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Abstract

The Watson transformation is essentially the idea that a series can be converted into an
integral in the complex plane via an “inverse residue” calculation. This idea has a long history
of being used to convert expressions for the solutions of boundary value problems (BVPs)
into alternative expressions from which it is easier to extract information about the solution.
However, the technique is ad hoc, since given a series there are many different integrals whose
residues are equal to that series. In this paper we show that, for the BVP on which the Watson
transformation was first used, the optimal expression for the solution as an integral can be
obtained in an algorithmic (as opposed to ad hoc) way using the Fokas transform method.
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1 Introduction

1.1 The background of the Watson transformation

For a very restrictive class of boundary value problems (BVPs), transform methods can be used
to find explicit expressions for the solution. Even when one has such an expression, however, it
may not be of any use. This situation was famously encountered for the BVPs of the Helmholtz
equation posed in the exterior of a disk (in 2-d) or ball (in 3-d). In this paper we focus on the 2-d
case, and thus the BVP we consider is the following.

Problem 1.1 (The Dirichlet problem for the Helmholtz equation in the exterior of a
disk) Let Ω be the exterior of a disk of radius a, i.e.

Ω =
{
a < r < ∞, 0 ≤ θ < 2π

}
. (1.1)

Given d ∈ C(∂Ω) and k > 0, find u ∈ C2(Ω) ∩ C(Ω) satisfying the PDE

∆u + k2u = 0 in Ω, (1.2)

the Dirichlet boundary condition

u(a, θ) = d(θ), 0 ≤ θ < 2π, (1.3)

and the Sommerfeld radiation condition

√
r

(
∂u

∂r
− iku

)
→ 0 as r → ∞ (1.4)

(uniformly in θ).
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With solutions of the Helmholtz equation corresponding to solutions of the wave equation by
multiplying by exp (−iωt), the radiation condition (1.4) ensures that waves propagate away from
the obstacle (in this case the disk), and the wavenumber k equals ω/c, where c is the wave speed.

For simplicity we only consider the homogeneous Helmholtz equation, but everything that
follows also applies to the inhomogeneous Helmholtz equation, i.e. ∆u + k2u = −f for some
prescribed function f (see [46, §4.3], [10]). In many scattering applications, the function d in the
Dirichlet boundary condition is the incident wave restricted to the boundary (and therefore is a
real-analytic function), and then u is the scattered field.

Seeking to find an explicit expression for the solution of Problem 1.1, we recall that the Lapla-
cian is separable in 2-d polar coordinates, and thus either of the two separated ODEs (one in the
r-variable and one in the θ-variable) can be used as the basis for a transform. The appropriate
transform in the θ-variable for solving Problem 1.1 is the standard Fourier series (this fact can be
determined by spectral analysis of the relevant ODE; see [24, §8.1.3], [48, p.154], [16, p.259], [39,
§4.4, §5.7, §5.8], [15, §2.1]), and this transform yields the explicit expression for the solution

u(r, θ) =
1

2π

∞∑

n=−∞

H
(1)
n (kr)

H
(1)
n (ka)

einθD(−in), (1.5)

where H
(1)
n denotes the Hankel function of the first kind, and

D(−in) =

∫ 2π

0

e−inφd(φ) dφ, n ∈ Z.

On the face of it, we have found an explicit expression for the solution of Problem 1.1, so what
more is to be said?

The answer is twofold: (i) we are interested in the large-k asymptotics of u (or, more precisely,
the asymptotics as ka → ∞), and (ii) it is extremely difficult to obtain these asymptotics from the
explicit expression (1.5).

Regarding (i): in many applications one is interested in the large-k asymptotics of the solution
of Problem 1.1, not only because it is the only BVP involving scattering by a bounded obstacle for
which explicit solutions can be obtained, but also because in the geometrical theory of diffraction
[25] it is the appropriate “canonical problem” for understanding scattering by obstacles with strictly
positive curvature. Therefore, knowledge of the large-k asymptotics of Problem 1.1 has formed the
basis of many investigations of scattering from general 2-d convex obstacles with strictly positive
curvature [49], [4], [18], [50], [31], [5], [6, Chapter 13].

Regarding (ii): when ka ≫ 1 the series (1.5) converges extremely slowly. Indeed, for a relative
error of the order of one percent one needs to sum the first ka terms [9, §2.1], [38, §II] (and in the
case when the sphere is the Earth and one considers radio waves, ka = 8000 [30, Page 118]).

In 1918, Watson overcame the difficultly of the slow convergence of the series (1.5) via the
so-called Watson transformation [52]. This transformation converts the slowly converging series
(1.5) into a different series that converges rapidly (with summing the first few terms of the new
series sufficient for almost all applications). The Watson transformation consists of the following
two steps:

(a) Convert the series into an integral using Cauchy’s residue theorem. For example, if f is
analytic in a neighbourhood of the real axis and has sufficient decay at infinity then

∞∑

n=−∞

f(n) = −
∫

C

f(ν)

1 − e2πiν
dν, (1.6)

where C is a contour that encloses the real ν-axis (in the positive sense) but not any of the
singularities of f(ν) (see Figure 1).

(b) Deform the contour C to enclose the poles of f(ν) and then evaluate the integral in terms of
the residues at these poles.

We now apply these two steps to the series solution (1.5).

2



−νn

C

νn

Figure 1: The poles and contours involved when the Watson transformation is applied to Problem
1.1.

Step (a). We have that

f(ν) = eiνθD(−iν)
H

(1)
ν (kr)

H
(1)
ν (ka)

.

This function is analytic in the complex plane apart from poles at the zeros of H
(1)
ν (ka), which are

in the first and third quadrants; see Theorem 3.1 below. We denote the zeros in the first quadrant
by {νn}∞n=1; by the relation

H
(1)
−ν (z) = eiπνH(1)

ν (z), (1.7)

the zeros in the third quadrant are {−νn}∞n=1. We apply (1.6) with the contour C such that

∫

C

dν = −
∫ ∞+ic

−∞+ic

dν +

∫ ∞−ic

−∞−ic

dν,

where the constant c is chosen so that c < ℑ(ν1); see Figure 1. We therefore obtain that

u(r, θ) =
1

2π

(∫ ∞+ic

−∞+ic

−
∫ ∞−ic

−∞−ic

)
eiνθD(−iν)

1 − e2πiν

H
(1)
ν (kr)

H
(1)
ν (ka)

dν. (1.8)

Step (b). We now seek to evaluate the integral (1.8) as residues at {±νn}∞n=1. It is convenient
to use the transformation ν 7→ −ν in the integral over (−∞ − ic,∞ − ic) in (1.8) to convert the
expression (1.8) into one integral on the contour (−∞+ ic,∞+ ic) (i.e. an integral just above the
real axis). Recalling the relation (1.7), we find that this procedure yields

u(r, θ) =
1

2π

∫ ∞+ic

−∞+ic

[
eiνθD(−iν)

1 − e2πiν
− e−iνθD(iν)

1 − e−2πiν

]
H

(1)
ν (kr)

H
(1)
ν (ka)

dν. (1.9)

We now seek to close the contour of integration in (1.9) at infinity in the upper half-plane
(UHP), and we therefore need to understand how the integrand of (1.9) behaves as |ν| → ∞ in
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this region. The behaviour of H
(1)
ν (kr)/H

(1)
ν (ka) as |ν| → ∞ is subtle, and we return to this later.

By integration by parts (assuming that d is sufficiently smooth), one can show that the second
term in the square brackets in (1.9) is bounded as ν → ∞ in the UHP (see (4.4b) below), but the
first term need not be. To deal with this latter fact, we use the equation

1

1 − e2πiν
= 1 − 1

1 − e−2πiν
(1.10)

in the first term in square brackets in (1.9), and obtain

u(r, θ) =
1

2π

∫ ∞

−∞

H
(1)
ν (kr)

H
(1)
ν (ka)

eiνθD(−iν)dν − 1

2π

∫ ∞+ic

−∞+ic

H
(1)
ν (kr)

H
(1)
ν (ka)

[
eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν

(1.11)
(where have deformed the contour in first integral from (−∞ + ic,∞ + ic) to real axis using

analyticity and the fact that H
(1)
ν (kr)/H

(1)
ν (ka) decays exponentially as |ν| → ∞ near the real

axis). The term in square brackets in (1.11) is now bounded at infinity in the UHP. To deal with
eiνθD(−iν) in the first integral, we write D(−iν) as DL(−iν) + DR(−iν), where

DL(±iν) =

∫ θ

0

e±iνφd(φ) dφ, DR(±iν) =

∫ 2π

θ

e±iνφd(φ)dφ,

let ν 7→ −ν in the term involving DR (using (1.7)), and then deform the contours from (−∞,∞)
to (−∞ + ic,∞ + ic). This yields the expression

u(r, θ) =
1

2π

∫ ∞+ic

−∞+ic

H
(1)
ν (kr)

H
(1)
ν (ka)

[
eiνθDL(−iν) + e−iνθDR(iν) − eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν.

