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The aim of these notes is to provide an introduction to complex Gaussian multiplicative
chaos. GMC is formally defined by taking the exponential of a Gaussian log-correlated
field, or in other words, which corresponds to the expression

Mγpdxq :“ eγXpxqdx, (0.1)

where γ P C and X is a Gaussian field indexed by R
d whose covariance kernel has the

form

Kpx, yq “ log
1

|x ´ y| ` Lpx, yq

where L is a continuous function.
1
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Since Kpx, xq “ 8 there is no way to define pXpxqqxPRd and we can only make sense of
the field X after integrating it against test functions. Hence giving a meaning to (0.1) is
not a priori an easy task.

The problem of providing a mathematical construction of Mγ that gives a meaning to
(0.1) was first considered by Kahane in [8] in the case where γ P R, we refer to [20, 21]
for reviews on the subject. The case of γ P C was considered only more recently, see for
instance [5, 6, 7, 12, 10, 14, 15] and references therein.

One of the main motivation that drove the research on the subject recently is the
connection with theoretical physics (Quantum field theory [3, 9]) and statistical mechanics
(connection with the Coulomb gaz via the Sine-Gordon representation [16], with the Ising
model [7] etc...). Some other application exists for instance GMC was first suggested
as a model for three dimensional turbulence [19], we refer to [21] for more details on
applications.

The standard procedure to define the GMC is to use a sequence of approximation of
the field X, consider the exponential of the approximation and then pass to the limit. In
these note we are going to restrict to the case where the covariance kernel of the field is a
martingale approximation, pXtqtě0.

1. Log-correlated fields

A very brief recall. Given a probability space pΩ,F ,Pq and a set T and random process
indexed by T is a collection of random variables pZtqtPT . We say that a process Z 1 is a
modification of Z if

@t P T , Pr Zt “ Z 1
ts “ 1.

1.1. Defining a smooth Gaussian field on R
d and integrating it against test

functions. Let Jpx, yq : Rd ˆ R
d Ñ R be an Hölder continuous positive definite kernel.

Positive definite means that for every k and pxiqki“1 P pRdqk we have

kÿ

i,j“1

λiλjJpxi, xjq ě 0 (1.1)

The reader can check that (1.1) is equivalent to
ż

R2d

ρpxqρpyqJpx, yqdxdy ě 0. (1.2)

for every ρ P CcpRdq the set of continuous functions with compact support. Using Kol-
mogorov extension theorem, we can define on a probability space pΩ,F ,Pq a centered
Gaussian field pY pxqqxPRd indexed by R

d with covariance J . Using Kolmogorov-Chensov
criterion, since J is Hölder continuous, there exists a modification of Y which is such that
every realization of the random function x ÞÑ Y pxq is continuous in R

d (in these notes we
always consider the most regular modifications of a process when they exist).

Letting CcpRdq, we can define

xY, ρy :“
ż

Rd

Y pxqρpxqdx. (1.3)
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By the mean of approximation by Riemann sums, one can check that xY, ρyρPCcpRdq is a
centered Gaussian process and that its covariance is given by

pJpρ, ρ1q :“ E
“
xY, ρyxY, ρ1y

‰
“

ż

R2d

ρpxqρ1pyqJpx, yqdxdy. (1.4)

1.2. Defining a Gaussian field with a log-correlated covariance. Let K : RdˆR
d Ñ

R Y t8u being positive definite kernel that can be written in the form

Kpx, yq “ log
1

|x ´ y| ` Lpx, yq (1.5)

where |¨| - when applied to an element of Rd - denotes the Euclidean distance, by convention
logp1{0q “ 8, and L is a continuous real valued function. The interpretation of positive
definite here is that given in (1.2) that is

@ρ P CcpRdq,
ż

R2d

ρpxqρpyqKpx, yqdxdy ě 0. (1.6)

Since K diverges on the diagonal, it is not possible to define a centered Gaussian field
X indexed by R

d with covariance function K. However, using (1.4), we can define a
process indexed by CcpRdq which correspond to how such a field would integrate against

test functions. We define pK, a bilinear form on CcpRdq (the set of compactly supported
continuous functions) by

pKpρ, ρ1q “
ż

R2d

Kpx, yqρpxqρ1pyqdxdy. (1.7)

Since pK is positive definite (in the sense given by (1.1)), one can define a centered Gaussian

process xX, ρyρPCcpRdq with covariance pK.

