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A (very very brief) introduction to population genetics

• Aim of population genetics: Modeling the effect of evolutionary forces on today’s
observed genetic diversity.

• Difficult task:
1. Natural selection (e.g., balancing, directional selection etc.)
2. Genetic drift.
3. Recombination (e.g., hitch-hiking effect)
4. Demographic and geographic effects (e.g., bottlenecks, migration)
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What dowe observe today ? Mutational patterns

• Mutational patterns in a sequence alignment.
• SNP. Single Nucleotide Polymorphism.
• Summary statistics:

1. Number of SNP’s
2. Site frequency spectrum (counting the number of SNP’s carried by k individuals)
3. Allele frequency spectrum (population is partioned into 4 haplotype blocks

{1}{2}{3, 4}).

Sequence 1 A T C C T A · · ·
Sequence 2 A T C T T T · · ·
Sequence 3 T T C T T T · · ·
Sequence 4 T T C T T T · · ·

Table: Sequence alignment of size n = 4 with 3 SNP’s.
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The genealogical approach

• Which genealogies could explain the observed mutational pattern ?

Sequence 1 A T C C T A · · ·
Sequence 2 A T C T T T · · ·
Sequence 3 T T C T T T · · ·
Sequence 4 T T C T T T · · ·

21 3 4

Deeper genealogies generate more genetic diversity
5 of 70



TheWright-Fisher model

• Fixed population size of N .
1. Assign allelic types at generation 0.
2. Each individual at generation t + 1 picks a parent from generation t uniformly at

random and inherits the type of its parent.
• Genealogy. Pairs of ancestral lineages coalesce with probability 1/N in a single

generation.

6 of 70



Kingman coalescent

• Genealogy. Kingman coalescent*:
1. At t = 0, start with n lineages.
2. Construct the tree from the leaves to the root.
3. Pairs of lineages coalesce at rate 1.

7 of 70Kingman (82)



A first glimpse at universality (Cannings models)

A1: At each generation t, we have an independent offspring vector

(ν
(t)
1 , · · · , ν(t)N ),

N∑
i=1

ν
(t)
i = N

and the entries of the vector are exchangeable (neutral assumptions).
A2: Under the assumptions

Var(ν(t)1 ) = o(N ), E[(ν
(t)
1 − 1)3] = o(Nσ2

N )

the discrete genealogy of a sample of size n converges to the the n-Kingman
coalescent*.

A2’: “Skewed" offspring distribution: convergence to Λ-coalescent.
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Λ-coalescent*

• Let Λ(dx) be a probability measure on [0, 1].
• Ultrametric tree generated from leaves to root in a Markov way.
• If n lineages alive at time t (from the leaves) any k-uplet of lineages merge into a

single lineage at rate

k ∈ {2, · · · ,n}, λn(k) :=

∫ 1

0
xk(1 − x)n−k Λ(dx)

x2

• Poisson construction:
1. At rate dt × Λ(dx)

x2 , mark each lineage with probability x.
• Λ(dx) = δ0, Kingman
• Λ(dx) = dx, Bolthausen-Sznitman coalescent.
• Λ(dx) = Γ(a+b)

Γ(a)Γ(b)x
a−1(1 − x)b−1dx, Beta(a, b) coalescent (a, b > 0).
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Universality

• Random walks with finite second moments converge to Brownian motion.
• In general, random walks converge to Lévy processes. Discontinuous process

characterized by a jump measure Λ.
• For exchangeable (Cannings) models (no space-no selection)

1. Kingman = Brownian motion
2. Λ-coalescent = Λ-Lévy processes

• One of the challenge of Mathematical Biology: going beyond exchangeable
models ...

• A common belief in Mathematical Biology is that the universality class of
Λ-coalescents can be found in unexpected places,
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Outline

1. A stochastic population model.

2. A general approach to the convergence of genealogies

2.1 The marked Gromov-weak topology and the methods of moments*

2.2 spinal decomposition and many-to-few

3. Two applications

3.1 Multitype Branching processes

3.2 BBM of Tourniaire (22).

4. Fitness waves

1 of 70see also *Gonzales, Harris, Horton, Kyprianou, Powell, Wang (20,21,22)



Noisy F-KPP equation with Allee effect

Let ε > 0. Noisy F-KPP with demographic noise.

∂tu =
1
2∂xxu + u(1 − u)(1 + εu) +

√
u(1 − u)

N η

where η is a space-time white noise. In the deterministic regime (N = ∞), existence

and uniqueness (ε > 0) of a travelling wave solution* ψ(x − ct).

Figure: Stochastic front
2 of 70*Roques (12)



Local reproduction rate

Local reproduction rate r(u) = (1 − u)︸ ︷︷ ︸
saturation

(1 + εu)︸ ︷︷ ︸
Allee effect

• (1 − u): saturation,
• (1 + εu): Allee effect (cooperation, vortex of extinction).

Figure: r(u) for ε = 0, 1, 3.

For ε < 1, r is optimized at frequency 0 (tip)
For ε > 1, r is optimized at intermediary frequency (bulk)
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Deterministic equation: Pulled vs Pushed

Figure: Speed of the wave as a function of ε

Pulled.(ε < 2) the speed does not vary
with ε.

Pushed.(ε > 2) the speed increases with ε.