(1.12)

Closing the contour of the integral in (1.12) at infinity in the UHP and evaluating the integral as
residues on {νn}∞n=1 yields

u(r, θ) = i

∞∑

n=1

H
(1)
νn (kr)

Ḣ
(1)
νn (ka)

[
eiνnθDL(−iνn) + e−iνnθDR(iνn) − eiνnθD(−iνn) + e−iνnθD(iνn)

1 − e−2πiνn

]
,

(1.13)

where

Ḣ(1)
νn

(ka) =
d

dν
H(1)

ν (ka)

∣∣∣∣
ν=νn

,

and the Watson transformation procedure is now complete.
There are two important points to note about the series (1.13).

1. Around 1950, Sommerfeld [45, Appendix II of Chapter 5, Appendix to Chapter 6] showed
that the series (1.13) can be obtained directly by constructing the transform associated with
the radial ODE (using the algorithm described in, e.g., [24, §8.1.3], [48, p.154], [16, p.259],
[39, §4.4,§5.7,§5.8], [15, §2.1])) and applying this transform to Problem 1.1 instead of the
transform in the θ-variable. Indeed, spectral analysis of the radial ODE with the boundary
condition u(a, θ) = 0 and the radiation condition (1.4) yields the (formal) completeness
relation

ρ δ(r − ρ) = −πi

∞∑

n=1

νnH
(1)
νn (kρ)H

(1)
νn (kr)Jνn

(ka)

Ḣ
(1)
νn (ka)

, (1.14)

see [35, p.299], [12, p.116] (these papers present the analogous completeness relation in the
three dimensional case with Neumann boundary conditions, but the derviation of (1.14) is
very similar). Applying the transform obtained from (1.14) to Problem 1.1 yields (1.13).

2. The series on the right-hand side of (1.13) does not converge for all θ. Indeed, if θ is such
that d(θ) 6= 0, then the series on the right-hand side of (1.13) diverges. Where did we go
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wrong above in deriving (1.13)? The answer is that when d(θ) 6= 0 and the contour in (1.12)
is closed at infinity in the UHP, the integral at infinity is unbounded. This is due to the

subtle behaviour of H
(1)
ν (kr)/H

(1)
ν (ka) as |ν| → ∞; see §4. The divergence of the series (1.13)

means that the transform associated with (1.14) is not complete. The relation (1.14) came
from spectral analysis of the radial ODE

− r
∂

∂r

(
r
∂u

∂r

)
− k2r2u =

λ

r
u (1.15)

on (a,∞), with the boundary condition u(a, θ) = 0, and with the additional condition that
the eigenfunctions satisfy the radiation condition (1.4). Although the differential operator
(1.15) is formally self-adjoint, the presence of a complex coefficient in the radiation condition
means that the appropriate constraints on the boundary conditions for self-adjointness are
not satisfied, and thus this 1-d BVP is not self-adjoint. Therefore, the general results that
ensure completeness of transforms associated with self-adjoint problems do not apply (see
[15, §2.3] and the references therein). (Pflumm [42] was the first to note that the series in
(1.13) diverges, and Cohen [10] proved that the transform pair obtained from (1.14) is not
complete.)

Despite the fact that for some values of θ it diverges, the series on the right-hand side of (1.13)
is still useful in the following three special cases:

1. When d(θ) = δ(θ−θ0), for some θ0, the series (1.13) converges for all θ 6= θ0. (Note that [49],
[4], [50], [51], and [5] are interested in the analogue of this case for the Neumann problem,
i.e. the boundary condition (1.3) is replaced by (∂u/∂r)(a, θ) = δ(θ − θ0), and the radial
series for this problem also converges for all θ 6= θ0.)

2. In some applications one is interested in the Green’s function for Problem 1.1 (or the anal-
ogous Neumann problem), see, e.g., [18], [27, Part II], [28]. The analogue of (1.13) in this
case converges when θ is not equal to the angular coordinate of the delta function on the
right-hand side of the PDE (see [10, Theorem III]).

3. In the case of plane-wave scattering, d is given in terms of the incident field, and u is then
the scattered field. By using certain identities involving Bessel functions [3, Equations 9.1.44
and 9.1.45], [22, Appendix A, Equation 1.23], one can obtain an expression for the total
field as an integral similar to (1.12); see [6, Equation 13.1.5], [22, §8.3]. This integral can
be evaluated as residues to obtain a radial series expansion, with this evaluation valid when
(r, θ) is in the shadow of the obstacle (see [22, §8.3] for the proof of this in the case of an
impedance boundary condition, and see also the discussion in [9, §I.2.13.6, Page 34]).

1.2 The main disadvantage of the Watson transformation

The main disadvantage of the Watson transformation is that it is not clear a priori which “series-
to-integral” formula (such as (1.6)) will allow you to easily obtain an integral in the complex plane
that can be evaluated as residues at the poles of f .

Indeed, for Problem 1.1 we used the formula (1.6) to convert the series solution (1.5) to the
integral (1.8). However, there are many different ways in which we could have converted the series
to an integral. For example, we could have used either

∞∑

n=−∞

f(n) =

∫

C

f(ν)

1 − e−2πiν
dν (1.16)

or
∞∑

n=−∞

f(n) =
1

2πi

∫

C

f(ν)
π cosπν

sinπν
dν (1.17)

(with the latter expression appearing as [26, Equation 5.1]). Each of the three formulae (1.6),
(1.16), (1.17) is valid if f is analytic in a neighbourhood of the real axis and has sufficient decay at
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infinity, and all three are equivalent (since each of the integrals is equal to the same series). The
equation (1.16) follows from (1.6) by using (1.10), and writing the right-hand side of (1.17) as

1

2

∫

C

f(ν)
1 + e−2πiν

1 − e−2πiν
dν,

we see that (1.17) equals the average of (1.6) and (1.16).
If we use (1.16) to convert the series (1.5) into an integral instead of (1.6), we obtain an

expression very similar to (1.8), and we can obtain the integral expression (1.12) is almost identical
way to before. However, if we use (1.17) instead of (1.6), then we obtain the integral expression

u(r, θ) = − 1

4π

(∫ ∞+ic

−∞+ic

−
∫ ∞−ic

−∞−ic

)
eiνθD(−iν)

1 + e−2πiν

1 − e2πiν

H
(1)
ν (kr)

H
(1)
ν (ka)

dν. (1.18)

Mapping the integral below the real axis to an integral above the real axis using the transformation
ν 7→ −ν, we obtain

u(r, θ) = − 1

4π

∫ ∞+ic

−∞+ic

[
eiνθD(−iν)

1 + e−2πiν

1 − e2πiν
− e−iνθD(iν)

1 + e2πiν

1 − e−2πiν

]
H

(1)
ν (kr)

H
(1)
ν (ka)

dν. (1.19)

The second term in square brackets in (1.19) is bounded at infinity in the UHP, but it is not clear
that the first term is. By using (1.10), one can eventually manipulate (1.19) into an expression
similar to (1.11), and then use the decomposition D(±iν) = DL(±iν) + DR(±iν) and the trans-
formation ν 7→ −ν to obtain an integral analogous to that in (1.12), i.e. one whose integrand

is bounded in the UHP (apart from H
(1)
ν (kr)/H

(1)
ν (ka)). However, this procedure is much more

involved than that in §1.1.
In summary, the amount of effort needed to obtain (1.12) (or an expression with similar prop-

erties) from (1.5) is highly dependent on which one of (1.6), (1.16), and (1.17) is used to convert
the series into an integral, and it is not clear a priori which one of these formulae is the best.

The fact that the best “series-to-integral” formula to use depends on the particular f in question
(and is hard to determine a priori) perhaps explains why the Watson transformation has not
been applied uniformly to explicit expressions for solutions of BVPs arising from using transforms.
Indeed, whereas the Watson transformation has been well-used in the context of scattering problems
(where the BVPs involve elliptic PDEs), it has not been used for BVPs involving evolution PDEs.
For example, if the heat equation, ut − uxx = 0, is posed for 0 < x < L and 0 < t < T with
Robin boundary conditions at x = 0 and x = L, then the appropriate transform in the x-variable
yields an expression for the solution as an infinite series over zeros of a transcendental equation
(and thus evaluating the series requires finding these zeros); see, e.g., [43, §1.1.1-11], [11, Example
4.2.3], [19, §5.8]. The Watson transformation can be in principle be used to convert this series into
an integral in the complex plane (with this integral then much easier to evaluate asymptotically
or numerically than the series), however this appears not to have been done in the literature.
(The integral expression for the solution of this BVP has been obtained using the Fokas transform
method; see [14, §2.1], [15, §6.1].)

1.3 The main result of this paper

In hindsight, the “moral” of the Watson transformation is that, when a BVP can be solved by
transforms, the best expression for the solution is an integral in the complex plane, which can
then be deformed (and evaluated via residues if necessary) to yield either of the two expressions
obtained by transforms (assuming these transforms are complete).

A new transform method was introduced in 1997 by Fokas [13] and further developed by Fokas
and collaborators in the years since then (see the monograph [14] and the review paper [15]). This
method arose from the theory of nonlinear integrable PDEs, but is also applicable to linear PDEs.

For linear BVPs that can be solved by classical transform methods, the Fokas method can be
seen as realising the “moral” of the Watson transformation since it obtains an explicit expression
for the solution as an integral in the complex plane that can be deformed to yield either of the
two expressions (for a 2-d problem) obtained by transforms. Furthermore, the Fokas method can
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obtain explicit expressions for the solutions of certain BVPs for which there are no appropriate
classical transforms (see [15, §6.2] for an overview of these problems). (The Fokas method has also
been used to develop new numerical schemes for computing the solution of BVPs that cannot be
solved explicitly, and to prove results about the existence, uniqueness, and regularity of certain
BVPs; see the overview in [15, §6.3] and the references therein.)

