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Abstract

We study the so-called frog model on Z with two types of lazy frogs, with parameters
p1, p2 ∈ (0, 1] respectively, and finite expected number of dormant frogs per site. We show
that for any such p1 and p2 there is positive probability that the two types coexist (i.e. that
both types activate infinitely many frogs). This answers a question of Deijfen, Hirscher,
and Lopes in dimension one.
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1 Introduction and main result

Frog models are growth models that have been studied in various guises for about 2 decades.
They are also related to the activated random walks (see e.g. [7]) with sleep rate 0. The
name has been attributed to R. Durrett, but the first occurrence of this class of models in
print seems to be [9]. In such models, on a graph G = (V,E), at each site v ∈ V there are
η(v) dormant frogs, where (η(v))v∈V are i.i.d. Z+ = {0, 1, . . . }-valued random variables
with law ν. Let µ = E[η(x)] denote the mean of ν. Some chosen finite collection of sites
(often just the origin), and all dormant frogs located at them, are activated at time 0. Each
active frog moves independently of all others according to a simple (symmetric) random
walk, and remains active thereafter. On the first visit of any (active) frog to a site v ∈ V ,
that site, and all dormant frogs there are instantly activated.

In this paper, time is discrete, and an active frog can only move at times n ∈ N =
{1, 2, . . . } after being activated. In the lazy frog model, each active frog moves according
to a lazy (symmetric) simple random walk, i.e. it moves with probability p ∈ (0, 1] on any
given step (independent of previous steps and other frogs).1 By applying the subadditive
ergodic theorem, shape theorems are known for such models see (see e.g. [1] when there is
exactly one frog per site, and [2] more generally). In general dimensions the shape theorem
describes the set of sites ξn that have been visited by time n, and takes the following form:
there exists a non-empty convex set A ⊂ Rd such that for any ε > 0, a.s. one has that
(1− ε)A ⊂ n−1ξn ⊂ (1 + ε)A for all n sufficiently large.

1The reader will hopefully excuse the awkward terminology here - that active frogs are lazy walkers!
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Figure 1: Our default initial configuration: frogs at the origin are activated at time 0 (at least
one of each type), and all other frogs are dormant.

We assume throughout this paper that G = Z (with nearest-neighbour edges) and that
µ ∈ (0,∞). In this setting ξn ⊂ Z and the shape theorem takes a simpler form. Let
Rn = max ξn denote the right-most point visited by time n, and Ln = min ξn denote the left-
most point. As stated in [4, Theorem 1.2] for p > 0 there exists a constant A = A(ν, p) > 0
such that

n−1Rn → A and n−1Ln → −A, as n→∞, almost surely. (1)

As the authors point out in [4] the proof of this result (where for p < 1 the frogs are lazy)
requires only minor modifications from the case p = 1 handled in [2, 1].

Deijfen, Hirscher, and Lopes [4] introduced a model with two types of (lazy) frogs. Active
frogs of type i have probability pi ∈ (0, 1] of moving on any given step, independent of all
other frogs, but again an active frog never becomes dormant. When a frog of type i ∈ {1, 2}
visits a site containing dormant frogs (i.e. a site previously unvisited by active frogs) all of
the dormant frogs at that site become active frogs of type i. Since the model is defined in
discrete time, it is possible that a site y containing dormant frogs is simultaneously visited
by active frogs of two different types, in which case a tiebreaker rule is specified to decide
which active frog is the one that activates the dormant frogs at y. Although it does not
affect the validity of our main results, for definiteness we will assume that “the” activator
is chosen uniformly at random (and independent of the past) from among those frogs that
are first to arrive at a site. The locations of the active frogs at time 0 will also be largely
unimportant for us, but elements of our proof require that there is a finite number of active
frogs of each type initially. To fix ideas, we will assume that at time 0 there are η(x)
dormant frogs at each x 6= 0 and ηi(0) active frogs of type i ∈ {1, 2} at the origin, and we
will condition on η1(0) ∧ η2(0) > 0. See Figure 1. However as a tool for proving our main
result, we will compare the evolution of the model with this initial distribution of active
and dormant frogs with 1-type or 2-type frog models with different initial distributions.