Analytic interpretation. In the pulled case, the speed (and the shape of the profile at
the tip) is predicted by linearizing the profile close to the edge of the front.
Probabilistic interpretation. Sample n = 2 individuals at the edge then the MRCA is
located

• Pulled. At the edge.
• Pushed. In the bulk.
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Stochastic effects: semi vs fully pushedwaves

Recent simulations and studies * investigated the effect of demographic fluctuations on
the fronts.

pulled semi-pushed fully-pushed
strength of the Allee effect ε ∈ (0, 2) ε ∈ (2, 4) ε > 4

time scale fluctuations log(N )3 Nα−1, α ∈ (1, 2) N
Genealogy Bothausen-Sznitman Beta(α,2-α) Kingman

Recent rigorous results in the fully pushed regime**.

5 of 70*Birzu et al.(18), **Etheridge, Pennington (21)



BBMwith inhomogeneous branching rate*

• Let µ > 0, f ≥ 0 with Supp(f ) ⊆ [0, 1].
• ε ≥ 0 (Allee effect).
• BBM with

1. Inhomogeneous branching rate

∀x > 0, r(x) = 1
2 +

ε

2 f (x)

2. Drift −µ (speed of the front)

µ is chosen in such a way that the system is critical, i.e., the average number of
particles remains roughly constant (stable front).

3. Killing at 0 (particles inside the front are killed)
• ε = 0: Standard BBM**.

6 of 70*Tourniaire (22), **Berestycki, Berestycki, Schweinsberg (13)



Criticality

• Define (t, y) → pt(x, y) as the density of particles at time t starting with a unique
particle at x, i.e., for every test function f

Ex

(∑
u∈Nt

f (Xu(t))
)

=

∫
R+

pt(x, y)f (y)dy.

• (t, y) → pt(x, y) is solution of the fundamental equation

∂tu =
1
2∂xxu + µ∂xu + r(x)u

with u(t, 0) = 0.

• Criticality: Choose µ to keep the number of particles “under control” (stable
front, µ is interpreted as the speed of the front).
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Criticality

Let L >> 1 and consider the modified equation

∂tu =
1
2∂xxu + µ∂xu + r(x)u

with u(t, 0) = u(t,L) = 0

BBM killed at 0 and L.

Write
pt(x, y) = eµ(x−y)+ 1

2 (1−µ2)tqt(x, y) (Girsanov transformation).
Then (t, y) → qt(x, y) is solution of

∂tu =
1
2∂xxu + (r(x)− 1

2)u︸ ︷︷ ︸
Self-adjoint

with u(t, 0) = u(t,L) = 0
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Criticality

Consider

∂tu =
1
2∂xxu + (r(x)− 1

2)u with u(t, 0) = u(t,L) = 0

Sturm-Liouville: The eigenvalues of the operator can be numbered
λ1 > λ2 > · · · > λk · · · → −∞ and

qt(x, y) =
∑
k≥1

eλktvk(x)vk(y),

where the vk ’s are the eigenfunctions with ||vk ||2 = 1, i.e.,

v′′k (x) + (r(x)− 1
2)v(x) = λkvk(x), vk(0) = vk(L) = 0.
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Criticality

By reversing the Girsanov transformation

pt(x, y) = eµ(x−y)+( 1
2 (1−µ2)+λ1)t

∑
k≥1

e(λk−λ1)tvk(x)vk(y).

As t → ∞, limL→∞ λ1 − λ2 > 0 (spectral gap) and λ1 ↑ λ∞1 <∞* as L → ∞,

pt(x, y) ≈t→∞ eµ(x−y)+( 1
2 (1−µ2)+λ∞

1 )tv1(x)v1(y)

The system is critical when

µ =
√

1 + β2, with β :=
√

2λ∞1 .

where λ1 ↑ λ∞1 is the principal eigenvalue of the self-adjoint operator

Lu =
1
2u′′ + (r(x)− 1

2)u(x), u(0) = u(L) = 0.

10 of 70Pinsky (95)



Pushed vs Pulled

Recall that
r(x) = 1

2 +
ε

2 f (x)

By Pinsky (95), there exists ε1 > 0 such that
1. For ε < ε1, λ∞1 = 0.
2. For ε > ε1, λ∞1 > 0.

As a consequence,

Theorem (Tourniare (21), S., Tourniare (22+))

There exists ε1 > 0 such that

(Pullled) For ε < ε1, µ = 1.
(Pushed) For ε > ε1, µ > 1.

