
Exercise 1 (Bound on Csol for F ∈ (H1
0,D(ΩR))′). Let F ∈ (H1

0,D(ΩR))′ and

let u ∈ H1
0,D(ΩR) be the solution of the variational problem

a(u, v) = F (v) , ∀v ∈ H1
0,D(ΩR) .

Following the hint, we write
u = u+ + w , (1)

where u+ ∈ H1
0,D(ΩR) is the solution of the variational problem

a+(u+, v) = F (v) . (2)

Note that, using the sign property of the real part of the DtN map (1.11), we
have the following inequality for all v ∈ H1

0,D(ΩR):

<(a+(v, v)) ≥ Amink
−2 ‖∇u‖2L2(ΩR) + nmin ‖v‖2L2(ΩR)

≥ min{Amin, nmin} ‖v‖2H1
k(ΩR) .

(3)

Therefore, the Lax–Milgram theorem ensures that eq. (2) is a valid definition of
u+. Taking v = u+ in the inequality (3) and using the fact that a+(u+, u+) =
F (u+), we obtain

∥∥u+
∥∥2

H1
k(ΩR)

≤ |a+(u+, u+)|
min{Amin, nmin}

=
|F (u+)|

min{Amin, nmin}
≤
‖F‖H1

k(ΩR)′ ‖u+‖H1
k(ΩR)

min{Amin, nmin}
,

i.e. ∥∥u+
∥∥
H1

k(ΩR)
≤

‖F‖H1
k(ΩR)′

min{Amin, nmin}
. (4)

Next, w satisfies

a(w, v) = a(u, v)− a(u+, v)

= a(u, v)−
(
a+(u+, v)−

∫
ΩR

2nu+v

)
= F (v)− F (v) +

∫
ΩR

2nu+v

=

∫
ΩR

2nu+v ,

for all v ∈ H1
0,D(ΩR). We remark that 2nu+ ∈ L2(ΩR): in fact∥∥2nu+

∥∥
L2(ΩR)

≤ 2nmax

∥∥u+
∥∥
H1

k

.

Therefore, by definition of Csol, one has

‖w‖H1
k(ΩR) ≤ 2nmaxCsol

∥∥u+
∥∥
H1

k

. (5)
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We now get the desired inequality by injecting the estimates (4) and (5) in the
decomposition (1), i.e.

‖u‖H1
k(ΩR) ≤

1 + 2nmaxCsol

min{Amin, nmin}
‖F‖H1

k(ΩR)′ .

Exercise 2 (Linear growth of Csol). We show that for any k0 and R0, there
exists a constant C > 0 such that for all k,R such that kR ≥ k0R0, there exists
u ∈ C∞comp(BR) satisfying

‖u‖H1
k(BR)

‖k−2∆u+ u‖L2(BR)

≥ CkR . (6)

In other words, when Ω− = ∅, A = I, n = 1, Csol grows at least linearly in kR.

Let us fix k0 and R0 and pick some arbitrary χ ∈ C∞comp(R,R) with support in

(0, 1); let v(x) := eikx1 , w(x) := χ
(
|x|
R

)
and let u(x) := v(x)w(x), which is

indeed in C∞comp(BR).

Estimate of ‖u‖H1
k(BR): Since |v(x)| = 1 for all x ∈ BR, one has

‖u‖2L2(BR) = ‖w‖L2(BR) =

∫ R

0

∣∣∣χ( r
R

)∣∣∣2 cdrd−1dr ,

where cd is the (d− 1)-dimensional volume of the sphere

S
d−1 = {x ∈ Rd | ‖x‖ = 1} .

This reduces to

‖u‖L2(BR) = KRd/2 , K :=

√
cd

∫ 1

0

|χ(u)|2ud−1 du .

Since ‖u‖H1
k(BR) ≥ ‖u‖L2(BR), we conclude that

‖u‖H1
k(BR) ≥ KR

d/2 . (7)

Estimate of
∥∥k−2∆u+ u

∥∥
L2(BR)

: We write

∆u = w∆v + 2∇v · ∇w + v∆w

and observe that ∆v = −k2v, so that

k−2∆u+ u = 2k−2 (∇v · ∇w + v∆w)

= 2i

(
k−1 ∂w

∂x1

)
v + (k−2∆w)v .

