrands in each of the

four sectors D* U (=2, 28), D* U (&, 1))

First we consider the integral of the term (5.2.42). We can deform the contour slightly
into DT to G'HI', as shown in Figure 5.5. Then using (5.2.38) the integral becomes

—_—~—

NQ(elﬂ-/éLk) _ i7r/4k . / G(k) _ i7r/4k .
dk —— ¢ ¢ SE(ik) — dk —————2—¢~ ¢ SE(ik).
s )= e ™ 50 2e ) (t)

The first integral is zero: its integrand is bounded at infinity, and the poles lie outside
the contour. The term (5.2.43) follows in the same way (except we now deform in D~ to

G"HI"), and finally we obtain (5.2.36).

Side (1)/(3) As with side (2) we seek to change variables in the definition of N (k) and

use the Fourier inversion formula. Since we have an equation for N(—ik), (5.2.25), we let
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k — —ik in the definition of N (k) in (3.1.38) to get

l
N(-ib) = [ ey (s)ds,
0
and inverting this gives

qn(s) L /00 e* N(—ik)dk, se]0,1], (5.2.44)

T o

—00

where gy (s) is the Neumann data on sides (1) and (2). Using (5.2.25) we obtain

—~—

9] ) 2 e_iﬂ/4 G (k)
av(s) = 5 / ke | N(ik) + B(=R)(B(ik) — B(=ik)™ (Aluf) 2+ fﬁ) |
(5.2.45)

—_~—
—_~—

where G(k) is given by (5.2.11).

Now, both e¢*$ and N(ik) are analytic and bounded for Imk > 0, and so, by closing the
contour in the upper half k-plane, Cauchy’s theorem implies ffooo e®* N (ik)dk = 0. Using
(5.2.29) (and noting that 0 < s <) we find that

1

1(k)

1 , , ,

A—(k)e’ksE(—k)E(—z’k)NQ(e_’”/4k) is asymptotic to e*~Y and so is bounded for Sk < 0.
1

™ B(—k)E(ik) Ny(e~™*k) is asymptotic to ¢+ and so is bounded for Sk > 0,

>

Exactly the same argument as above (being careful to deform the contours past the zeros

of Ay(k)) gives the required Neumann boundary value (5.2.35). O

5.3 General Dirichlet problem

We now consider general Dirichlet boundary conditions (that is, with no symmetry). The
fact that we did the symmetric case first proves very useful, since the general case is very

similar to the symmetric case, the crucial difference being;:

In Step 3 of the symmetric case we used (5.2.31) to change the unknown integrands from
having poles on e®™/R to ¢™/*R. The numerators of (5.2.81) were a single function

(either Ny(e™*k) or Ny(e="™/*k)). Here we will do the same “shifting poles” trick, but
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for it to work, the numerators must be combinations of functions (see (5.3.17) and (5.3.18)

below.

Proposition 5.3.1 (The general Dirichlet problem for the modified Helmholtz
equation) Let the complez-valued function u(x,y) satisfy (1.1.1) with X = —43% in the

right 1sosceles triangle, see Figure 5.1, with the Dirichlet boundary conditions

u(s,0) =di(s), 0<s<lI, (5.3.1)

u(0,s) =ds(s), 0<s<lI, (5.3.2)

u(s, V20— s) =dy(s), 0<s<V2, (5.3.3)

Then
1 dk  By(ik) — Fy(—ik)
u=p {/ABO etk 2) B
dk (k. 5.3 E(k)E*(—ik)Fy(ik) + E(—k)Fy(—ik) z
—/DEF/ (k,z,2) A(=ik) }+Q1( ) (5.3.4)

P
—_—~— —_~—

where Q1(z) is given by (5.2.8) except replacing G(k) by Fi(k) and G(k) by Fa(k), and the
functions Fy and Fy are given in terms of the transforms of the known boundary conditions

by

+ e MHR(GQE) — G(k)) 4+ PR (G(=k) — G(—F)), (5.3.5)
Fy(k) = — E(ik)(G(ik) — G(ik)) — E(ik)(G(—ik) — G(—ik))
— E(k)(G(k) — G(k)) — E(k)(G(—k) — G(—k)), (5.3.6)

—_~— —_—~—

and Q1(z) is given by (5.2.8) except replacing G(k) by Fi(k) and G(k) by Fy(k).

Proof As in the symmetric case we follow Steps 1-3 of §1.3.

Step 1: We now have the eight equations (5.1.6), (5.1.8), (5.1.9), (5.1.10) with twelve
unknowns, so we can express the functions appearing in the IR, N;(—ik), Ny(e'™/*k) and
N3 (k) in terms of four other unknowns. Actually, we can do it with three unknowns:

due to the symmetry of the system, we can get two equations involving Ny(e™/*k),

Ny(e77/1E), No(—e™*k), No(—e~"™/*k), and therefore one equation for any three of the
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four. Ny(e'™*k) appears in the IR, so we have three choices for the other two functions: ei-

ther {No(e™"™/1k), No(—e™"™/*k)}, {No(e™ "/ *k), No(—e™4k)}, { No(—e™"™/1k), No(—e™*k)}.

For our third choice of unknown function, since N3(k) appears in the IR, if we choose
N (ik) then we can immediately use the SC (5.1.6b), which is desirable since it minimises
algebraic manipulation. Or, since Ni(—ik) appears in the IR, if we choose N3(—k) then

we can use (5.1.9b).

Putting all this together, there are six different choices that give us the lowest number of
unknown functions appearing in the IR: either {No(e="/4k), No(—e~"/4k)},
{Ny(e™™/*k), Ny(—e™*k)}, or {No(—e "/*k), No(—e™™/*k)}, and either Ny (ik) or N3(—k).
We choose {No(e™/4k), No(—e~"/*k)} and N, (ik).

In the same way that we manipulated (5.2.19),(5.2.20),(5.2.21) and (5.2.22) to produce
(5.2.23),(5.2.24),(5.2.25), we use the eight equations: (5.1.6), (5.1.8), (5.1.9), (5.1.10) to

give:
No(k) = —Ni(ik) — E(ik)No(e ™/ *k) + G(k), (5.3.7)
Nil=ik) = Nib) + g | (B(ik) = Bib) e e
+ (E(ik) — BE(—ik)) e " Ny(—e~"/4k) + Fl(k)}, (5.3.8)
Vi) = 57 { (B0 = B0 BN
+ (E(—ik) — E(ik)) E(k)Ny(—e~"™*k) 4 Fz(k)}, (5.3.9)
where
A(k) = E(k)E(=ik) — E(—k)E(ik). (5.3.10)