What about the genealogical structure of the population ?
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Conjectures

There exists 0 < ε1 < ε2 such that
BBM pulled semi pushed fully pushed

strength of the Allee effect ε ∈ (0, ε1) ε ∈ (ε1, ε2) ε > ε2
time scale fluctuations log(N )3 Nα−1, α ∈ (1, 2) N

limiting CSBP Neveu α-stable Feller

to be compared with the stochastic PDE

∂tu =
1
2∂xxu + u(1 − u) (1 + εu)︸ ︷︷ ︸

Allee effect

+

√
u(1 − u)

N η

in the PDE pulled semi pushed fully pushed
strength of the Allee effect ε ∈ (0, 2) ε ∈ (2, 4) ε > 4

time scale fluctuations log(N )3 Nα−1, α ∈ (1, 2) N
Genealogy Bothausen-Sznitman Beta(α,2-α) Kingman
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Outline

1. A stochastic population model and its branching approximation.

2. A general approach to the convergence of genealogies

2.1 The marked Gromov-weak topology and the methods of moments*

2.2 spinal decomposition and many-to-few

3. Two applications

3.1 Multitype Branching processes

3.2 BBM of Tourniaire (22).

13 of 70see also *Gonzales, Harris, Horton, Kyprianou, Wang (20,21,22)



General (discrete time) branching processes

Let E be a general type space, and consider a collection of random point measures

∀x ∈ E , Ξ(x) =
K(x)∑
i=1

δξi(x)

An individual with type x gives birth to K (x) children with types (ξ1(x), ξ2(x), . . . )

This constructs a random tree T and a collection of types (Xu ∈ E , u ∈ T )

It corresponds to:

• a Galton-Watson tree if CardE = 1
• a multitype branching process if E is finite (countable)

• a branching random walk if E = Rd and Ξ(x) = x + Ξ
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Some background

Q: Can we study the scaling limit of the genealogy and distribution of types in the population?

The tree structure has already been studied for

• Galton-Watson processes: Aldous (91); Duquesne, Le Gall (02); Popovic (04)

• limits of branching random walks: Le Gall snake (93)

• multi-type Galton-Watson processes: Miermont (07); Popovic, Rivas (14)

• Branching diffusion in a bounded domain: Powell (19)

Most works on the tree structure of branching processes rely on height and contour

processes

We will present a different approach involving spinal decompositions
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Genealogies asMarkedMetric Space

Recall the tree T and collection of marks (Xu ; u ∈ T ) of the branching process

We define

• UN the set of individuals alive at generation N

• the tree distance

∀u, v ∈ UN , dT (u, v) = N − |u ∧ v|

• the mark measure on UN × E as

µN =
∑

u∈UN

δ(u,Xu)

The triple [UN , dT , µN ] represents the genealogy and types at generation N
17 of 70
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MarkedMetric Spaces (mmm)*

Let (U , d) be a separable metric space.

E be a Polish space called the mark space (R+ in our case).

A marked metric measure space* (mmm) is a triple (U , d, µ) where µ is a finite measure on

U × E

18 of 70*Depperschmidt, Greven, Pfaffelhuber (11)



A continuous example: the Brownian coalescent point process

• Let Y ∼ Exp(1). m a finite measure on R+.
• Consider a Poisson point process P on (0, 1)× (0,Y ) with intensity dt ⊗ 1

x2 dx,
and define

∀y < z, dP(y, z) = sup{x : (t, x) ∈ P, y < t < z}

x

t
Y

1

The marked Brownian CPP* is the ultrametric space [(0,Y ), dP ,Leb⊗m]
19 of 70*Popovic (04)
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CRT perspective

Consider a Brownian excursion e conditioned on h(e) ≥ 1.

Define
de(x, y) = e(x) + e(y)− 2 inf

[x∧y,x∨y]
e, T = [0,∞)/ ∼

where x ∼ y iff d(x, y) = 0. The CRT* is the random metric space (T , d).

When e(x) = e(y) = 1

∀x, y ∈ R+, de(x, y) = 2(1 − inf
[x∧y,x∨y]

e)

so that the distance is given by the depth of the deepest excursion between x and y.

The Brownian CPP results from the encoding the points at level 1 by their local time.
20 of 70*Aldous (91)



The (marked) Gromov-weak topology

A polynomial* is a functional

Φ[U , d, µ] =

∫ k∏
i,j=1,i 6=j

ψi,j
(
d(vi , vj))

k∏
i=1

ϕi
(
xi)µ(dvi ⊗ dxi)

= |U |k
∫ k∏

i,j=1,i 6=j
ψi,j
(
d(vi , vj))

k∏
i=1

ϕi
(
xi)
µ(dvi ⊗ dxi)

|U |

for some k and continuous bounded ψi,j , ϕi and |U | := µ(U × E).

The marked Gromov-weak topology is that smallest topology such that each Φ is

continuous.

The moments of a random marked ultrametric space are

∀Φ, E[Φ[U , d, µ]]
21 of 70*Greven, Pfaffelhuber, Winter (09); Depperschmidt, Greven, Pfaffelhuber (11)
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Moments and size biasing

Φ[U , d, µ] =

∫ k∏
i,j=1,i 6=j

ψi,j
(
d(vi , vj))

k∏
i=1

ϕi
(
xi)µ(dvi ⊗ dxi)

= |U |k
∫ k∏

i,j=1,i 6=j
ψi,j
(
d(vi , vj))

k∏
i=1

ϕi
(
xi)
µ(dvi ⊗ dxi)

|U |

E[Φ[U , d, µ]] = E(|U |k) E

 |U |k

E(|U |k)

∫ k∏
i,j=1,i 6=j

ψi,j
(
d(vi , vj))

k∏
i=1

ϕi
(
xi)
µ(dvi ⊗ dxi)

|U |


The moments are obtained by biasing the population size by |U |k and then sampling k
individuals according to µ(dv⊗dx)

|U | .
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Marked Gromov Prokhorov (MGP)metric