.
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We estimate the first term by writing∥∥∥∥(k−1 ∂w

∂x1

)
v

∥∥∥∥ ≤ k−1 ‖∇w‖L2(BR)

and

k−1 ‖∇w‖2L2(BR) = cdk
−1

√∫ R

0

1

R2

∣∣∣χ′ ( r
R

)∣∣∣2 rd−1dr =
K ′Rd/2

kR
,

where K ′ =
√
cd
∫ 1

0
|χ′(u)|2 ud−1du. For the second term, we start from the

following expression of the Laplacian of w:

∆w(x) =
1

R2
χ′′
(
|x|
R

)
+

2

R |x|
χ′
(
|x|
R

)
.

It follows that

‖v∆w‖2L2(BR) ≤ 2c2d

(∫ R

0

R−4
∣∣∣χ′′ ( r

R

)∣∣∣2 rd−1dr +

∫ R

0

4R−2r−2
∣∣∣χ′ ( r

R

)∣∣∣ rd−1dr

)

= 2c2dR
d−4

(∫ 1

0

[
|χ′′(u)|2 + 4u2 |χ′(u)|2

]
ud−1 du

)
,

i.e.

∥∥(k−2∆w)v
∥∥
L2(BR)

≤ K ′′Rd/2

(kR)2
, K ′′ :=

√
cd

∫ 1

0

[
|χ′′(u)|2 + 4u2 |χ′(u)|2

]
ud−1 du .

We conclude that∥∥k−2∆u+ u
∥∥
L2(BR)

≤ K ′Rd/2

kR

(
1 +

1

(kR)

K ′′

K ′

)
. (8)

Combining the estimates (7) and (8), we have proved that if kR ≥ k0R0, then

‖u‖H1
k(BR)

‖k−2∆u+ u‖L2(BR)

≥ CkR

with

C :=
Kk0R0

K ′k0R0 +K ′′
.

Exercise 3 (Morawetz bound for a star-shaped domain.).
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a) Proof of identity (2.7)

(i) Some calculus identities. Let us prove the following identity:

2<
{
∇v · (x · ∇)∇v

}
= ∇ ·

[
|∇v|2 x

]
− d |∇v|2 . (9)

Proof.

2<
{
∇v · (x · ∇)∇v

}
= ∇v · (x · ∇)∇v +∇v · (x · ∇)∇v

=

d∑
i=1

d∑
j=1

∂v

∂xi
xj

∂

∂xj

∂v

∂xi
+
∂v

∂i
xj

∂

∂xj

∂v

∂xi

=

d∑
i,j=1

xj
∂

∂xj

(
∂v

∂xi

∂v

∂xi

)

=

d∑
i,j=1

∂

∂xj

[
xj

∣∣∣∣ ∂v∂xi
∣∣∣∣2
]
−
∣∣∣∣ ∂v∂xi

∣∣∣∣2

=

d∑
j=1

∂

∂xj

(
xj

d∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣2
)
−

d∑
j=1

(
d∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣2
)

= ∇ ·
[
|∇v|2 x

]
− d |∇v|2 .

A similar proof also gives

2<
(
[x · ∇v]v

)
= ∇ ·

(
|∇v|2 x

)
− d |v|2 , (10)

and additionally, let us state without proof the last needed identity:

2<
[
(x · ∇v)∆v

]
= ∇ ·

(
<
[
(x · ∇v)∇v

])
− 2<

{
∇v · (x · ∇)∇v

}
− 2 |∇v|2 . (11)

With those identities at hand, we now work out the different terms of identity
(2.7) separately.

(ii) First term. We start by focusing on the first term ofMβ,αv, i.e. the term
x · ∇v. Combining eqs. (9) and (11), we get, on the one hand,

2<
[
(x · ∇v)∆v

]
= ∇ ·

[
2<
(
[x · ∇v]∇v

)
− |∇v|2 x

]
− (2− d) |∇v|2 ,

and using identity (10), on the other hand,

2<
[
(x · ∇v)v

]
= ∇ ·

[
|v|2 x

]
− d |v|2 .

Hence,

2<
[
(x · ∇v)Lv

]
= ∇ ·

[
2k−1<

(
[x · ∇v]k−1∇v

)
+
(
|v|2 − k−2 |∇v|2

)
x
]

− d |v|2 − (2− d) |∇v|2 .
(12)
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(iii) Second term. It is straightforward to check that

∇ ·
(
iβv∇v

)
= iβv∆v − iβ |∇v|2 − v(i∇β · ∇v)

hence
2<
(
iβv∆v

)
= ∇ ·

[
2<
(
iβv∇v

)]
+ 2<(vi∇β · ∇v) .