We follow exactly the same steps as in proposition 5.2.1. Using (5.3.7),(5.3.8),(5.3.9)
in the definitions of p;(k), (5.1.1),(5.1.2),(5.1.3), and substituting these into the integral

representation we find (compare to (5.2.27))

q_— {[1( ) + IQ(Z) + Ig(Z) + I4(Z) + ]5(2) + ]6(2)} + Ql(Z), (5311)
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where
o—im/4
L(2) = /l . %e(k’,z,z)Nl(ik), D(z) = /l . %e(k,z,z)E(—k)EQ(ik)%,
B dk _ Ny (e /1K) B dk B Ny(e™i/4k)
I3(z) = /1113 ?e(kﬁ,z,Z)E(—kﬁ)W, Ii(2) = /lng —el(k, z, Z)E(k‘)W7

dk Ny(—e=im/
B = [ Fennpm P,
li—l13

and
_e—iTr/4
Ig(2) :/z_z %e(k,z,z)E(k)EQ(_ik)w

Using the asymptotic calculations for Ny(e™/*k) in (5.2.29), similar ones for Ny(—e~/4k)
obtained by letting k — —k in (5.2.29), and

arg(z + 21 +1l) € (tan"'(1/3),7/4),
arg(z + 1 —2il) € (=3n/2,—71/2),
arg(z — 2l —il) € (w, 5w /4),

arg(z +1il) € (n/4,7/2),

ﬁ ~ e RFR b — 00, arghk € (—m/4,37/4), (5.3.12)
sy~ —€ Lk — oo, argh € (37/4,T7/4), (5.3.13)

we obtain the following: as k — oo

the integrand of I, decays for arg k € (0,7/2),

the integrand of I, decays for arg k € (—tan~'(1/3), 37 /4),

the integrand of I3 decays for arg k € (—3n/4,7/2),

the integrand of I decays for arg k € (7/2,37/2),

the integrand of I5 decays for arg k € (0,57 /4),

the integrand of I decays for arg k € (—m,0).
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The zeros of A(k) are at k = k,, where

237

2.2
k= ' (%;Tmi %Jﬂ), nez, (5.3.14)

that is, on the line exp(%)R, and so, like the symmetric case, [;(z) and I3(z) are 0 by

Cauchy’s theorem.

We now deform the contour of I5 from l; — I3 to [y — I3 (allowed by the fifth bullet point

above), and combine it with I, to give J3; and combine I3 and I to give J; where

e—iﬂ‘/4 — N, _e—i7r/4
ne) = [ etz app oD
dk _ E(k)E*(—ik)No(—e™ /1K) — BE(—k)Ny(e™/*k)
J4(Z) :/lg—l1_€<k’Z7Z) A(k) :/I;EF’

and the contours ABC and DEF are shown in Figures 5.3(a) and 5.3(b) respectively. We
call these J3(z) and J4(2) to emphasise that, in what follows, these are now the analogues
of I3(z) and I4(2) in the symmetric case. Indeed, using the equation derived from (5.2.14)
by k +— —ik, Js3 becomes I3 and J; becomes Iy since A(k) = Ay(k) (E(k) — E(ik)). (We
could have combined I3 with I, and I5 with Ig, but then it is not possible to close the

contours at infinity).

Following the crucial point in bold at the beginning of this section, we now want to express
the combinations of functions in the integrands of J3(z) and J4(2) in terms of something

with poles on ke'™*. Letting k — —ik in (5.3.9) we obtain

Nale /) = s { (B i8) ~ EGR)E() Nl 8

+ (E(—Fk) — E(k))E(—ik)Ny(e™/*k) + Fz(—ik)}, (5.3.15)
and k +— —k gives a similar equation for Ny(—e™"/k) in terms of Ny(e'™/*k) and
Ny(—e "/4k) over A(ik). Now

A(ik) = —A(—ik) (5.3.16)
and the zeros of A(—ik) are on Re™™/4. Using (5.3.15) and its analogue for Ny(—e="/4k)
we obtain

No(—e /%) — Ny(e ™/ *k)  Ny(¢™/*k) — Na(—€™/k)  Fa(ik) + Fa(—ik)

A(k) A(—ik) A(k)A(—ik)

, (5.3.17)
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and

E(k)E?(—ik)Ny(—e " /*k) — E(—k)Ny(e™™/k)

A(k)
E%(—ik)E(—k)Ny(e"™/*k) — E(k)Ny(—e™/*k)  E(k)E?*(—ik)Fy(ik) + E(—k)Fy(—ik)
A(—ik) a A(k)A(—ik) ’

(5.3.18)

First we concentrate on J3(z). We deform the contour from ABC to ABC', see Figure

5.3(a), and then use (5.3.17).

N, (e—m/4k) — N, (_e—iw/4k)

Jo(2) = /A N %ke(k;, 2 2 E()

A(k)
_ d—ke Lz Nz(eiw/4k) —Ng(—e”/‘lk)
== [ o T2 IO

dk o k) (i)
P e L e
—0+ /A - d—:e(k, 2, z)E(k)FQXI(%Zi(Z;; &) (5.3.19)

Similarly using (5.3.18),

Ji(2) = —/DEF/d—:ew,z,z)E(k)E (_mFﬁk_)iZ)E(_k)F?(_ik). (5.3.20)

Thus we obtain (5.3.4). O

Remark 5.3.2 (Solution as an infinite series) Just as in the symmetric case, evalu-
ating the integrals in (5.3.4) over the contours ABC' and DEF' as residues in the 2nd

and 4th quadrants respectively yields the solution as integrals plus an infinite series.

Remark 5.3.3 (The Helmholtz equation) The solution of the Helmholtz equation,
A = 432, is similar to that for the Poisson and modified Helmholtz equations, but is

slightly more complicated due to

e the presence of circular arcs in the contours of the IR,

e the occurence of eigenvalues.
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The solution is given as a finite number of integrals plus a finite sum, where the number
of terms in the sum grows linearly with 3. (This is still a substantial improvement over

the classical solution by a bi-infinite sum).

Remark 5.3.4 (More complicated boundary conditions) In this chapter we have
only considered the Dirichlet problem, however this method can be used to solve more
complicated boundary conditions including some Robin and oblique Robin conditions which
cannot be solved classically. (A particular case of symmetric Robin boundary conditions
is solved in [bAF01] and the solution given as integrals plus an infinite sum.) The limiting
factor is that the analogue of (5.3.16) must hold, which imposes some constraints on the

parameters in the boundary conditions.

Remark 5.3.5 (Solution via reflections) Actually, it appears that, in principle, it is
possible to obtain the expression (5.3.4) for the solution of the Dirichlet problem in the
right isosceles triangle without using the Fokas method. The can be achieved through five

steps:

1. Use the reflection method of [Prd98] to formulate the BVP for the Green’s function

in the right isosceles triangle as a BVP in the square.

2. Solve the BVP in the square using the classical transform method (i.e. wuse the

Fourier sine series in one variable).

3. Use the Watson transformation (1.2.8) to convert the expression for the right isosce-

les Green’s function from a series into an integral.

4. Split the integrand up, and deform the contours of the resulting integrals so that the
resulting expression is uniformly convergent at the boundary of the right isosceles

triangle.

5. Substitute this expression for the Green’s function into Green’s IR and interchange

the orders of integration.

