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The aim of these notes is to provide an introduction to complex Gaussian multiplicative
chaos. GMC is formally defined by taking the exponential of a Gaussian log-correlated
field, or in other words, which corresponds to the expression

M7 (dz) := X @dy, (0.1)

where v € C and X is a Gaussian field indexed by R? whose covariance kernel has the
form

1
K(z,y) = 10gm + L(z,y)

where L is a continuous function.
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Since K (x,z) = o there is no way to define (X (z)),cps and we can only make sense of
the field X after integrating it against test functions. Hence giving a meaning to (0.1) is
not a priori an easy task.

The problem of providing a mathematical construction of M that gives a meaning to
(0.I)) was first considered by Kahane in [8] in the case where v € R, we refer to [20} 21]
for reviews on the subject. The case of v € C was considered only more recently, see for
instance [B, 6], [7, [12], 10, 14, 15] and references therein.

One of the main motivation that drove the research on the subject recently is the
connection with theoretical physics (Quantum field theory [3,9]) and statistical mechanics
(connection with the Coulomb gaz via the Sine-Gordon representation [16], with the Ising
model [7] etc...). Some other application exists for instance GMC was first suggested
as a model for three dimensional turbulence [19], we refer to [2I] for more details on
applications.

The standard procedure to define the GMC is to use a sequence of approximation of
the field X, consider the exponential of the approximation and then pass to the limit. In
these note we are going to restrict to the case where the covariance kernel of the field is a
martingale approximation, (X¢)¢>q.

1. LOG-CORRELATED FIELDS

A very brief recall. Given a probability space (2, F,P) and a set 7 and random process
indexed by T is a collection of random variables (Z;)i7. We say that a process Z’ is a
modification of Z if

1.1. Defining a smooth Gaussian field on R? and integrating it against test
functions. Let J(z,y) : R x R? — R be an Hélder continuous positive definite kernel.
Positive definite means that for every k and (z;)¥_, € (R%)* we have

k
Z )\i)\jJ(xi,a:j) =0 (1’1)

i,j=1

The reader can check that (L)) is equivalent to
ijd p(x)p(y)J (z,y)dzdy > 0. (1.2)

for every p € C.(R%) the set of continuous functions with compact support. Using Kol-
mogorov extension theorem, we can define on a probability space (2, F,P) a centered
Gaussian field (Y ()),egae indexed by R? with covariance J. Using Kolmogorov-Chensov
criterion, since J is Holder continuous, there exists a modification of Y which is such that
every realization of the random function 2 ~— Y () is continuous in R? (in these notes we
always consider the most regular modifications of a process when they exist).

Letting C.(R%), we can define

Y, py:= fRd Y (z)p(x)dx. (1.3)
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By the mean of approximation by Riemann sums, one can check that (Y, p>p€CC(Rd) is a
centered Gaussian process and that its covariance is given by

T ) = B0V D) = [ ola)o' )Tz )dady. (1.4)

1.2. Defining a Gaussian field with a log-correlated covariance. Let K : R xR? —
R U {00} being positive definite kernel that can be written in the form
1
|z =yl
where |-| - when applied to an element of R? - denotes the Euclidean distance, by convention

log(1/0) = o0, and L is a continuous real valued function. The interpretation of positive
definite here is that given in (L2]) that is

Vpe CL(RY), &MMM@K@MM®>O (1.6)

Since K diverges on the diagonal, it is not possible to define a centered Gaussian field
X indexed by R? with covariance function K. However, using (I4), we can define a
process indexed by C.(R%) which correspond to how such a field would integrate against
test functions. We define K , a bilinear form on C,(R?) (the set of compactly supported
continuous functions) by

K(p,p) = ijd K(z,y)p(z)p' (y)dady. (1.7)

Since K is positive definite (in the sense given by (), one can define a centered Gaussian
process (X, p) e, (re) With covariance K.