1.3. A log-correlated field as a distribution. So far we have only defined xX, ρyρPCcpRdq
as a collection of random variables. Given ρ, ρ1 P CcpRdq and α, β P R we have almost
surely

xX,αρ ` βρ1y “ αxX, ρy ` βxX, ρ1y, (1.8)

(the difference between the l.h.s. and the r.h.s. is a centered Gaussian with zero variance).
However, this does not imply that ρ ÞÑ xX, ρy is a linear application since in (1.8) holds
with probability one only for a fixed value of ρ, ρ1, β, β1.

It is possible (we do not provide a proof in these notes) that there exist a modification
of the process X which takes value in the space of distribution (in the sense of Schwartz).
For this modification, (1.8) holds for every realization of X and every ρ, ρ1 P C8

c pRdq.
1.4. The case of star-scale invariant kernels. Let κ P C8

c pRdq be a smooth compactly
supported function which is such that

(a) κ is radial, meaning there exists rκ : R` Ñ R such that @x P R
d, κpxq “ rκp|x|q

(b) rκp0q “ 1, rκpuq “ 0 for u ě 1 and rκpuq ě 0 for u P p0, 1q.
(c) The kernel px, yq ÞÑ κpx ´ yq is definite positive. We have for every ρ P CcpRdq

ż

R2d

κpx ´ yqρpxqρpyq ě 0.

Remark 1.1. One possibility to define κ as above is to start with a non-negative radial
function θ P C8

c pRdq whose support is included in Bp0, 1{2q (Bpx, rq denotes the Euclidean
ball of center x and radius r) and such that

ş
θ2pxqdx “ 1 and define κpxq “ θ ˚ θpxq.
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We define

Qtpx, yq :“ κpetpx ´ yqq,

Ktpx, yq :“
ż t

0

Qspx, yqds,

Kpx, yq :“
ż t

0

Qspx, yqds.

(1.9)

For z ‰ 0, regrouping integrals and setting u “ t ´ logp1{|z|q we have

Lpzq :“ Kp0, zq ´ logp1{|z|q “
ż 8

0

κpetzqdt ´
ż logp 1{|z|q

0

1dt

“
ż logp1{|z|q

0

rrκpet|z|q ´ 1sdt “
ż logp1{|z|q

0

rrκpe´uq ´ 1sdu. (1.10)

Sending |z| to zero we see that Lpzq can be continuously extended at 0. Since we have

Kpx, yq “ log
1

|x ´ y| ` Lpx ´ yq,

the kernel K and log-diverging in the sense of (1.5). From assumption pcq it is positive
definite (1.6).

In these notes, we are going to restrict ourselves to the study of GMC for star-scale
invariant kernel. This may seem like a big loss of generality, but it turns out that under
some small regularity assumption on the function L, kernels of the form (1.5) can be shown
to locally have an almost star-scale invariant. We refer to [6] for the definition of these
notion, but the essential point is that this observation allows to extend results proved
for star-scale invariant kernels to all sufficiently regular kernels of the form (1.5) (see for
instance [11, Appendix C] or [1]).

1.5. Martingale approximation of a log-correlated field. We can define a centered
Gaussian process pXtpxqqtě0,xPRd , whose covariance is given by

E rXspxqXtpyqs “ Ks^tpx, yq. (1.11)

Such a process can be defined since Ks^tpx, yq defines a positive definite kernel (in the
sense of (1.1)) on pR` ˆ R

dq2. Moreover, since the function is Hölder continuous, we
can assume (considering an adequate modification of the process) that pXtpxqqtě0,xPRd is

continuous in space and time. Note that for any x P R
d we have

E rXspxqXtpxqs “ Ks^tpx, xq “ s ^ t

Hence (since we have continuity) pXtpxqqtě0is a standard Brownian motion. Furthermore,
if one sets

Ft :“ σ
´
Xspxq, s P r0, ts, x P R

d
¯
, (1.12)

the process pXtpxqqtě0 is a margingale with respect to the filtration pFtqtě0. Indeed if
0 ď u ď s ď t and x, y P R

d we have

ErpXtpxq ´ XspxqqYupyqs “ Kt^upx, yq ´ Ks^upx, yq “ 0, (1.13)



EXPLORING THE PHASE DIAGRAM OF OF COMPLEX GMC 5

so that Xtpxq ´ Xspxq is independent of Yupyq for u P r0, ss and y P R
d and hence of Fs.

