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Abstract

One simple way to think of the Gaussian Free Field (GFF) is that it is the most
natural and tractable model for a random function defined on either a discrete graph
(each vertex of the graph is assigned a random real-valued height, and the distribu-
tion favours configurations where neighbouring vertices have similar heights) or on
a subdomain of Euclidean space. The goal of these lectures is to give an elementary,
self-contained introduction to both of thesemodels, and highlight some of theirmain
properties. We will start with a gentle introduction to the discrete GFF, and discuss
its various resampling properties and decompositions. We will then move on to the
continuum GFF, which can be obtained as an appropriate limit of the discrete GFF
when it is defined on a sequence of increasingly fine graphs. We will explain what
sort of random object (i.e, generalised function) it actually is, and how to make sense
of various properties that generalise those of the discrete GFF.

These notes form the basis of a mini-course given by EP at the BUC meeting at
CIMAT, Guanajuato, from the 16th-19th January 2023. They are a based on part of
the book “Lecture notes on the Gaussian free field” by Wendelin Werner and EP.
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LECTURE 1

Warm Up

We first recall some features of random walks and Brownian motion that will guide us as
we try to construct the Gaussian free field.

1.1 Random walks and Brownian motion
Definition 1.1 (Random walk). Let µ be the law of a real-valued random variable with
expectation 0 and finite variance. For x ∈ R, we define the random walk starting at x and
with step distribution µ by

Sn := x+
n∑

i=1

Xi for n ≥ 0,

where (Xi)i≥1 are independent and each have law µ.

This means that (Sn)n≥0 has the Markov property: for all n ≥ 0, conditionally on
(S0, . . . , Sn), the conditional law of (Sn+k−Sn)k≥0 is simply the law of the random walk
(Sk)k≥0 started from 0.

Remark 1.2. It also has the strong Markov property. If τ is a stopping time for (Sn)n≥0

(that is, {τ > n} is σ(S0, . . . , Sn) measurable for each n), then (Sτ+k − Sτ )k≥0 has the law
of the random walk (Sk)k≥0 started from 0, independent of (τ, (Sn)n≤τ ).

Recall, that the central limit theorem tells us that

Sn√
n
⇒ Z , Z ∼ N (0, σ2)

as n → ∞, where ⇒ denotes convergence in distribution, and σ2 is the variance of a
random variable with law µ.

Here we write N (m,σ) for the law of a Gaussian or normal random variable with
meanm and variance σ2. That is, if Z ∼ N (m,σ), then

P(Z ∈ A) =

∫
A

1√
2πσ2

exp(− (x−m)2

2σ2 ) dx

for A ⊂ R.
So, the central limit theorem is a result about the law of the random walk (rescaled

appropriately) at a single time. Donsker’s invariance principle is a much stronger version
of this, which describes the law of the random walk path in the limit, when time is sped
up, and steps are rescaled appropriately.
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Quick recap: stochastic processes Recall that a random real-valued process indexed
by some set A is just a collection of random variables (Xa)a∈A defined on the same
probability space. The law of the process is a measure on RA (endowed with the product
σ-field) and is characterised by its finite-dimensional distributions (i.e., the law of the
finite-dimensional vector (X(a1), . . . , X(an)) for each a1, . . . , an ∈ A).

When all finite-dimensional distributions are those of (centered) Gaussian vectors,
we say that the process is a centered Gaussian process. In other words, a stochastic
process (Xa)a∈A is a centred Gaussian process if and only if for any n, for any a1, . . . , an
in A and any real constants λ1, . . . , λn, the random variable λ1Xa1 + · · · + λnXan is a
centred Gaussian random variable. The law of a centered Gaussian process (Xa)a∈A is
fully described by its covariance function Σ(a, a′) := E[XaXa′ ] defined on A× A.

A consequence of Kolmogorov’s extension theorem is that when A is a given set and
Σ is a real-valued symmetric bilinear form (defined on A × A) such that for all n, for
all a1, . . . , an in A and all λ1, . . . , λn in R,

∑
i,j λiλjΣ(ai, aj) ≥ 0 (we say that Σ is

non-negative definite) then it is possible to construct a probability space and a process
(Xa)a∈A on this probability space, such that X is a centred Gaussian process with co-
variance function Σ.

We say that a sequence of stochastic processes (with the same indexing set for each
process) converges to a limiting stochastic process, if and only if all the finite dimensional
distributions converge.

Exercise 1. Let V be a finite set and let (X(n)
v )v∈V be a centred Gaussian process for every

n ∈ N with E[X(n)
v X

(n)
w ] =: Σn(v, w). Suppose that for every v, w ∈ V , Σn(v, w) →

Σ(v, w), where Σ is a symmetric, non-negative definite bilinear form on V × V . Show
that, in the sense of stochastic processes, X(n) converges in distribution to X : the centered
Gaussian process (Xv)v∈V with covariance Σ.

Theorem 1.3 (Donsker’s invariance principle). Let (Sn)n≥0 be as in Definition 1.1. Then

( S[Nt]√
σ2N

)
t≥0

⇒
(
Bt

)
t≥0
,

in the sense of stochastic processes (where [u] denotes the integer part of the real number u).
The limiting process (Bt)t≥0 is called a standard (linear) Brownian motion.

Definition 1.4 (Brownian motion on R). The standard (linear) Brownian motion (Bt)t≥0

is the (unique) centered Gaussian process indexed by t ≥ 0, with covariance given by

E(BsBt) = min(s, t) s, t ≥ 0.

The proof of Theorem 1.3 is not terribly difficult, but does not fall into the scope of
the present lectures. It does illustrate, however, that Brownian motion is some kind of
natural universal objects describing the fluctuations of a random path or function.
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Remark 1.5. Kolmogorov’s continuity criterion provides the existence of a random almost
surely continuous function (Bt)t≥0, whose finite dimensional distributions are as in Defi-
nition 1.4. In practice, when working with Brownian motion, we will usually work with this
object rather than the (more abstract) stochastic process.

In fact, if we take this continuous version of Brownian motion to be the limit, the conver-
gence in Theorem 1.3 can be extended to weak convergence in the space of right-continuous
functions equipped with the topology of uniform convergence on compact subsets of time.

Just like the random walk, Brownian motion possesses the following important prop-
erty.

Proposition 1.6 (Markov property of Brownian motion). For all s ≥ 0, conditionally on
σ((Bu)u≤s), (Bt+s−Bs)t≥0 has the law of a standard Brownian motion. In other words, the
process (Bt+s −Bs)t≥0 is independent of (Bu)u≤s and has the same law as (Bt)t≥0.

Brownian motion also has the strongMarkov property. If τ is a stopping time forB (that
is, {τ > t} is σ((Bs)0≤s≤t) measurable for each t), then (Bt+τ − Bτ )t≥0 has the law of a
standard Brownian motion, independent of the stopped sigma-algebra 1 at τ .

Remark 1.7 (Brownian motion on Rd). For d ≥ 2, we can extend the definition of linear
Brownian motion to d-dimensions by taking a vector of linear Brownian motions. More
precisely, the standard d-dimensional Brownian motion (Bt)t≥0 is defined by setting

Bt := (B
(1)
t , . . . , B

(d)
t ) , t ≥ 0,

where the (B(i)
t )t≥0 for 1 ≤ i ≤ d are independent standard linear Brownian motions.

1.2 Conditioned random walks and Brownian bridges
Definition 1.8 (Brownian bridge). Let (B(t))t∈[0,1] be a one-dimensional Brownianmotion,
restricted to the interval [0, 1]. The process (βt := Bt−tB1)t∈[0,1] is called aBrownian bridge
(from 0 to 0, of length 1).

• β is a Gaussian process with mean zero and covariance E(βtβs) = t(1 − s) when
0 ≤ t ≤ s ≤ 1.

• β is independent of the random variable B1, so that its law can be interpreted as the
law of Brownian motion “conditioned to be equal to 0 at time 1”.

Analogously to the previous section, the Brownian bridge is known to be the scaling
limit of a rather large class of random walks, when they are conditioned to be back at 0
after a large number of steps.

1this consists of events A such that A ∩ {τ ≤ t} ∈ σ((Bs)s≤t) for all t
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Example 1.9. Choose a path (S(0), . . . , S(N)) with N steps (N even) with values in Z,
uniformly from the set SN of walks such that

S(0) = S(N) = 0 and |S(j)− S(j − 1)| = 1 for all 1 ≤ j ≤ N.

Then the law of (S[Nt]/
√
N)t∈[0,1] converges weakly (for the topology of the sup-norm on the

space of real-valued right-continuous functions on [0, 1]) to the law of the Brownian bridge.