Define
dMGP([U1, d1, µ1], [U2, d2, µ2]) = inf

Z ,ϕ1,ϕ2
dPr(ϕ1 ? µ1, ϕ2 ? µ2)

where ϕi is an isometric embedding from Ui to Z , dPr is the Prokhorov distance. The
GW topology is metrizable by dMGP .
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Themethod of moments

Theorem (Method of moments)

Let (Xn ; n ≥ 1) be a sequence of real r.v. such that

∀k ≥ 1, lim
n→∞

E[X k
n ] = mk , lim sup

k→∞

m1/k
k
k <∞

then there exists X such that Xn → X in distribution.
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Themethod of moments for trees

Theorem (Greven, Pfaffelhuber,Winter (09); Depperschmidt, Greven, Pfaffelhuber (11))

Let [Un , dn , µn ; n ≥ 1] be a sequence of random marked ultrametric spaces such that

∀Φ, lim
n→∞

E[Φ[Un , dn , µn ]] = E[Φ[U , d, µ]],

for some [U , d, µ] verifying

lim sup
k→∞

E[µ(U × E)k ]1/k

k <∞.

Then [Un , dn , µn ] → [U , d, µ] in distribution.
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Themethod of moments for trees (II)

Theorem (Foutel--Rodier, Lambert, S (21); Foutel--Rodier, S. (22+))

Let [Un , dn , µn ; n ≥ 1] be a sequence of random marked ultrametric spaces such that

∀Φ, lim
n→∞

E[Φ[Un , dn , µn ]]

exists and

lim sup
k→∞

lim
n→∞

E[µn(Un × E)k ]1/k

k <∞.

Then there exists a (possibly non-separable) marked ultrametric space [U ,U , d, µ] such
that [Un , dn , µn ] → [U ,U , d, µ] in distribution.
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Moments of random trees: the Brownian CPP

The moment of order k of the Brownian CPP is

E[Φ[(0,Y ), dP ,Leb×m]] = E
[ ∫

((0,Y )×R+)k

∏
i,j
ψi,j
(
d(vi , vj)

)∏
i
ϕi(xi)dvi ⊗ m(dxi)

]
= k!T k E

[ ∫
(0,Y ∗)k

∏
i,j
ϕ
(
dP(vi , vj)

)∏
i

dvi

]∏
i

∫
R+

ϕi(xi)m(dxi)

where Y ∗ ∼ Gamma(k + 1, 1)
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Moments of random trees: the Brownian CPP
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Discrete CPP

By sampling k points in the size biased Brownian CPP, we

obtain a discrete CPP:

i.i.d. branch lengths (H1, . . . ,Hk−1) ∈ {1, . . . ,N}:

∀i < j, d(Vi ,Vj) = max{Hi , . . . ,Hj−1}

where (Hi) are i.i.d. uniform r.v.'s.

The genealogy of k sampled point in a Brownian CPP is a

discrete CPP.
H1

H2

H3

H4

X1 X2 X3 X4 X5
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Moments of random trees: the Brownian CPP

Proposition

The moments of the Brownian CPP are

E[Φ[(0,Y ), dP ,Leb×m]] = k!E
[∏

i,j
ϕi,j
(
Hσ(i),σ(j)

)]∏
i

∫
ϕi(x)m(dx)

where

∀i < j, Hi,j = Hj,i = max{Hi , . . . ,Hj−1}

for an i.i.d. collection (Hi ; i < k) of uniform r.v. on (0, 1) and a uniform permutation σ of

{1, . . . , k}.
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Convergence criterium

Proposition

Let [UN , dN , µN ] be a sequence of random mmm. If

E (Φ([UN , dN , µN ])) → k!E
[∏

i,j
ϕi,j
(
Hσ(i),σ(j)

)]∏
i

∫
ϕi(x)m(dx)

Then [UN , dN , µN ] converges in distribution to a Brownian CPP (with measure m).
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Sampling from a CPP

Proposition

Sample K points (vi ,Xvi ) in a Brownian CPP(m). Then

(d(vi , vj), xvi ) = (H θ
σ(i)σ(j),Wi)

where L(θ) = K
(1+θ)2 (

θ
1+θ )

K−1dθ. Further, cond. on θ, (H θ
i ) i.i.d. with

P(H θ ≤ s) =
(1 + θ)P(U ≤ s)
1 + θP(U ≤ s) , U ∼ Uniform

and L(Wi) are distributed according to m.

32 of 70see also Lambert (18), Johnston (19), Harris, Johnston, Roberts (21)



Yaglom's law and limiting genealogy

If [UN , dN , µN ] converges to the a Brownian CPP(T ,m). Then
• µN converges in distribution to mExp(1).
• Convergence of the genealogy of a K -sampling to the K -sampling of the

Brownian CPP.

• Conclusion. Convergence of the moments to the moments of a Brownian CPP
implies the generalized Yaglom’s law and the convergence of the genealogy.