1.3. A log-correlated field as a distribution. So far we have only defined (X, p) ¢, (RY)

as a collection of random variables. Given p, p’ € C.(R%) and a, 3 € R we have almost
surely

(X,ap+Bp')y = alX, p) + B(X, p), (1.8)
(the difference between the Lh.s. and the r.h.s. is a centered Gaussian with zero variance).
However, this does not imply that p — (X, p) is a linear application since in (L&) holds
with probability one only for a fixed value of p, o/, 3, 3.

It is possible (we do not provide a proof in these notes) that there exist a modification
of the process X which takes value in the space of distribution (in the sense of Schwartz).
For this modification, (L8] holds for every realization of X and every p, o' € C*(R%).

1.4. The case of star-scale invariant kernels. Let x € C*(R%) be a smooth compactly
supported function which is such that

(a) k is radial, meaning there exists % : Ry — R such that Yz € R, k(z) = &(|z|)

(b) K(0) =1, R(u) =0 for u > 1 and K(u) = 0 for u € (0, 1).

(c) The kernel (z,y) — r(x — y) is definite positive. We have for every p € C.(R%)

f K(x —y)p(z)p(y) = 0.
R2d

Remark 1.1. One possibility to define k as above is to start with a non-negative radial
function 0 € C°(R?) whose support is included in B(0,1/2) (B(z,r) denotes the Buclidean
ball of center x and radius r) and such that §6?(z)dx = 1 and define r(z) = 0 = 0(x).
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We define
Qi(x,y) := k(e (z —y)),

Ki(x,y) := L Qs(z, y)ds, (1.9)

K(z,y) := L Qs(z,y)ds.

For z # 0, regrouping integrals and setting u = t — log(1/|z|) we have

e log( 1/]z])

r(elz)dt — J 1dt
0

L(z) := K(0,2) — log(1/]z]) = J

0

tog(1/12) log(1/12)
- f (el — 1]dt f e ™) — 1]du.  (1.10)
0 0

Sending |z| to zero we see that L(z) can be continuously extended at 0. Since we have

1 _
K(z,y) = 10gm + Lz —y),

the kernel K and log-diverging in the sense of ([L5]). From assumption (c¢) it is positive

definite (L.6I).

In these notes, we are going to restrict ourselves to the study of GMC for star-scale
invariant kernel. This may seem like a big loss of generality, but it turns out that under
some small regularity assumption on the function L, kernels of the form (5] can be shown
to locally have an almost star-scale invariant. We refer to [6] for the definition of these
notion, but the essential point is that this observation allows to extend results proved
for star-scale invariant kernels to all sufficiently regular kernels of the form (L5l (see for
instance [I1, Appendix C] or [1]).

1.5. Martingale approximation of a log-correlated field. We can define a centered
Gaussian process (X¢(7))¢=0 erd, Whose covariance is given by

E[Xs(2) X (y)] = Ksai(z,y)- (1.11)

Such a process can be defined since K.¢(x,y) defines a positive definite kernel (in the
sense of (1)) on (R x R%)2. Moreover, since the function is Hélder continuous, we
can assume (considering an adequate modification of the process) that (X;(z));>0 yera 18

continuous in space and time. Note that for any = € R? we have
E[Xs(x)X¢(2)] = Ksat(z,2) = s At

Hence (since we have continuity) (X;(x))¢>ois a standard Brownian motion. Furthermore,
if one sets

F ::a<XS(x), se 0,1, a:e]Rd), (1.12)

the process (X;(x))i=0 is a margingale with respect to the filtration (F;);>o. Indeed if
0<u<s<tandz,yeR? we have

E[(Xt(2) — Xs(2)) Yu(y)] = Kiau(z,y) — Kspulz,y) =0, (1.13)
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so that X;(x) — X,(z) is independent of Y, (y) for u € [0,s] and y € R? and hence of F.
The bracket between (X;(x)) and (X;(y)) is simply obtained by observing that

(X.(2), X.(y)) = E[X;(2) Xo(y)] = Ko, y) = jo Qu (2. y)ds (1.14)

(we use the same symbol for duality bracket and martingale bracket but the meaning can
clearly be inferred from the context). Ultimately, the field (X;(-)):>0 converges in the limit
to a field with covariance K in the following sense. If one sets

Xip)i= | Xilw)pla)do
for p € C.(R%) then one can define
(X, py = i {Xy, p), (1.15)
where the convergence holds in L? and almost surely (((X¢, p))¢>0 is a continuous mar-
tingale which is bounded in L?). The process X defined by (LI5) has covariance K

defined by (7). It can additionally be shown that with probability 1, the convergence
lim; . X; = X holds in the space of distribution.