Although performing this sequence of steps is possible in principle, we note that Step 4
would be very difficult to perform unless one knew the expression one was aiming for (i.e.
(5.3.4)). (Also note that this sequence of steps would not work for BVPs in the right
1sosceles triangle with Robin boundary conditions, whereas the Fokas method can solve
certain BV Ps of this type.)
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Chapter 6

A new numerical method

6.1 Introduction

Summary

e In this Chapter the Dirichlet to Neumann map is solved numerically for the Laplace

and modified Helmholtz equations in general convex polygons (with n sides).

e The main idea is that the global relation is valid for all k € C. Expanding the n
unknown functions (the unknown boundary value on each side) in some series such
as Fourier or Chebyshev up to N terms and then evaluating the global relation at
a properly chosen set of n/V points (collocation points in the spectral space) yields

nN equations for the n/N unknowns.

e Numerical experiments suggest that the method inherits the order of convergence
of the basis used to expand the unknown functions; namely exponential for a poly-

nomial basis, such as Chebyshev, and algebraic for a Fourier basis.

e However the condition number of the associated linear system is much higher for a

polynomial basis than for a Fourier one.

169
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6.1.1 The PDE and the global relation

In this chapter we make a slight notational change, so that the PDE is
Aq(x) — 4 g(x) =0, x€Q (6.1.1)

where A € R*. This is the Laplace equation for A = 0, and the modified Helmholtz

equation for A\ > 0.

The change of variables z = x + iy, Z = x — iy transforms (6.1.1) to the equation

0.2(2,2) — MNg(2,2) =0, z€. (6.1.2)

The two global relations (or one global relation, one Schwartz conjugate (SC)) for (6.1.2)

are
—ikz—2z . A =
e ** |(q, +ikq)dz — | ¢ + —q | dz| =0, ke€C, (6.1.3a)
o0 ik
/ oikEt 2 [(qz —ikq)dz — (qz — iq) dz} =0, keC. (6.1.3b)
a0 ik
Indeed, the four adjoint solutions are
v=e HTRE gy = PR, (6.1.4)

and two more by letting k — —k (lemma 3.1.3), and with these (3.1.3) becomes (6.1.3a)
and (6.1.3b).

For the Laplace equation, the global relation (6.1.3a) becomes

/ e ((g, + ikg)dz — gsd3] = 0. (6.1.5)
o0

Noting that
e * % (q, +ikq)dz — qzdz] = —d[e”**q] 4 2e7**q,dz, (6.1.6)

it follows that (6.1.5) is equivalent to
/ e " q,dz =0, (6.1.7)
G)

which is the global relation used in [FFX04] and [SFFS08].
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6.1.2 The Numerical Method for a Convex Polygon

This chapter contains a method for solving numerically the global relations (6.1.3a) and
(6.1.3b) for the Dirichlet problem for the Laplace and modified Helmholtz equations in
the interior of a convex polygon, see Figure 6.1. This method was introduced in [SFFS08]
in connection with the simple global relation (6.1.7) (see also [FFX04]). Because this
approach involves enforcing the global relations to hold at a set of discrete points in the

spectral plane, it has been called a spectral collocation method.

The key to this method is that the global relations (6.1.3a) and (6.1.3b) are valid for
all k € C. Suppose we expand the n unknown functions (the unknown boundary value
on each side) in some series such as Fourier or Chebyshev up to N terms, and then we
evaluate either of the global relations at n/N points; this would yield n/N equations for

the n/N unknowns, which in principle could be solved. We now face two questions:

1. How to choose the basis.

2. How to choose the points k.

The presence of exponentials in the global relations means that if we choose a Fourier
basis it is possible to choose points which single out each Fourier coefficient and produce
a linear system for the unknown coefficients for which the block diagonal submatrices are
the identity matrix. This means the system has a low condition number, and numerical
experiments suggest that the condition number actually grows linearly with the number

of basis elements.

For sufficiently smooth functions the employment of a Chebyshev basis gives exponential
convergence, and numerical experiments suggest that this is inherited by the method.
However, because of the non-orthogonality of the Chebyshev polynomials with the ex-
ponentials in the global relations it is not obvious what the optimal choice of points is.

In the example computed here we have chosen the same points as for the Fourier basis
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and in this case it appears that the condition number of the associated matrix grows

exponentially with the number of basis elements.

For smooth functions a Fourier basis yields only algebraic convergence; however, if the
functions do not have sufficient smoothness then a Fourier basis yields better convergence

properties than a polynomial basis.

The method presented in this chapter requires that the given boundary conditions are
sufficiently compatible at the corners of the polygon so the solution has a continuous
first derivative (however in §6.4 we discuss how this limitation can be bypassed). This
requirement makes it possible to compute the values of the unknown Neumann data at
the corners of the polygon; then, by subtracting these known values, one obtains unknown
functions which vanish at the corners. (Note that this requirement is not that the normal
derivative of ¢ is continuous at corners, which would be false for smooth ¢ because the
direction of the normal derivative changes discontinuously at the corner. Rather, it is the

derivatives ¢, and ¢z which are assumed to be continuous.)

A convenient Fourier representation for a function which is zero at the endpoints is a

modified sine-Fourier series expansion:

- 1
= m Sl m - = , —m<s<T, 6.1.8
f(s) mz:l {s sinms + ¢, cos (m 2) S:| T<Ss<T ( )

Sy = %/:f(s)sin(ms)ds, Cm = %/:f(s)cos (m— %) sds, m=1,2,---, p=1,--- ,n.

(6.1.9)
The advantage of the above expansion is that s, and c?, are of order m™3 as m — oo,
provided that f(s) has sufficient smoothness. The representation (6.1.8) can be obtained
from the usual sine-Fourier series in the interval (0,7) by using a change of variables to
map this interval to (—m, 7). The analogue of the representation (6.1.8) corresponding to
the cosine-Fourier series was introduced in [IN08]. Using the techniques of [Olv09] it is
possible to prove that if f € C?(—m, 1) and

N

N(s) = Z {sm sinms + ¢, cos <m — —) 5] , p=1,---.n, (6.1.10)
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then

1
If =l =0 (W) : (6.1.11)

Figure 6.1: The convex polygon 2 with corners z; and sides S;

Remark 6.1.1 (The null-field method) The method described in this chapter is con-
ceptually similar to the so-called “null-field method”, see e.q. [CK83, §5.9 p.104], [Mar06,
Chapter 7]. In fact, the method of this chapter is based on the numerical solution of the
global relation in polygons, whereas the null-field method is based on the numerical so-
lution of the global relation in polar co-ordinates (3.2.1) with k € Z so that the angular

variable 0 is periodic.

6.1.3 Outline of Chapter

Numerical schemes for computing the Dirichlet to Neumann maps for the Laplace and
modified Helmholtz equations are given in Section 6.2. Numerical results are presented

in Section 6.3. These results are discussed in Section 6.4.

6.2 The Dirichlet to Neumann map and its numerical

implementation

The Laplace and modified Helmholtz equations are discussed in Sections 6.2.1 and 6.2.2

respectively.