• Conjecture. Convergence of the moments at fixed time horizon implies
convergence of the whole genealogy to the CRT.
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Moments of random trees: discrete branching processes

Recall the tree T and collection of marks (Xu ; u ∈ T ) of the branching process
Let [UN , dN , µN ] be the mmm generated at time N where

µN =
∑

u∈UN

δu,Xu

The moments of [UN , dT , µN ] are

E[Φ[UN , dT , µN ]] = E
[ ∑

u1,...,uk∈TN

ψi,j
(
dT (ui , uj))

∏
i
ϕi(Xui )

]
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Moments of random trees: discrete branching processes

We rather work with factorial moments:

E[Φ[TN , dT , µN ]] = E
[ ∑

u1 6=···6=uk∈TN

ψi,j
(
dT (ui , uj))

∏
i
ϕi(Xui )

]

= E(Z (k)
N )E

[ Z (k)
N

E(Z (k)
N )

∑
u1 6=···6=uk∈TN

ψi,j
(
dT (ui , uj))

∏
i
ϕi(Xui )

]
with

• ZN the population size at time N
• Z (k)

N = ZN (ZN − 1) . . . (ZN − k + 1).

• Let Sk be the marked tree by (1) biasing by Z (k)
N , and (2) picking k leaves without

replacement.
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Outline

1. A stochastic population model and its branching approximation.

2. A general approach to the convergence of genealogies

2.1 The marked Gromov-weak topology and the methods of moments*

2.2 Many-to-few and spinal decomposition

3. Two applications

3.1 Multitype Branching processes

3.2 BBM of Tourniaire (22).

36 of 70see also *Gonzales, Harris, Horton, Kyprianou, Wang (20,21,22)



Multiple spines andmany-to-few formula

The aim is to define a law QN ,k
x on the tree with k leaves

E
[ Z (k)

N

E(Z (k)
N )

· ϕ(Sk)
]
= QN ,k

x
[
∆k · ϕ(Sk)

]

• under QN ,k
x the tree Sk has a simple law

• the bias term∆k remains tractable and vanishes at the limit.

There are multiple ways of constructing QN ,k
x :

• in the original work of Harris and Roberts*, QN ,k
x is defined forward in time as a system

of branching particles

• in our work, QN ,k
x is a obtained using a discrete CPP

37 of 70*Harris, Roberts (2017)
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Construction of the 1-spine
Suppose that there exists a nonnegative harmonic function h:

∀x ∈ E , h(x) = E[〈Ξ(x), h〉] = E(
K(x)∑
i=1

h(ξi(x)))

In particular, WN =
∑

u∈TN
h(Xu) is an additive martingale

We can define a Markov chain (ζ(n); n ≥ 0) with transition

E[ϕ(ζ(1)) | ζ(0) = x] = 1
h(x)E[〈Ξ(x), hϕ〉].

called the spine process.

For critical multitype branching processes

• q(x, y) = mx,y
h(y)
h(x) .

• h is the right eigenvector of (mx,y).
38 of 70



Construction of the 1-spine
Suppose that there exists a nonnegative harmonic function h:

∀x ∈ E , h(x) = E[〈Ξ(x), h〉] = E(
K(x)∑
i=1

h(ξi(x)))

In particular, WN =
∑

u∈TN
h(Xu) is an additive martingale

We can define a Markov chain (ζ(n); n ≥ 0) with transition

E[ϕ(ζ(1)) | ζ(0) = x] = 1
h(x)E[〈Ξ(x), hϕ〉].

called the spine process.

For critical multitype branching processes

• q(x, y) = mx,y
h(y)
h(x) .

• h is the right eigenvector of (mx,y).
38 of 70



Construction of the 1-spine
Suppose that there exists a nonnegative harmonic function h:

∀x ∈ E , h(x) = E[〈Ξ(x), h〉] = E(
K(x)∑
i=1

h(ξi(x)))

In particular, WN =
∑

u∈TN
h(Xu) is an additive martingale

We can define a Markov chain (ζ(n); n ≥ 0) with transition

E[ϕ(ζ(1)) | ζ(0) = x] = 1
h(x)E[〈Ξ(x), hϕ〉].

called the spine process.

For critical multitype branching processes

• q(x, y) = mx,y
h(y)
h(x) .

• h is the right eigenvector of (mx,y).
38 of 70



Construction of the k-spine

The measure QN ,k
x is the probability measure:

• the tree structure is the CPP with i.i.d. branch lengths

(H1, . . . ,Hk−1) ∈ {1, . . . ,N}:

∀i < j, d(Vi ,Vj) = max{Hi , . . . ,Hj−1}

• the marks along the branches evolve as the spinal

process (ζ(n); n ≥ 1)
• at each branch point the process is duplicated and

then evolve independently (!)
H1

H2

H3

H4

X1 X2 X3 X4 X5
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The biasing term

With this construction of QN
x , if H1 is uniform on {1, . . . ,N} the bias is

∆k = h(x)N k−1k! ·
∏
u∈B

mdu(ζu)

du ! h(ζu)
·
∏
u∈L

1
h(_u)

where du is the (out-)degree of u, and

∀x ∈ E , md(x) = E[〈Ξ(d)(x), h⊗d〉] := E
[ K(x)∑

i1,...,id=1
i1 6=···6=id

d∏
j=1

h(ξij )
]

When d = 2,

∀x ∈ E , m2(x) = E
[ K(x)∑

i1,i2=1
i1 6=···6=id

h(ξi1)h(ξi2)
]
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Theorem (Many to few, Foutel--Rodier, S (22+))

E

(
Φ([UN , dN , µN ])