The bracket between pXtpxqq and pXtpyqq is simply obtained by observing that

xX¨pxq,X¨pyqyt “ ErXtpxqXtpyqs “ Ktpx, yq “
ż t

0

Qspx, yqds (1.14)

(we use the same symbol for duality bracket and martingale bracket but the meaning can
clearly be inferred from the context). Ultimately, the field pXtp¨qqtě0 converges in the limit
to a field with covariance K in the following sense. If one sets

xXt, ρy :“
ż
Xtpxqρpxqdx

for ρ P CcpRdq then one can define

xX, ρy :“ lim
tÑ8

xXt, ρy, (1.15)

where the convergence holds in L2 and almost surely (pxXt, ρyqtě0 is a continuous mar-

tingale which is bounded in L2). The process X defined by (1.15) has covariance pK
defined by (1.7). It can additionally be shown that with probability 1, the convergence
limtÑ8 Xt “ X holds in the space of distribution.

2. Exponentiating a log-correlated field

2.1. Definition of the martingale M
γ
t . Let us assume that pXtpxqqtě0,xPRd is a contin-

uous field with covariance (1.11) and let X denote the limit of Xt in the sense given in
(1.15). Given γ P C, in an effort to define a random distribution which corresponds to the
formal definition

Mγpdxq “ eγXdx, (2.1)

we define for every f P CcpRdq

M
γ
t pfq :“

ż

Rd

fpxqeγXtpxq´ γ2t
2 dx. (2.2)

Since Xtpxq is a Gaussian variable with variance t we have (using Fubini)

E rMγ
t pfqs :“

ż

Rd

fpxqE
„
eγXtpxq´ γ2t

2


dx “

ż

Rd

fpxqdx. (2.3)

The term γ2t{2 in the exponential in (2.1) is a normalizing factor which is present to make
the expectation of Mγ

t independent of t. It also allows to achieve the following property

Proposition 2.1. Given γ P C and f P CcpRdq the process pMγ
t pfqqtě0 is an pFtq-

martingale.

Proof. Indeed we have (using Fubini)

E rMγ
t pfq | Fss “

ż

Rd

fpxqE
„
eγXtpxq´ γ2t

2 | Fs


dx

“
ż

Rd

fpxqγXspxq´ γ2s
2 E

„
eγpXtpxq´Xspxqqγ2pt´sq

2 | Fs


dx.

(2.4)

Now since Xtpxq ´ Xspxq is a Gaussian of variance t ´ s which is independent of Fs (cf.
(1.13)) we have

E rMγ
t pfq | Fss “

ż

Rd

fpxqγXspxq´ γ2s
2 dx “ Mγ

s pfq. (2.5)
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�

A promising candidate to rigorously define Mγ in (2.1) would be limtÑ8 M
γ
t pfq. The

existence and non-triviality of this limit can be established in one proves that pMγ
t pfqqtě0

is uniformly integrable. Indeed in that case limtÑ8 M
γ
t pfq “ M

γ
8pfq exists almost surely

and one has

E rMγ
8pfqs “

ż

Rd

fpxqdx. (2.6)

2.2. The L2 phase. The easiest way to prove uniform integrability is to show bounded-
ness in L2 so as an introduction let us perform this computation and see where it leeds
us.