Let Nn(i) denote the number of (active) frogs of type i at time n. Let Gi = {Nn(i)→
∞}. We say that there is coexistence of frogs of types 1 and 2 if G1 ∩ G2 occurs. Deijfen
et al [4] show that if p1 = p2 > 0 then one has coexistence on Zd with positive probability.
They ask [4, Section 1.3] what happens when p1 6= p2, and surmise that if µ <∞ then there
is coexistence with positive probability if and only if A(p1) = A(p2) (where A(p) denotes
the linear growth rate of the rightmost visited point of a one-type lazy frog model with
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parameter p). In [5] it is shown that the initial configuration of active frogs (as long as it
is finite) does not affect whether there is coexistence with positive probability. Our main
result is the following:

Theorem 1. Let G = Z and µ ∈ (0,∞).
For any p1, p2 ∈ (0, 1], P(G1 ∩G2) > 0, i.e. with positive probability there will be infinitely
many frogs of each kind.

This resolves the open problem of [4] on Z (we do not know what happens in more than
1 dimension), except that it is a priori possible that A(p) does not depend on p. Thus, to
ensure that our theorem has new content, we should provide examples where A(p) 6= A(p′)
if p 6= p′. Trivially A(p) ≤ 1 for all p. A simple coupling argument (see e.g. Lemma 4
below) shows that A(p) ≤ A(p′) when p < p′. We expect that the inequality is strict if
A(p′) < 1. We do not prove this here, but instead show that arbitrarily small growth rates
are possible by taking p close to 0. This then gives us the aforementioned examples (for
any p′ > 0 one can find p < p′ such that A(p) < A(p′)).

Proposition 2. If µ ∈ (0,∞) then A(p) ↓ 0 as p ↓ 0.

Proposition 2 follows from an elementary relation between the frog model and a partic-
ular branching random walk, together with standard bounds on the expected speed of the
maximum of a branching random walk (see Section 5). As indicated above, from Theorem
1 and Proposition 2 we have the following corollary.

Corollary 3. For any ν such that µ ∈ (0,∞) and any p > 0 there exists p′ ∈ (0, p) with
0 < A(p′) < A(p) such that one has coexistence for the corresponding 2-type frog model on
Z with positive probability.

Concepts of coexistence (or lack thereof) of two or more types of interacting particles
have been considered in various other settings as well, including the setting of first passage
percolation, see e.g. the survey [3] and more recently [6]. Our results give a small and
relatively simple contribution to the literature in this general area.

To prove Theorem 1, we will consider the one-sided one-type model with η(x) dormant
frogs at x > 0 and 0 frogs at y < 0 (and e.g. η(0) active frogs at 0 at time 0). Let
A+(p) = lim infn→∞ n−1Rn ≥ 0 denote the lim inf linear growth rate of the right-most
activated site, and A−(p) = lim infn→∞ n−1Ln ≤ 0 the lim inf linear growth rate of the
left-most. A simple coupling argument (see Lemma 4 below) shows that the lim sup linear
growth rate lim supn→∞ n−1Rn is at most A(p). Note that A+(p) and A−(p) are a priori
random, whereas A(p) has been proved to be deterministic. We will prove that almost
surely A+(p) = A(p) and A−(p) = 0. Assuming that this is true it is fairly easy to see how
to proceed - one then shows that with positive probability both of the following happen:

(1) type 1 frogs only ever activate frogs to the right of 0, with the right-most (resp. left-
most) site visited by type 1 frogs up to time n being roughly nA(p1) (resp. not growing
linearly with time), and

(2) type 2 frogs only ever activate frogs to the left of 0, with the left-most (resp. right-
most) site visited by type 2 frogs up to time n being roughly −nA(p2) (resp. not
growing linearly with time).
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This then proves Theorem 1. Of course one needs to start with an active frog at time 0
to ensure that A(p) > 0, so we will always (implicitly or explicitly) condition on having at
least one active frog at 0 at time 0.

In Section 2 we state and prove a simple monotonicity result (for one-type frog models)
that will be used in other parts of the proof. In Section 3 we prove that A+(p) = A(p)
and A−(p) = 0. Proposition 2 is proved in Section 5. Two-type frog models appear only in
Section 4, where Theorem 1 is proved.

2 Frog domination

We use the notation (x, l) to denote the l-th frog at location x at time zero, where l ≤ η(x).
For p ∈ (0, 1], η = (η(x))x∈Z ∈ ZZ+ and (finite or infinite) S ⊂ Z we will denote by

X(p,η, S) a (one-type) frog process on Z with initial configuration η and initial activated
set of sites S.