The main goal of the present paper is to demonstrate that the expression (1.11) for the solution
of Problem 1.1 can be obtained in an algorithmic way using the Fokas method, as opposed to the
somewhat ad hoc method of the Watson transformation. (This fact was stated, but not proved,
in [15, §5], and the present paper fills this gap.) We note that, although obtaining (1.11) via
the Fokas method is more systematic than obtaining it via the Watson transformation, it is a
longer and more involved calculation. However, the ideas underlying the Watson transformation
(in particular the idea of deforming contours in the complex plane to obtain better representations
of solutions to BVPs) are still being used by the research community, and we hope that this
alternative algorithmic method of obtaining better representations of the solution of BVPs may
prove useful in situations where it is still not clear what the best representation is or how to obtain
it (we discuss this further in §5).

Outline of the paper. The details of the Fokas method applied to Problem 1.1 are given in
§2 below. This procedure requires certain results about the asymptotics of Bessel and Hankel

functions and in particular the asymptotics of νn (the zeros of H
(1)
ν (ka)), and we give these in

§3. These asymptotic results are also precisely the results needed to prove that when the contour
of the integral in (1.12) is closed at infinity in the UHP, the integral at infinity is unbounded if
d(θ) 6= 0 and zero if d(θ) = 0, and we give this proof in §4. We do this, not only for completeness,
but also because, although this result is relied upon by many authors (e.g. [49], [28], [18], [50],
[31]), the only complete proofs the author is aware of are in [17, §3] (for the Helmholtz equation
in the exterior of a prolate spheroid in 3-d), [38, §III] (for the sphere), and [36, Pages 114-115 and
119-120] (for the disk), and these proofs are perhaps not presented in their simplest possible forms.
Finally, we end the paper in §5 by discussing its contents both from the point of view of spectral
theory and in light of current uses of Watson-type transformations.

2 The Fokas method applied to Problem 1.1

2.1 Outline of the Fokas method applied to linear BVPs

The Fokas method for linear BVPs consists of the following three steps (which we implement for
Problem 1.1 in §2.2 below):

1. Rewrite the PDE as a one-parameter family of equations in divergence form. Integrating
this divergence form over the boundary of the domain gives the global relation, which is
an algebraic equation coupling the transforms of all boundary values. (The terminology
emphasises that this relation contains global, as opposed to local, information about the
boundary values.)

2. Derive an integral representation of the solution involving transforms of all boundary val-
ues. This equation is analogous to Green’s integral representation, but rather than being
formulated in the physical space, it is formulated in the spectral (Fourier) space.

3. Eliminate from the integral representation the transforms of the unknown boundary values
and thus obtain an expression for the solution in terms of the known boundary data. This
step involves algebraic manipulation of both the global relation and equations obtained from
it via certain transformations in the complex Fourier plane, as well as deforming the contours
in the integral representation and using Cauchy’s theorem.

Furthermore, Step 3 can be broken down into the following three substeps:

(a) Use the global relation to express some of the transforms of the unknown boundary values
that appear in the integral representation in terms of the smallest possible subset of other
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unknown transforms (if there exist different possibilities, use the one that yields the smallest
number of unknowns in each equation).

(b) Identify the domains in the complex ν-plane where the integrands of the integral represen-
tation are bounded and analytic, and also identify the location of any singularities. At this
substep some unknown transforms can be eliminated directly from the integral representation
using analyticity and Cauchy’s theorem.

(c) Deform contours and use the global relation again so that the contribution from the remaining
unknown boundary values vanish by analyticity (using Cauchy’s theorem).

For certain BVPs the solution can be obtained without using all three of (a)-(c), however Problem
1.1 requires all three substeps.

2.2 The Fokas method applied to Problem 1.1

Our goal in this section is to prove the following theorem.

Theorem 2.1 Applying the steps of the Fokas method outlined in §2.1 to the BVP of Problem 1.1
yields the explicit expression for the solution (1.11), where D(±iν) are defined by

D(±iν) =

∫ 2π

0

e±iνφ d(φ) dφ, ν ∈ C,

and c in the limits of the second integral is a constant such that 0 < c < ℑν1.

Before we begin, we note that we need to consider the θ-variable as non-periodic (i.e. we consider
0 < θ < 2π with θ = 0 and θ = 2π not automatically identified as the same line). This is not just
a feature of applying the Fokas method, and is encountered classically. Indeed, with u defined by
the angular series solution (1.5), u(r, θ + 2πn) = u(r, θ) when n ∈ Z, but with u defined by the
radial series solution (1.13), u(r, θ + 2πn) 6= u(r, θ) (this can be seen from the series solution itself,
but also from that fact that for the terms in brackets in (1.12) to be bounded at infinity in the
UHP we need 0 < θ < 2π). Since we know that the restriction 0 < θ < 2π is necessary to obtain
the radial series solution, we impose it from the beginning. (We note, however, that the Fokas
method imposes this requirement independently in Step 2.)

Therefore, we let Ω̃ be the domain exterior to a disc of radius a centered at the origin with a
cut along the line θ = 0, i.e.

Ω̃ = {a < r < ∞, 0 < θ < 2π},

and we consider the problem of finding ũ such that ∆ũ+k2ũ = 0 in Ω̃, ũ(a, θ) = d(θ) for 0 < θ < 2π,
ũ satisfies the radiation condition (1.4), and ũ satisfies the following boundary conditions on the
cut

ũ(r, 2π) = ũ(r, 0), ũθ(r, 2π) = ũθ(r, 0). (2.1)

The conditions (2.1) (along with the fact that ∆ũ + k2ũ = 0) imply that the periodic extension of
ũ(r, ·) is in C2(T), and then by uniqueness this extension is the solution of Problem 1.1, u. Since ũ

is the restriction of u to 0 < θ < 2π, in what follows we denote the solution of the BVP in Ω̃ as u.
We now implement Steps 1 to 3 of §2.1. Steps 1 and 2 of this procedure were outlined in [15,

§5]; for completeness we give the main details here too.

2.2.1 Step 1

The Helmholtz equation is formally self-adjoint, and the divergence form of (1.2) is

∇ ·
(
v∇u − u∇v

)
= 0. (2.2)

Integrating (2.2) over Ω̃ and using the divergence theorem yields the global relation

0 =

∫

∂eΩ

(
v

∂u

∂n
− u

∂v

∂n

)
dS, (2.3)
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where v is a one-parameter family of solutions to (1.2) such that the integral at infinity vanishes;
this is the case if v also satisfies the radiation condition (1.4).

We can obtain a one-parameter family of adjoint solutions v via separation of variables. Since
the BVP is separable in polar coordinates, a one-parameter family is given by

v(r, θ) = eiνθH(1)
ν (kr), ν ∈ C, (2.4)

where the solution in the radial variable, H
(1)
ν (kr), is chosen by the requirement that it satisfies

the radiation condition (1.4).
Substituting v given by (2.4) into (2.3), writing the resulting equation in polar coordinates, and

recalling that u(r, θ) satisfies (2.1) on the cut along θ = 0, we find the following global relation

− aH(1)
ν (ka)N(iν) + akH(1)′

ν (ka)D(iν) +
(
1 − e2πiν

)(
iνD0(ν) − N0(ν)

)
= 0, (2.5)

where

D0(ν) =

∫ ∞

a

H(1)
ν (kρ)u(ρ, 0)

dρ

ρ
, N0(ν) =

∫ ∞

a

H(1)
ν (kρ)uθ(ρ, 0)

dρ

ρ
, ν ∈ C, (2.6)

and

D(iν) =

∫ 2π

0

eiνφ u(a, φ)dφ, N(iν) =

∫ 2π

0

eiνφ ur(a, φ)dφ, ν ∈ C. (2.7)

The notation indicates that D and D0 are transforms of the Dirichlet boundary values, and N and
N0 are transforms of the Neumann boundary values, with D and N the boundary values on the
surface of the disk, and D0 and N0 the boundary values on the cut.

2.2.2 Step 2

In general, the integral representation of the Fokas method can be obtained in the following three
different ways: (i) spectral analysis of the differential form behind the global relation [14, Part III],
(ii) applying the global relation in a subdomain [14, Chapters 1 and 2], or (iii) via Green’s integral
representation [14, §11.4], [47]. For Problem 1.1 it is easiest to use the third method.

Green’s integral representation for the solution of (1.2) in Ω̃ is

u(x) =

∫

∂eΩ

(
E(ξ, x)

∂u

∂n
(ξ) − u(ξ)

∂E

∂n
(ξ, x)

)
dS(ξ), x ∈ Ω̃, (2.8)

where E(ξ, x) is the fundamental solution (or free-space Green’s function) satisfying

(
∆ξ + k2

)
E(ξ, x) = −δ(ξ − x), ξ ∈ R

2. (2.9)

For the Helmholtz equation in two dimensions with the radiation condition (1.4) the fundamental
solution is given by

E(ξ, x) =
i

4
H

(1)
0

(
k|ξ − x|

)
, (2.10)

however we do not use this fact directly, and instead start from the PDE defining E (2.9).
The integral representation of the Fokas method can be obtained by substituting two different

expressions for the fundamental solution into Green’s integral representation (2.8). These two
expressions are obtained by solving (2.9) by the two appropriate classical transforms (associated
with each separated ODE) in the chosen coordinate system. One slight subtlety is that since we
are considering the θ variable as non-periodic, we must consider a different fundamental solution
to (2.10).