2. EXPONENTIATING A log-CORRELATED FIELD

2.1. Definition of the martingale M. Let us assume that (X;(z));>¢ serd is a contin-
uous field with covariance (LII]) and let X denote the limit of X; in the sense given in
(LI5). Given v € C, in an effort to define a random distribution which corresponds to the

formal definition
M7 (dz) = X da, (2.1)
we define for every f e C.(R?)

2
M(f) = | fa)e T da. (2.2)
Since X;(z) is a Gaussian variable With variance ¢ we have (using Fubini)
E[M(f)]:=| f(z)E [evxt@)—”z] de = | f(z)dz. (2.3)
R4 Rd

The term v2¢/2 in the exponential in (1)) is a normalizing factor which is present to make
the expectation of M, independent of ¢. It also allows to achieve the following property

Proposition 2.1. Given v € C and f € C.(RY) the process (M (f))i=0 is an (Fy)-
martingale.

Proof. Indeed we have (using Fubini)

BDM() | 7 = [ @E|eX @ | 7] a0

N - (2.4)
[e’“Xthsw»” 4= fs} dz

= | o

Now since X;(z) — Xs(z) is a Gaussmn of variance t — s which is independent of Fs (cf.

(L13)) we have
BIV () | 7] = [ )™ de = (). (2.
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0

A promising candidate to rigorously define M? in (2I]) would be lim;_,o, M, (f). The
existence and non-triviality of this limit can be established in one proves that (M, (f)):=0
is uniformly integrable. Indeed in that case lim o M, (f) = Mg (f) exists almost surely
and one has

E[Mg ()] = y f(z)da. (2.6)

2.2. The L? phase. The easiest way to prove uniform integrability is to show bounded-
ness in L? so as an introduction let us perform this computation and see where it leeds
us.

Proposition 2.2. Given v € C with |y|> < d and f € C.(RY) the martingale (M, (f))t=0
is bounded in L*. In particular this implies that the limit

M(f) = Jim M (f)
exists almost surely, that the convergence also holds in L? and that

EM%Uﬂ=ff@Mw

R4
Proof. We have

BIOR P = [ AT | @ 5 oy

‘f F(@)F(y)eh P Eew aady (2.7)
RQd
<f|ﬂwvwm““wHMy

R2d

We have eV*K@v) < Cla — y|~P” from (TF) and thus the integral in the last line is
finite. O

When |v| > d, the limiting behavior of M, (f) is harder to determine but research efforts
have allowed to determine it for a large set of values of ~.

2.3. Convergence as a distribution. Note that since f — M, (f) is a linear application
we have for any fixed o, 8 € R and f, g € C.(R?) we almost surely have

Mg (af + Bg) = aMg,(f) + BMg(9)- (2.8)

However as it was the case in (L)) the above is not sufficient to say that Mg, defines a
linear application on C.(R%). In fact the result (Z.2) does not ensure that MJ,(f) converges
simultaneously for every f.

It is in fact possible to show that M, (-) converges in a space of distribution (namely a
Sobolev space of negative index), see for instance [12], Section 6].
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P

FIGURE 1. The phase diagram of the complex GMC in the complex plane. So far the
convergence of M, has been established everywhere except for Prr\R.

3. THE PHASE DIAGRAM FOR THE COMPLEX GMC

In this section, we consider that v = a + i € C (with a and § being real numbers).
We split the complex plane into three open regions (with overlapping boundary) each
corresponding to a different asymptotic behavior for M, (f).

Pri={a+if :a2+ﬁ2<d}u{a+zﬂ : lal € (\/d/2,v/2d) ; |a|+|ﬁ|<\/ﬁ},
Pt = {a+iﬁ Clal + 18] > v2d ; |o] > d/Q},

77111:={Oz+i,3:042+,32>d;|04|< d/Q}.
(3.1)

For simplicity in the remainder of the paper, we are going to consider (without loss of
generality) that a, 8 = 0.

