Exercises of lecture 1

Exercise 1 (Sign of imaginary part of DtNy). Let ¢ € HY/2(I'g) \ {0} and let
u be the outgoing solution of

(~k2A—~1)u=0 inB\Br yu=¢onTlx.

We consider a large ball B, where p > R will be sent to infinity in what follows,
and denote -
Q= Bp \ BR .

On the boundary 0f2, which has the two connected components I'r and I, we
denote by vyq the outward pointing normal vector. Notice that

Ve €Tg, voo(r) =—v(z) and Vo el,, voo(z)=v(z)=2a.
One has Au € L?(Q) since u € HY(Q) and Au = —k?u. Therefore, we may

apply Green’s formula in Q:

/ﬂAqu/ |Vul” = (Ovu, Yu) g -
Q Q

In the previous equation, we take the imaginary part and take into account the
following facts:

o Au = —k?u so that @ Au is real,

e yu = ¢ and J,u = kDtNg ¢ on I'g,

e v isin H?(O) for some open neighborhood of T',, so that d,u = %Z onl,.

I(DtNy ¢, @) = k1%</ ugz> ,
T

P

This leads to

and this holds for all p > R. It follows from Lemma 1.4 that

ulz) 2 = 'ffﬁ)' Lo,

u(m)a—p(x):zk = —l—O(p_d),



which implies

[ @ = [ iRt + o6,

7@71. w)|? do(w -1
/Fpuap k/|w|_1|fo( JEdo(w) + O(p ).

One must have

/| P doe) >0

otherwise we would have fy = 0 so u = 0 by Lemma 1.4 (but we assumed
yu = ¢ # 0). Hence, for p sufficiently large,

concluding the proof.

Exercise 2 (Equivalence between EDP and variational problem).

First, let u be a solution of EDP with data gp = 0 and let @ = ujq,. We
first remark that V - (AVa@) € L?(Qg) in the weak sense and it is equal to
—k~2f — nai. Now, fix ¢ € C (Qr). Applying Lemma 1.8, we find

comp

ou

oV - (aVu) + [ (4Va) - V5 = < 7¢>89R ,

b
Q Ova

Qr

Since v¢ = 0 on I'p, we have

<6VAU7 7¢>3QR = <3VU,’Y¢>FR =k <DtNk’7a’ 7¢>FR

hence

a(t, @) = —k 2 oV - (AVu) +/ nug = — fo.

Qr Qr QR
By the density of C,,.(Qr) in H&D(Q];;) and the continuity of the bilinear

comp
form a and the linear form F, it follows that

Vv € H&’D(QR), a(t,v) = F(v).

Reciprocally, let us now fix a solution @ of the variational problem (1.21)
with a rhs F(v) = fQR fv. We introduce Ug the outgoing solution of

(=k2A-1)Ur =0 inR¥\Br, and ~Ug=n~ionlg,

and consider

uoy— {7@ el <R,
UR(CL‘) |£B| > R.



This piecewise H .(Qr U (R?\ Bg)) function has matching traces, so it is in

HL (1), it is obviously outgoing, and satisfies yu = 0. It remains to check

that
E72V - (AVu) +nu=—f inQF,

in the weak sense (where f also denotes the extension of f by 0 on Q7 \ Qg).
In other words, for every ¢ € Cg5,,,(2F) we must show that

I:= k™2uV - (AV¢) + nug + fé = 0.
ot

Letting p > diam(supp ¢), we split the integral as
I :/ E2aV - (AV @) + nug + fé
Qr
+ /  kURAG 4 Und
BP\BR

We next apply Green’s theorem for the first integral, which is possible since
¢ € H?(Qg). This leads to

I S
I—/QR—k (AVa) - Vo +nud+ fo+ k <*yu,ay>PR

+/ _ kT2UpAd + Uré.
BP\BR

For the second integral, we apply the formula

_ — ¢ OUR
UrA¢ — AU ¢:<U,> —< 77¢>
/B,J\BR " " e o TrUT, g CrUT,

where vpq is the normal vector pointing out of 2 := B, \ Bgr. This can be
proved applying Green’s theorem twice in B, \ Bgr and noticing that AUr =
—k?Ug € L*(B, \ Bgr). Furthermore, we have

e Vsgo = —von 'y,

. g;gg = —kDtNyyUg on I'g,
o YUr =<t on I'g,
e ¢ = 0 in a neighborhood of I, so that y¢ = 0 and % =0onTI,.
From those remarks, we conclude that

/ kT2UrAG + Upop = —k 2 <7ﬂ, a¢> + k=1 (DN, v9)p,, -
B,\Br v I'r

We inject this expression in I to find:
I= —a(fb,gb) +F(¢) =0,

concluding the proof.



Exercise 3 (Well posedness of the variational formulation). Let us assume that
Q_, A and n satisfy Assumption 1.1, and let @ and v be two solutions of the
variational problem (1.21). Let w = @ — 0, then @ € Hj ,(Qr) and satisfies

a(w, ¢) = a(@,¢) — a(@, @) =0, Vo € Hy p(QR).
Applying this to ¢ = W and taking the imaginary part, it follows that
S(DtNgyw, y)y,, = 0.

From Lemma 1.7, we conclude that yw = 0 on I'g. We may thus consider

11)’(33) — {”LD(CU) T e QR L
0 x € Bp\QR

which defines a function in Hj (Q,), where Q, = QTN B,. One can check that
W' satisfies the variational problem (1.21) with F = 0. Thus, by Lemma 1.11,
there exists w € H) () such that @’ = wq,, where w is a solution of the
EDP

E72V - (AVw) +nu =0,

on Q. Since w is identically 0 in some ball far from Bg, it must be 0 everywhere
by the unique continuation principle. It follows that w = 0, and thus, @ = 7,
establishing the uniqueness of the solution to the variational problem (1.21).