To emphasise that our fundamental solution is not the usual one, we denote it by Es (following
the notation in [48, p. 270] where Sommerfeld’s use of the non-periodic fundamental solution in a
different context is discussed). The non-periodic fundamental solution Es satisfies equation (2.9)
and the radiation condition (1.4) in the domain defined in polar co-ordinates (ρ, φ) by −∞ < θ < ∞
and 0 < r < ∞. The two expressions for Es, obtained by the appropriate transforms, are given in
the following theorem.
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Theorem 2.2 (Expansions of Es in angular and radial eigenfunctions [47, Proposition
3.1]) The non-periodic fundamental solution Es for the Helmholtz equation can be expressed as
expansions in terms of either the angular or radial eigenfunctions. The angular expansion is

Es(ρ, φ; r, θ) =
i

4

(∫ ∞

0

H(1)
ν (kr>)Jν(kr<)eiν(θ−φ)dν +

∫ ∞

0

H(1)
ν (kr>)Jν(kr<)e−iν(θ−φ)dν

)
,

(2.11)
where r> = max(r, ρ), r< = min(r, ρ) and 0 < θ, φ < 2π. The radial expansion is

Es(ρ, φ; r, θ) = lim
ε→0

i

4

(∫ i∞

0

eεν2

H(1)
ν (kr1)Jν(kr2)e

iν|θ−φ|dν +

∫ −i∞

0

eεν2

H(1)
ν (kr1)Jν(kr2)e

−iν|θ−φ|dν

)
,

(2.12)
where either r1 = r and r2 = ρ or vice versa.

Equations (2.11) and (2.12) are obtained in [47, Proposition 3.1] using the two completeness
relations

δ(θ − φ) =
1

2π

∫ ∞

−∞

eiν(θ−φ)dν (2.13)

and

ρ δ(r − ρ) = lim
ε→0

1

2

∫ i∞

−i∞

eεν2

H(1)
ν (kr1)Jν(kr2) ν dν, (2.14)

where either r1 = r and r2 = ρ or visa versa. The first completeness relation (2.13) is associated
with the angular ODE under non-periodicity, and corresponds to the Fourier transform, whereas
equation (2.14) is associated with the radial ODE under the radiation condition (1.4), and corre-
sponds to the Kontorovich-Lebedev transform. (This is the point at which the requirement that θ
is non-periodic arises when implementing the Fokas method, since there does not exist an expansion
of the fundamental solution in radial eigenfunctions if θ is periodic; see [47, Remark 3.4].)

Both equations (2.14) and (2.12) contain the regularising factor exp(εν2), which illustrates the
technical complications that arise due to the non-self-adjointness of the Helmholtz equation in
unbounded domains. Performing the classical transform method algorithm described in [15, §2.1]
on the radial ODE with the radiation condition, one arrives at (2.14) without the regularising
factor exp (εν2). However, D. S. Jones showed in [21] that without this factor the transform is not
complete (the transform even fails for the simple function exp (−aρ), a > 0), and he established, via
a proof of completeness, the version (2.14). Nevertheless, many of the classical solutions of BVPs
obtained via (2.14) without the term exp (εν2) are still correct because the contour is deformed
(albeit illegally) and the resulting expression converges (the term exp (εν2) rigorously justifies the
contour deformation, after which ε can be set to zero); see [21, §7].

The integral representation of the Fokas method for Problem 1.1 is

u(r, θ) = lim
ε→0

i

4

[∫ i∞

0

eεν2

Jν(kr)
[
−
(
eiνθ + eiν(2π−θ)

)
iνD0(ν) −

(
eiνθ − eiν(2π−θ)

)
N0(ν)

]
dν

+

∫ −i∞

0

eεν2

Jν(kr)
[(

e−iνθ + e−iν(2π−θ)
)

iνD0(ν) −
(
e−iνθ − e−iν(2π−θ)

)
N0(ν)

]
dν

]

− ia

4

[∫ ∞

0

eiνθH(1)
ν (kr)

(
Jν(ka)N(−iν) − kJ ′

ν(ka)D(−iν)
)
dν

+

∫ ∞

0

e−iνθH(1)
ν (kr)

(
Jν(ka)N(iν) − kJ ′

ν(ka)D(iν)
)
dν

]
. (2.15)

To obtain (2.15) we write Green’s integral representation (2.8) in polar coordinates, and then
substitute the expansions (2.11) and (2.12) in the resulting expression; on the boundaries where φ
is fixed and ρ varies we use the radial expansion (2.12), whereas on the boundaries where ρ is fixed
and φ varies we use the angular expansion (2.11). Changing the order of the physical integrals
(in ρ or φ) and the spectral integrals (in ν) we find (2.15), provided we choose r1 = ρ and r2 = r
in the radial representation (2.12) (the alternative choice r1 = r, r2 = ρ still leads to an integral
representation, but the transforms of the boundary values are not the same transforms that appear
in the global relation (2.5)).
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2.2.3 Step 3

Our task is to eliminate the transforms of the unknown boundary values D0(ν), N0(ν), and N(±iν)
from the integral representation (2.15), using the global relation (2.5), and obtain the expression
(1.11). Recall that the description of Step 3 says that we should do this using “both the global
relation and equations obtained from it via certain transformations in the complex Fourier plane”.
In this situation the appropriate transformation is ν 7→ −ν; this is a consequence of the symmetry
(1.7) and the fact that the integral representation (2.15) involves D(−iν) and N(−iν) whereas the
global relation (2.5) involves only D(iν) and N(iν). Letting ν 7→ −ν in (2.5) and using (1.7) results
in the two equations

− aH(1)
ν (ka)N(±iν) + akH(1)′

ν (ka)D(±iν) +
(
1 − e±2πiν

)(
± iνD0(ν) − N0(ν)

)
= 0. (2.16)

(Alternatively, one can obtain the second equation by noting that e−iνθH
(1)
ν (kr), ν ∈ C, is also a

one-parameter family of solutions of the adjoint equation that satisfy the radiation condition.)
We now use the three substeps (a)-(c) described in §2.1 to eliminate the unknown transforms

D0, N0, and N from the representation (2.15).
Before we proceed, we note that the following identity holds for any function L(ν) (provided

the integrals exist):

∫ i∞

0

Jν(kr)H(1)
ν (ka)L(ν) dν +

∫ −i∞

0

Jν(kr)H(1)
ν (ka)L(−ν) dν

=

∫ i∞

0

Jν(ka)H(1)
ν (kr)L(ν) dν +

∫ −i∞

0

Jν(ka)H(1)
ν (kr)L(−ν) dν. (2.17)

This identity can be derived by expanding H
(1)
ν as a linear combination of Jν and J−ν (using its

definition (3.9)), and then by letting ν 7→ −ν in the term involving J−ν . (This identity shows
reciprocity in r and ρ in the expression (2.12), and a similar identity is used when solving problems
using the Kontorovich-Lebedev transform [21, §5], [22, §9.19].)

In the course of the proof, we need various results about (i) the asymptotics of Jν(z) and

H
(1)
ν (z) as |ν| → ∞ with z ∈ R fixed, (ii) the asymptotics of νn (the zeros of H

(1)
ν (ka) in the first

quadrant) as n → ∞. These results are collected in §3, and we refer to them as necessary during
the course of the proof.

Substep (a). The two global relations (2.16) involve four unknown functions:
N(iν), N(−iν), N0(ν), and D0(ν). Therefore, these two equations can express any one un-
known in terms of two others. Here we use (2.16) to express N(±iν) in terms of N0(ν) and D0(ν)
(the details for any different choice, e.g. expressing N0(ν) and D0(ν) in terms of N(±iν), are very
similar to those below).

Solving (2.5) for N(±iν), we obtain that

aN(±iν) =
1

H
(1)
ν (ka)

(
akH(1)′

ν (ka)D(±iν) +
(
1 − e±2πiν

)(
± iνD0(ν) − N0(ν)

))
. (2.18)

Substituting these expressions into (2.15), we find that the unknown parts of the integrals over
(0,∞) in (2.15) are

− i

4

(∫ ∞

0

eiνθ H
(1)
ν (kr)Jν (ka)

H
(1)
ν (ka)

(
1 − e−2πiν

)(
− iνD0(ν) − N0(ν)

)
dν

+

∫ ∞

0

e−iνθ H
(1)
ν (kr)Jν(ka)

H
(1)
ν (ka)

(
1 − e2πiν

)(
iνD0(ν) − N0(ν)

)
dν

)
; (2.19)

for brevity of presentation, we focus only on the unknown terms in (2.15) and do not display the
known terms involving D(±iν).