)
= QN ,k

x

(
∆
∏
i,j
ψi,j(Hσ(i),σ(j))

∏
i
ϕi(ζVσ(i))

)
where Vi is the i th leaf in the discrete CPP and

∆k = h(x)N k−1k! ·
∏
u∈B

mdu(ζu)

du ! h(ζu)
·
∏
u∈L

1
h(ζu)

and

∀x ∈ E , md(x) := E
[ K(x)∑

i1,...,id=1
i1 6=···6=id

d∏
j=1

h(ξij )
]
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Outline

1. A stochastic population model and its branching approximation.

2. A general approach to the convergence of genealogies

2.1 The marked Gromov-weak topology and the methods of moments*

2.2 spinal decomposition and many-to-few

3. Two applications

3.1 Multitype Branching processes

3.2 BBM of Tourniaire (22).

42 of 70see also *Gonzales, Harris, Horton, Kyprianou, Wang (20,21,22)



Application tomulti-type branching processes

Suppose that E is finite, so that

∀x ∈ E , Ξ(x) =
∑
y∈E

Lxy · δy

and assume that the mean reproduction matrix M = (mxy) defined as

∀x, y ∈ E , mxy = E[Lxy]

is irreducible and aperiodic

By the Perron-Frobenius theorem we can find for M
• a leading eigenvalue λ, and we assume λ = 1 (criticality)

• a corresponding stationary measure h̃ (the left eigenvector)

• a corresponding harmonic function h (the right eigenvector) with 〈h̃, h〉 = 1
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Application tomulti-type branching processes

Theorem

Consider a critical multi-type branching process with offspring distribution (Lxy) satisfying

∀k ≥ 1, E[Lk
xy] <∞.

Then, started from any initial condition and conditional on survival at generation N ,

lim
N→∞

[
TN ,

dT
N , µN

N
]
= [(0,Y ), dP ,

Σ
2 Leb⊗h̃]

in distribution for the Gromov-weak topology, where [(0,Y ), dP ] is a Brownian CPP and

Σ = 〈h̃(dx),m2(x)〉, m2(x) = Ex(
∑
i1 6=i2

h(ξi1)h(ξi2)).
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Proof:cutoff

Proposition

Let [Tn , dn , µn ] be a sequence of randommmmand let T ′
n ⊂ Tn be a closed set. Assume

that

1. |U ′
n | converges in distribution to a positive r.v.

2. E(|Un | − |U ′
n |) → 0

If [Tn , dn , µn ] converges in distribution then Mn converges to the same limit.

Without loss of generality, we can restrict ourself to the case where E(Lk
x,y) <∞ for

every k ∈ N, and apply the method of moments.
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Proof: Many-to-few

According to the Gromov-weak topology, we need to compute

E
[
Φ(TN ,

dT
N , µN

N ) | ZN > 0
]
=

1
N kE

[ ∑
u1,...,uk∈TN

∏
i,j
ϕi,j
(dT (vi ,vj)

N )
∏

i
ϕi(Xvi )

∣∣∣ZN > 0
]
.

and show that it converges to the moments of a CPP

k!E
[∏

i,j
ϕi,j
(
Hσ(i),σ(j)

)]∏
i

∫
ϕi(x)

Σ

2 h̃(x)dx

By the (rescaled) many-to-few formula,

E
[
Φ(TN ,

dT
N , µN

N ) | ZN > 0
]

=
1

NP(ZN > 0)Q̄1,k
x
(
∆k ·

∏
i,j
ϕi,j
(
Hσ(i),σ(j))

∏
i
ϕi(ζVσ(i))

)
where Q̄1,k

x is the rescaled spine (time rescaled by 1
N ).
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Proof: convergence of the tree

We construct Q̄1,k
x with uniform branch lengths on { 1

N , . . . , 1}

The distance between leaf Vi and Vj > Vi is

d(Vi ,Vj) = max{Hi
N , . . . ,

Hj−1
N } −−−−→

N→∞
max{H̃i , . . . , H̃j−1}

for (H̃1, . . . , H̃k−1) i.i.d. uniform on (0, 1)

In the limit:

• the tree is binary and is the discrete CPP constructed from uniforms (as in the size

biased CPP)

• the number of vertices between two branch points is large (of the order of N )
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Proof: convergence of the bias

The Perron-Frobenius theorem ensures that

• the spine has stationary measure hh̃
• it converges in distribution to it

The bias then becomes

∆k = h(x)k! ·
∏
u∈B

mdu(ζu)

du ! h(ζu)
·
∏
u∈L

1
h(ζu)

Q̄1,k
x−−−−→

N→∞
h(x)k! ·

k−1∏
i=1

m2(Yi)

2h(Yi)
·

k∏
i=1

1
h(Y ′

i )

for an i.i.d. collection (Yi ,Y ′
i ) of r.v. distributed as hh̃ (invariant distribution of the 1-spine)
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Proof: end

The previous convergences prove that

Q̄1,k
x
(
∆k ·

∏
i,j
ψi,j
(
Hσi ,σj )

∏
i
ϕi(ζVσ(i))

)
−−−−→

N→∞
h(x)

(〈π,m2〉
2

)k−1
k!E[

∏
i,j
ϕi,j(Hσ(i),σ(j))]