The region Pr corresponds to the subcritical phase. For « € P it has been proved
[6l 12] that M, is uniformly integrable and thus converge to a limit. The region P is the
maximal open region on which Proposition can be extended.

Theorem 3.1. If v € P; and f € C.(R) then the martingale M, (f) is bounded in LP for

p e [1, @ v 2). In particular it is uniformly integrable and

Jim M7 () = ML()).

The region Pj corresponds to a phase where the behavior of M, is dominated by
the extreme values of X;. A different normalization is required to obtain a limit. It is
o[ Lo=v2d)®—p?

conjectured that t5e ( : )Mg (+) converges in law to an atomic distribution (a
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countable weighted sum of Dirac masses). This result has been proved in the case when
v € R -that is = 0, and o > v/2d, see [I§] - and also in the whole of Py for other related
models [4} [17].

The region Py corresponds to yet a different asymptotic behavior of M,'. In the limit,
rapid the local variations of the argument of ¢’ due to the term e®*Xt(®)  produce a
complex Gaussian white noise with a random intensity. In order not to avoid the hassle of
defining such a white noise, let us state the convergence result only for a fixed function f

Theorem 3.2. If v € Py and f € C.(R) then there exists a constant . (which depends
on d, v and on the kernel K) such that the following convergence in law occurs
(d=1r)? - ,
S M () S22 /MBS N+ iN) (3.2)
where N1 and Ny are two independent standard Gaussian which are independent of X
(and thus of M2). Furthermore the following joint convergence holds in law

(6,21 EE O (1)) 22 (X ME( TN + iA2)) (3.3)

Remark 3.3. In the above theorem, the convergence in the above theorem holds only
in law. The equation B3] actually guarantees that convergence in probability cannot
occur. Some how, local variation of X create in the limit Gaussian oscillations which are
independent of X.

Results concerning the phase boundary between two regions as well as the triple points
have been proved in [13].

The aim of these notes is to give a flavor of how these results are proved, starting with
the case v € R, presenting a short proof with a presentation similar to the one given in
[2]. Then we wish to explain how stochastic calculus can be used to prove convergence, in
particular in the case of v € Prrr. Aiming for simplicity, we will restrain to the case «y € iR.

4. TooL BOX

4.1. Required Gaussian results. We display two standard results which are used through-
out the proof. The first is the standard Cameron-Martin formula which describes how a
Gaussian process is affected by an exponential tilt.

Proposition 4.1. Let (Y (2)).ez be a centered Gaussian field indexed by a set Z. We

let H denote its covariance and P denote its law. Given zy € Z let us define f’ZO the
probability obtained from P after a tilt by Y (z0) that is

dP,
dPO — Y (20)=5 H(20,20) (4.1)

Under P.,, Y is a Gaussian field with covariance H, and mean B, [Y (2)] = H(z, 20).

Proof. By extending Z we can always consider that the collection of variable (Y (z)).ez is
closed under linear combination. Hence it is sufficient to check that for every z, (Y (2)).ez
is a Gaussian random variable with mean H(z, zo) and variance H(z, z) (the covariance can
be recovered from the variances). Using the formula for the expectation of the Gaussian
Z :=1i€Y (z) + Y (z0) for which

2
B(2%) = ~ S H(z2) + 3 H(zo,20) +i€H (2 20)
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we have
E., [esz(z)] _E [eifY(z)+Y(zg)—%H(zmzo)] _ o &*H(z,2)+i€H (2,20) (4.2)

This is the Fourier transform of a Gaussian with the specified mean and variance.
O

The second is the classic gaussian tail bound which says that if Z is a standard Gaussian
variable with variance o2 (o > 0) we have

o 2

e 7. (4.3)

PlZ > u] <
uv 2T

Finally we include the value of the probability that a Brownian motion remains below an
affine function (a,b > 0 are fixed number).
P[Vt >0, B, <at+b] =1—e 2% (4.4)