174 6. A new numerical method

6.2.1 The Laplace Equation

A system of 2n equations characterizing the Dirichlet to Neumann map is introduced in
Section 6.2.1.1. For a sufficiently smooth solution g of the Dirichlet problem, the Neumann
boundary values at the corners of the polygon are found explicitly in Section 6.2.1.2. The
system of 2n equations characterizing the Dirichlet to Neumann map is reformulated in
terms of functions that vanish at the corners in Section 6.2.1.3. Finally, the numerical

method is introduced in Section 6.2.1.4.

6.2.1.1 The Dirichlet to Neumann map

Proposition 6.2.1 Let the complez-valued function q(z,z) satisfy the Laplace equation
in the interior of a convex polygon 2 with corners {z;}} (indexed anticlockwise, modulo
n), and let S; denote the side (zj,z2j41), see Figure 6.1. Let q satisfy Dirichlet boundary

conditions on each side:
gi(s) = d;(s), j=1,---.n, (6.2.1)
where s parametrizes the side S; and q; denotes q on this side Let u;(s) denote the un-

known Neumann boundary data on S;, and assume that d;,u; € C'[—m, 7].

The n unknown complex-valued functions {u;}} satisfy the following 2n equations for
leRY andp=1,---,n:

s n T _hj
/ e uy(s)ds = — ZEjp(l)/ ¢ (s)ds + Gy (1), (6.2.2a)

—TT .
Jj=

J#p

™ n 7" Ry ~

/ ety (s)ds = — 3 Byyll) / ey (s)ds + Gy (1) (6.2.2b)
i2p

where the known functions E;,(1), G,(l) and (;’p(l), j=1,---.n,p=1,---,n, are defined

by

1
E;(l) = exp {Z—(mj —mp)|, leRT, (6.2.3a)
P
- h 4 1h5 = a _' — T 721&8
Gol) = S 1B [ oy (s)ds, Gyt = 17 Enll) | et rers
J=1 o j=1 -

(6.2.3b)
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with ] 1
hi =5 (G —2), mj=g(znty), j=1-n (6.2.3¢)

Furthermore, each of the terms appearing in the four sums on the right-hand sides of
equations (6.2.2) decays exponentially as | — oo, except for the terms with j = p which

oscillate and for those with j = p + 1 which decay linearly.
Proof Define §;(k) by
Zj+1 )
g;(k) = / e % [(q, +ikq)dz — qzdz), j=1,---,n, keC. (6.2.4)

J

Parametrizing the side S; with respect to its midpoint m;,

z(s) =m; + shj, —m<s<m, (6.2.5)
and using
1 [dg, , _ 1 ]dg; .
q.dz = 5 [ds (s) —|—zu](s)} ds and ¢zdzZ = 5 [ds (s) —iu;(s)| ds (6.2.6)
we find

G; (k) = e~mi / e~ [ju;(s) + ikh;d;(s)]ds, j=1,---,n, keC. (6.2.7)

—T

Writing the first global relation (6.1.3a) in the form

Gp(k) == q(k), p=1,---,n, keC, (6.2.8)
i
substituting for {g;(k)}7 from (6.2.7), multiplying by —ie"** and evaluating the resulting
equation at

[
k=——, leR" (6.2.9)

hp
yields (6.2.2a). The second global relation (6.1.3b) can be obtained from the first (6.1.3a)
by taking the Schwartz conjugate of all terms except ¢. Taking the complex conjugate of

all terms in (6.2.2a) except u; and d; yields (6.2.2b).

Convexity implies the estimate

[arg(m; —my) —arg(hy)] € (0,7), j #p, (6.2.10)
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Figure 6.2: The angle 6, := arg(m; — m,,) — arg(h,)
see Figure 6.2. Each of the terms appearing on the right-hand side of (6.2.2a) involves
/7r e%(mj+8hj_mp)aj(s)ds with a; =u; or a;=d;. (6.2.11)
Convexity also implies that for s € (—m,7),
0 < [arg(m; + sh; —m,) —arghy| <7 if j#p, pEt1l (6.2.12)

If ) =p—1, then

my — why = 2, = m; + 7h; (6.2.13)
and hence
arg(m; + wh; —m,) — argh, = . (6.2.14)
If j=p+1, then
my + Thy = 2pp1 = mj — Th; (6.2.15)
and hence
arg(m; — wh; —m,) —argh, = 0. (6.2.16)

Integration by parts (allowed since d;,u; € C'[—m,«1]) implies that the left-hand side of
equation (6.2.11) equals

h B (mj+mhj—mp) e (my—mh;—my) 1
i o a;(r) — e aj(~m)] +0 5 ) (6.2.17)

Hence each of the terms in the two sums on the right-hand side of (6.2.2a) decays expo-
nentially if 7 # p and j = p£ 1. If j = p £ 1 then there is linear decay, and the term

in G, with j = p oscillates. Clearly, if a;(£7) = 0 then the decay is quadratic. Similar
considerations are valid for the right-hand side of (6.2.2b). O
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Remark 6.2.2 Since | € R, it follows that the expressions on the left-hand sides of
equations (6.2.2) taken together define the Fourier transform of w,(s).

Remark 6.2.3 Regarding the choice of k in equation (6.2.9), we note that §,(k) involves
the exponential function exp[—ikh,s]. To obtain the Fourier transform of u,(s), k must
be chosen such that kh, € R, i.e.

argk = —arg(h,) or argk=m —arg(h,). (6.2.18)

Of these two choices, it is only the second one that makes the right-hand sides of equations
(6.2.2) bounded as | — oco. We also note that in order to mazimize the decay of the right-
hand sides of equations (6.2.2) as | — oo, we use the parametrization in (6.2.5) instead
of the parametrization

2(s) = zj + 2sh;, 0<s<m. (6.2.19)

6.2.1.2 The unknown values at the corners, (%)

Suppose that the given functions d;(s) satisfy appropriate compatibility conditions so that

¢. and ¢; are continuous at the corners. Then w;(£7), j = 1,--- ,n can be determined
explicitly:
d d
() = |hjqa] cos(aja — Oéj?gdj(ﬂ) — |l g5dia (=) (6.2.20a)
|hja| sin(a 1 — o)
and
d d
(=) = |7l g5 di—1 () — \hj,'1| cos(ay — @jfl)gdj(—ﬂ)’ (6.2.200)
|hj-1]sin(oy — a;1)
where
a; = arg(hj). (6221)
Since the polygon is convex,
Qi1 §£ ay + 7 (6222)
and thus
sin(aj41 — ;) # 0. (6.2.23)
In order to derive (6.2.20), we note that (6.2.6) implies
efiaj dq ]
q. = o0 {d—;(s) + zuj(s)} , s€eS;. (6.2.24)



178 6. A new numerical method

The continuity of ¢, at the corner z; implies that the expression in (6.2.24) with j replaced
by j—1 evaluated at s = 7 (the right end of the side S;_;) equals the expression in (6.2.24)
evaluated at s = —n (the left end of the side S;), i

eiiajil dQJ 1 |:dQJ . :|
+qu;_q (T +u;(—m) | . 6.2.25a
|hj—1| i ds ( ) J 1( )_ |]’L | ( ) J( ) ( )
Similarly, the continuity of ¢; at z; imphes that
ei—1 —dqj_l . T dq] ]
_— = — Ui —jui(— ) 6.2.25b
|hj—1| I ds (7'(') LU 1(7T)_ |h | |: ( 7T) Zuj( 7T) ( )

Solving equations (6.2.25) for uw;_;(7) and u;(—7) and then letting 7 — j 4+ 1 in the

expression for u;_;(7), we find equations (6.2.20).