For η,η′ ∈ ZZ+ we write η ≤ η′ if η(x) ≤ η′(x) for every x ∈ Z. We have the following
straightforward monotonicity result. Although this result is undoubtedly well-known, we
will apply this result often, so we include a proof for completeness.

Lemma 4. For any η,η′, such that η ≤ η′, and any S, S′, such that S ⊂ S′. There exists
a probability space (Ω,F ,P) on which for every 0 < p ≤ p′ ≤ 1 we can define frog processes
X(p,η, S) and X ′(p′,η′, S′) such that ξn ⊂ ξ′n for every n ∈ Z+, P-almost surely.

Proof. Let (Ω,F ,P) be a probability space on which ∆ = (∆x,l,j)x∈Z,l,j∈N is a collec-
tion of i.i.d. random variables, satisfying P(∆x,l,j = 1) = P(∆x,l,j = −1) = 1/2 and
(Ux,l,k)x∈Z,l,k∈Z+

are independent uniform random variables on [0, 1], independent of ∆.
Given 0 < p ≤ p′ ≤ 1, η ∈ ZZ+ and S ⊂ Z, let X(p,η, S) denote the frog process with
η(x) frogs starting at x, with sites in S activated at time 0, and such that, once activated,
the frog (x, l) with 1 ≤ l ≤ η(x) conducts a lazy walk, stepping k time units after it was
activated (k ≥ 1) if Ux,l,k ≤ p. Its jth step is given by ∆x,l,j . Also let X ′(p′,η′, S′) denote
the frog process with η′(x) frogs starting at x, with sites in S′ activated at time 0, and such
that, once activated, the frog (x, l) with l ≤ η′(x) conducts a lazy walk, stepping k time
units after it was activated (k ≥ 1) if Ux,l,k ≤ p′. Its jth step is given by ∆x,l,j .

Now we use the trivial facts that by construction on this space

(?) for fixed p the range (set of vertices visited) of any particle/frog β = (x, l) at time n
is increasing in its time since activation,

(??) each frog (x, l) has the same sequence of moves in the X process and the X ′ process
(given by the ∆x,l,j variables),

(? ? ?) if Ux,l,k ≤ p then Ux,l,k ≤ p′, so the range of a single p frog is dominated by that of
the corresponding p′ frog, relative to their times of activation,

to conclude that all frogs in the X process are activated no earlier than in the X ′ process
and their ranges trail those in the X ′ from that time forward. �
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3 One-sided frogs

Let P+ denote the law of the one-sided frog model with (η(x))x∈Z+
i.i.d. each with law ν,

conditional on η(0) ≥ 1, and where only the origin is activated at time 0. When proving our
main result we will force the frogs to take a prescribed sequence of steps initially, and the
evolution of each type of frog thereafter will be stochastically dominated by a frog model
with a different law P∗ which we now define. Let P∗ denote the law of the one-sided frog
model with η′(x) = η(x)+η(x+1)+η(0) frogs at x ≥ 0 at time 0 (where η(x) are i.i.d. ∼ µ
except that η(0) is conditioned to be strictly positive), all of which are activated (so S = Z+

is infinite), and no other frogs. Let P∗− be defined in the same way but where the frogs are
only at negative sites x ≤ 0. By Lemma 4 the range of the frog model under P∗ dominates
that under P+.

Let P (x) denote the original location of the frog that first reaches x (if there are ties,
choose one from those that reach x first, uniformly at random).

Lemma 5. We have that P∗(A−(p) = 0) = 1 for every p ∈ (0, 1]. Moreover, for all δ, ε > 0
there exists m0(ε, δ) <∞ such that, for all m ≥ m0, and all p ∈ (0, 1],

P∗
(

inf
n≥0

Ln(p) +m

n
< −ε

)
< δ.

Proof. By Lemma 4 it suffices to prove the result in the case p = 1, since the range is
stochastically increasing in p.