Example 1.10. Take a symmetric density function h(x) on R such that
∫
xh(x)dx = 0 and∫

x2h(x) = 1, and consider the random vector (S(1), . . . , S(N − 1)) with density (with
respect to Lebesgue measure on RN−1) proportional to

N∏
j=1

h(γj − γj−1)

at (γ1, . . . , γN−1) (with the convention γ0 = γN = 0). Then again, the law of (S[Nt]/
√
N)t∈[0,1]

converges to the law of the Brownian bridge.

Aswith Brownianmotion, these results illustrate that Brownian bridges (and constant
multiples of the Brownian bridge) are natural universal objects describing the fluctuations
of a random function f on [0, 1], constrained to satisfy f(0) = f(1) = 1.

Figure 1.1: A Brownian bridge from zero to zero.

There is one special case of type (2) conditioned walks that is worth highlighting.
This is when one takes h to be the Gaussian distribution function with variance 1 i.e.,
h(x) = exp(−x2/2)/

√
2π.
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Exercise 2. Suppose that h(x) = exp(−x2/2)/
√
2π and S is defined as in Exercise 1.10.

Show that for each N , (S(1), . . . , S(N − 1)) is a centred Gaussian vector with covariance

E[S(j)S(j′)] = j(N − j′)/N

for 1 ≤ j ≤ j′ < N . Show that, if β = (βt, t ∈ [0, 1]) is itself a Brownian bridge, then the
vector

(
√
Nβ(1/N), . . . ,

√
Nβ((N − 1)/N))

is distributed exactly like (S(1), . . . , S(N − 1)). Use this to prove the convergence in distri-
bution of the conditioned walk to the Brownian bridge in this case.

Remark 1.11 (Stationary distribution of aMarkov chain). It is worth noticing that for each
given N , the laws of conditioned random walks of the type (1) or (2) can be viewed as the
unique stationary measures of simple Markov chains on the space of “admissible” paths. For
instance, in case (1) and whenN ≥ 4, the natural dynamics on the space SN can be described
as follows. When we are given a path γ in SN , the Markovian algorithm to produce a new
path γ′ is the following.

(a) Choose a point J uniformly at random in {1, . . . , N − 1}. The new path γ′ will then
be equal to γ except possibly at time J .

(b) • If γ(J − 1) = γ(J + 1), toss a fair coin. If the coin lands heads, set γ′ = γ. If the
coin lands tails, set γ′ to be equal to γ except at time J , and set

γ′(J) = γ(J − 1)− (γ(J)− γ(J − 1)).

• If γ(J − 1) ̸= γ(J + 1) (which means that |γ(J + 1) − γ(J − 1)| = 2), then keep γ
unchanged, i.e., set γ′ = γ.

It is then a simple exercise to check that this Markov chain is irreducible, aperiodic and
that the uniform measure on SN is reversible (indeed, if the probability to jump from γ to γ′

when γ′ ̸= γ in one step is positive, then it is equal to 1/(N−1), and equal to the probability
to jump from γ′ to γ). Hence the law of the conditioned random walk in case (1) is equal to
the unique stationary law of this Markov chain.

If [r, s] ⊂ [0,∞) and a, b ∈ R, then we define the Brownian bridge from a to b on
[r, s] (so, of length s− r) by

βt = (
s− t

s− r
a+

t− r

s− r
b) +

√
s− r β̃ t−r

s−r
, t ∈ [r, s],

where β̃ is a Brownian bridge (of length 1 from 0 to 0). Again this can be interpreted as
a Brownian motion on the interval [r, s], conditioned to be equal to a at time r and b at
time s. Observe that the first term is simply the deterministic linear function equal to a
at time r and b at time s, while the second is a rescaled version of the Brownian bridge.
The scaling by

√
s− r (so-called Brownian scaling) appears, because this is the natural

scaling that makes Brownian motion invariant: namely, for any c ∈ R, ( 1√
c
Bct)t≥0 simply

has the law of a standard Brownian motion.
With this definition in hand, we can explain the Markov property of the Brownian

bridge, that it in turn inherits from that of Brownian motion.
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Proposition 1.12 (Markov property of the Brownian bridge). Let (βt)t∈[0,1] be a Brownian
bridge of length 1 from 0 to 0. Let [r, s] ⊂ [0, 1]: then the following equivalent statements
hold.

(v1) The conditional law of (βt)t∈[r,s] given (βt)t∈[0,r]∪[s,1], is that of a Brownian bridge in
[r, s] from βr to βs.

(v2) Let (F (t))t∈[r,s] be the unique linear function equal to a at time r and b at time s. Then
(βt − F (t))t∈[r,s] is a Brownian bridge from 0 to 0 on [r, s] (i.e., a Brownian bridge of
length 1 from 0 to 0, translated and scaled using Brownian scaling).

(v3) Write β[r,s] for the function that is equal to β on [0, 1] \ [r, s] and F on [r, s]. Set
β[r,s] = β−β[r,s]. Then β[r,s] and β[r,s] are independent, and β[r,s] is a Brownian bridge
from 0 to 0 on [r, s].

In other words, if we condition a Brownian bridge on its values outside of a subinter-
val, then the conditional law of the bridge inside the sub-interval can be written as a sum
of two independent functions:

• a linear function interpolating its values at the endpoints of the subinterval;

• a Brownian bridge from 0 to 0 inside the subinterval (this is a rescaled version of
the Brownian bridge of length 1).

Note that it is only the first function above whose conditional law depends on the values
of the Brownian bridge outside of the subinterval.

1.3 Towards the GFF
What is the corresponding object describing fluctuations, when instead of considering
a one-dimensional string, one looks at some tambourine skin? In other words, what
happens in the previous subsectionwhen one replaces the one-dimensional time-segment
[0, 1] by a two-dimensional set D (that plays the role of the shape of the tambourine),
and tries to look at random functions from D into R?

We start by considering functions on a discrete (grid) approximation to D = [0, 1]2

(in a similar spirit to Examples 1.9, 1.10). For N ≥ 2, we use the following notation.

• ΛN := {0, . . . , N}2 = closed N ×N discrete square.

• ΛN := {1, . . . , N − 1}2 = inside of the square.

• ∂N := ΛN \ ΛN = boundary of the square.

• EN = set of (unoriented) edges that join two neighbouring points (i.e., at distance
1) in ΛN . Write xy for the edge between x, y ∈ Λ̄N .

• If (γx)x∈ΛN
is a vector indexed by ΛN , we write |∇γ(xy)| = |γx − γy| for xy ∈ EN ,

with the convention that γx = 0 for x ∈ ∂N .
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Wewill consider functions f from the discrete square ΛN intoR, with the constraint that
f is equal to zero on ∂N . Here are some concrete ways to choose such a function f at
random.

(1) Analogue of Example 1.9: Choose f uniformly among the finite set of all integer-
valued functions f such that f = 0 on ∂N and for any xy ∈ EN , f(x) − f(y) ∈
{−1, 0, 1}.

(2) Continuous version of (1): Choose f function uniformly (i.e., with respect to the
Lebesgue measure on RΛN ) in the set of all real-valued functions f such that f = 0
on ∂N and for any xy ∈ EN , |f(x)− f(y)| ≤ 1.

(3) Analogue of Example 1.10: More generally, suppose that h is the density function
of a symmetric L2 random variable with zero mean. Choose f with f = 0 on ∂N
in such a way that the random vector (f(x))x∈ΛN

has density at (γx)x∈ΛN
, (with

respect to Lebesgue measure on RΛN ) proportional to∏
e∈EN

h(|∇γ(e)|).

One way to think about it is that each edge e ∈ EN consists of a little spring (so
that the tambourine skin is actually made of a little trampoline web of springs). Each
point x in ΛN (in the horizontal plane) is allowed to move vertically (in some third di-
rection perpendicular to ΛN ) to the position (x, γ(x)) in three-dimensional space, while
the boundary points x ∈ ∂N are stuck to height 0. The spring on the edge e puts some
constraints on the height-difference between the two extremities of e, and in particular
tends to prevent this difference from being very large.

Figure 1.2: An illustration when N = 3 and d = 2.

Remark 1.13. As in the previous one-dimensional case, each of these measures can be
viewed as the stationary measure of some rather simple Markov chain on the state space of
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functions from ΛN into R, where at each step of the chain, one resamples the value (height)
of the function at at most one site, according to the conditional distribution of that height
given those of its neighbours.

Motivated by the example of the Brownian bridge, we ask:

Question. Suppose that for eachN , the function fN on Λ̄N is chosen randomly according
to procedure (1), (2) or (3) above, and turn each fN into a function defined on [0, 1]2 by
rescaling (and making the function constant on each square):

f̂N(x1, x2) := fN([Nx1], [Nx2]).