6.2.1.3 Unknown functions that vanish at the corners

Since the values of u,(s) are known at the two corners, it is possible to express the
unknown function u,(s) in terms of a new unknown function, denoted by ,(s), which
vanishes at the corners:

Up(8) = Up(s) + Usp(s), p=1,---,n, —-mT<s<m, (6.2.26a)
with
1
gy [(s 4+ mup(m) — (s = T)up(—m)], p=1,---,n, —7mT<s<m (6.2.26b)
T
The unknown functions {@;}? satisfy equations similar to (6.2.2) but with G, and G,

Usp(s) =

replaced by G, — U,, and ép — U*p respectively, where the known functions U,, and U*p
are defined for p=1,--- ,n by

Z / T g (5)ds, Unp(D) =) Ejp(D) / d”isws)ds, [eRT.
j=1 -
(6.2.27)

By computing the integrals involving u,;(s) using (6.2.26b), we find that for p=1,--- ,n
and [ € R,

- Z ) {lte) = () [ 2o (522 4 1 (514
+l%p [ (7) + u;(=7)] sin <l7;hj> } (6.2.28a)

J D
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and

) + (ol ()} (6.225)

Remark 6.2.4 The function u,(s), which is defined for —m < s < 7, vanishes at the end
points. As explained in the introduction, a convenient representation for such a function

s a modified sine-Fourier series expansion:

[e.e]

ip(s) =) [sm sinms 4 ¢, cos (m - %) s] : (6.2.29a)

=1

m 1 [ 1
sh = —/ Up(s) sin(ms)ds, b, = —/ Up(s) cos (m— §> sds, m=1,2,--- , p=1,--- ,n.
- L "
(6.2.20b)

Using the techniques of [Olw09], it is possible to prove that if i € C*(—m,7) and

N
1
ajf(s) = Z [ansinms—l—cfncos <m = 5) s] , p=1,--,n (6.2.30)
m=1
then
. . 1
[y — @) [|loe = O (ﬁ> : (6.2.31)

6.2.1.4 The numerical method

Proposition 6.2.5 Let q satisfy the boundary value problem specified in Proposition
6.2.1. Assume that the values of the unknown functions {u;}} at the corners {z;}} are
gwen by equations (6.2.20). Ezpress {u;}} in terms of the unknown functions {u;}}

defined in equation (6.2.26) and approximate the latter functions by

N
. , 1
ﬁjv(s) = Z {sin sinms + ¢}, cos (m - 5) s} , J=1, n (6.2.32)

m=1
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Then the constants s and 2, m = 1,--- /N, p = 1,--- ,n satisfy the following 2Nn

m?’

algebraic equations:
n N
orsty =53 {3 5,00 - Bl S
j=1 r=1
J#p

+ & [Ejp(m)Cj,(m) — Ejp(m)C5,(m)] }

— iGp(:)l-f- iGy(m) + iU, (m) — iU,,(m) (6.2.33a)
and
== S B (m5) 85 (m5) 8 (m5) 52 (3

1 _ 1 1 . 1

where the known functions G, ép, Usp, U*p are defined by equations (6.2.3) and (6.2.28),
and

2ir(—1)""!sin (m”phf> 2(r—1)(=1)""*cos (m:phj>
S;p(m) = m2h2 ’ erp(m) - 2 m2h2 ’
r?— gt (r—3)" — 5
p P

Proof Equation (6.2.32) implies

1 ™
sh = —/ ﬂ;v(s) sin(ms)ds m=1,---,N, p=1,--- n. (6.2.34)
T

Recall that the functions @, satisfy equations similar to (6.2.2) but with G, and G,
replaced by G, — U,, and ép — U*p respectively. Taking the equations satisfied by 1,
replacing i, by @) (defined in equation (6.2.32)), taking the difference of these equations
and evaluating the resulting equation at [ = m implies equation (6.2.33a). In this respect

we note that the left-hand side of the resulting equation immediately yields s?,, whereas
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to evaluate the right-hand side we use

" i Ls i " imis 1
/elm ds—Z{ /emh; sinrsds%—cf./ "™ cos(r—g)sds}

) (6.2.35)

and evaluate the integrals on the right-hand side of this equation explicitly.

Proceeding as earlier, but adding the equations satisfied by {ujV }1 and then evaluating

the resulting equation at [ = m — 3, we find (6.2.33D). O

Remark 6.2.6 The left-hand sides of equations (6.2.2) involve integrals of u,(s) with
respect to the exponential functions exp(+ils). This suggests that u,(s) should be repre-
sented by a Fourier type expansion. Indeed, ignoring for a moment the first terms on the
right-hand sides of equations (6.2.2), if u,(s) is represented by a Fourier type series such
as equation (6.2.29a) then the relevant Fourier coefficients can be obtained immediately
in terms of G, and C~¥p. Thus the choice of the representation (6.2.32) is consistent with
the fact that w,(s) vanishes at the corners, and the evaluation of the global relations at

1

[ =m and | = m — 5 is consistent with the orthogonality conditions associated with this

expansion (see equation (6.2.29b)). One could use an expansion in terms of Chebyshev
polynomials to improve convergence but, since the associated orthogonality conditions do
not involve exp(=ils), the block diagonal submatrices of the associated coefficient matriz
would become full matrices rather than the identity matriz.

6.2.2 The modified Helmholtz equation

The results for the Laplace equation introduced in Section 6.2.1 are now extended to the

modified Helmholtz equation.

6.2.2.1 The Dirichlet to Neumann map

The following proposition is the analogue of Proposition 6.2.1.
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Proposition 6.2.7 Let the complex-valued function q(z, Z) satisfy the modified Helmholtz
equation in the interior of the convex polygon ) described in Proposition 6.2.1 and let q
satisfy the Dirichlet boundary conditions (6.2.1) on each side. Let u;(s) denote the un-

known Neumann boundary data on S;, and assume that d;,u; € C'[—m, 7].