It can be proved by using the optional stopping theorem for e2a(Br—at)

4.2. A kernel estimates.

Proposition 4.2. For every z,y € R with |z — y| < 1 we have

’Kt(aﬁ,y) — min <1og (ﬁ) t)‘ <C. (4.5)

Proof. We only need to treat the case where y = 0. Now we have by construction
Ki(0,2) = K(0,7) — K(0,é'z).
From (L.5]) we can find C such that

‘K(O,z) — max <logi,0>‘ <C)/2

2]

from which we obtain the desired inequality

5. THE CASE OF vy e R

Theorem 5.1. Let a € [0,4/2d), f € C.(R?) (real valued). Then the martingale M (f)
18 uniformly integrable

The main idea for the proof comes from the following observation: When computing the

expectation E[eaXﬁ(m)*aTZt] (this is what we do using Fubini to compute E [M,(f)]) most
of the contribution comes from X;(z) which is of order at + O(+/t) (this can be seen
from Cameron-Martin formula, Proposition [£I]). However, when estimating the second
moment, we compute the expectation of E[ea(Xt(x)+Xt(y))_a2t] which is mostly carried by
higher values of X;(z), for instance when x = y, most of the contributiom comes from
values X;(z) which are of order 2at + O(+/t). By putting a cutoff on the value of X;
somewhere between at and 2at we may reduce significantly the second moment with-
out affecting much the expectation. To exploit this strategy, we introduce the following

proposition.
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Proposition 5.2. Consider (Yi)i=o0 a collection of positive random variables such that

sup;so E[|Y:]] < 00. Assume that there exists Y;(q)
indexed by q = 1, which satisfies:

(A)  lim swE[[Y,? ~ Y]] = 0;

40 >0

a sequence of approrimation of X,

(B) supE[(Yt(q))z] <  for every ¢ = 1.
=0

Then (Yy)i=o is uniformly integrable.

Remark 5.3. The fact that (Y;)i=o0 is bounded in L' is a consequence of (A) and (B),
but taking it as an assumption helps for the presentation.

Proof. Given é > 0, we want to find M such that for every t = 0
E[|Y:[1qyij>an] <0 (5.1)
We may write, for any M > 0 and t > 0,
E[|Yil 1y, o0 < E[Y: = Y L gwoan] + B[V 1y 200 ]
<E[[,? - v|] + B[] *P(vi| > M) (5:2)
<E[V? - vi|] + MTE[(v, )] R[]y, 2.

where we have used Cauchy—Schwarz inequality in the second inequality and Markov’s
inequality in the third. Using assumption we can take ¢ = ¢o(d) which is such that

supE[|Yt(q) - Y] <4/2.
=0

and then take M = 46! sup,~ E[(iﬁ(qo))ﬂE[\Yt\], to conclude. O

Proof of Theorem [5.1. We assume without loss of generality that f is nonnegative (if not
we consider the positive and negative part separately) and that SRd f(x)dz = 1. Given
zeR? ¢t >0 and g € R we define the event

A g(x) :={Vs e [0,t], Xs(x) < V2ds+ q}. (5.3)
We define
a2t
MPP) = [ P L da. (5.4)
R4 ’

We want to apply Proposition to the case YV; = M2 (f) and Y, = M (f). We need
to check assumptions (A) and (B). Let us start with (A) we have

a2t
E[\YZ . Y;(Q)” -E [J}Rd f(x)eaXt(I)_QlAg’q(m)dx]

-, (5.5)
- [T, o
Using Cameron-Martin formula (Proposition [41]), and then ([@4]) we have
o2
E [eaXt(w)Tt 1A5q(x)} =P [Els € [0,t], Xs(x) + as < V2ds + q] (5:6)

< P[Vs>0,B, < (V2d—a) +q] = ¢~ 2(V2d-a)g
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and thus item (A) is satisified. For item (B) we have

(¢4 (% x faz
E[MP()]) = | f@)f(y)B [ex@sXem=e®ty o0y, | dedy
e (5.7)
2 ~
B fﬂw KD f (@) f (9)Pr gt [Arg(@) 0 Arg(y)] dady.

where N

% _ (Ko@) + Xe(0))~ % B[ (Xe(2)+ Xu (0))?]