For some good choice of sequence ϵN , does ϵN f̂N converge to that of some “universal
random function” f from [0, 1]2 to R?

As we will see very soon, the story turns out to be a little more subtle due to the
actual nature of this universal random function f , but the conjecture is roughly that this
should be correct (and actually we will see that in this two-dimensional case ϵN should
be constant).

This is actually still a conjecture for most of the examples mentioned above! There
exist a couple of cases where this is known to be true (for instance when h is the expo-
nential of a uniformly concave function), but for case (1), this is (to our knowledge) an
open problem.

In these lectures, wewill actually not discuss these universality questions at all. Rather,
we will first focus on the special Gaussian subcase of example (3), for which one can:

• say a lot in the discrete case, which already gives rise to combinatorially very rich
mathematical objects;

• show very easily that (when suitably rescaled), the discrete models converge in
distribution as N → ∞ to their counterparts in the continuum.

This particular example is that of the discrete Gaussian Free Field (we will use the
acronym GFF for Gaussian Free Field throughout these notes). This corresponds to case
(3) above, when h(u) is the distribution function of a Gaussian random variable i.e.,
exp(−u2/2σ2) for some choice of σ2.

So, the discrete GFF is the probability measure on RΛN with density at (γx)x∈ΛN
a

constant multiple of
exp(−

∑
e∈EN

|∇γ(e)|2/(2σ2))

with the convention that γ = 0 on ∂N .
In this case, the obtained random function fN is a centred Gaussian vector. Hence,

its law is fully described via its covariance function, and if one controls this covariance
function well in the limit when N → ∞, one will obtain convergence to some Gaussian
object in the continuum space (with covariances given by limit of the covariances). Hence,
we can determine what the continuous object that we are looking for should be.
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LECTURE 2

Discrete Gaussian free field

2.1 Definition via density function
Before defining the discrete GFF, let us first introduce some notation that we will use
throughout these notes. We suppose that d ≥ 1.

When f is a function from Zd into R, we define f(x) to be the average value of f at
the (2d) neighbours of x. In other words,

f(x) =
1

2d

∑
y:y∼x

f(y),

where here and in the sequel,
∑

y:y∼x means that we sum over the 2d neighbours of x in
Zd.

Definition 2.1 (Discrete Laplacian). We define the discrete Laplacian ∆f of f to be the
function

∆f(x) := f(x)− f(x).

When D is a subset of Zd, we define its (discrete) boundary

∂D := {x ∈ Zd : d(x,D) = 1} and D := D ∪ ∂D.

We will denote by F(D) the set of functions from Zd into R that are equal to 0 outside
of D. When D is finite and has n elements, then F(D) is of course a real vector space of
dimension n.

We define the set ED to be the set of edges of Zd such that at least one end-point
of the edge is in D. For each F ∈ F(D) and each unoriented edge e ∈ ED, we define
|∇F (e)| := |F (x) − F (y)| as before, where x and y are the two endpoints of e. Note
that to decide about the sign of∇F , we would need to consider oriented edges, but that
|∇F (e)| and its square do not depend on the orientation of e. Similarly, when F1 and F2

are in F(D), we can define unambiguously the product ∇F1(e) ×∇F2(e). Finally, when
D is finite we define

ED(F ) :=
∑
e∈ED

|∇F (e)|2.

This quantity (or half of this quantity) is often referred to as the Dirichlet energy of the
function F .

Definition 2.2 (Discrete GFF via its density function). The discrete GFF inDwith Dirichlet
boundary conditions (also sometimes referred to as zero boundary conditions) on ∂D is the
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Figure 2.1: A domainD ⊂ Z2, formed by taking all z ∈ Z2 that lie inside a domainΩ ⊂ R2

(the boundary of Ω is represented by the dotted line). Solid discs represent points of D,
and open discs points of ∂D. Each edge in ED is depicted as a “spring”.

centred Gaussian vector (Γ(x))x∈D whose density function on RD at (γx)x∈D is a constant
multiple of

exp(−1

2
× ED(γ)

2d
) = exp(−1

2
× 1

2d

∑
e∈ED

|∇γ(e)|2)

with the convention that γ = 0 on ∂D.

Remark 2.3. We use the notation (γx)x∈D rather than (γ(x))x∈D to distinguish it as a fixed
vector. Recall that the quantity |∇γ(e)| when e has endpoints {x, y} is equal to |γx − γy|.

Note that by definition (γx)x∈D 7→ ED(γ) is a bilinear form, and it is also positive
definite (indeed if ED(γ) is 0, it means that |∇γ(e)| = 0 on all edges, so that γ is identi-
cally 0). Thus, the exponential above is indeed a multiple of the density function of some
Gaussian vector on RD, and this definition makes sense.

Recall that the law of a centred Gaussian vector is completely determined by its co-
variance function. It will turn out that the covariance function of the Gaussian Free Field
is very nice, and we will come back to this later.

2.2 Resampling procedure and consequences
Suppose that x is a given point in D. What is the conditional distribution of Γ(x) given
(Γ(y))y∈D\{x}? An inspection of the density function of Γ shows that the conditional
distribution of Γ(x) given (Γ(y))y∈D\{x} = (h(y))y∈D\{x} has a density at (γx)x∈D that is
proportional to

exp
(
− 1

2× (2d)

∑
y:y∼x

|γx − h(y)|2
)
.

Expanding this sum over y, we get that this is equal to

exp(−1

2
(γx − h(x))2)
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times some normalising function that depends only on h. In other words, this conditional
law is that of the Gaussian distribution N (h(x), 1).

Remark 2.4. Two important features.

• This conditional distribution depends only on the values h(y) at the neighbours y of
x (which is due to the interaction via nearest-neighbours only).

• The conditional law of Γ(x)− h(x) is a standard normal Gaussian (for all choices of
h(x)). This means that, for all x, Γ(x)−Γ(x) is a standard Gaussian random variable
that is independent of (Γ(y))y∈D\{x}.

The second point above has a number of important consequences.

• It indicates what the natural Markov chain (on the space of functions) is, for which
the law of theGFF is stationary. For this chain, theMarkovian step can be described
as follows: if we are given a function h in F(D), then we choose a point x ∈ D

uniformly at random, and replace the value of h(x) by h(x) + N where N is a
standard Gaussian random variable.

• It allows us to derive some interesting properties of the covariance function of Γ.
For all x and y in D, let us denote this covariance function by

Σ(x, y) = Σx(y) := E[Γ(x)Γ(y)].

Note that for each given x, y 7→ Σx(y) is a function in F(D). When x ̸= y are both
in D,

Σx(y) = E[Γ(x)Γ(y)] + E[Γ(x)(Γ(y)− Γ(y))]

= E[Γ(x)Γ(y)] =
1

2d

∑
z:z∼y

E[Γ(x)Γ(z)] = Σx(y).

Similarly,

Σx(x) = E[Γ(x)Γ(x)] = E[Γ(x)Γ(x)] + E[(Γ(x)− Γ(x))Γ(x)]

= (2d)−1
∑
z:z∼x

E[Γ(z)Γ(x)] + E[(Γ(x)− Γ(x))2] + E[(Γ(x)− Γ(x))Γ(x)]

= Σx(x) + 1 + 0.

In other words, the function Σx satisfies

∆Σx(y) = −1{y=x}

for all y in D. Note that (for each given x) this provides as many linear equations
as there are entries for Σx(·); these equations are clearly linearly independent, so
that these relations fully determine Σx.
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2.3 The discrete Green’s function
The previous analysis leads us naturally to quickly review and browse through some basic
definitions and properties related to the discrete Laplacian and Green’s function.

The discrete Laplacian Recall that for all F ∈ F(D), we defined for x ∈ D,

∆F (x) :=
1

2d

∑
y:y∼x

(F (y)− F (x)) = F (x)− F (x)

By convention, we will denote by∆DF the function that is equal to∆F inD and is equal
to 0 outside of D (mind that here we do not care about the value of ∆F outside of D, in
particular on ∂D).

Clearly, we can then view∆D as a linear operator fromF(D) into itself. ∆D is injective
using the maximum principle: if ∆DF = 0, then choose x0 ∈ D so that |F (x0)| =
maxx∈D |F (x)|, and because ∆DF (x0) = 0, this implies readily that the value of F on
all the neighbours of x0 are all equal to F (x0) (as otherwise, their mean value could not
be equal to F (x0)); this also holds for all neighbours of neighbours of x0 as well, and
eventually, since D is finite, this means that we will find a boundary point y for which
F (y) = F (x0); finally, since F = 0 on the boundary, it follows that maxx∈D |F (x)| =
|F (x0)| = 0.