∏
i
E(
ϕi(Y )

h(Y )
)

where X ∼ hh̃, (Hi) are i.i.d. uniform on (0, 1) and
∀i < j, Hi,j = max{Hi , . . .Hj−1}

Using the Kolmogorov estimate,

lim
N→∞

NP(ZN > 0) = 2h(x)
〈π,m2〉

We recover the moments of a marked Brownian CPP with measure Σ
2 h̃!
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Outline

1. A stochastic population model and its branching approximation.

2. A general approach to the convergence of genealogies

2.1 The marked Gromov-weak topology and the methods of moments*

2.2 spinal decomposition and many-to-few

3. Two applications

3.1 Multitype Branching processes

3.2 BBM of Tourniaire (22).
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BBMwith inhomogeneous branching rate*

• Let µ > 0, f ≥ 0 with Supp(f ) ⊆ [0, 1].
• ε ≥ 0 (Allee effect).
• BBM with

1. Inhomogeneous branching rate

∀x > 0, r(x) = 1
2 +

ε

2 f (x)

2. Drift −µ

µ is chosen in such a way that the system is critical, i.e., the average number of
particles remains roughly constant (see later).

3. Killing at 0.
• ε = 0: Standard BBM**.

51 of 70*Tourniaire (22), **Berestycki, Berestycki, Schweinsberg (13)



Criticality

• Define (t, y) → pt(x, y) as the density of particles at time t starting with a unique
particle at x, i.e., for every test function f

Ex

(∑
u∈Nt

f (Xu(t))
)

=

∫
R+

pt(x, y)f (y)dy.

• (t, y) → pt(x, y) is solution of the fundamental equation

∂tu =
1
2∂xxu + µ∂xu + r(x)u

with u(t, 0) = 0.

• Criticality: Choose µ to keep the number of particles “under control” (stable
front, µ is interpreted as the speed of the front).
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Criticality

Let L >> 1 and consider the modified equation

∂tu =
1
2∂xxu + µ∂xu + r(x)u

with u(t, 0) = u(t,L) = 0

BBM killed at 0 and L.

Write pt(x, y) = eµ(x−y)+ 1
2 (1−µ2)tqt(x, y) (Girsanov transformation). Then

(t, y) → qt(x, y) is solution of

∂tu =
1
2∂xxu + (r(x)− 1

2)u︸ ︷︷ ︸
Self-adjoint

with u(t, 0) = u(t,L) = 0
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Criticality

Consider

∂tu =
1
2∂xxu + (r(x)− 1

2)u with u(t, 0) = u(t,L) = 0

Sturm-Liouville: The eigenvalues of the operator can be numbered
λ1 > λ2 > · · · > λk · · · → −∞ and

qt(x, y) =
∑
k≥1

eλktvk(x)vk(y),

where the vk ’s are the eigenfunctions with ||vk ||2 = 1. As t → ∞

pt(x, y) ≈t→∞ eµ(x−y)+( 1
2 (1−µ2)+λ1)tv1(x)v1(y)

λ1 ↑ λ∞1 <∞* as L → ∞, the system is critical when

µ =
√

1 + β2, with β :=
√

2λ1.
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Left-right principal eigenfunctions

As t → ∞

pt(x, y) ≈t→∞ eµ(x−y)+( 1
2 (1−µ2)+λ1)tv1(x)v1(y)

≈ h(x)h̃(y), at criticality

where
h(x) =

1
c̃ eµxv1(x), h̃(y) = c̃e−µyv1(y)

and c̃ is a renormalization constant such that
∫ L

0 h̃(x)dx = 1.

Analogously to multitype GW, we think of h (resp., h̃) as the right (resp, left)
eigenfunction of the mean operator

L∗f =
1
2∂xx f − µ∂x f + r(x)f .
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Pulled, semi/fully Pushed

Define
α =

µ+ β

µ− β
, where β :=

√
2λ∞1

Definition
1. Pulled regime: λ∞1 = 0 ⇐⇒ α = 1.
2. Semi Pushed: λ∞1 ∈ (0, 1

16) ⇐⇒ α ∈ (1, 2).
3. Fully Pushed : λ∞1 > 1

16 ⇐⇒ α > 2.

Conjecture
1. Pulled regime: Neveu CSBP.
2. Semi Pushed: α-stable CSBP
3. Fully Pushed : Feller
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Pulled, semi/fully Pushed

Take
r(x) = 1

2 + εf (x)

Proposition (Pinsky (95))

There exists 0 < ε1 < ε2 <∞ such that

• ε < ε1: pulled

• ε ∈ (ε1, ε2): semi-pushed

• ε ∈ (ε2,∞): fully-pushed
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Pulled vs Pushed

In the PDE, we observe the following transition. Let c be the speed of the front
• Pulled. c = 1
• Pushed. c > 1

In the BBM, let µ be negative drift
• Pulled. (ε < ε1) µ = 1
• Pushed. (ε > ε1) µ > 1
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Semi vs Fully Pushed

In multitype GW, the limit involves
Σ

2 =
〈

m2, h̃
〉
, with m2(x) = Ex

(∑
i1 6=i2 h(ξi1)h(ξ2)

)
.