Let Tx denote the first time that an active frog reaches x. Below, we use a (non-lazy)
simple symmetric random walk (Sk)k≥0, defined under a measure P′. Then, for n ∈ N the
following holds

P∗(T−n ≤ n3/2)

=

∞∑
y=0

∞∑
`=0

∞∑
k=0

∞∑
j=1

P∗
(
T−n ≤ n3/2, P (−n) = y, η(y) = `, η(y + 1) = k, η(0) = j

)
≤
∞∑
y=0

∑
`≥0

∑
k≥0

∑
j≥1

ν({`})ν({k})P∗(η(0) = j) · (`+ k + j) · P′
(

max
1≤k≤n3/2

Sk ≥ n+ y
)

≤ 3µ

(1− ν({0}))

∞∑
y=0

P′
(

max
1≤k≤n3/2

Sk ≥ n+ y
)
,

where the first inequality is obtained by conditioning and using a union bound. Using a
union bound, Chernoff’s bound, and cosh(t) ≤ et2/2 yields (for any t > 0)

P∗(T−n ≤ n3/2) ≤ 3µ

(1− ν({0}))

∞∑
y=0

∑
k≤n3/2

(cosh(t))k

et(n+y)
≤ 3µ

(1− ν({0}))
n3/2

∞∑
y=0

e
1
2 t

2n3/2

et(n+y)
.

Now take t = (n+ y)n−3/2 and c = 3µ(1− ν({0}))−1 to see that

P∗(T−n ≤ n3/2) ≤ c · n3/2 ·
∞∑
y=0

exp
{
− (n+ y)2

2n3/2

}
.
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By comparing the sum to an integral and using standard Gaussian tail bounds, we obtain
that

P∗(T−n ≤ n3/2) ≤ cn3/2
(

exp
{
− n2

2n3/2

}
+

∫ ∞
0

exp
{
− (n+ y)2

2n3/2

}
dy

)
= cn3/2

(
exp{−

√
n/2}+

∫ ∞
n

exp
{
− y2

2n3/2

}
dy

)
≤ cn3/2

(
exp{−

√
n/2}+

∫ ∞
n

y

n
exp

{
− y2

2n3/2

}
dy

)
(2)

= cn3/2
(

exp{−
√
n/2}+

√
n exp{−n2/(2n3/2)}

)
(3)

≤ 2cn2 exp{−
√
n/2}.

By the Borel-Cantelli Lemma, T−n > n3/2 for all but finitely many n, P+-a.s., which implies
that n/T−n converges to 0 P+-almost surely, which implies that P+(A−(p) = 0) = 1 for
every p.

Let us prove the second statement. Since lim infn→∞ n−1Ln = 0, for any δ, ε > 0 there
exists m0 ∈ N such that for all m ≥ m0,

P∗
(

inf
n≥m0

Ln
n

< −ε
)
< δ.

As we work in discrete time, for all 0 ≤ n ≤ m, Ln + m ≥ 0 almost surely, which proves
the second statement. �

Corollary 6. For every δ > 0 there exists kδ ∈ N such that P(P (x) ≥ 0,∀x ≥ kδ) ≥ 1− δ.

Proof. Let Ā+(p) = lim supn→∞ n−1Rn(p) denote the lim sup of the right-most visited site
up to time n. By Lemma 5 and the definition of P∗− we have that P∗−(Ā+(p) = 0) = 1.
By Lemma 4 this implies that for the one-sided model with η(x) frogs per site (x ≤ 0) and
with all frogs activated at time zero, also Ā+(p) = 0, a.s.

Now let R
(−)
n denote the right most point reached by frogs originating from sites x < 0

up to time n. For the two-sided model under P, this quantity is stochastically dominated
by the same quantity when all such frogs are activated at time 0. But the latter this grows
sublinearly as above (Ā+(p) = 0 a.s.). Since P(A+(p) = A(p)) = 1 and A(p) > 0, this shows
that there exists an a.s. finite random variable K such that P(P (x) ≥ 0,∀x ≥ K) = 1. The
claim now follows since P(K > kδ) < δ for kδ sufficiently large. �

Since the two-sided model under P dominates the one-sided model under P+, the fol-
lowing implies that both models have the same linear growth rate for the right-most visited
site.