Since u is a solution of (1.2) with the outgoing radiation condition (1.4), we expect the r

dependence of the solution to be of the form H
(1)
ν (kr). Indeed, the integrals over (0,∞) in (2.15)
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are of this form, but the integrals over (0, i∞) are not. To rectify this situation we multiply and

divide by H
(1)
ν (ka) in the first two terms of (2.15) and use the identity (2.17). Multiplying and

dividing by H
(1)
ν (ka), and noting that there are no zeros of H

(1)
ν (ka) on the contour, we find that

the first two terms of (2.15) become

lim
ε→0

i

4

(∫ i∞

0

eεν2

Jν(kr)H(1)
ν (ka)M(ν)dν +

∫ −i∞

0

eεν2

Jν(kr)H(1)
ν (ka)M(−ν)dν

)
, (2.20)

where

M(ν) = −
(
eiνθ + eiν(2π−θ)

)
iν

D0(ν)

H
(1)
ν (ka)

−
(
eiνθ − eiν(2π−θ)

) N0(ν)

H
(1)
ν (ka)

.

The identity (2.17) with L(ν) = eεν2

M(ν) then implies that the arguments of H
(1)
ν and Jν in (2.20)

can be interchanged. Combining the resulting terms with (2.19), we find that the unknowns in the
integral representation (2.15) are given by

lim
ε→0

i

4

(∫

A′B′D

I(ε, ν)H(1)
ν (kr)Jν(ka)

[
eiνθ −iνD0(ν) − N0(ν)

H
(1)
ν (ka)

+ eiν(2π−θ)−iνD0(ν) + N0(ν)

H
(1)
ν (ka)

]
dν

+

∫

A′B′E

I(ε, ν)H(1)
ν (kr)Jν (ka)

[
e−iνθ iνD0(ν) − N0(ν)

H
(1)
ν (ka)

+ e−iν(2π−θ) iνD0(ν) + N0(ν)

H
(1)
ν (ka)

]
dν

)
,

(2.21)

where the contours of integration are shown in Figure 2 (and A′, D, and E are points at infinity),
and

I(ε, ν) :=

{
eεν2

if |ℑν| > 1,
1 otherwise.

The reason we introduce I(ε, ν) is so that we can write integrals over the contours A′B′D and

A′B′E that have the regularising factor eεν2

on iR+ but not on R. In the next substep we
will be concerned with the analyticity properties of the integrands in (2.21), however we observe
immediately that I(ε, ν) is not an analytic function of ν. This will not be a problem, since our
procedure will always be to deform an integral on (i, i∞), say, to one where the integral converges
absolutely when ε = 0; ε can then be set to zero, and then the factor I(ε, ν) can be replaced by
one (we go through this in more detail below).

Our aim is to show that (2.21) is equal to an expression that involves only the known transforms
D(±iν).

Substep (b) We now look at where the integrands in (2.21) are analytic, and we also determine
their asymptotics as |ν| → ∞.

For fixed z ∈ R+, H
(1)
ν (z) and Jν(z) are entire functions, and thus so are D0(ν) and N0(ν). We

need the asymptotics as |ν| → ∞ of the product H
(1)
ν (kr)Jν (ka) and the fractions D0(ν)/H

(1)
ν (ka)

and N0(ν)/H
(1)
ν (ka). We introduce the following three regions (which are needed to describe the

asymptotics of H
(1)
ν (z)): Region 3 is the 2nd quadrant of the complex ν-plane, the union of Regions

1 and 2 is the 1st quadrant, and the boundary between Regions 1 and 2 is the curve h1 defined by

ℜ
(

ν log

(
2ν

ez

))
= 0,

see Figure 3 (note that the curve h1 is asymptotically independent of the value of z). The angular
width of Region 2 is ord(1/ log |ν|) as |ν| → ∞ (and thus the arguments of points on the curve h1

tend to zero as |ν| → ∞). The asymptotics of H
(1)
ν (z) and Jν(z) as |ν| → ∞ for fixed z ∈ R are

given below in Theorem 3.1 and imply that, as |ν| → ∞,

H(1)
ν (x)Jν (y) ∼ 1

iπν

(y

x

)ν

in both Region 1 and the 4th quadrant, (2.22a)
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B′′

C

D′′

A

E
′′

E

DD′

A′

A′′

−νn

νn

B

B′

Figure 2: The poles of the integrands of (1.11) and the contours of integration in the complex
ν-plane.

h1

ℑν

ℜν

2

Region 3 Region 1

Region

ez

2

Figure 3: Regions 1, 2, and 3 and the curve h1 used to describe the asymptotics of H
(1)
ν (z) as

|ν| → ∞ in Theorem 3.1. (In a similar way to Figure 1, we plot the curve h1 in a way that
emphasises that the argument of a point on the curve tends to π/2 as |ν| → ∞.)
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H(1)
ν (x)Jν (y) ∼ 1

πν
(yx)ν

( e

2ν

)ν

in Regions 2 and 3, (2.22b)

(note that the asymptotics of H
(1)
ν (x) in the 4th quadrant follow from the asymptotics in Region

3 and the relation (1.7)).

Turning to D0(ν)/H
(1)
ν (ka) and N0(ν)/H

(1)
ν (ka), we see that both these fractions have poles

at the zeros of H
(1)
ν (ka), which occur in the first and third quadrants of the complex ν-plane (with

the zeros in the first quadrant denoted by νn and the zeros in the third quadrant then equal to −νn

by (1.7)). The asymptotics of νn as n → ∞ are given in Theorem 3.1; for our purposes we only

need to know that arg νn → π/2 as n → ∞. Both D0(ν)/H
(1)
ν (ka) and N0(ν)/H

(1)
ν (ka) involve

H
(1)
ν (kρ)/H

(1)
ν (ka) for ρ ≥ a. By Lemma 3.7 below, this fraction ∼ (a/ρ)ν in Region 1 and the

4th quadrant, and is O((r/a)ν ) in Region 2 and a neighbourhood of the curve h1 (away from νn).

The key points, therefore, are that D0(ν)/H
(1)
ν (ka) and N0(ν)/H

(1)
ν (ka) are bounded in Region 1

and the 4th quadrant, but are exponentially large in Region 2 and have poles on h1.
Returning to (2.21) with these asymptotics, we see that the integral on A′B′E in (2.21) is

zero. Indeed, by Cauchy’s theorem we can deform the contour from A′B′E to A′B′B′′E′′, where
ℑB′′ < −1 (to ensure that I(ε, ν) = eεν2

on the deformed part), and where −π/2 < arg E′′ < −π/4

(so that the term eεν2

still decays). By the asymptotics (2.22a), the resulting integral converges
absolutely even when ε = 0, and then by the dominated convergence theorem ε can be set to zero
(and thus I(ε, ν) can be replaced by one). By closing the contour at infinity in the fourth quadrant
and using Cauchy’s theorem, we see that this integral equals zero (the contribution at infinity is
zero since the integrand decays exponentially due to (2.22a)).

In contrast, we cannot deform the contour of the integral over A′B′D off iR because of the poles

of H
(1)
ν (ka). Therefore, we are left with the only unknown in the integral representation equal to

the first integral in (2.21).

Substep (c). Our instructions are now to “deform contours and use the global relation again so
that the contribution from the remaining unknown boundary values vanish by analyticity (using
Cauchy’s theorem)”. The unknown terms involve −iνD0(ν)±N0(ν), and the global relation (2.16)
gives these quantities in terms of N(±iν) and D(±iν) as follows,

− iνD0(ν) − N0(ν) =
a
(
H

(1)
ν (ka)N(−iν) − kH

(1)′

ν (ka)D(−iν)
)

1 − e−2πiν
(2.23a)

and

− iνD0(ν) + N0(ν) =
−a
(
H

(1)
ν (ka)N(iν) − kH

(1)′

ν (ka)D(iν)
)

1 − e2πiν
. (2.23b)

Since the denominators of the right-hand sides of these last two equations involve 1−e±2πiν, which
has zeros on R, if we want to use (2.23) in the first integral in (2.21) we need to deform the contour
of this term off R. We therefore deform the contour of the first integral in (2.21) from A′B′D to
ABD, where 0 < ℑB < min(ℑν1, 1); note that requiring ℑB < 1 ensures that I(ε, ν) = 1 in the
region where the integral is deformed (and thus the deformation is justified by Cauchy’s theorem).

Substituting (2.23) into the integral over ABD, we find that the terms involving N(±iν) vanish
because of analyticity. Indeed, when the contour ABD is closed at infinity in the first quadrant

there are no poles of the integrand inside the contour (the term H
(1)
ν (ka) in the denominator is

cancelled by the same term appearing in the numerator), the contour does not enclose any of the
zeros of 1 − e±2πiν (which are on the real axis), and the contribution from the integral at infinity
is zero since the asymptotics

eiνθN(−iν)

1 − e−2πiν
=

eiνθ

iν

(
uθ(a, 2π) − uθ(a, 0)e2πiν

)(
1 + O

(
1

ν

))
, and (2.24a)

e−iνθN(iν)

1 − e−2πiν
=

eiν(2π−θ)

iν

(
e2πiνuθ(a, 2π) − uθ(a, 0)

)(
1 + O

(
1

ν

))
(2.24b)
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(obtained by integration by parts) along with (2.22) imply that if 0 ≤ θ < 2π then the relevant
integrand decays exponentially as |ν| → ∞ with ℑν > 0. Before applying Cauchy’s theorem, we
must remove the factor I(ε, ν) in a similar way to above; i.e., we first deform the contour at infinity
from D to D′′ (where π/4 < arg D′′ < π/2), and then set ε = 0. The integrand of the resulting
integral is analytic, and then Cauchy’s theorem can be applied.