Hence, ∆D is a bijective linear map from the vector space F(D) into itself. One can
therefore define its linear inverse map: for any choice of function u : D → R, there exists
exactly one function F ∈ F(D) such that ∆DF (x) = u(x) for all x ∈ D.

If we apply this to the previous analysis, it shows that indeed, y 7→ Σx(y) is the
unique function in F(D) such that its Laplacian ∆D in D is the function y 7→ −1{y=x}.
This function has a name...

The Green’s function Let (Xn)n≥0 be a simple random walk in Zd, with law denoted
by Px when it is started at x. (That is, Xn = x + Y1 + · · · + Yn where (Yi)i≥1 are
independent and identically distributed, equal to+ej or−ej each with probability 1/2d,
where (ej)1≤j≤d are the standard basis of unit vectors in Zd). Let τ = τD := inf{n ≥ 0 :
Xn /∈ D} be its first exit time from D.

Definition 2.5 (Green’s function). We define the Green’s functionGD inD to be the func-
tion defined on D ×D by

GD(x, y) := Ex

[τ−1∑
k=0

1{Xk=y}

]
.

By convention, we will setGD(x, y) = 0 as soon as one of the two points x, y is not inD.

Proposition 2.6. The Green’s function GD is the inverse of −∆D, and it is equal to Σ.

14



Proof. We will use a slightly convoluted, but hopefully instructive, strategy to prove this
(see the exercise below for a more direct approach). The idea is that the Markov property
of the simple random walk immediately enables us to determine the Laplacian of the
function gD,x(·) = GD(·, x) in D (note that gD,x ∈ F(D), as gD,x is equal to zero outside
of D). Indeed, we have that for all y ̸= x in D, ∆DgD,x(y) = 0, simply because

GD(y, x) = Ey

[∑
k≥1

1{Xk=x,k<τ}

]
=

∑
z:z∼y

1

2d
GD(z, x),

where we have used the Markov property at time 1 in the first identity. Also, the very
same observation (but noting that at time 0, the random walk starting at x is at x) shows
that ∆DgD,x(x) = −1. Hence, gD,x is a function in F(D) satisfying

∆DgD,x(y) = −1{x=y}

for all y in D. Since ∆D is a bijection of F(D) onto itself, the function gD,x is in fact the
unique function in FD with this property. We therefore conclude that for all x and y in
D, Σ(x, y) = GD(x, y).

This provides the following equivalent definition of the discrete Gaussian Free Field:

Definition 2.7 (Discrete GFF via the covariance function). The discrete Gaussian Free
Field inDwithDirichlet boundary conditions on ∂D is the centredGaussian process (Γ(x))x∈D
with covariance function GD(x, y) on D ×D.

Remark 2.8. We see that, as opposed to the first definition, this second equivalent definition
actually also works when D is infinite, so long as GD is well-defined. That is, as long as the
random walk inD, killed when it reaches ∂D, is transient. In other words, the definition can
also be used for any infinite subset of Zd when d ≥ 3 (because the simple random walk on
Zd is transient), or for any infinite subset D ̸= Zd when d = 1, 2.

Remark 2.9. The two definitions are equivalent. It is a matter of taste which to use, when
one wants to derive properties of the GFF.

Note that ifD has n points {x1, . . . , xn}, we can view the functions GD, −∆D and Σ
defined on D ×D as n× n matrices.

Exercise 3. (i) Show that

GD(x, y) =
∑
k≥0

#{paths x→ y in k steps within D} ×
[ 1

2d

]k
.

Deduce that GD(x, y) = GD(y, x)
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(ii) Consider the matrix PD := I +∆D Show that

Px[Xk = y, k < τ ] = (PD)
k(x, y),

where (PD)
k is the k-th power of the matrix PD, and by writingGD(x, y) as a sum in

terms of the (PD)
k, deduce that GD is equal to the inverse of (I − PD) = −∆D.

Now we would like to ask: is there an analogue of the Markov property for the simple
random walk that extends to the setting of the discrete GFF? In this section we will use
the more hands-on definition of the GFF via density functions, as it provides a little more
insight.Note that we have defined the discrete GFF in any finite subset ofZd (in particular,
this set does not need to be connected).

2.4 The GFF with non-zero boundary conditions
In view of our intuitive description of the GFF, it is natural to generalise our definition
to the case of non-zero boundary conditions. More precisely, suppose that f is some
given real-valued function defined on ∂D. Then, the definition of the GFF via its density
function can be extended as follows:

Definition 2.10 (Discrete GFF with non-zero boundary conditions, via its density func-
tion). The discrete GFF in D with boundary condition f on ∂D is the Gaussian vector
(Γ(x))x∈D whose density function on RD at (γx)x∈D is a constant multiple of

exp(−1

2
× ED(γ)

2d
),

with the convention that γ = f on ∂D. Note that the values of f on ∂D are implicitly used in
the expression of ED(γ) via the terms |∇γ(e)| for those edges e ∈ ED having one endpoint
in ∂D.

In other words, instead of fixing the height of Γ on ∂D to be 0, we now fix it to be f .
Then Γ is still a Gaussian process, but it is not necessarily centered.

Looking at the expression of the density function for Γ, we can deduce the following:
suppose that (Γ(x))x∈D is a GFF in D with boundary condition f on ∂D and that O is
some given subset of D. Then, the conditional law of (Γ(x))x∈O given (Γ(x))x/∈O will be
a GFF in O with boundary conditions given by the (random) function fO on ∂O that is
equal to the observed values of Γ on ∂O. We can rephrase this in a form that will be
reminiscent of the simple Markov property of random walks

Proposition 2.11 (Markov property, version 1). The conditional law of (Γ(x))x∈O given
that (Γ(x))x/∈O is equal to (f(x))x/∈O is that of a GFF in O with boundary condition f |∂O.

From this we see why it is so natural to consider the GFF with non-zero boundary
conditions.
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Figure 2.2: The left-hand side is an example ofD ⊂ Z2 and O ⊂ D, where the vertices of
D \ O are marked with a cross, and the vertices of O are marked with a disc. The edges
of Z2 joining two points in D are represented by solid lines, and the edges with one
endpoint in D and one endpoint in ∂D are represented by dotted lines. The right-hand
side illustrates O, where here solid lines are edges joining two vertices in O and dotted
lines are edges with one endpoint in O and one endpoint in ∂O. The Markov property
says that if Γ is a GFF on the left graph, and we are given the values of Γ “on the crosses”,
then Γ restricted to the right graph has the law of a GFF in that graph with non-zero
boundary conditions.

Definition 2.12. When F1 and F2 are two real-valued functions defined on Zd and with
finite support, then we define

(F1, F2) =
1

2
× 1

2d
×

∑
x∈Zd

∑
y∈Zd,y∼x

(F1(y)− F1(x))(F2(y)− F2(x)).

Notice that

(F1, F2) =
1

2d
×

∑
x∈Zd

∑
y:y∼x

[
−F1(x)(F2(y)− F2(x))

]
= −

∑
x∈Zd

F1(x)∆F2(x) = −
∑
x∈Zd

F2(x)∆F1(x),

where we have deduced the last equality by symmetry.

We will also use the following definition: when f is a real-valued function defined on
∂D, we define the harmonic extension F of f to D to be the unique function defined in
D ∪ ∂D such that F = f on ∂D and ∆F = 0 in D.

Proposition 2.13. If (Γ(x))x∈D is a GFF with Dirichlet boundary conditions in D, and if
F is the harmonic extension to D of some given function f on ∂D, then (Γ(x) + F (x))x∈D
is a GFF in D with boundary condition f on ∂D.

Equivalently, one can of course restate this as:
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Proposition 2.14 (Markov property, version 2). If (Γ(x))x∈D is a GFF inD with boundary
conditions f on ∂D, and if F is the harmonic extension to D of f , then (Γ(x)− F (x))x∈D
is a GFF in D with Dirichlet boundary conditions.

Hence, the Gaussian vector (Γ(x))x∈D is characterised by its expectation (F (x))x∈D
and its covariance function Σ(x, y) = GD(x, y). The effect of the non-zero boundary
conditions is only to tilt the expectation of the GFF, but it does not change its covariance
structure.