Lemma 7. For any p ∈ (0, 1],

P+(A+(p) = A(p)) = 1.
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Proof. Let δ > 0. From Corollary 6 there exists kδ ∈ N such that P(P (x) ≥ 0, ∀x ≥ kδ) ≥
1 − δ. Since the activation time T+

kδ
of kδ in the 1-sided model is a.s. finite, there exists

tδ > 0 such that P+(T+
kδ
≤ tδ) ≥ 1−δ. Both of these statements are conditional on η(0) ≥ 1,

with (only) the origin activated at time 0.
A natural coupling P of these two processes is as follows. Under P, the initial configu-

ration for X is (η(x))x∈Z which are i.i.d.∼ ν, with η(0) conditioned to be strictly positive.
The initial configuration (η+(x))x∈Z for the one-sided process is defined as η+(x) = 0 if
x < 0 and η+(x) = η(x) otherwise. On top of this structure define two frog processes X
and X+ from an i.i.d. collection of steps ∆ as in Lemma 4, with S = S+ = {0}, so that X
dominates X+. On this space we therefore have

P
( ⋂
x≥kδ

{P (x) ≥ 0}, T+
kδ
≤ tδ

)
≥ 1− 2δ. (4)

Now note that ⋂
x≥kδ

{P (x) ≥ 0} ∩ {T+
kδ
≤ tδ} ⊂

⋂
x≥kδ

{Tx ≤ T+
x ≤ Tx + tδ},

where Tx denotes the activation time of x by the 2-sided process. Since RTn/Tn = n/Tn →
A(p) a.s. this shows that T+

n /n → A(p)−1 a.s. on the event in (4), and therefore also
R+
m/m→ A(p) a.s. on this event (consider m ∈ [T+

n , T
+
n+1)). This shows that P+(A+(p) =

A(p)) = P(A+(p) = A(p)) ≥ 1− 2δ. Since δ was arbitrary this completes the proof. �

Corollary 8. For any δ > 0 and p ∈ (0, 1] there exists m1(p, δ) ∈ N such that, for all
m ≥ m1,

P+

(
inf
n≥0

Rn +m

n
>
A(p)

2

)
> 1− δ.

Proof. On the almost sure (by Lemma 7) event {A+(p) = A(p)}, infn≥mRn/n → A(p)
almost surely as m goes to infinity. Thus there exists m1 <∞ such that for all m ≥ m1,

P+

(
A+(p) = A(p), inf

n≥m

Rn
n

>
A(p)

2

)
> 1− δ.

Now, for all 0 ≤ n ≤ m, (Rn +m)/n ≥ m/n ≥ 1, which gives the conclusion. �

Remark 9. Corollary 8 implies that, for any k ≥ 1 such that P+ (η(0) = k) > 0, we have
that

P+

(
inf
n≥0

Rn +m

n
>
A(p)

2

∣∣∣∣ η(0) = k

)
> 1− δ,

for all m ≥ m1(p, δP+ (η(0) = k)) ∈ N. This is because (letting Gm denote the event being
measured, and Qk the event being conditioned on) we have for such m that

P+(Gm|Qk) ≥ P+(Gm)− P+(Qck)

P+(Qk)
≥ 1− δP+(Qk)− (1− P+(Qk))

P+(Qk)
.
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4 The two-type frog model

Let P+
p denote the law of the one-sided frog process, conditional on η(0) > 0, where now

the laziness parameter p of the walkers appears explicitly as the subscript of the probability
measure. We will denote by Pp1,p2 the law of a two-type frog model with η(x) ∼ ν dormant
frogs at x ∈ Z at time 0, and with ηi(0) ∼ ν active frogs of type i ∈ {1, 2} at 0 at time 0
(with all frog counts independent of each other), conditional on η1(0) > 0 and η2(0) > 0.
Type i frogs have laziness parameter pi ∈ (0, 1]. Similarly, we will denote P∗p when we want
to make the parameter p more explicit.

Proof of Theorem 1. We choose to provide a detailed proof of our main theorem, but the
idea is fairly simple and easily obtained from Lemma 5, Corollary 8 and Remark 9.

Let p1, p2 > 0 be given. Under the measure Pp1,p2 , let the following collection of random
variables all be mutually independent:

• (η(x))x∈Z\{0}, all ∼ ν and η1(0), η2(0) having distribution ν conditional on being
strictly positive;

• ∆ = (∆x,l,j)x∈Z,l,j∈N satisfying Pp1,p2(∆x,l,j = 1) = Pp1,p2(∆x,l,j = −1) = 1/2; and

• (Ux,l,k)x∈Z,l,k∈Z+
are independent standard uniform random variables.

Define

η1(x) =

{
η(x), if x > 0

0, if x < 0,
η2(x) =

{
0, if x > 0

η(x), if x < 0.