The n unknown complex-valued functions {u;}} satisfy the following 2n equations for
leRT andp=1,--- ,n:

/ "ty ()ds = — 3 Eplky(1) / ey hy(1).5)uy()ds — Gy, (6.2.362)
b -’

[t ulsds = = S Bu) [ ey s)us(s)ds - Gulli - (6:2:360)
i2p

where the known functions E;,(k), e;(k,s), Gp(l) and ép(l) G=1,---,n,p=1,---,n)

are defined by

- D —i khj—=1 |s
E; (k) = e”(mj’mf’)HTA(mj’mP), ej(k,s)=e ( ok ) , keC, —mt<s<m,

(6.2.37a)
Go) = Y- Bl sty [ eslip(0)9)is(s)ds, 1ERE (6:237)
i=1 -
Go) = Y- bt 0) [ el )s(s)ds, 1€RT, (62370
=1 -
and _
Ah; .
pi(k) = e +kh;, j=1,---.,n, keC; (6.2.37d)
while
[+ /12 + 4\ h,|?
ky(l) = — + 2:; 17 , p=1,--,n, [ER" (6.2.37¢)
P

Furthermore, each of the terms appearing in the four sums on the right-hand sides of
equations (6.2.36) decays exponentially as | — oo, except for the terms with j = p which

oscillate and for those with j = p + 1 which decay linearly.

Proof Define ¢;(k) by

Zj+1 ) B by
qAJ(k) = / e*lkZ*%Z |:(Qz + ’le)d’Z - (QZ + _k_Q> d2:| ) ] = 17 N, ke C.
2 1
(6.2.38)

J
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Parametrizing the side S; with respect to its midpoint m;, see (6.2.5), and using (6.2.6)
yields

A

g;j(k) = ie_i(mjk—Tj) / e;j(k, s) [uj(s) + pj(k)d;(s)]ds, j=1,---,n, keC.
B (6.2.39)
Writing the first global relation (6.1.3a) in the form (6.2.8), substituting for {¢;(k)}} from

impk—

(6.2.39), multiplying by —ie %™ and evaluating the resulting equation at k = k(1)
yields (6.2.36a). Since the second global relation (6.1.3b) can be obtained from the first
(6.1.3a) by taking the Schwartz conjugate of all terms except ¢, equation (6.2.36b) follows

from (6.2.36a).

Forj=1,--- . nandp=1,---,n,

-—m,p+hjs

o (™ _iAlhp\2< j—r?erﬁjs)
E;y(ky())e; (hy(D), 5) = 2 OCT075) 7Bl 5 ) e e, (6.2.40)

where L,(I) > 0 is defined for p=1,--- ,n by

+ VEF I
L) = —h k(1) = S VEEAARE (6.2.41)

2 )

Using the estimate in equation (6.2.10) and treating the right-hand side of equation
(6.2.40) in a similar way to the exponential term in (6.2.11) we find that the right-hand
sides of equations (6.2.36) behave similarly to those of (6.2.2) as [ — oo, where now for

j = p =1 the decay is O(1/L,(l)) which equals O(1/1). O

Remark 6.2.8 The reason for the choice k,(l) in (6.2.37e) is similar to that given in
Remark 6.2.5. Indeed, in order to obtain the Fourier transform of u,(s), ky(l) is chosen
so that

ep(kyp(l),s) = exp(ils), —m<s<m. (6.2.42)

This yields two possible choices:

£ /12 + 4)\]h, 2
k(1) =— - ANy (6.2.43)

2h,

and ky(l) = k(1) is chosen so that arg k(1) = m — arg h;.
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6.2.2.2 TUnknown functions that vanish at the corners

As for the Laplace equation, the unknown functions {u,;}} are defined by (6.2.26) with
u;(£7) given by (6.2.20).

The functions {i;}7 satisfy equations similar to (6.2.36) but with G, and G, replaced
by G, + Uy, and G, + U,, respectively, where the known functions U,,(I) and U,,(l) are
defined for p=1,--- ,n and [ € RT by

™

Uasl) = 2 Eillo0) [ esty0), ) (5)ds, (6.244a)

—T

Tl = 3 By 1) /

™

e;(ky(1), 8)uspy(s)ds. (6.2.44Db)

By computing the integrals involving u,;(s) using (6.2.26b) we find that forp=1,--- ,n
and [ € RT,

? l

Ut = 3= B0 {05 = 5] | = 7 onCm 1) + s sinntt 1)

1 .
g 1)+ u(mlsin (3, 0) ) (6.2.450)
and
Up(l) = ZEjp(l%p(l)) {[uj(w) — wj(—7)] {H~i(g) cos(mH;,(1)) — m Sin(ijp(Z))}
1 o
0] [u; () + w;(—m)] sin (Wij(l))} : (6.2.45b)
with
Hyp(l) = %Z—; (l+ \/l2—|—4)\|hp‘2>_l+ \/2%’ j=1,---,n, p=1,---,n, leR".

6.2.2.3 The Numerical Method

Proposition 6.2.9 Let q satisfy the boundary value problem specified in Proposition

6.2.7. Assume that the values of the unknown functions {u;}7 at the corners {z;}} are
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gwen by equations (6.2.20). Express {u;}} in terms of the unknown functions {a;}} de-
fined in equation (6.2.26) and approzimate the latter functions by the functions {a;v}’f
defined in equation (6.2.32). Then the constants s, and &, m=1,--- N, p=1,--- n
satisfy the 2Nn algebraic equations

2msh, =iy {Z 57 [ Eip(kp(m)) S5, (m) — Ejy (kp(m)) S5, (m)]

j=1 r=1

J#p

+ ¢l [Ejp(kp<m))c‘;p(m) - Ejp@p(m)é;p(m)] }

r=1
+iGy(m) — iGy(m) + iU, (m) — iU, (m) (6.2.46a)
and
2mcl

(6.2.46b)

1 . 1 1 - 1
S T (0 ey O By

where the known functions Gy, @p, Usp, U*p are defined by equations

—~

6.2.37) and (6.2.45),

and
~ 2ir(—1)"""sin (7 Hj,(m))

S = T Ty T

j:17...,n7 p:l,..-’n7 7“:]_,...7n7 m:17...7N'

Proof The proof is similar to that of Proposition 6.2.5. 0

6.3 Numerical results

In order to illustrate the numerical implementation of the new collocation method for

the Laplace and modified Helmholtz equations, we will consider a variety of regular and
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irregular polygons.

We will study the Laplace equation with the exact solution

q(z, 2) = €% + 2%, (6.3.1)
the modified Helmholtz equation with A = 100 and the exact solution

q(z,7) = M (6.3.2)
and the modified Helmholtz equation with A = 5 and the exact solution

q(2,2) = 7% (6.3.3)

n
j=1

boundary data {uj(s)};"zl can be computed easily from (6.3.1), (6.3.2) and (6.3.3).

Analytic expressions for the known boundary functions {d;(s)} and the unknown

To demonstrate the performance of the method, we consider the discrete maximum rela-

tive error
_ N
By o Bl (6.3.4)
[lulloe
where
ujv(s) = a;v(s) +uy(s), —m<s<m j=1---n, (6.3.5)
full = o {011} (636
We consider 10001 evenly spaced points
S ={s;} 2" C [-m, ], (6.3.7)
with the points s;, —m = 51 < 59 < ... < S10000 < S10001 = T, given by
2(1—1
R {_1 n ﬁ)oooq , 1< <10001. (6.3.8)

We consider regular polygons with n = 3, 4, 5, 6, 8 sides whose vertices lie on the circle

centered at the origin with radius v/2 in the complex plane (with a vertex on the positive
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real axis). These polygons are then rotated by an angle of —% about the origin to avoid

certain non-generic results that occur when the polygons are aligned with the coordinate

axes. Thus, we consider the polygons with vertices

Z(]) = \/5@1[2071)%7%]7 ,] 1,---,n.