Since <
(
iβvv

)
= 0, we thus obtain

2<
(

(−ikβv)Lv
)

= ∇ ·
[
2k−1<

(
(−ikβv)k−1∇v

)]
− 2<

(
vi∇β · k−1∇v

)
. (13)

(iv) Third term The same arguments lead to

2<(αvLv) = ∇·
[
2k−1<

(
αvk−1∇v

)]
−2<

(
v(k−1∇α) · (k−1∇v)

)
+2α |v|2 . (14)

Now, identity (2.7) is obtained by summing together eqs. (12), (13) and (14).

b) Special case where β = r

For the choice β(x) = r, and α ∈ R, the expression of Mα,ru now reads

Mα,βu = r
(
ur − iku+

αu

r

)
.

Noting that ∇β · ∇v = x·∇v
r = vr, identity (2.7) becomes

2<
(
Mr,αvLv

)
= ∇ ·

[
2k−1<

(
Mβ,αk−1∇v

)
+ (|v|2 − k−2 |∇v|2)x

]
− 2<

(
iv(k−1vr)

)
− (d− 2α)|v|2 − (2α− d+ 2)k−2 |∇v|2 .

To obtain the desired result, it suffices to replace the first term of the second
line according to the expression

−<
(
ivk−1vr

)
= <

(
(iv)k−1vr

)
= |v|2 + k−2 |vr|2 −

∣∣k−1vr − iv
∣∣2 ,

and rearrange the terms.

c) Decay of the boundary term

One can write, for any u

QR1,α(u) · x̂ = 2k−2<
(
urMα,ru

)
+ r(|u|2 − k−2 |∇u|2) . (15)

5



Atkinson-Wilcox expansions: We are interested in eq. (15) in the case
where u is an outgoing solution of Lu = 0. We wish to estimate each term using
Atkinson-Wilcox expansion (Lemma 1.4). First, we write

u(x) =
eikr

r(d−1)/2
g(x) +O

(
1

r(d+1)/2

)
. (16)

where g(x) = f0(x̂). Note that since g(tx) = g(x) for all t > 0, it follows that
x · ∇g(x) = 0. Furthermore,

∇g(x) = ∇f0(x̂)
r2 −Z
r3

,

where Z is the vector field defined by Zi = x2
i Importantly, the above expression

and Lemma 1.4 imply that

∇g(x) = O

(
1

r

)
.

It follows from this remark and Lemma 1.4 that

∇u(x) = ikx̂f0(x̂)
eikr

r(d−1)/2
+O

(
1

r(d+1)/2

)
, (17)

and in particular that the radial derivative dominates the gradient of u at in-
finity:

|ur|2 = |∇u(x)|2 +O

(
1

rd

)
. (18)

Taking the scalar product of (17) with x̂ and adding−ikr times eq. (16) provides
us with the last expansion that we need:

Mα,ru(x) = O

(
1

r(d−1)/2

)
. (19)

Estimate of QR1,α(u) · x̂: We now go on to prove that Qr,α(u) · x̂ = O(r−d),
which implies that ∫

ΓR1

QR1,α(u) · x̂ = O

(
1

R1

)
.

We have

Qr,α(u) · x̂ = 2k−2r<
(
ur

[
ur − iku+

α

r
u
])

+ r(|v|2 − k−2 |∇v|2)

which can be conveniently rewritten as

Qr,α(u) · x̂ = k−2r
(
|ur|2 − |∇u|2

)
+ 2k−2 |Mα,R1

u|2

r
− 2k−2α

2 |u|2

r
, (20)
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using the identity 2<(z1z2) = |z1 + z2|2 − |z1|2 − |z2|2. Using the previous
asymptotics expansions, namely eqs. (16), (18) and (19), we deduce easily that

Qr,α(u) · x̂ = O

(
1

rd

)
as announced.

d) A boundary integral on ΓR

Let us assume that u is an outgoing solution of Lu = 0 in Rd \ BR for some
R > 0. By integrating identity (2.11) over Ω := BR1