Proof of Proposition 2.14. Let us consider a GFF Γ in D with Dirichlet boundary condi-
tions, and let F be the harmonic extension of f to D. Then if we define Γ̃ = F + Γ, by a
simple change of variables, Γ̃ will have a density at (γx)x∈D which is a multiple of

exp(−(γ − F, γ − F )),

with the convention that γ = f on ∂D. This (given that F is deterministic and har-
monic, so (γ − F, γ − F ) = (γ, γ) − 2(γ, F ) + (F, F ) = (γ, γ) + 2

∑
x γx∆DF (x) −∑

x F (x)∆DF (x) = (γ, γ)) is a multiple of

exp(−(γ, γ)) = exp(−1

2
× ED(γ)

2d
)

(using the same convention on γ). In other words, Γ is indeed a GFF inD with boundary
conditions f on ∂D.

Let us now introduce some notation. Suppose that Γ is a GFF in a finite subset D
of Zd with boundary conditions given by some real-valued function f on ∂D. Suppose
that B is some finite subset of D. We define O = O(B) := D \ B and then define the
following two new processes:

Definition 2.15. (The processes ΓB and ΓB)

• (ΓB(x))x∈D is the process that is equal to Γ in B and in O(B), it is defined to be
the harmonic extension to O of the values of Γ on ∂O. So the process ΓB can be
constructed in a deterministic way given f and the values of Γ on B.

• The process (ΓB(x))x∈D is then defined to be equal to Γ−ΓB . Clearly, ΓB(x) = 0 as
soon as x /∈ O, and ΓB + ΓB = Γ.

Combining our previous observations readily implies the following alternative state-
ment of the Markov property:

Proposition 2.16 (Markov property, version 3). The processes ΓB and ΓB are independent,
and ΓB is a GFF in O = D \B with Dirichlet boundary conditions.

18



One main feature in the statement above is the independence of ΓB from ΓB , i.e.,
that fact that ΓB does not depend on the values of Γ in B. Another equivalent way to
reformulate this result is therefore that conditionally on (Γ(x))x∈B , the conditional law
of (Γ(x))x∈D\B is that of a GFF in D \ B with boundary conditions given by the values
of Γ on ∂(D \B).

Note that the special case whereD \B is a singleton point {x} is exactly the resam-
pling property of the GFF that we mentioned earlier: the conditional law of the GFF at x
given its values at all other points is equal to a Gaussian random variable with variance
1 and mean given by the mean value of the GFF at the neighbours of x.

Remark 2.17. Since ΓB and ΓB are independent, and since we know that the covariance
functions of Γ and ΓB are GD and GO respectively, we get that

GD(x, y) = E[Γ(x)Γ(y)] = E[ΓB(x)ΓB(y)]+E[Γ
B(x)ΓB(y)] = E[ΓB(x)ΓB(y)]+GO(x, y),

so that the covariance function of ΓB is

E[ΓB(x)ΓB(y)] = GD(x, y)−GO(x, y) x, y ∈ D.

Exercise 4 (Deterministic and algorithmic discoveries of the GFF). Suppose that Γ is a
GFF inD with Dirichlet boundary conditions. Suppose thatD = {x1, . . . , xn}, and for each
j, define Bj = {x1, . . . , xj} and Oj = {xj+1, . . . , xn}.

By exploring the values of the GFF at the points {x1, x2, . . .} in turn, and iteratively
applying the Markov property described above, conclude that we can write

Γ(·) =
n∑

j=1

Nj ×
√
GOj−1

(xj, xj)× vj(·)

for n independent identically distributed centred Gaussian random variablesN1, . . . , Nn and
some functions (vj)1≤j≤n.

Exercise 5. Consider the subset ΛN = [1, N − 1]× [1, N − 1] of Z2 forN ∈ N. Show that
for suitable (m1,m2) ∈ N2

ψm1,m2(x1, x2) = sin(
π

N
x1m1) sin(

π

N
x2m2)

is an eigenvector of ∆ΛN
, and determine its eigenvalue. Use this to write an expression

for a Gaussian free field in ΛN with Dirichlet boundary conditions, as a sum of the form∑n
i=1 αifi where (α1, · · · , αn) are i.i.d N (0, 1) random variables and the fi’s are multiples

of an appropriate collection of the ψm1,m2 ’s.

Challenge (optional!): use this to show that GDN
((N/2, N/2), (N/2, N/2)) ≍ logN as

N → ∞.
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Figure 2.3: A simulation of Γ̃δ on a square.

2.5 Informal comments about the possible scaling limit
In this section, we use the above definition of the discrete Gaussian free field to formulate
some heuristics about how a “continuum Gaussian free field” on a subset of Rd could be
defined. This discussion is non-rigorous: a proper study of the continuum GFF will come
in the next lecture.

Suppose that d is some open subset of Rd for d ≥ 1. The idea is to approximate
the continuum process (Γ(x))x∈D that we want to define, using the GFF on a fine grid
approximation of D. For instance, one can do the following for δ > 0:

• define D̃δ = δZd ∩D to be (so an approximation ofD on the fine grid δZd when δ
is small;

• define Dδ = δ−1D̃δ = Zd ∩ (δ−1D) to be the (1/δ) blow-up of D̃δ : a subset of Zd;

• define the GFF Γδ on Dδ as in the previous section, and a GFF Γ̃δ on D̃δ by setting
Γ̃δ(x) = Γδ(xδ

−1);

• extend this random function Γ̃δ to all of Rd by (for instance) choosing Γ̃(y) = Γ̃(x)
for all y = (y1, . . . , yd) ∈ [x1, x1 + δ)× . . .× [xd, xd + δ) when x ∈ δZd.

In other words, Γ̃δ is a (extrapolated) GFF on the grid approximation D̃δ of D in δZd,
normalised in such a way that the variance of the difference between Γ̃δ(x) and the mean
value of its 2d neighbours in D̃δ is equal to 1 for all x ∈ D̃δ .

Now the philosophy is the following: when a centred Gaussian process converges
in law (which is exactly when all its finite-dimensional distributions converge), then the
limiting law is bound to be a centred Gaussian process as well, and the covariances of the
limit are the limits of the covariances (recall Exercise 1).

So, it is natural to look at what happens to the covariance function of Γ̃δ as δ → 0.
Let us collect here some observations and facts, leaving out any detailed proof:
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1. When x ̸= y in D, then it turns out that as δ → 0,

GDδ
(xδ−1, yδ−1) ∼ δd−2GD(x, y),

whereGD(x, y) is some positive function of x and y (called the continuum Green’s
function, see later. The main point to note is that this quantity converges when
d = 2, but tends to 0 when d > 2. A simple way to understand the formula above
is to note that the mean number of steps spent by the random walk before exiting
a compact portion of D is of the order of δ−2 (this 2 comes from the central limit
theorem renormalisation). On the other hand, in expectation, this time is spread
rather regularly among all points y (when y is not too close to x), and the number
of such points y is of the order of δ−d. Hence, we should not be surprised by the
coefficient δd−2.

2. As a consequence, when d = 2, we see that the covariances converge to something
non-trivial without any rescaling. In other words, one would like to simply take the
limit of (Γ̃δ(x))x∈D to define the continuum GFF in D. We already see that such a
limit is unlikely to be a continuous function, because the variance of the difference
between the values of Γ̃δ at two points that are δ apart inD will be of order 1, and
in particular will not go to 0. In fact, E[(Γ̃δ(x))

2] will grow like log(1/δ) as δ → 0:
see Exercise 5 for an example.

3. When d ≥ 3, things are even worse! In order to get a limit for the covariance
function, point (1) implies that we need to rescale Γ̃δ and to look instead at δ1−d/2Γ̃δ .
This time, it means that the variance between the value of δ1−d/2Γ̃δ at a point x and
its mean-value among the 2d neighbours of x in D̃δ is not only going to stay positive
as δ → 0, but will actually blow up. It therefore seems that in the limit, any obtained
process must be unbounded everywhere, and equal to±∞ simultaneously at each
point of D!

4. We finally observe that for x ∈ D the variance of δ1−d/2Γ̃δ(x) tends to infinity
as δ → 0 (when d = 2, this follows from recurrence of random walk in Z2). So,
any limiting process cannot possibly be defined as a random function, as it would
then be a centered Gaussian with infinite variance. We could try to fix this by
renormalising Γ̃δ by some constant ϵ(δ), so that the variance of ϵ(δ)Γ̃δ(x) converges
to something finite, and the process has a proper Gaussian limit. However, the
covariance function of the limit would then be 0 on {(x, y) ∈ D × D, x ̸= y},
so that the limiting process would consist of a collection of independent Gaussian
random variables (one for each point in the domain D). This is clearly not the
interesting process that we are looking for!