In summary, we have eliminated all the unknown transforms from the integral representation.
Collecting all the remaining terms together, we have that

u(r, θ) = − ika

4

(∫ ∞

0

eiνθD(−iν)
H

(1)
ν (kr)

H
(1)
ν (ka)

[
Jν(ka)H(1)′

ν (ka) − J ′
ν(ka)H(1)

ν (ka)
]
dν

∫ ∞

0

e−iνθD(iν)
H

(1)
ν (kr)

H
(1)
ν (ka)

[
Jν(ka)H(1)′

ν (ka) − J ′
ν(ka)H(1)

ν (ka)
]
dν

)

− lim
ε→0

ika

4

∫

ABD

I(ε, ν)
H

(1)
ν (kr)

H
(1)
ν (ka)

Jν(ka)H(1)′

ν (ka)

[
eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν. (2.25)

This equation can be simplified to (1.11) as follows. Using the Wronskian relation

Jν(ka)H(1)′

ν (ka) − J ′
ν(ka)H(1)

ν (ka) =
2i

πka
(2.26)

in the integrals on (0,∞), along with the transformation ν 7→ −ν, we find that these integrals are
equal to the integral on (−∞,∞) in (1.11). The relation (2.26) also implies that the integral over
ABD in (2.25) equals

− lim
ε→0

ika

4

∫

ABD

I(ε, ν)H(1)
ν (kr)J ′

ν(ka)

[
eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν

+ lim
ε→0

1

2π

∫

ABD

I(ε, ν)
H

(1)
ν (kr)

H
(1)
ν (ka)

[
eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν. (2.27)

If we deform the contour of the first integral in (2.27) from ABD to ABD′′ (staying on iR until
ℑν > 1), then we can set ε to zero, and then the resulting integral vanishes when the contour is
closed at infinity (the contribution at infinity is zero due to the asymptotics (2.24) with N replaced
by D and asymptotics similar to (2.22)). If we deform the contour of the second integral in (2.27)
from ABD to ABD′, then we can set ε to zero, and the contour can then be deformed to ABC
(again using asymptotics similar to (2.24) and (2.22) to show that the contribution at infinity is
zero). This term then equals the second term in (1.11) and we are done.

3 The asymptotics of H
(1)
ν (z) and its zeros as |ν| → ∞

The asymptotics of the Hankel function H
(1)
ν (z) when |ν| → ∞ and z is fixed can be extracted

from the classic text of Watson [53, §8.6, Page 262] (with a particularly accessible account of these
results given in [38, Appendix A]). Instead of just quoting these results, we give a short proof from
first principles.

Theorem 3.1 (Asymptotic behaviour of H
(1)
ν (z) as ν → ∞, ℑν > 0, with z ∈ R+ fixed)

Let z ∈ R
+ be fixed. Then

H(1)
ν (z) ∼ −2eiπ/4

√
2

πν
sinh

(
ν log

(
2ν

ez

)
+

iπ

4

)
as |ν| → ∞ with 0 < arg ν < π. (3.1)

Let the curve h1 be defined by

ℜ
(

ν log

(
2ν

ez

))
= 0, ℑν > 0. (3.2)
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This curve divides the 1st quadrant of the complex ν-plane into two regions, see Figure 3; call
these Regions 1 and 2. The angular width of Region 2 is ord(1/ log |ν|) as |ν| → ∞ (recall that
a = ord(b) if a = O(b) and b = O(a)). Let Region 3 be the 2nd quadrant of the complex ν-plane.

The asymptotics (3.1) then imply that, as |ν| → ∞,

H(1)
ν (z) ∼

√
2

πν

( ez

2ν

)ν

, for ν in Regions 2 and 3,

∼ 1

i

√
2

πν

(
2ν

ez

)ν

, for ν in Region 1. (3.3)

Furthermore, H
(1)
ν (z) has zeros (as a function of ν) in the first quadrant and these lie on h1

as |ν| → ∞. Denote these zeros by νn and let νn = ρneiφn. Then, as n → ∞,

ρn =
π
(
n − 1

4

)

log

(
2π(n− 1

4 )
ez

)
(

1 + O
(

log log n

log n

))
(3.4)

and

φn =
π

2


1 − 1

log

(
2π(n− 1

4 )
ez

)
(

1 + O
(

log log n

log n

))

 . (3.5)

Remark 3.2 The curve h1 is often defined as

ℜ
(
√

ν2 − z2 − ν log

(
ν +

√
ν2 − z2

z

))
= 0, ℑν > 0; (3.6)

see, e.g., [38, Appendix A]. When |ν| ≫ z the equation (3.6) becomes

ℜ
(

ν − ν log

(
2ν

z

))
= 0, ℑν > 0,

which is (3.2). The more general definition of h1 (3.6) appears in the asymptotics of H
(1)
ν (z) for

other parameter regimes (in particular the limit ν → ∞ and z → ∞ with |ν| ∼ z).

Remark 3.3 The asymptotics (3.3) are often quoted as

H(1)
ν (z) ∼ 1

i

√
2

πν

(
2ν

ze

)ν

as |ν| → ∞ with − π/2 ≤ arg ν ≤ π/2 − δ, for all δ > 0, (3.7)

see, e.g., [22, Chapter 8, Equation 3.10], meaning that given any δ > 0 there exists an R such that
the asymptotics in (3.7) hold for |ν| > R. This last statement is correct, however it “hides” the
reciprocal behaviour in a neighbourhood of the imaginary axis for a fixed |ν|.

Proof of Theorem 3.1. The power series definition of Jν(z) (see, e.g., [22, §A.2], [3, Equation
9.1.10]) implies that

Jν(z) =

(
z
2

)ν

Γ(ν + 1)

(
1 + O

(
1

ν

))
as |ν| → ∞,

where Γ(·) is the Gamma function.
Using the method of steepest descent on the integral formula

Γ(ν + 1) = − 1

2i sinπν

∫

H

et+ν log t dt,

where H is the Hankel contour [1, Equation 6.7.19], one can show that

Γ(ν + 1) ∼ ννe−ν
√

2πν and Γ(−ν + 1) ∼ 1

sin πν

√
πν

2
ν−νeν
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as |ν| → ∞ with −π < arg ν < π [8, §6.6, Example 9] Therefore,

Jν(z) ∼
(z

2

)ν

eνν−ν 1√
2πν

and J−ν(z) ∼ sin πν

√
2

πν

(z

2

)−ν

ννe−ν (3.8)

as |ν| → ∞ with −π < arg ν < π.

Using (3.8) in the definition of H
(1)
ν (z) [3, Equation 9.1.3]

H(1)
ν (z) :=

1

i sinπν

(
J−ν(z) − Jν(z)e−iπν

)
, (3.9)

yields

H(1)
ν (z) ∼ 1

i

√
2

πν

(z

2

)−ν νν

eν
− 1

i
√

2πν

(z

2

)ν eν

νν

eiπν

sinπν
(3.10)

as |ν| → ∞ with −π < arg ν < π. When 0 < arg ν < π,

e−iπν

sin πν
∼ −2i

as |ν| → ∞, and using this in (3.10) we find (3.1).
By looking at the argument of the sinh function in (3.1) we see that the first exponential

dominates the second in Region 1, whereas the second exponential dominates the first in Regions
2 and 3. The proof that the width of Region 2 is O(1/ log |ν|) is very similar to the proof of the
asymptotics of φn below.

Letting ν = ρeiφ, we see that the argument of the sinh term in (3.1) is zero when

ρ

(
cosφ log

(
2ρ

ez

)
− φ sin φ

)
= 0, (3.11)

(the real part) and

ρ

(
sin φ log

(
2ρ

ez

)
+ φ cosφ

)
=

(
n − 1

4

)
π (3.12)

(the imaginary part). The equation (3.11) shows that as ρ tends to infinity, cosφ must tend to
zero and thus φ must tend to π/2. The equation (3.12) then gives us that

ρn log

(
2ρn

ez

)
∼
(

n − 1

4

)
π as n → ∞, (3.13)

and this relation may be solved by iteration (see, e.g., [20, §1.1 and 1.5]) to give (3.4). Expanding
φn about π/2 in (3.11) then yields

φn ∼ π

2

(
1 − 1

log
(

2ρn

ez

)
)

as n → ∞. (3.14)

Using the asymptotics for ρn (3.4) in (3.14), we obtain (3.5).

Remark 3.4 The asymptotics of φn are sometimes stated in the literature as

φn =
π

2


1 − 1

log

(
2π(n− 1

4 )
z

)
(

1 + O
(

log log n

log n

))

 (3.15)

(see, e.g., [10, §5], [28, §5]), i.e. with no factor of e in the denominator of the logarithm compared
to (3.5). Nevertheless, the asymptotics (3.15) are consistent with (3.5) since

1

log (n/e)
=

1

log n

(
1 + O

(
1

log n

))
.
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Remark 3.5 A key feature of the zeros of H
(1)
ν (z) is that they get closer together as ν → ∞.

Indeed, the asymptotics (3.4) show that

ρn+1 − ρn = O
(

1

log n

)
as n → ∞.

To evaluate the integral in (1.12) as residues at the poles νn, one needs to define a sequence of
contours that pass between these poles.