P
Now let us set t(x,y,t) = max(¢,log m) we have
Bry [Avg(2) 0 Avg(9)] < By | Xila) < V2dE+ g (5.8)

We assume that |z — y| < 1 (if no Now using Cameron-Martin formula (Proposition 1),

~

P y ¢, just shifts the mean of X3(z) by an amount a(t + Kj(z,y)) so that

Byt [ Xile) < V2T + g = P[Xo(w) < V20 - ol + Kol ) + ]

B (5.9)
<]P’[Xg(a:) < (\/ﬁ—za)t+q+c].
Assuming that o > 4/d/2 using the Gaussian tail bound we obtain that
~ - (2&7\/@)2f
Poyi [Arg(r) 0 Arg(y)] <em 2 (5.10)
Hence we have
e e L)
E[M(f)?] < f €< ’ > f(x) f(y)dzdy
R2d (5.11)
<C| =y @D () fy)dady
R2d
where ((a,d) = a? — M =d— (v/2d — &)? < d. This conclude the proof of (B) and
hence of the theorem. O

6. THE CASE OF 7y € iR
6.1. A central limit theorem with a random variance.

Theorem 6.1. Let M; be a real valued continuous martingale associated with a filtration
(F:), and let v(t) be an increasing function such that limy_, v(t) = 0. We assume that
there exists a random variable Z such that the following convergence holds in probability
M
lim 2Dt _ 5
5 ()
Then M;/v(t) converges in distribution towards a random Gaussian with variance given
by Z, that is to say that for any Fo bounded measurable H we have

(6.1)

. i€ M, ot _ &z
lim E [He@§ /o >] —E {He 2 } (6.2)
t—0

This is equivalent to saying that for any Fu random variable Y we have the following
convergence in law

(Y, My /v(t)) = (Y,VZN)
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where N is a standard Gaussian which is independent of Y and Z.

Corollary 6.2. Let W; be a complex valued continuous martingale associated with a fil-
tration (Fy), and let v(t) be an increasing function such that lim;_,o, v(t) = 0. We assume
that there exists a random wvariable Z such that the following convergence holds almost-
surely

W . WW)
t1i>nolo o0 27 and nh_lgo O 0, (6.3)

This is equivalent to saying that for any Fu random variable Y we have the following
convergence in law

(Y, Wi /o(t)) = (Y,VZ (N1 + iNy)
where N1, Na are independent standard Gaussians which are independent of Y and Z.
Proof. If we let M) and M®?) denote the real and imaginary part of W the assumption

([63) gives us three limits (the limit (W, W), give one equation for the real part and one
for the imaginary one) which can reads like

()
i ML g i e (1,2},
t—n v(t)?
(6.4)
) <M(1),M(2)>t
o

We need to show that for any &', & and & and Y an F.,-measurable variable we have

2.2
lim E [eiglyei(flMt(l)+52Mt(2))/v(t)] =E {eigye_(gﬁfz)z} . (6.5)

t—00
Now setting M; := £1Mt(1) + £2Mt(2) we have

<M\>t = XMWY, + MDY, + &6( M1 Moy,

so that
M)y o o, B
Jlim w2 (&1 +&)2 = Z.
Hence applying (6.2]) for M with ¢ =1and H = ¢’"Y we obtain the desired limit (6.5)

0

Proof of Theorem [6.1l. We need to show that for any H bounded and Fy,-measurable and

¢ € R we have
Zgﬂ §2Z
lim E [H (e vt — eT>] =0. (6.6)

n—o0

We first assume that the collection of variables v(t) ~2(WW); is uniformly essentially bounded,
that is, that there exists M such that for every ¢ > 0

P[v(t) > (M) > A] =0 (6.7)