As we shall see, in a later lecture, the proper way to define the Gaussian free field in
the continuum will be to view it as a random generalised function rather than as a normal
(point-wise defined) function.
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LECTURE 3

Continuum Gaussian free field

We now turn to the continuum world, and we start our study of the continuum GFF (in
open subsets of Rd, d ≥ 2). Recall from the first lecture that our natural “universal func-
tion” with zero boundary conditions (the scaling limit of constrained random walks) on
an interval I ofR (i.e., when d = 1), was the Brownian bridge. Our goal here is to describe
the analogue of the Brownian bridge when the parameter-space is higher dimensional.
As we progress with this, the reader may find it interesting to draw analogies with (a)
the corresponding properties of Brownian bridges and (b) the corresponding properties
of the discrete GFF.

From now on, D will denote an open subset of Rd, d ≥ 2, with a regular 2 boundary
(for example, a smooth boundary will certainly be enough) and when d = 2, we will
require thatD ̸= R2 (this will ensure that the continuum Green’s function inD is finite).
Sometimes, we will add further conditions on D, such as requiring it to be bounded or
connected.

3.1 Warm-up and heuristics
Recap. The object that we would like to define should be some sort of random function,
or process, (Γ(x))x∈D. The process Γ should be a centered Gaussian process, and should
correspond to the (appropriately normalised) limit of the discrete GFF on a lattice approx-
imation D̃δ ⊂ δZd to D. Recall that the covariance function of the discrete GFF on D̃δ

(defined by rescaling the discrete GFF onDδ = δ−1D̃δ ⊂ Zd as in the previous lecture) is
the (rescaled) discrete Green’s function on D̃δ . We noted that the only way to take δ → 0
in order to get a limiting process with some non-trivial correlation structure appears to
be to first normalise the discrete GFF (at each level δ) in such a way that the (level δ)
discrete Green’s function converges to a non-trivial function inD as δ → 0. This limiting
covariance function should still be harmonic away from the diagonal and positive. In fact,
this already essentially characterises it as the continuum Green’s function GD in D.

So, given that the weak limit of Gaussian processes is a Gaussian process, it looks like
we are trying to define a centred Gaussian process (Γ(x))x∈D with covariance function
E[Γ(x)Γ(y)] = GD(x, y). As we have already pointed out in the warm-up chapter, this
does not appear to be possible, due to the fact that GD(x, x) = ∞. Formally, this would
mean that Γ(x) is a Gaussian with infinite variance for every x...

What can we do? In a different direction, if we suppose that D is bounded, and Γ has
covariance structure as described in the previous paragraph, we could formally consider

2meaning that for each z on the boundary and for B a d-dimensional Brownian motion started from z,
we have inf{t > 0, Bt /∈ D} = 0 almost surely
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the “integral” IΓ(1) of Γ(x) over D. Then, by Fubini, we would have

E[IΓ(1)2] =
∫
D×D

dxdy E[Γ(x)Γ(y)] =
∫
D×D

dxdy GD(x, y).

Now, as we will see in a moment, even if GD(x, y) explodes as y → x, it is easy to see
that for each given x,

∫
D
GD(x, y)dy is finite (one can write this in terms of the expected

exit time of D by a Brownian motion started from x). Thus the formal variance of IΓ(1)
is actually finite. So even if for each given x, Γ(x) does not make sense as a Gaussian
random variable, it seems that IΓ(1) should be a Gaussian random variable with finite
variance.

More generally, for any given continuous test function f with compact support inD,
it turns out that the integral

GD(f, f) :=

∫
D×D

dxdy f(x)f(y)GD(x, y)

is absolutely convergent. This in turn indicates that one should be able to define a quan-
tity IΓ(f), that is a centred Gaussian random variable with variance given by GD(f, f),
and can be formally interpreted as

∫
D
f(x)Γ(x)dx.

Finally, if f1 and f2 are two continuous functions with compact support in D, then
the same argument indicates (formally) that

E[IΓ(f1)IΓ(f2)] =
∫
D×D

dxdyf1(x)f2(y)GD(x, y) =: GD(f1, f2) <∞.

In summary, it seems that it should be possible to define a family of random variables
IΓ(f) (indexed by the family of continuous functions f with compact support in D) as a
centred Gaussian process with covariance function E[IΓ(f1)IΓ(f2)] = GD(f1, f2).

This formal heuristic conclusion will be the starting point of our definition of the
continuum GFF. We will essentially define the GFF to be this Gaussian process IΓ (with
the specified covariance structure). In fact, we will just use the notation Γ(f) instead
of IΓ(f). In other words, while the value of the continuum GFF at given points will not
make sense, quantities that one can interpret as “mean” values of the GFF on bounded
open domains U (i.e., Γ(IU)) will be well-defined Gaussian random variables.

3.2 Basics on the continuum Green’s function
Here we state without proofs some properties of the continuum Green’s function. Some
proofs are left as an exercise (see below).

Suppose that D ⊂ Rd satisfies the conditions that we stated at the beginning of this
lecture, and that it is connected.

Let y ∈ D. Then, up to a multiplicative constant, there exists exactly one positive
harmonic function H̃y in D \ {y} such that H̃y(x) tends to 0 as x→ ∂D or x→ ∞. For
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example, when d ≥ 3 and D = Rd, the function H̃y must be equal to a constant times
Hy(x) := |x−y|2−d. In general, if we also setHy(x) = − log(|x−y|)when d = 2, then for
D ⊂ Rd H̃y must be a constant multiple ofHy−hDy , where hDy is the harmonic extension
intoD of the values given byHy(·) on ∂D. That is, hDy (x) is the unique harmonic function
in D that is equal to Hy(x) for x ∈ ∂D.

Definition 3.1. The Green’s function is defined to be this function

GD(x, y) := a−1
d (Hy(x)− hDy (x)),

where for all d ≥ 2, ad is the (d − 1)-dimensional Lebesgue measure of the unit (d − 1)-
dimensional sphere in Rd.

This function then turns out to have all the properties that one would expect from
the continuum analogue of the discrete Green’s function. In particular :

(1) it can be interpreted as an integral operator that turns out to be the inverse of−∆,
for ∆ =

∑d
j=1

∂2

∂x2
j
the continuum Laplacian; in other words, for f smooth and

compactly supported in D,

F (y) :=

∫
D

GD(x, y)f(x)dx

is smooth on D, tends to 0 on ∂D, and satisfies −∆F = f on D;

(2) it is non-negative definite, in the sense that for f as above, GD(f, f) ≥ 0;

(3) it is a symmetric function, i.e., GD(x, y) = GD(y, x);

(4) it can be interpreted in terms of expected occupation times by a d-dimensional
Brownian motion B stopped when exiting D. More precisely, if τ is the time at
which B first exits D, and Ex denotes the law of B when started from x ∈ D,
then 1

2
Ex[

∫ τ

0
f(Bt)] =

∫
D
GD(x, y)f(y)dy for any smooth compactly supported

function f on D.

Exercise 6. Prove item (1) above using the definition of GD via Hy and hy. Show further
that for f1, f2 smooth and compactly supported in D,

GD(f1, f2) =

∫
D×D

GD(x, y)f(x)f(y) dxdy =

∫
D

∇F1(x) · ∇F2(x) dx

where Fi is defined for each fi in the same way as F is from f . Deduce (2) and (3).

Exercise 7. Give explicit expressions for theGreen’s function in the case whenD = {(x, y) ∈
R2 : x2 + y2 < 1} is the unit disc, and when D = {(x, y) ∈ R2 : y > 0} is the upper half
plane.
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We defineM+
D to be the set of finite measures that are supported inD, and such that∫

D×D

GD(x, y)dµ(x)dµ(y) <∞.

We also define MD to be the vector space of signed measures µ+ − µ−, where µ+ and
µ− are in M+

D. We will omit the subscript D and simply write {M,M+}, unless we are
discussing various domains simultaneously.

One classMc of measures µ ∈ M is given by the set of measures of the form f(x)dx,
when f is continuous with compact support inD (and dx denotes the Lebesguemeasure).
It is easy to check that suchmeasures do lie inM, simply by considering the rate at which
GD(x, y) explodes as |x− y| → 0.

3.3 Definition of the continuum GFF
We are now ready to define the continuum GFF. As in the discrete case, there are several
possible ways to do this. We choose here to first define it as a random process.

Definition 3.2 (Continuum GFF). We say that the process (Γ(µ))µ∈M is a Gaussian Free
Field in D if it is a centred Gaussian process with covariance function

Σ(µ, ν) :=

∫
D×D

GD(x, y)dµ(x)dν(y).

In order to check that this definition makes sense, it suffices to check that this func-
tion Σ(µ, ν) is indeed a well-defined covariance function, i.e., that for any µ1, . . . , µn in
M and any real λ1, . . . , λn, ∑

i,j≤n

λiλjΣ(µi, µj) ≥ 0.