Definition 3.6 (The contour C(N)) For N ∈ Z+, let the contour C(N) be defined by

C(N) =
{
ν : |ν| = ρ̃N , 0 ≤ arg ν ≤ π

}

where

ρ̃N log

(
2ρ̃N

eka

)
=

(
N +

1

4

)
π. (3.16)

In a similar way to how the asymptotics (3.4) followed from (3.13), the definition (3.16) implies
that

ρ̃N =
π
(
N + 1

4

)

log

(
2π(N+ 1

4 )
eka

)
(

1 + O
(

log log N

log N

))
(3.17)

as N → ∞ (and so, comparing (3.17) to (3.4), we see that ρ̃N lies “halfway” between ρN and

ρN+1). Therefore, as N → ∞, H
(1)
ν (ka) 6= 0 on C(N), and the area enclosed by C(N) and the real

axis contains the first N zeros of H
(1)
ν (ka).

We have chosen a sequence of semicircular contours between the νn, and this is also what
Nussenzveig [38, Equation 4.11] and Goodrich and Kazarinoff [17, Page 172] did. Another option
is to define a sequence of composite curves, consisting of (i) an arc in the neighbourhood of the
zeros, whose definition is motivated by the Hankel-function asymptotics, and (ii) a large semicircle
in the rest of the upper half-plane; this is what Pflumm [42, Pages 6-15] and Naylor [36, Pages
115-116] did.

Lemma 3.7 (Behaviour of the ratio of Hankel functions on C(N)) Let the curve h1 be de-
fined by (3.2) with z = ka. Let ρ̃N be defined by (3.16). Then, as N → ∞ with |ν| = ρ̃N , we have

that H
(1)
ν (ka) 6= 0 and

H
(1)
ν (kr)

H
(1)
ν (ka)

∼





( r

a

)ν

in Regions 2 and 3,

ord
(( r

a

)ν)
in a neighbourhood of the curve h1,

(a

r

)ν

in Region 1.

Proof. The asymptotics (3.1) imply that

H
(1)
ν (kr)

H
(1)
ν (ka)

∼ sinh
(
ν log

(
2ν
ekr

)
+ iπ

4

)

sinh
(
ν log

(
2ν
eka

)
+ iπ

4

)

as |ν| → ∞ with 0 < arg ν < π. Using

ν log

(
2ν

ekr

)
= ν log

(
2ν

eka

)
+ ν log

(a

r

)

and the formula sinh(A + B) = sinhA coshB + coshA sinhB, we find that, with |ν| = ρ̃N ,

H
(1)
ν (kr)

H
(1)
ν (ka)

= cosh
(
ν log

(a

r

))
+

coshA

sinhA
sinh

(
ν log

(a

r

))
(3.18)
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where

A := ν log

(
2ν

eka

)
+ i

π

4
= cosφ

(
N +

1

4

)
π − ρ̃Nφ sin φ + i

[
sin φ

(
N +

1

4

)
π +

π

4
+ ρ̃Nφ cosφ

]
.

In Region 1, ℜA → ∞ as N → ∞ (since in this region cosφ (N + 1/4)π > ρ̃Nφ sin φ), thus

coshA/ sinhA → 1, and then (3.18) implies that H
(1)
ν (kr)/H

(1)
ν (ka) ∼ (a/r)ν . In Regions 2 and

3, ℜA → −∞ (since in this region ρ̃Nφ sin φ < cosφ (N + 1/4)π), thus coshA/ sinhA → −1, and

then (3.18) implies that H
(1)
ν (kr)/H

(1)
ν (ka) ∼ (r/a)ν .

The curve h1 is defined by ℜA = 0, and almost identical arguments to those that give the
asymptotics of φn (3.5) show that on h1

φ =
π

2


1 − 1

log

(
2π(N+ 1

4 )
eka

)
(

1 + O
(

log log N

log N

))

 . (3.19)

These asymptotics imply that, on h1, A ∼ i(N + 1/2)π, and thus coshA ∼ 0, sinhA ∼ i(−1)N ,
and

H
(1)
ν (kr)

H
(1)
ν (ka)

∼ cosh
(
ν log

(a

r

))
= ord

(( r

a

)ν)
.

4 Convergence of the radial series (1.13)

We now show how the asymptotics in §3 can be used to determine the conditions under which the
integral in (1.12) can be evaluated as residues at νn, and hence the conditions under which the
radial series (1.13) converges.

Recall from Definition 3.6 that the contour C(N) is a large semicircle in the upper half-plane

that (asymptotically) encloses the first N zeros of H
(1)
ν (ka). Evaluating the integrals in (1.11) as

residues on νn yields

u(r, θ) = lim
N→∞

(
i

N∑

n=1

an(r, θ)

− 1

2π

∫

C(N)

H
(1)
ν (kr)

H
(1)
ν (ka)

[
eiνθDL(−iν) + e−iνθDR(iν) − eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν

)
,

(4.1)

where

an(r, θ) :=
H

(1)
νn (kr)

Ḣ
(1)
νn (ka)

[
eiνnθDL(−iνn) + e−iνnθDR(iνn) − eiνnθD(−iνn) + e−iνnθD(iνn)

1 − e−2πiνn

]
. (4.2)

Theorem 4.1 (Convergence of the radial series (1.13) via evaluating the integral (1.12)
as residues)

(a) If the function d(φ) is zero in a neighbourhood of θ, i.e. there exists a constant c1 > 0 such
that d(φ) = 0 for all |φ − θ| ≤ c1, then

∫

C(N)

H
(1)
ν (kr)

H
(1)
ν (ka)

[
eiνθDL(−iν) + e−iνθDR(iν) − eiνθD(−iν) + e−iνθD(iν)

1 − e−2πiν

]
dν → 0 (4.3)

as N → ∞, and so (4.1) implies that

u(r, θ) = i

∞∑

n=1

an(r, θ),

which is (1.13).
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(b) Conversely, if d(θ) 6= 0 then |
∫
C(N) | → ∞ as N → ∞ and therefore the radial series (1.13)

for u(r, θ) does not converge.

Remark 4.2 Note that we have not dealt with the case that d(φ) = 0 when φ = θ, but d is not
zero in a neighbourhood of θ (e.g. if d has a simple zero at θ). However, as discussed in §1.1, the
most interesting cases physically are (i) d is a delta function, and (ii) d is the restriction on ∂Ω
of a plane wave. In (i), d is zero except at a single point, and in (ii) d(φ) 6= 0 for all φ.

Proof of Theorem 4.1. Lemma 3.7 gives us the asymptotics on C(N) of the Hankel functions
appearing in the integrand of (1.12), and so we now need to obtain the asymptotics for the terms
involving D, DL, and DR. The key point in the proof is that the rate of decay of the terms in
the integral involving DL and DR depends on whether or not θ is in the support of the function
d, and the faster rate of decay (for θ not in the support) is needed for the integrand to go to zero
near the imaginary axis.

We assume that d ∈ C2, and then two integration by parts give us the following asymptotics.

1. If 0 ≤ θ < 2π then

eiνθD(−iν)

1 − e−2πiν
=

eiνθ

iν

(
d(2π) + O

(
1

ν

))
(4.4a)

e−iνθD(iν)

1 − e−2πiν
= −eiν(2π−θ)

iν

(
d(0) + O

(
1

ν

))
(4.4b)

as |ν| → ∞ with 0 < arg ν < π (compare to (2.24)).

2. If there exists a c1 > 0 such that d(φ) = 0 for all |φ − θ| < c1, then (with 0 ≤ θ < 2π)

eiνθDL(−iν) = −eiνc1

iν

(
d(θ − c1) + O

(
1

ν

))
+

eiνθ

iν

(
d(0) + O

(
1

ν

))
, (4.5a)

e−iνθDR(iν) =
eiν(2π−θ)

iν

(
d(2π) + O

(
1

ν

))
− eiνc1

iν

(
d(θ + c1) + O

(
1

ν

))
, (4.5b)

as |ν| → ∞ with 0 < arg ν < π. Furthermore, if d(θ) 6= 0 then both eiνθDL(−iν) and
e−iνθDR(iν) are ord(1/ν).

These asymptotics show that the final term in square brackets in (4.3) (i.e. the fraction) decays
exponentially regardless of whether or not θ is in the support of d. However, the first two terms in
square brackets are ord(1/ν) when d(θ) 6= 0 and ord(exp(iνc1)/ν) if d is zero in a neighbourhood
of θ (noting that c1 < θ).

We split the integral over AGC(N) as follows

∫

C(N)

=

∫

C(N)
Region 1

+

∫

C(N)
nbhd of h1

+

∫

C(N)
Region 2

+

∫

C(N)
Region 3

.

Since the ratio of Hankel functions decays exponentially in Regions 1 and 3 (by Lemma 3.7), the
integrals in Regions 1 and 3 tend to zero as N → ∞ regardless of whether or not θ is in the support
of d (there is a loss of decay on the imaginary axis, which is the boundary of Region 3, but this is
exactly the situation where Jordan’s lemma [1, Lemma 4.2.2] shows the integral still goes to zero.)

In Region 2 and the neighbourhood of h1 the Hankel functions grow exponentially. Indeed,
when

φ =
π

2

(
1 − ord

(
1

log N

))
(4.6)

on the contour C(N),

( r

a

)ν

= ord
(
exp

(
ρ̃N cosφ log

( r

a

)))
= ord

(
exp

(
c2

N

(log N)2

))
,

for some c2 > 0 (where we have used the asymptotics of ρ̃n (3.17)).