Note that this implies also that P[Z > A] = 0. We assume, to simplify notation that
€ = 1 (this entails no loss of generality). We set Hy := E[H | Fs] and Zs := E[Z | F5].
We have for any 0 < s <t
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_z _ Zs i M _ Zs i Mt _ Zs
=E[H(e 2 —e T)] ~|—E[(H—HS) (e v(t) —e” 2 )] ~|—E[Hs (e v — e 2 )]
=: E1(s,t) + Ea(s,t) + E3(s,t). (6.8)

We prove the convergence (6.6]) by showing that for i = 1,2,3

lim limsup |E;(s,t)| = 0. (6.9)

S0t
Using the fact that z — e? is 1-Lipshitz (first line) and has modulus bounded by 1 (second
line) in {z € C : Re(z) < 0} we have

Zs

H
s 0] <E [ f - %] < Hlzggz - 2,

(6.10)

i Mt _z
e vt —e 2

I&@QKEDH—mI

] <2E[|H — HJ|].

Since H; and Z; converge respectively to H and Z in L', (69) holds for i = 1,2. For
i = 3, we observe that for fixed ¢ the process

iMy | M)y
<e v(t) + v(t)2 >
u=0
is a martingale. Hence we have

iMy | (M)y iMs | (M)s
+ +

er @ v | Fyl = ev® o7 (6.11)

Using the short-hand notation U,y = Uy — U, we have

E

Misg) | Mps 1)
e O T | Fy| = 1. (6.12)

Multiplying by H Se_% and taking expectation we obtain that

N

iM (M
[s,t] [s.t]
+—5A
3 ] (6.13)

Zs
E[Hse*T] - E [HseTe EONMTOR

Hence we have (using that |Hs|ox < |H||ow)

Mg 1) iMg _§+<M>[S¢]
E Hse—u(t) evl®) —e 2 v(t)?

<E [IHSI

|E3(37 t)| =

Mg _2Zs  Mls
evd®) —e 2 v(t)2

] (6.14)

Taking the limit when ¢ goes to infinity (using dominated convergence which is not a
problem due to (6.7)). We have

Z—Zs
1—e 2

lim sup | By (s, )| = E ||,
t—0o0

] : (6.15)
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Using dominated convergence again (everything is essentially bounded)

lim limsup |E3(s,t)| = 0.
§2D  t o

To remove the boundedness assumption, we need a truncation proceedure to make the
Given A > 0 we set

T(At) ;= inf{s : (M)y = Av(t)?} and MY .= M,,.r.
(MS(A’t)) s>0 is a martingale and we have we have

lim v(t) 2 MDY, = Z A A. (6.16)
—00

Repeating the previous computation with M replaced by M (4 we obtain for every A >0

-fMt(A't) 2z54
Jlim B | H e @ —e 2 ||[=0 (6.17)
—00
Letting A to infinity we have
iim sup P [Mt(A’t) =My ZAA= A] =1, (6.18)
=90 ¢=0
we conclude that
€M, 2
Jim E [H (aﬁi - e—gzz)] —0. (6.19)
—00
O
Let us consider ,
MP(f) = | fla)e? @5y (6.20)
Rd

We want to show that Mtiﬁ (f) converges to a standard complex Gaussian. Hence from
Corollary [6.2] setting W; := Mtlﬁ (f) for better readability, we need to prove that

t1i>nolo<W7 W) = and tli)no%<W, W = 0. (6.21)

We have ,
W, — Zﬂf F(2)e 2 8% @ (4, (x)) da
]Rd

Hence computing the quadratic variation we have

AWy =5 [ | Fla))e™ PSSO aX o), X, ) dady

= 07 ([, @il ) Fla)e PP 40 (1), X, )y ) e (022
R2d

and similarly

_ 32 x z B2t iB(Xe(2)+ X1 (y)) (). X. x
aw =6 ([ @t K 0), X oy )

lim E { % - 1” =1 and lim E H%H — 0. (6.24)
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We have

BAL = [ F@)f0)Qla)e™ B [ 5 0] duay
o (6.25)

= | @ @)@y’ dady = o(0)

Hence we just have to evaluate the second moment and show that it is small. We have
A= A= B[A] = | | &lay)dady (6.26)
R
where
i(e.) = [(@) [ (W) Qu(a.y) (1P X0l