Note that the left-hand side is equal to Σ(µ, µ) for µ = λ1µ1 + . . . + λnµn, and the fact
that this quantity is non-negative follows from Exercise 6. So, the GFF in D does indeed
exist.

When f is a measurable function in D such that∫
D×D

|f(x)||f(y)|GD(x, y)dxdy <∞,

then µf = f(x)dx lies in M, and we will often write Γ(f) as a shorthand notation for
Γ(µf ). We can immediately note that for all λ ∈ R and all µ and ν inM, one has

Γ(λµ) = λΓ(µ) and Γ(µ+ ν) = Γ(µ) + Γ(ν) almost surely

(by simply noticing that in both cases the second moment of the differences between left
and right-hand sides vanish). It readily follows that the law of the GFF is characterised by
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this linearity relation and the fact that for each given µ inM, Γ(µ) is a centred Gaussian
random variable with variance Σ(µ, µ).

Let us stress once again that when dealing with processes with uncountable index
sets (such as M) one has to pay close attention to the positioning of “for all µ ∈ M” or
“for each given µ ∈ M” in statements such as the above. As an illustration, we would like
to mention straight away that for general randommeasures µ ∈ M (coupled to the GFF),
Γ(µ) is not necessarily a well-defined random variable (i.e. it is not necessarily measur-
able), and may not make any sense at all. This contrasts with Brownian motion, where
Bt can be defined for all t simultaneously, because one can choose it to be a continuous
function). So, the GFF cannot be viewed as a random function fromM intoR: this would
mean that one is able to define Γ(µ) for all µ ∈ M “simultaneously”, which turns out
not to be possible. On the other hand, we will be able to define it simultaneously for all
µ in certain nice subsets ofM (see the next lecture!)

3.4 Other boundary conditions
Suppose now that D is bounded and that H is a given harmonic function in D. Note
that the functionH may be unbounded near ∂D (this will typically happen when we will
discuss the Markov property of the continuum GFF). However, the harmonic function is
fully determined by its value on any neighbourhood of ∂D, so that one can (at least infor-
mally) think of it as the harmonic extension of “its trace on ∂D”. In other words, we can
view the information of a “boundary conditions” as the same information as the knowl-
edge of the entire harmonic function. This (and of course the corresponding features of
the discrete GFF) leads to the following definition:

Definition 3.3 (GFF with non-constant boundary conditions). We say that Γ̂ is a GFF in
D with boundary conditions given by H if Γ̂ = H + Γ, where Γ is a Dirichlet GFF in D.

The equation Γ̂ = H + Γ should be understood in the sense that

Γ̂(µ) =

∫
H(x)µ(dx) + Γ(µ)

for each µ ∈ M. If H is unbounded in the neighbourhood of ∂D, one can restrict the
definition to the set of measures µ in M with compact support in D to be on the safe
side (in order to be sure that

∫
H(x)µ(dx) is well-defined).

After having collected all these basic facts about the Green’s function, we can proceed
to study the GFF as introduced in Definition 3.2. We assume thatD is a connected domain
of Rd with regular boundary (and D ̸= R2 when d = 2).

3.5 The GFF as a random Fourier series, the GFF as a random gen-
eralised function

It is a classical fact from functional analysis that if D is bounded, then there exists an
orthonormal basis (φj)j≥1 of L2(D) that consists of the eigenfunctions of−∆, vanishing
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on the boundary of D. We denote the associated eigenvalues by (λj)j≥1.
Weyl’s law tells us that the number N(λ) of eigenvalues smaller than λ satisfies

lim
λ→∞

N(λ)

λd/2
= cdvol(D)

for some finite dimension-dependent constant cd.
Note that that (if Σ denotes the covariance of the GFF inD, as in Definition 3.2) then

one has

Σ(φi, φj) =

∫
D×D

GD(x, y)φi(x)φj(y) dxdy = −
∫
φi(x)∆φj(x) dx = λ−1

i 1i=j.

In particular, this means that (Nj :=
√
λj Γ(φj))j≥1 is a sequence of independent stan-

dard Gaussian random variables.
Conversely, one can actually start from such a family of i.i.d. centred normal vari-

ables (Nj)j≥1 and (re)construct the GFF. For instance, for any given L2 function f with
compact support inD, we can decompose f using the orthonormal basis (φj)j as f(·) =∑

j≥1 fjφj(·), where fj :=
∫
D
f(x)φj(x) dx and the sum is converging in L2. Then, we

can simply define

Γ(f) :=
∑
j≥1

Nj√
λj
fj (1)

(this sum converges in L2 as λj → ∞ and
∑

j f
2
j <∞).

In fact, for any fixed µ ∈ M, if we set µj :=
∫
D
φj(x)dµ(x) then the defining property

ofM implies that
∑

j≥1 λ
−1
j µ2

j <∞. Thus we can set

Γ(µ) :=
∑
j≥1

λ
−1/2
j µjNj,

where the sum also converges in L2. The obtained process (Γ(µ))µ∈M is easily seen to
be a GFF. Conversely, we can note that if we start with a GFF Γ, we can also recover the
variables Nj = Γ(φj)/

√
λj .

We may wonder whether it is actually possible to use this description of the GFF to
define (Γ(f))f∈S for all f in some class S of smooth functions simultaneously. Recall that
we formally interpret Γ(f) as “

∫
f(x)Γ(x) dx”. Then the above expressions suggest that

(formally),

Γ(f) =
∑
j≥1

[ Nj√
λj

∫
D

f(x)φj(x)dx
]
=

∫
D

f(x)
[∑
j≥1

Nj√
λj
φj(x)

]
dx

so that one could try to say, in some appropriate space of generalised functions, that

Γ(·) =
∑
j≥1

Nj√
λj
φj(·). (2)
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To make sense of this, let us take some s > d/2 − 1 and consider the set of functions
f ∈ L2(D) that satisfy

∥f∥2Hs :=
∑
j≥1

λsjf
2
j <∞

(note that the set Hs of such functions equipped with the corresponding inner product
is a Hilbert space; it can alternatively be characterised, when s is even, as the space of L2

functions in D which have s/2 generalised derivatives also lying in L2). Defining Γ(f)
by (1) as above, we see, using Cauchy–Schwarz that

∑
j≥1

| fj√
λj

Nj| ≤
[∑
j≥1

λsjf
2
j

]1/2
×
[∑
j≥1

N 2
j

λ1+s
j

]1/2
.

Moreover, by Weyl’s law we know that
∑

j≥1 λ
−β
j is finite as soon as β > d/2. We can

therefore deduce that almost surely

C(s) :=
∑
j≥1

N 2
j

λ1+s
j

<∞,

because ∑
j≥1

E[N 2
j ]

|λ1+s
j |

=
∑
j≥1

1

λ1+s
j

<∞.

Hence, we can control the absolute convergence of the sum in (1) for all f ∈ Hs simul-
taneously. In other words, we can almost surely define Γ(f) for all f ∈ Hs at once.
Furthermore, we see that for all f, g in Hs,∣∣Γ(f)− Γ(g)

∣∣ = ∣∣Γ(f − g)
∣∣ ≤ ∑

j≥1

∣∣∣fj − gj√
λj

Nj

∣∣∣ ≤ C(s)1/2 × ∥f − g∥Hs

(with the obvious definition for gj). This shows that Γ can be viewed as a random gener-
alised function, when acting on the space Hs of test functions, and the map f 7→ Γ(f)
is then continuous on Hs. In fact, this exactly says that Γ can be viewed as a random
element of a Sobolev space of negative exponent.

3.6 Translation/scale/conformal invariance of the GFF
When d > 2, since for any connected D, r > 0 and x, y in D we have GrD(rx, ry) =
r2−dGD(x, y), it follows that

rd/2−1ΓrD
(law)
= ΓD.

Moreover, for any a ∈ Rd, it is clear that GD+a(x+ a, y + a) = GD(x, y), and so

ΓD+a
(law)
= ΓD.
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Observe here that d = 2 plays a special role: it is the only dimension in which the Gaus-
sian free field is scale invariant.

In fact, when d = 2, the GFF has a stronger property than scale invariance, known as
conformal invariance. More precisely, suppose that D and D̃ are two conformally equiv-
alent domains in the plane (i.e. there exists an angle-preserving bijection Φ fromD onto
D̃). Then one can show that GD(x, y) = GD̃(Φ(x),Φ(y)). Hence, if the GFF were an
actual function, then the law of this function would be conformally invariant. In reality,
it is conformally invariant “as a generalised function”, which means that for any µ ∈ M,
ΓD(µ) is distributed like Γ̃D̃(µ̃) (where this Γ̃D̃ is a GFF in D̃), for µ̃ the push-forward
measure defined by

µ̃(Φ(A)) :=

∫
A

µ(dx)|Φ′(x)|2.