20



The asymptotic behaviour of the Hankel functions in Region 2 is the same as in the neighbour-
hood of h1, but Region 2 has a larger angular width than the neighbourhood. Therefore, we only
need to consider the integral over Region 2, since the integral over the neighbourhood of h1 is of
higher order. Furthermore, the presence of (r/a)ν in the asymptotics of the integrand means that
the leading order behaviour of the integral over Region 2 comes from when (4.6) holds. Therefore,
when estimating this integral we only need to estimate the integral over the region (4.6).

If d(θ) 6= 0 then the terms in square brackets in (4.3) are ord(1/ν) and

∣∣∣∣∣

∫

C(N)
Region 2

∣∣∣∣∣ = ord




exp

(
c2

N
(log N)2

)

log N



 , (4.7)

which tends to infinity as N → ∞ (thus establishing Part (b) of the Theorem).
If d is zero in a neighbourhood of θ, then the terms in square brackets in (4.3) are

ord(exp(iνc3)/ν), where c3 = min(θ, 2π − θ, c1) and c1 is as in (4.5). Therefore, in this case

∣∣∣∣∣

∫

C(N)
Region 2

∣∣∣∣∣ = ord




exp
(
c2

N
(log N)2 − c3

N
log N

)

log N


 = ord




exp
(
−c3

N
log N

)

log N


 , (4.8)

which tends to zero as N → ∞ (thus establishing Part (a) of the Theorem).

4.1 Investigating convergence of the series (1.13) directly

In Theorem 4.1 we determined whether or not the series (1.13) converges by investigating the
behaviour of the integral on C(N) as N → ∞. Alternatively, one can investigate the convergence
of the series directly. This was presented in a clear way by Cohen [10, Theorem IV] for the BVP

∆u + k2u = −f in Ω,

u(a, θ) = 0, for 0 ≤ θ < 2π,

where f is a given function with compact support in Ω, and u also satisfies the radiation condition
(1.4). The proof for Problem 1.1 is very similar, and we include it for completeness.

Theorem 4.3 (Convergence of the radial series (1.13) via the asymptotics of an(r, θ))
With an(r, θ) defined by (4.2),

1. if d is zero in a neighbourhood of θ then an(r, θ) → 0 exponentially quickly as n → ∞, and
thus the series

∑∞
n=1 an converges;

2. if d(θ) 6= 0 then an(r, θ) → ∞ as n → ∞.

Proof. Using the asymptotics of the Hankel function (3.1) and the asymptotics of the νn (3.4) and
(3.5), we find that

H
(1)
νn (kr)

Ḣ
(1)
νn (ka)

∼ −1

2

( r

a

)νn 1

log
(

2νn

eka

) (4.9)

([10, Equations 22 and 24]).
If d is zero in a neighbourhood of θ, then the asymptotics (4.4) and (4.5) imply that

[
e−iνnθDR(iνn) + eiνnθDL(−iνn) − eiνnθD(−iνn) + e−iνnθD(iνn)

1 − e−2πiνn

]
= ord

(
eiνnc3

νn

)
, (4.10)

with c3 = min(θ, 2π − θ, c1). Combining (4.9) and (4.10) and using Cohen’s notation that νn =
αn + iβn, we have that

an(r, θ) = ord

(
e iνnc3+νn log(r/a)

νn log
(

2νn

eka

)
)

= ord

(
e−βn(c3−

αn
βn

log(r/a))

n

)
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(where we have used the fact that νn log(2νn/(eka)) = (n − 1/4)πi).
The asymptotics of ρn and φn, (3.4) and (3.5) respectively, imply that

αn = ord

(
n

(log n)2

)
, βn = ord

(
n

log n

)
,

and so αn/βn → 0 as n → ∞. Therefore, if d is zero in a neighbourhood of θ then

an(r, θ) = ord

(
e−c3βn

n

)
,

which tends to zero as n → ∞ (compare to (4.8)).
If d(θ) 6= 0 then the left hand side of (4.10) is only ord(ν−1

n ). Therefore, in this case

an(r, θ) = ord

(
eαn log(r/a)

n

)
,

which tends to infinity as n → ∞ (compare to (4.7)).

5 Concluding remarks

We conclude by discussing the results of this paper, first in the context of spectral theory, and
then in the context of current uses of Watson-type transformations.

Implications for spectral theory. Given a separable BVP in 2-d, the Watson transformation
implies that the transform associated with one of the separated ODEs (plus boundary conditions)
can be obtained from the transform associated with the other separated ODE (plus boundary
conditions). For example, for Problem 1.1, the transform associated with the ODE in the θ-
variable is the usual Fourier series, and in §1.1 we started from this and then used the Watson
transformation to obtain the expression for the solution obtained by the transform associated with
the r-variable (although we saw that this second transform is not complete).

The Fokas method implies that given the two transforms associated with the two separated
ODEs in the whole space (i.e. without boundary conditions), one can obtain the transforms asso-
ciated with either of the ODEs plus boundary conditions. For example, given the completeness
relations (2.13) and (2.14) for the radial and angular ODEs with no boundary conditions, we can
obtain the expression (1.11) for the solution of Problem 1.1, from which either the angular or the
radial series ((1.5) or (1.13)) can be obtained. (We obtained the radial series from (1.11) in §1.1
and §4, and the details of how to obtain the angular series are in [46, §4.3.1.2].) Actually, one only
needs the completeness relation for one of the ODEs in the whole space. Indeed, the completeness
relation (2.13) gave us the expression for the fundamental solution (2.11), and the completeness re-
lation (2.14) gave us the expression (2.12); however, either one of (2.11) and (2.12) can be obtained
from the other by deforming contours, and thus we only need one of the completeness relations
(2.13) and (2.14).

In other words, using the Fokas method, one can obtain the completeness relations for operators
with boundary conditions (if these completeness relations exist) from the completeness relations
for the operators without boundary conditions. This fact has recently been exploited in the context
of third- and higher-order differential operators by Pelloni and Smith [41], [44]. In this situation,
completeness relations exists for the operators without boundary conditions, and these authors (i)
find conditions under which completeness relations exist for the operators with boundary conditions
[41, Theorem 2.6], and (ii) show that completeness relations do not exist for the operators with
certain boundary conditions [41, Theorem 3.1].

As mentioned in §1.1, BVPs for the Helmholtz equation in unbounded domains are not self-
adjoint because of the radiation conditon (1.4). For separable Helmholtz BVPs, this non-self-
adjointness causes the transforms associated with the radial ODE to not be complete. Indeed, the
usual form of the Kontorovich–Ledebev transform, the transform associated with the radial ODE
in the whole space, is not complete (as discussed in §2.2.2), and the transform (1.14) associated
with the radial ODE on a < r < ∞ with a zero Dirichlet boundary condition at r = a is not

22



complete (this is proved in [10, §3] using similar arguments to those in §4.1). With the Fokas
method, one only needs to overcome the problem of non-completeness for the radial ODE in the
whole space (via Jones’ regularised version of the Kontorovich–Ledebev transform (2.14)), and
then one can solve any separable Helmholtz BVP in polar coordinates using the expansions of the
fundamental solution (2.11) and (2.12) (along with the other steps of the Fokas method).

Current uses of Watson-type transformations. In this paper, we have only discussed how
transform methods can be used to find explicit expressions for the solutions of certain BVPs. (By
“explicit expression” we mean an integral or a series involving known functions, and we consider
special functions, such as Hankel and Bessel functions, as “known”, although this distinction is
rather simplistic.)

Transform methods can also be used to obtain expressions for the solutions of more compli-
cated BVPs in terms of integrals or series that involve more complicated mathematical objects.
For example, the Wiener-Hopf method expresses the solutions of certain BVPs as integrals whose
integrands involve the solution of a Wiener-Hopf problem (or, more generally, a Riemann–Hilbert
problem), which is equivalent to a singular integral equation; see [37], [1, Chapter 7]. Simi-
larly, the Sommerfeld–Malyuzhinets technique expresses the solutions of BVPs for the Helmholtz
equation in wedge and cone geometries as integrals whose integrands involve the solution of
a functional-difference equation; see e.g. [7], [40]. In general, the Wiener–Hopf problems and
functional-difference equations cannot be solved explicitly, but one can often obtain from them the
asymptotics of the solution of the BVP in relevant parameter limits (see, e.g., [37, Chapter 5], [7]),
and they can also be solved numerically (see, e.g., [2], [29] and the references therein).

For many BVPs tackled by this more general use of transform methods, it is often not clear
what the best representation of the solution is, and the idea of deforming contours in the complex
plane (central to the Watson transformation) is often used; see, e.g., [33, §5], [32]. The author
hopes that the ideas in this paper, and the Fokas method in general, will eventually be able to
shed new light on these problems, however further development of the method is required. In
particular, the Fokas method was used to find explicit expressions for the solutions of BVPs for
evolution equations in three dimensions (two spatial dimensions and one time dimension) in [23]
and [34]; however, to the authors’ knowledge, the method has not yet been used to find an explicit
expression for the solution of a BVP for an elliptic PDE in three dimensions (although this is, in
principle, possible).
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