We will define 3 processes on this space:

• X1 denotes a one-sided one-type frog process with initial configuration η1 (with only
the frogs at 0 activated at time 0), such that, once activated, the frog (x, l) with
1 ≤ l ≤ η1(x) conducts a lazy walk, stepping on the kth attempt (k ≥ 1) if Ux,l,k ≤ p1.
Its j-th step is given by ∆x,l,j ;

• X2 denotes a one-sided one-type frog process with initial configuration η2 (with only
the frogs at 0 activated at time 0, and where the η2(0) frogs started at 0 are labelled
(0, η1(0) + 1), . . . , (0, η1(0) + η2(0)), such that, once activated, the frog (x, l) (with
x 6= 0 and 1 ≤ l ≤ η1(x), or with x = 0 and l = η1(0) + 1, . . . , η1(0) + η2(0)) conducts
a lazy walk, stepping on the kth attempt (k ≥ 1) if Ux,l,k ≤ p2. Its j-th step is given
by ∆x,l,j .

• X denotes a two-sided two-type frog process, with initial configuration η (with only
the frogs at 0 activated at time 0), where the frogs labelled (0, 1), . . . , (0, η1(0)) are type
1, and those labelled (0, η1(0) + 1), . . . , (0, η1(0) + η2(0)) are type 2. Once activated,
if activated by a frog of type i ∈ {1, 2}, the frog (x, l) 1 ≤ l ≤ η(x) conducts a lazy
walk, stepping on the kth attempt (k ≥ 1) if Ux,l,k ≤ pi. If ki frogs of type i land on
a previously unvisited site y at the same time, we use the random variable Uy,0,0 to
choose the activator - all dormant frogs at y become type 2 if Uy,0,0 ≤ k2/(k1 + k2),
and otherwise they all become type 1.

Let τ be the first time (possibly infinite) that in the process X a frog of type 2 activates a
site in N (i.e. a type 2 frog arrives at a positive site before any type 1 frog has), or a frog
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of type 1 activates a site in −N. On the event {τ = ∞} for each i ∈ {1, 2} we have that
the moves of all the frogs in the frog process Xi follow exactly those of the frogs of type i
in the frog process X.

Let Rin and Lin be the rightmost and leftmost position visited by active frogs of type
i ∈ {1, 2} up to time n for the Xi process. We will show that

Pp1,p2
(

sup
n∈N

(R1
n ∧ −L2

n) =∞, τ =∞
)
> 0. (5)

On the event in (5) we have coexistence because type 1 frogs activate every positive site,
and frogs of type 2 every negative site. Clearly the first event in (5) has probability 1
since simple random walk has infinite range almost surely (as a Markov chain on an infinite
irreducible class: Z), so we need only show that Pp1,p2(τ =∞) > 0.

Let `min = min{` ≥ 0 : ν({`}) > 0} and `+min = min{` > 0 : ν({`}) > 0}. Define ε =
min{A(p1), A(p2)}/4 and let us fix m ∈ N so that m = m0(ε, 1/5) +m1(p1, ν({`+min})/5) +
m1(p2, ν({`+min})/5), where m0 and m1 are given by Lemma 5 and Corollary 8.

Now, let A1
m be the event that η1(0) = `+min, η(x) = `min for all 1 ≤ x < 2m and that,

in the first 2m time units, for the process X, the frogs of type 1 at the origin all take 2m
steps to the right while all the activated frogs from the region [1, 2m − 1] take alternate
steps left and right (in that order). Let A2

m be the event that η2(0) = `+min, η(x) = `min for
all −2m < x ≤ −1 and that, in the first 2m time units, the frogs of type 2 at the origin
all take 2m steps to the left while all the activated frogs from the region [−(2m − 1),−1]
alternate stepping right and left (in that order). Let Am = A1

m ∩A2
m (see Figure 2).

Recall that ε = min{A(p1), A(p2)}/4, and define

B1,l
m =

{
inf
n≥0

L1
n+2m +m

n
≥ −ε

}
(6)

B1,r
m =

{
inf
n≥0

R1
n+2m −m

n
>
A(p1)

2

}
(7)

B2,l
m =

{
sup
n≥0

L2
n+2m +m

n
< −A(p2)

2

}
(8)

B2,r
m =

{
sup
n≥0

R2
n+2m −m

n
≤ ε
}
. (9)

Also define
Bim = Bi,lm ∩Bi,rm , and Bm = B1

m ∩B2
m.