The the BBM, the analogous quantity is given by
Σ

2 =

∫ L

0
r(x)h2(x)h̃(x)dx =

∫ L

0
r(x)eµxv3

1(x)dx

where
1
2v′′1 + r(x)− 1

2 = λ1v1, with v1(0) = v1(L) = 0

so that when x > 1
1
2v′′1 = λ1v1 and v1(x) ≈ O(e−βx)

Σ remains finite only when α > 2 (i.e., µ < 3β)
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Fully Pushed

Let Nt the set of particles alive at time t

Theorem (Tourniaire, S., 22+)

In the fully pushed regime (α > 2),

Px(|Nt | > 0) ∼2t→∞
h(x)
tΣ

where
Σ

2 =

∫ ∞

0
cr(x)h̃(x)h2(x)dx <∞.
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Fully Pushed

Let µt =
∑

u∈Nt
δu,Xu . d is the genealogical distance.

Theorem (Tourniaire, S., 22+)

In the fully pushed regime (α > 2), the random mmm

(NN ,
d
N ,

µN
N )

conditioned on |NN | > 0 converges to the Brownian CPP with measure

m(dx) =
Σ

2 h̃(x)dx.

This implies Yaglom’s law and convergence of the genealogy to the genealogy of a
critical branching process.
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Elements of the proof
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GWwith heavy tailed distribution

Consider a GW (Zt ; t ∈ N) with

P(ξ > x) ≈ c
xα
, α ∈ (1, 2).

Theorem (Duquesnes, Le Gall (03))

Define βN = N
1

α−1 . The process ( 1
βN

ZtN ; t ≥ 0) converges in D(0,∞) to a α-stable
CSBP.

Let A > 0 and consider the GW process with offspring distribution
ξ̄N = ξ1(ξ ≤ AβN ).

For p ≥ 2,

E(ξ̄p
N ) = βα−p

N

∫ ∞

0
Π(dx), where Π(dx) = 1(x ≤ A)dx
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GWwith heavy tailed distribution

The cutoff procedure allows to use the method of moments for random mmm spaces.
This provides an alternative proof for

Theorem (Duquesnes, Le Gall (03))

Assume that Z0 = xβN . Let Un be the individuals at generation n.
1. ( 1

βN
ZtN ; t ≥ 0) converges to an α-stable CSBP

2. For every t > 0, there exists a limiting random mmm [U (t,x)
∞ , d(t,x)

∞ , µ
(t,x)
∞ ]. such that

[UNt ,
1
N dNt ,

1
βN

µNt ] = [U (t,x)
∞ , d(t,x)

∞ , Leb].

The limiting metric space can defined using reduced processes* or flows of bridges**
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Semi-pushed regime

Imagine a particle performing
a large excursion to level
L >> 1.

The particle is pushed to 0 by
the drift −µ .

During this relaxation period,
the particle generates a large
number of particles.
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Cutoff. Kill the particles for a well chosen level L >> 1

The 1-spine satisfies
dζt =

v′1(ζt)

v1(ζt)
dt + dwt

The invariant distribution is given by v2
1 ∼ O(e−2βx).

Take LA = 1
2β log(N ) + 1

µ−β log(A). Start N particles at x. By the many-to-one
formula

βNE

(∫ LA

0
pt(x, y)dy

)
≈ βNE(

∫ LA

0
v2

1(y)
h(x)
h(y)dy)

≈ 1 − O(
1
A)
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Theorem (Tourniaire (21), Foutel--Rodier, S. Tourniaire (22++))

Assume that the existence of a density such that

1
βN

∑
u∈N0

δXu =⇒ f (x)dx

Let Un be the individuals at generation n.
1. ( 1

βN
ZtN ; t ≥ 0) converges to an α-stable CSBP

2. For every t > 0, there exists c > 0 such that

[UNt ,
1
N dNt ,

1
βN

µNt ] = [U (t,x)
∞ , d(t,x)

∞ , c Leb⊗h̃].

where [U (t,x)
∞ , d(t,x)

∞ ] is the genealogy of an α-stable CSBP (see above).
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Related work and perspective

• [Powell 15] considers branching Brownian motions in a bounded domain (with no
drift). Yaglom law and convergence of the the genealogy to the CRT (CV via
contour processes).

• [Kyrpianou, Horton, Roberts et al 21] consider the moments of branching processes (no
genealogy) under the assumption that h is bounded + Perron Froebenius-like
assumptions (convergence of the spine to the invariance measure exponentially
fast).

• In our case ||h||∞ = ∞. This goes beyond pure technicality: the pushed and
semi-pushed regimes are determined by the integrability condition∫

h(x)Π(x)dx <∞.

• Spinal decomposition in the semi-pushed regime ? Yes · · · but some cutoff is
needed ([Tourniaire, Berestycki, Berestycki, Schweinseberg ]).

• Going beyond the toy model [Birzu et al. 18], [Etheridge, Pennington 20] .
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Summary and perspective

The approach we propose to study the scaling limit of genealogies relies on

• using the Gromov-weak topology to work with moments

• using spinal decomposition results to compute the moments

This approach seems successful for critical processes that have "finite variance" such as:

• multitype branching processes

• more general processes with "ergodic" spines

• the two examples of Emmanuel's talk

• branching process in varying environment: Florin Boenkost's work

Some future directions:

• extend it to multiple mergers

• consider some subcritical and supercritical processes
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