In other words, if Γ is a GFF inD and if we define for each µ̃ inMD̃ the random variable

Γ̃(µ̃) = ΓD(µ), µ(A) :=

∫
Φ(A)

µ̃(dy)|(Φ−1)′(y)|2,

then Γ̃ is a GFF in D̃.

LECTURE 4

The Markov property

The goal of this section is to describe the continuum analogue of the Markov property
for the discrete GFF. There are as usual several ways to tackle this, and we will present
one route, which is possibly not the most elegant one!

Let us fix some compact subsetA ofD, such that the boundary ofO := D\A is regular
as well. Let Γ denote a continuum GFF in D. Our goal, inspired by the corresponding
results in the discrete case, is to decompose Γ into the sum of two independent processes
ΓA and ΓA, i.e., Γ(µ) = ΓA(µ) + ΓA(µ) for all µ ∈ MD, where:

• the process ΓA is a continuum GFF in O = D \A (with zero boundary conditions);

• the field ΓA should be thought of as “equal to Γ inA” and to be defined inO as the
harmonic extension hA of the “values of Γ on ∂O”.

Let us first comment on why it is possible to make sense of the harmonic function
hA described above, even though Γ is not defined pointwise (so it is a priori not so clear
what this “harmonic extension” should mean).

The idea is the following: if g is a (nice) function defined on ∂O, then one can define
the harmonic extension F of g into O, by setting F (z) =

∫
∂O
νz,∂O(dy)g(y) for each

z ∈ O where νz,∂O is a measure on ∂O called “harmonic measure” seen from z. (One
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way to define ν(z, ∂O) is as the law of the first point on ∂O that a (two-dimensional)
Brownian motion started from z hits). With this in mind, it makes sense to define

hA(z) := Γ(νz,∂O) (3)

(it is quite straightforward to check that νz,∂O ∈ MD so that this makes sense for the
GFF Γ). Note that this definition immediately implies that (hA(z))z∈O is a centred Gaus-
sian process. Moreover, setting HD,O(x, y) = GD(x, y) − GO(x, y) for x, y ∈ D (with
GO(x, y) ≡ 0 outside of O) we have

E[hA(z)hA(z′)] = E[Γ(νz,∂O)Γ(νz′,∂O)] =
∫
∂O×∂O

GD(x, y)νz,∂O(dx)νz′,∂O(dy)

=

∫
∂O×∂O

HD,O(x, y)νz,∂O(dx)νz′,∂O(dy) +

∫
∂O×∂O

GO(x, y)νz,∂O(dx)νz′,∂O(dy),

and sinceGO(x, y) is 0 on ∂O andHD,O(x, y) = Hx(y)−hDx (y)−Hx(y)+h
O
x (y) defines

a harmonic function in O when one (either) of the arguments is fixed, we obtain that

E[hA(z)hA(z′)] = HD,O(z, z
′). (4)

One would now like to say that hA can actually be realised as a harmonic function,
and indeed this turns out to be the case (using the definition of νz,∂O and the fact that
any continuous function satisfying the mean value property - that its average on any
circle is equal to its value at the centre - is harmonic).

Lemma 4.1 (Defining the harmonic extension). There exists a continuous version of the
process (hA(z))z∈O, and this continuous version is a harmonic function in O.

It is important to note that when ∂O ⊂ D is a deterministic set, then the harmonic
function hA will not be bounded in any neighbourhood of ∂O. It will typically start
oscillating pretty wildly: this corresponds to the fact that Γ is not defined pointwise on
∂O.

The next step in our quest for the Markov property is to define the random variable
ΓA(µ) for µ ∈ M. Remembering the initial goal, that ΓA should be equal to Γ on A and
equal to hA on O, we might first try to define it as

Γ(µ1A) +

∫
O

hA(x)µ(dx).

However, care is required, because it is not clear whether the integral of hA is well-defined
in the usual sense. As we have already mentioned, the function hA will not be bounded
near ∂A and indeed, in general, it might happen that

∫
|hA|µ(dx) = ∞ for somemeasure

µ. One way around this is to instead define another measure νµ,∂O which is the integral
with respect to µ(dx)1O of νx,∂O, and to then define

ΓA(µ) := Γ(µ1A) + Γ(νµ,∂O), (5)

(which seems a good alternative toΓ(µ1A)+
∫
O
hA(x)µ(dx) given thathA(z) = Γ(νz,∂O)).

To justify this definition, we need the following.
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Lemma 4.2. For each µ ∈ D, we have that νµ,∂O ∈ MD.

Proof. For this, first assume that µ is non-negative, and note that by the same reasoning
giving (4):∫

∂O×∂O

νµ,∂O(dz)νµ,∂O(dz
′)GD(z, z

′)

=

∫
O×O

µ(dx)µ(dx′) [

∫
∂O×∂O

νx,∂O(dz)νx′,∂O(dz
′)GD(z, z

′)]

=

∫
O×O

µ(dx)µ(dx′)HD,O(x, x
′) ≤

∫
D×D

µ(dx)µ(dx′)GD(x, x
′) <∞.

The justification for general µ ∈ M follows by splitting µ into positive and negative
parts.

Since µ1A and νµ,∂O are deterministic measures (i.e., deterministic functions of µ), it
follows that the process ΓA defined by (5) is a centred Gaussian process. It also fulfils the
properties that we are looking for: it is nothing else than Γ when restricted to measures
supported onA, andwhen restricted tomeasuresµwith compact support inO, it is exactly
the integral

∫
hA(z)dµ(z). Similarly to (4) one easily checks that

E[ΓA(µ)ΓA(µ
′)] =

∫
D×D

HD,O(x, y)µ(dx)µ
′(dy) =

∫
D×D

(GD(x, y)−GO(x, y))µ(dx)µ
′(dy)

for µ, µ′ ∈ MD. This is also exactly what we want because if we finally define

ΓA := Γ− ΓA,

then if we can show that the processes ΓA and ΓA are independent (we will do this
shortly), then the covariance function of ΓA must be given by the difference between
that of Γ and that of ΓA. That is, for any µ ∈ M,

E[ΓA(µ)2] =

∫∫
dµ(x)dµ(y)GO(x, y),

i.e., the process ΓA is a GFF in O.
Finally, to show that (ΓA(µ))µ∈M and (ΓA(µ))µ∈M are independent, observe that for

all ν supported in A and all µ supported in O, we have

E[Γ(ν)ΓA(µ)] =

∫
A×O

dν(x)dνµ,∂O(y)GD(x, y)

=

∫
A×O

dν(x)dµ(y)GD(x, y) = E[Γ(ν)Γ(µ)].

That is, E[Γ(ν)ΓA(µ)] for all such ν, µ. This implies the independence between Γ(ν) and
ΓA(µ). On the other hand, the definition of ΓA means that it is measurable with respect
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to {Γ(ν) : ν supported in A}. Thus we obtain the independence between ΓA(µ) and ΓA,
for all µ supported in O. Since ΓA vanishes on all measures supported in A, we get the
desired independence of ΓA and ΓA.

Let us summarise the above discussion with the following proposition.

Proposition 4.3 (Markov property of the continuum GFF). Let D and A satisfy the as-
sumptions stated at the beginning of this section, and Γ be a GFF in D. Then defining

ΓA(µ) = Γ(µ1A) + Γ(νµ,∂O); ΓA(µ) = Γ(µ)− ΓA(µ)

for all µ ∈ M as above, one has that:

• ΓA and ΓA are independent Gaussian processes;

• ΓA has the law of a Gaussian free field in O;

• there exists a version of ΓA such that ΓA|O is almost surely equal to a harmonic func-
tion hA in O.

Remark 4.4. One can also derive the Markov property using the definition of the GFF as the
limit of a sum of weighted eigenfunctions - as discussed at the start of this lecture. Roughly
speaking, it is a consequence of the fact that the spaceH1 admits an orthogonal decomposi-
tion into the space of functions that are harmonic in O, and the space of functions that are
supported in O.

Exercise 8. LetD = {(x, y) ∈ R2 : x2 + y2 ≤ 1} be the unit disc of R2 and for r < 1, let
ρr denote uniform measure on the circle centered at 0 with radius r. If Γ is a Dirichlet GFF
in D, show that the process (Γ(ρe−t))t≥0 is well defined and that its law is that of a linear
Brownian motion.
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