(6.3.

9)

We also consider irregular polygons with n = 3, 4, 5, 6, 8 sides whose vertices lie on the

ellipse (95—”)2 + (¢

)2 = 1 in the complex plane rotated through an angle of % about the

origin. The x and y coordinates of the vertices of the polygons before rotation are given

(in an anticlockwise direction) in Table 6.1 and the polygons are shown in Figure 6.3.

Table 6.1: Vertices of Irregular Polygons Prior to Rotation

Triangle (—4,—%), <— ,—%), (3, %)
Square | (1,221), (=4,-9), (4,-9), (4.)
Pentagon | (0,2), (~5,0), (~2,~22), (4,-8), (3,3)

Hexagon | (1,248, (~3, 58, (-1.-), (-1.-2f8), (2.-28). (3. 48)
Octagon | (1,282), (-2, %5271) (=3,8), (=5,0), (—4,-2), <_17_%5274>7 (27_%
5 5 5 % ; s 8 ; s & 5 5 % 5 :
n=3 n=4 n=>u n==~06 n =3y

Figure 6.3: Irregular Polygons

For the four different cases below, the following are displayed:

e graphs of E, against N for the regular and irregular polygons;

e graphs of the condition number against N for the regular and irregular polygons;

e A table estimating the order of convergence (0O.0.C.) for various values of N for the

equilateral and the irregular triangle.
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The cases considered are:

1. Fourier basis, the Laplace equation, Figures 6.4 & 6.5, table 6.2;

2. Fourier basis, the modified Helmholtz equation with A\ = 100, Figures 6.6 & 6.7,
table 6.3;

3. Chebyshev basis, the modified Helmholtz equation with A = 100, Figures 6.8 & 6.9,
table 6.4;

4. Chebyshev basis, the modified Helmholtz equation with A = 5, Figures 6.10 & 6.11,
table 6.5.

In the examples using the Chebyshev basis, the global relations are evaluated at the same
points as for the Fourier basis, and the basis functions are constructed so that they vanish

at the endpoints of the interval, see also [SFFS08, Section 4].

The graphs show that for the Fourier basis,

e the error lines appear to be asymptotically parallel to the % line, meaning that the
method has inherited the order of convergence of the underlying Fourier-sine series

expansion (6.2.31);
e the condition numbers of the associated matrices are small and grow approximately
linearly with V;

and for the Chebyshev basis,

e for both the A = 100 and A\ = 5 cases the convergence appears to be exponential,

but the errors are much smaller for A = 5;

e the conditions numbers for both cases are comparable and appear to grow exponen-

tially with V.
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6.4 Conclusions

A spectral collocation method for computing the Dirichlet to Neumann map has been im-
plemented for the Laplace and modified Helmholtz equations in the interior of a convex
polygon. This method has its origin in [FFX04]; however, although the values of k were
chosen in [FFX04] to be those in (6.2.9), both the difference and the sum of the global

relations were evaluated at [ = m instead of at [ = m and | = m — % respectively. As a
result, the relevant coefficient matrix possessed a large condition number and numerical
computations performed in [FFX04] suggested linear convergence. In [SFFS08], comput-
ing the sum of the global relations at | = m — % led to a coefficient matrix with a small
condition number. Also, the numerical computations in [SFFS08] suggested quadratic

convergence for the modified sine-Fourier series (6.2.32).

The method presented here differs from [SFFS08] in the following respects:

1. the solution ¢ is allowed to be complex valued;

2. the Dirichlet problem for the Laplace equation has been solved by employing the
global relation (6.1.5) instead of the global relation (6.1.7) (in (6.1.7), one must take

a derivative of the given Dirichlet data in order to solve the Dirichlet problem);

3. the method has been implemented for the modified Helmholtz equation.

In addition, the reasons for choosing the particular collocation points k,(l) for the Fourier
basis in (6.2.37e) have been further clarified. Because of the non-orthogonality of the
Chebyshev polynomials to the exponentials in (6.2.2) and (6.2.36), it is not clear what
the optimal choice of collocation points in the complex k-plane is for a Chebyshev basis.
For the computations presented here we have used the same points as those used for the

Fourier basis; whether this choice can be improved is work in progress.
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The method presented in this chapter requires that the given boundary conditions are
sufficiently compatible at the corners of the polygon so the solution has a continuous
first derivative. This requirement makes it possible to compute the values of the unknown
Neumann data at the corners of the polygon; then, by subtracting these known values, one
obtains unknown functions that vanish at the boundary. If these unknown functions are
sufficiently smooth, then a Chebyshev basis gives exponential convergence, although the
condition number of the matrix appears to grow exponentially with the number of basis
elements. On the other hand if the unknown functions do not have sufficient smoothness,
the Fourier sine basis can be used, which gives second order convergence, and which has

the advantage that the relevant condition number appears to grow only linearly.

If the boundary conditions are not sufficiently compatible then the solution does has have
a continuous first derivative. In this case one cannot subtract the contribution from the
corners, so that the method presented in this chapter cannot be applied. However it is
still possible to use a slight variation of our approach, namely to use the Fourier cosine

basis instead of the Fourier sine basis.

6.4.1 Discussion in the context of other methods

Owing to its immense applicability, there has been wide and continued interest in designing
and analysing numerical methods for solving the PDE (1.1.1). As discussed in Section
1.2.5, for the Poisson equation in two dimensions, conformal mapping is an extremely
powerful and widely applicable method, see [DT02| in particular for the state of the
art implementation in polygonal domains using the Schwarz—Christoffel transformation.
Finite element and boundary element methods are perhaps the most popular choices for
solving (1.1.1) in general, since, unlike conformal mapping, they are applicable in both
two and three dimensions. A particularly noteworthy addition to the boundary element
method (and a milestone in computational mathematics in its own right) is the Fast
Multipole Method [GR87]. This algorithm accelerates the numerical solution of boundary

integral equations, see [Rok85, Rok90], but can also be used whenever the effects of groups
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of sources must be calculated at groups of observation points.