Note that Am ⊂ {τ > 2m} while on Bm we have for any n ≥ 0 that

L1
n+2m ≥ −nε−m > −nA(p2)/2−m ≥ L2

n+2m,

and similarly R1
n+2m > R2

n+2m, so τ 6= n+2m for any n on Bm. This shows that Am∩Bm ⊂
{τ =∞}.

It therefore remains to show that Pp1,p2(Am ∩Bm) > 0. The event Am does not depend
on η(x) = ηi(x) for |x| ≥ 2m. On the other hand, we have that Pp1,p2(Am) > 0, for all
m ≥ 1, since Am only prescribes the value of the environment in a finite box and requires a

9



−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 2: A depiction of the event Am when m = 2 and `min = 1. The first (resp. second)
diagram shows an example of an initial configuration η1 (resp. η2) on the event Am. The
third diagram shows the corresponding configuration of frogs at time 2m = 4, in particular,
the original type-1 (resp. type 2) frog at the origin at time 0 is now at 2m (resp. −2m).

10



bounded number of frogs to perform a fixed finite set of moves. Let us briefly justify that,
conditional on Am, the following dominations2 hold:

1.
(
R1
n+2m − 2m

)
n≥0 stochastically dominates the right-most position of a one-sided frog

process (Rn)n≥0 under P+
p1 , conditioned on {η(0) = `+min};

2.
(
L1
n+2m

)
n≥0 stochastically dominates (Ln)n≥0 under P∗p1 ;

3.
(
−L2

n+2m − 2m
)
n≥0 stochastically dominates the right-most position of a one-sided

frog process (Rn)n≥0 under P+
p2 , conditioned on {η(0) = `+min};

4.
(
−R2

n+2m

)
n≥0 stochastically dominates the left-most position of a one-sided frog pro-

cess (Ln)n≥0 under P∗p2 .

We will prove the first two items, as the other two follow by symmetry. For this purpose,
let us denote N1(x) the number of active frogs on site x for the X1 process at time 2m,
and see Figure 2.

Note that, on Am, at time 2m, N1(x) = 0 for x ≤ −1 and x odd, N1(0) = `min,
N1(x) = 2`min for all even x ∈ [1, 2m − 1], and finally N1(2m) = η1(2m) + `+min. On all
x ≥ 2m+ 1, there are η1(x) dormant frogs.
The first item follows by the monotonicity provided by Lemma 4 and using that η1(x) has
the same law as η1(x − 2m) for all x > 2m, as there are at least `+min active frogs on 2m.
To prove item 2, note that for every x ≥ 0, N1(x) ≤ η1(0) + η1(x) + η1(x+ 1), and use the
definition of `+min together with Lemma 4.

Thus, by our choice of ε and m, using Lemma 5 we obtain

Pp1,p2
(

(B1,l
m )c

∣∣∣Am) ≤ P∗p1
(

inf
n≥0

Ln +m

n
< −ε

)
≤ 1

5
.

Similarly, by Corollary 8 together with Remark 9, we obtain

Pp1,p2
(

(B1,r
m )c

∣∣∣Am) = Pp1,p2
(

inf
n≥0

R+1
n+2m − 2m+m

n
≤ A(p1)

2

∣∣∣Am)
≤ P+

p1

(
inf
n≥0

Rn +m

n
≤ A(p1)

2

∣∣∣η(0) = `+min

)
≤ 1

5
.

Similarly,

Pp1,p2
(

(B2,r
m )c

∣∣∣Am) ≤ 1/5,

Pp1,p2
(

(B2,l
m )c

∣∣∣Am) ≤ 1/5.

and thus Pp1,p2 (Bm|Am) ≥ 1/5. This proves that Pp1,p2 (Am ∩Bm) > 0 as claimed. �

2We say that a Z-valued process W = (Wn)n≥0 stochastically dominates Y = (Yn)n≥0 if there exists a
probability space with processes W ′ ∼ W and Y ′ ∼ Y on which W ′n ≥ Y ′n for every n a.s.
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5 Extremely lazy frogs

In this section we return to studying the one-type frog model.

Proof of Proposition 2. Recall that ν is the probability measure on Z+ that is the law of
η(x). Let µ = E[η(x)] <∞.