\BR, where R1 > R, with
v = u, we find∫

ΓR1

QR1,α(u) · x̂−
∫

ΓR

QR,α(u) · x̂

= −
∫

Ω

(2α− (d− 1))(|v|2 − k−2 |∇v|2) + k−2(|∇v|2 − |vr|2) +
∣∣k−1vr − iv

∣∣2
Setting α = d−1

2 eliminates the first term in the rhs, so that∫
ΓR1

QR1,α(u) · x̂−
∫

ΓR

QR,α(u) · x̂ ≥ 0

(indeed, |vr| =
∣∣x
r · ∇v

∣∣ ≤ |∇v|). Sending R1 →∞, we conclude that∫
ΓR

QR,α(u) · x̂ ≤ 0 .

e) A boundary integral on ΓD

We remark that if u ∈ H2(ΩR) vanishes identically on the C1,1 boundary ΓD,
then

γ(∇u) =
∂u

∂n
n ,

where n is a C0 unit normal vector on ΓD. Indeed, one has in general

γ(∇u) =
∂u

∂n
n+∇ΓD

u

where ∇ΓD
denotes the tangential gradient on ΓD but ∇ΓD

u = 0 whenever
γu = 0 on ΓD. Hence,

Qβ,α(u) · n = 2k−2<

(
∂u

∂n

[
∂u

∂n
x · n− ikβγu+ αγu

])
+ x · n

(
|γu|2 − k−2

∣∣∣∣∂u∂n
∣∣∣∣2
)

= k−2x · n
∣∣∣∣∂u∂n

∣∣∣∣2 .
which immediately implies the desired result.

7



f) Proof of the Morawetz bound

We now gather the previous facts to derive a bound for Csol in the case where
Ω− is a Lipschitz star-shaped domain with respect to the origin. We start from
identity (2.7) where α = d−1

2 and β = r. It reads

2<
(

[rur − ikru+ αu] f
)

= ∇ ·Qβ,α(u)− |u|2 − k−2 |∇u|2 .

We integrate on ΩR for and apply Green’s theorem for the divergence term:∫
ΩR

2<
(
Mβ,αuf

)
+ ‖u‖2H1

k(ΩR) =

−
∫

ΓD

Qβ,α(u) · ν +

∫
ΓR

Qβ,α(u) · x̂

where ν is the unit normal vector on ΓD pointing outwards of Ω−. Using part
d), part e) and the fact that Ω− is star-shaped with respect to the origin (so
that, by Lemma 2.13, x · ν(x) ≥ 0) for all x ∈ ΓD), we are led to

‖u‖2H1
k(ΩR) ≤

∫
ΩR

2<
(
Mβ,αuf

)
≤ 2 ‖Mβ,αu‖L2(ΩR) ‖f‖L2(ΩR) .

Using the inequality |a+ b|2 ≤ 2|a|2 + 2|b|2, the fact that |ikr+α|2 = k2r2 +α2,
and the bound r ≤ R on ΩR, we have

‖Mβ,αu‖2L2(ΩR) ≤ 2R2 ‖∇u‖2L2(ΩR) + 2[(kR)2 + α2] ‖u‖2L2(ΩR)

≤ 2k2R2

(
1 +

α2

k2R2

)
‖u‖2H1

k(ΩR) .

Hence, since α = d−1
2 , we have obtained

‖u‖H1
k(ΩR) ≤ 2kR

√
1 +

(
d− 1

2kR

)2

‖f‖L2(ΩR) ,

i.e.

Csol ≤ 2kR

√
1 +

(
d− 1

2kR

)2

.

Exercise 4 (Proof of Lemma 2.16 in a special case). We prove lemma 2.16 in
the case where Ω− = ∅ and A = I. We apply the inequality (2.14) to the vector
field ∇u, where u is the H2 solution of problem (2.8). It gives∫

BR

|∆u|2 −
d∑

i,j=1

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣2 ≥ −2k<〈(∇T γu),∇T (DtNkγu)〉ΓR
,
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where we have used the property (γ∇u)T = ∇T (γu) on ΓR. One can show that
∇T and DtNk commute on ΓR, either by exploiting rotational invariance, or by
using the definition of DtNk and ∇T in terms of Fourier series on ΓR. Hence,

|u|2H2(BR) ≤ ‖f‖
2
L2(BR) + 2k<〈(∇T γu),DtNk(∇T γu)〉 .

By Lemma 1.7, the second term of the rhs is negative. Hence, in this particular
case, we have established the inequality

|u|2H2(BR) ≤ ‖f‖
2
L2(BR)

which is stronger than (2.9).
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