Much more work must be done on the numerical method described in this Chapter,
including a detailed comparison with the existing methods described above, before its

potential utility as a numerical method for solving (1.1.1) can be properly assessed.
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Regular polygons

Irregular polygons
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10 107
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10°% — octagon —— octagon
--- order1 0l order 1
--- order 2 --- order 2
0 order 3 order 3
1 .
10° 10' 10° 10° 10° 10" 107

Figure 6.4: Fourier basis, the Laplace equation, F., as a Function of N

basis functions per side. N

Regular polygons

basis functions per side. N

[rregular polygons

10° . |
—— triangle : g;ir;?rf
—=— square
Pgntagon 3 ﬁemagon
= —=— hexagon 5 107y j: Osg\goc:qn
2 —— octagon ; :
E g
» g 102
510 - .g
g . g
Q = o
) i 77A————A,,,,,A,,,, 1017
i
0 0
’ ‘ 10 ) ‘
10° o' 2 10 10° - .

basis functions per side. N

basis functions per side. N

Figure 6.5: Fourier basis, the Laplace equation, the condition number of the coefficient

matrix as a function of N

Equilateral Triangle

Irregular Triangle

Table 6.2: Fourier basis, order of convergence (0.0.c.) for the Laplace Equation in the

Triangles

N Foo O.o.c. N FEoo O.o.c.
4 2.6019e-02 - 4 4.6405e-01 -

8 6.5908e-03 | 1.9811 8 2.0730e-01 | 1.1626
16 | 1.7026e-03 | 1.9527 16 | 6.2140e-02 | 1.7381
32 | 4.3592e-04 | 1.9656 32 | 1.6293e-02 | 1.9313
64 | 1.1048e-04 | 1.9802 64 | 4.1470e-03 | 1.9741
128 | 2.7823e-05 | 1.9895 128 | 1.0453e-03 | 1.9881
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Figure 6.7: Fourier basis, the modified Helmholtz equation with A = 100, the condition

number of the coefficient matrix as a function of N

Equilateral Triangle
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N Foo O.o.c.

4 4.3435e-01 -

8 2.4280e-01 | 0.8391
16 | 9.6685e-02 | 1.3284
32 | 2.9334e-02 | 1.7207
64 | 7.8274e-03 | 1.9060
128 | 1.9983e-03 | 1.9697
256 | 5.0311e-04 | 1.9898

N Fso O.o.c.

4 7.2627e-01 -

8 5.9449e-01 | 0.2889
16 | 4.1420e-01 | 0.5213
32 | 2.2008e-01 | 0.9123
64 | 8.3167e-02 | 1.4039
128 | 2.4321e-02 | 1.7738
256 | 6.3678e-03 | 1.9334
512 | 1.6117e-03 | 1.9822

Table 6.3: Fourier basis, order of convergence (0.0.c.) for the modified Helmholtz equation

in the triangles
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Figure 6.8: Chebyshev basis, the modified Helmholtz equation with A\ = 100, F,, as a
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Figure 6.9: Chebyshev basis, the modified Helmholtz equation with A\ = 100, the condition

number of the coefficient matrix as a function of NV
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Table 6.4: Chebychev basis, A = 100,

Helmholtz equation in the triangles

N Fso O.o.c. N Foo O.o.c.
2 | 5.4095e-01 - 2 | 7.7750e-01 -

4 | 3.0398e-01 | 0.8315 4 | 6.3583e-01 | 0.2902
6 1.5421e-01 | 0.9791 6 5.1146e-01 | 0.3140
8 | 6.9589¢-02 | 1.1480 8 | 4.0402e-01 | 0.3402
10 | 2.7604e-02 | 1.3340 10 | 3.1263e-01 | 0.3700
12 | 1.2099e-02 | 1.1900 12 | 2.3646e-01 | 0.4028
14 | 4.8311e-03 | 1.3245 14 | 1.7451e-01 | 0.4383
16 | 1.7322e-03 | 1.4797 16 | 1.2543e-01 | 0.4764

order of convergence (0.0.c.) for the modified
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Figure 6.11: Chebyshev basis, the modified Helmholtz equation with A = 5, the condition

number of the coefficient matrix as a function of NV

Equilateral Triangle Irregular Triangle

N Fso O.o.c. N Foo O.o.c.
2 | 2.6324e-01 - 2 | 6.1165e-01 -

4 | 6.5756e-02 | 2.0012 4 | 3.8320e-01 | 0.6746
6 | 1.2393e-02 | 2.4076 6 | 2.2207e-01 | 0.7871
8 | 1.9007e-03 | 2.7049 8 | 1.1717e-01 | 0.9224
10 | 2.1928e-04 | 3.1157 10 | 5.6056e-02 | 1.0636
12 | 1.8413e-05 | 3.5739 12 | 2.4242e-02 | 1.2094
14 | 1.2662e-06 | 3.8622 14 | 9.3544e-03 | 1.3738
16 | 7.6152e-08 | 4.0554 16 | 3.1766e-03 | 1.5581

Table 6.5: Chebychev basis, A = 5, order of convergence (0.0.c.) for the modified

Helmholtz equation in the triangles
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Chapter 7

Future work

The most outstanding open problems to be tackled with the Fokas method applied to the
PDE (1.1.1) are the following.

Regarding the analytical method (Chapters 2-5):

e Solution in the interior of more complicated polygons. Although Corollary
3.1.13 and Remark 3.1.15 indicate this may not be possible, if a domain has symme-
try this property can be used to transform a boundary value problem into certain
boundary value problems in subdomains. The price one pays is that the boundary
value problems in the subdomains have more complicated boundary conditions. It
is not yet clear whether these boundary value problems in the subdomains can be

solved by the Fokas method.

e Solution in the exterior of polygons. This is substantially more difficult than
the interior due to the fact that we only have the GR in subdomains of Q) which

are convex at infinity (by Corollary 3.1.7).

e The investigation of corner singularities. Preliminary investigation has shown
that the large k asymptotics of the GR yields information about the local behaviour

of the solution at the corners.
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e The study of both the Wiener—Hopf technique, a powerful method for solv-
ing boundary value problems with mixed boundary conditions [Nob88], and the
Sommerfeld-Malyuzhinets technique [BLGO08] in the context of the Fokas method.
A first step would be careful study of the works of Shanin [Sha97], [Sha00], who
treated the GR as a functional equation of the Malyuzhinets type (see Remark
1.6.1).

e The extension of the method to three dimensions; the first step should be to
find the analogues of the coordinate dependent fundamental solutions in §2.1.1 and
§2.2.1 in 3-d. We emphasise that, just like the classical transform method, the
new method is applicable in three dimensions. For example, it has been applied
to evolution PDEs in two space dimensions in [Fok02] and [KF10]. The GR now
contains two complex variables; however these variables are not coupled, and this

avoids the subtleties of the theory of several complex variables.

Regarding the numerical method of Chapter 6

e The extension of the method of Chapter 6 to the Helmholtz equation. Now the
appropriate collocation points in the complex k-plane lie on circular arcs as well as

rays.

e The evaluation of the solution in the interior of the domain, using the
integral representations of Chapter 2, after the Dirichlet to Neumann map has

been computed by the method of Chapter 6.
e The investigation of BVPs involving corner singularities.

e The design of a method to compute the Dirichlet to Neumann map for the ex-
terior of a polygon; a first attempt at this could proceed by splitting Q¢ into

subdomains.

e The coupling of the method with domain decomposition methods.
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e The investigation of the use of polyharmonic basis functions [INO6], instead of

trigonometric basis functions.
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