Consider a branching random walk where each individual (independently of other par-
ticles) has:

(i) exactly one offspring, with displacement 0, with probability 1− p,
(ii) exactly 1 + k offspring, all at displacement +1, with probability ν({k})p2 ,

(iii) exactly 1 + k offspring at displacement −1, with probability ν({k})p2 ,

and then the parent particle dies immediately. The number of offspring is always at least 1,
with mean 1+pµ. It is easy to couple this branching random walk with our lazy frog model
such that the set of visited points in the BRW contains that of the frog model. To see this
note that in the lazy frog model an active frog at x either doesn’t move (with probability
1− p), and then it doesn’t activate any new frogs, or it moves left or right with probability
p/2 each, and then it activates at most η(x+ 1) or η(x− 1) new frogs.

It is therefore sufficient to show that the speed of the front (the maximal site visited) for
the BRW model goes to zero as p ↓ 0. We will verify this by applying small modifications
to standard results (in particular [8, Lemma 1.5]) that are typically stated for the position
of the right-most particle at time n, (so this differs slightly from the quantity we are after).

Firstly note that since Rn/n converges almost surely and is bounded above by 1 for
every n, we have by dominated convergence that the limiting speed A(p) for the lazy frog
model with parameter p is equal to lim supn→∞ Ep[n−1Rn]. By the above coupling it is
therefore enough for us to show that

lim sup
n→∞

Ep[n−1M∗n]→ 0, as p→ 0, (10)

where M∗n is the largest site visited by the Branching random walk up to (and including)
time n. Let |x| denote the generation of a particle x in the BRW, and V (x) denote the
location of x. Then

1

n
Ep[M∗n] =

1

n
Ep
[

max
x:|x|≤n

V (x)
]
≤ 1

n
log
(
Ep
[
emaxx:|x|≤n V (x)

])
(11)

≤ 1

n
log

Ep
[ ∑
x:|x|≤n

eV (x)
] =

1

n
log

 n∑
k=0

Ep
[ ∑
x:|x|=k

eV (x)
] . (12)

By conditioning on generation k − 1 of the branching process, one has that

Ep
[ ∑
x:|x|=k

eV (x)
]

= Ep
[ ∑
x:|x|=k−1

eV (x)
]
eψp(1), (13)

where, for t > 0,

ψp(t) = logEp
[ ∑
x:|x|=1

eV (x)
]

= log

(
(1− p) +

p

2

∞∑
k=0

ν({k})(k + 1)(e−t + et)

)
. (14)
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Thus, by induction, we obtain Ep
[∑

x:|x|=k e
V (x)

]
= ekψp(1). Alternatively, we could have

applied the Many-To-One Lemma (see [8, Theorem 1.1]).
Thus we have

1

n
Ep[M∗n] ≤ 1

n
log

(
n∑
k=0

ekψp(1)

)
, (15)

where

ψp(1) = log

(
1 + p

[1

2
(e−1 + e)(1 + µ)− 1

])
≥ 0. (16)

Thus

1

n
Ep[M∗n] ≤ 1

n
log
(

(n+ 1)enψp(1)
)

=
log(n+ 1)

n
+ ψp(1). (17)

Since log(1+x) ≤ x, we see that ψp(1) can be made arbitrarily small by making p arbitrarily
small, which completes the proof. �
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[3] M. Deijfen and O. Häggström. The pleasures and pains of studying the two-type
Richardson model. In Analysis and Stochastics of Growth Processes and Interface
Models. Oxford Scholarship Online. (2008).

[4] M. Deijfen, T. Hirscher and F. Lopes. Competing frogs on Zd. Electronic J. Probability
24: 1-17, (2019).

[5] M. Deijfen and S. Rosengren. The initial set in the frog model is irrelevant. Arxiv
preprint: https://arxiv.org/pdf/1912.10085.pdf

[6] T. Finn and A. Stauffer. Non-equilibrium multi-scale analysis and coexistence in com-
peting first passage percolation. arXiv:2009.05463, (2020).

13



[7] L. T. Rolla. Activated random walks. arXiv:1507.04341, (2015).

[8] Z. Shi. Branching random walks : Ecole d’été de Probabilités de Saint-Flour XLII –
2012. Lecture notes in mathematics: 2151. Springer, (2015). ISBN 9783319253725.

[9] A. Telcs, and N. C. Wormald. Branching and tree indexed random walks on fractals.
J. Appl. Probab. 36:999–1011, (1999).

14


	Introduction and main result
	Frog domination
	One-sided frogs
	The two-type frog model
	Extremely lazy frogs