Setting ¢;(z,y) = eB(Xe(2)=Xe(y)+8%t _ oB°Ke(z.9) we have

E[|A]%] = f y E [&(z1,y1)& (2, y2) | dzidzadyidys. (6.27)
R
We have

E [Cy(x1,y1)Ce (2, y2) ]
<662(Kt(xl7x2)+Kt(y17y2)_Kt(z17y2)_Kt(x2’y1)) - 1) B2 (Ei(w1,y1)+Ki(22,92)) (6.28)

Lemma 6.3. There exists a constant C' (which depends on ) which is such that if
|z —yil < e, forie{1,2} (6.29)
then we have

IE [Co(x1,91)Ge(wa,y2)] | < Ce¥ (e oy —yu| v 1)1 (6.30)

Proof. We have B (Ei(z1y)+Ki(@2,y2)) < 267t g we just have to bound the first term in
(E28)). Now notice that K; is Lipshitz with constant Ce! (this just obtained by integrating
the fact that @ is Lipshitz with constant Ce! for a different C'). Hence we have

(Ky(w1,m2) + Ki(y1,y2) — Ke(w1,y2) — Ki(y1, 32)) < 2Ce' |z — y2| < 2C (6.31)
where the last inequality follows from (6.29). This implies that
|652(Kt(~’017x2)+Kt(y1,yz)—Kt(Il7y2)—Kt(~’02,y1)) —1]
< C|Ki(71,22) + Ki(y1,92) — Ki(21,y2) — Ki(z2,91)]  (6.32)
and we are left with showing that
|Ki(21,22) + Ki(y1,y2) — Ki(w1,92) — Ki(w2,91)| < Cle'ar — | v )7 (6.33)

Let us assume that |71 —x2| = 3e (of this is not the case then (6.31]) allows to conclude).
Set s = log(—2—). From (6.29), we have

lz1—22]
min(|z1 — 22|, [y1 — vl |21 — yal, [ra —w1]) = €7, (6.34)

and for this reason

|Ki(x1,22) + Ki(y1, y2) — Ke(x1,y2) — Ki(x2,y1)|

= |Kq(z1,22) + Ks(y1,y2) — Ks(z1,92) — Ks(x2,91)]  (6.35)
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and repeating (6.31]) we have

|Ks(21,22) + Ks(y1,92) — Ko(w1,y2) — Ks(22,91)]
6C

< 2C€°|zg — ya| < 205t = ——— (6.36)
et|zy — xo|

which is the desired result.

Now we have

625% 2
[ [ @@ yi) | £ (@) f (wi)|dzidy;

i=1

< C/€(252_d)t f |f(f1;1)f(f1?2)| dxldxg < C//e(262—d)tp(t) (637)
r2d (1 A etlzy — xa|)

E[JA] < C f
R

1a 1 A et|lzy — a9

where

() = te7t ifd=1,
PEI=Vet itd> 2

Hence we have
Var(4y) = E[|4;[*] < Cp(t)(E[A;])?,
which, since p(t) converges to zero, implies that E[A;] concentrates around its mean.

In a similar manner we have

)

E[|B[*] = fwd E[¢ (21,51)C (w2, y2)] | | Qelwi, yi) £ (2:) £ (y:)didlys (6.38)

i=1
with (/(z,y) 1= ePXt@+Xe(W)+F%  We have

E[¢' (21, yl)?(xb y2)] = B2 (Kt (w1,02)+ Ko (y1,y2) + K (w1,92)+ Ki (22,y1) — Ki (21,51) — Kt (w2,y2))

Similarly to Lemma [6.3] we can prove that if (6.31]) holds then we have (639
E[¢'(21,90)C (@2, 30)] < Ce™* (o — | v 7)™ (6.40)
Altogether this yields
2
E[|B,[?] < Ce 27 fR4d(|$1 — 1| v e )T HQt(xiyyi)f<xi)f(yi)dxidyi
» (6.41)

= e (il e ) )l

< C//e(262 —3d)t

The proof is going to make use of the following proposition
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