Proposition 2.2. Given γ P C with |γ|2 ă d and f P CcpRdq the martingale pMγ
t pfqqtě0

is bounded in L2. In particular this implies that the limit

Mγ
8pfq :“ lim

tÑ8
M

γ
t pfq

exists almost surely, that the convergence also holds in L2 and that

ErMγ
8pfqs “

ż

Rd

fpxqdx

Proof. We have

E
“
|Mγ

t pfq|2
‰

“
ż

R2d

fpxqfpyqE
„
eγXtpxq`γXt´ pγ2`γ2qt

2


dxdy

“
ż

R2d

fpxqfpyqe|γ|2Ktpx,yqdxdy

ď
ż

R2d

|fpxq||fpyq|e|γ|2Kpx,yqdxdy

(2.7)

We have e|γ|2Kpx,yq ď C|x ´ y|´|γ|2 from (1.5) and thus the integral in the last line is
finite. �

When |γ| ě d, the limiting behavior of Mγ
t pfq is harder to determine but research efforts

have allowed to determine it for a large set of values of γ.

2.3. Convergence as a distribution. Note that since f ÞÑ M
γ
t pfq is a linear application

we have for any fixed α, β P R and f, g P CcpRdq we almost surely have

Mγ
8pαf ` βgq “ αMγ

8pfq ` βMγ
8pgq. (2.8)

However as it was the case in (1.8) the above is not sufficient to say that M
γ
8 defines a

linear application on CcpRdq. In fact the result (2.2) does not ensure that Mγ
8pfq converges

simultaneously for every f .

It is in fact possible to show that Mγ
t p¨q converges in a space of distribution (namely a

Sobolev space of negative index), see for instance [12, Section 6].



EXPLORING THE PHASE DIAGRAM OF OF COMPLEX GMC 7

β

α

?
d

a
d{2

?
2d´
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Figure 1. The phase diagram of the complex GMC in the complex plane. So far the
convergence of Mγ

t has been established everywhere except for PIIzR.

3. The phase diagram for the complex GMC

In this section, we consider that γ “ α ` iβ P C (with α and β being real numbers).
We split the complex plane into three open regions (with overlapping boundary) each
corresponding to a different asymptotic behavior for Mγ

t pfq.

PI :“
 
α ` iβ : α2 ` β2 ă d

(
Y
!
α ` iβ : |α| P p

a
d{2,

?
2dq ; |α| ` |β| ă

?
2d

)
,

PII :“
!
α ` iβ : |α| ` |β| ą

?
2d ; |α| ą

a
d{2

)
,

PIII :“
!
α ` iβ : α2 ` β2 ą d ; |α| ă

a
d{2

)
.

(3.1)

For simplicity in the remainder of the paper, we are going to consider (without loss of
generality) that α, β ě 0.

The region PI corresponds to the subcritical phase. For γ P PI it has been proved
[6, 12] that Mγ

t is uniformly integrable and thus converge to a limit. The region PI is the
maximal open region on which Proposition 2.2 can be extended.

Theorem 3.1. If γ P PI and f P CcpRq then the martingale M
γ
t pfq is bounded in Lp for

p P r1,
?
2d
α

_ 2q. In particular it is uniformly integrable and

lim
tÑ8

M
γ
t pfq “ Mγ

8pfq.

The region PII corresponds to a phase where the behavior of M
γ
t is dominated by

the extreme values of Xt. A different normalization is required to obtain a limit. It is

conjectured that t
3γ
2 e

t

ˆ
pα´

?
2dq2´β2

2

˙

M
γ
t p¨q converges in law to an atomic distribution (a



8 HUBERT LACOIN

countable weighted sum of Dirac masses). This result has been proved in the case when

γ P R - that is β “ 0, and α ą
?
2d, see [18] - and also in the whole of PII for other related

models [4, 17].

The region PIII corresponds to yet a different asymptotic behavior of Mγ
t . In the limit,

rapid the local variations of the argument of eγX , due to the term eiβXtpxq, produce a
complex Gaussian white noise with a random intensity. In order not to avoid the hassle of
defining such a white noise, let us state the convergence result only for a fixed function f

Theorem 3.2. If γ P PIII and f P CcpRq then there exists a constant Σ (which depends
on d, γ and on the kernel K) such that the following convergence in law occurs

Σ´1e
pd´|γ|q2

2
tM

γ
t pfq tÑ8ùñ

a
M2α8 p|f |2qpN1 ` iN2q (3.2)

where N1 and N2 are two independent standard Gaussian which are independent of X

(and thus of M2α
8 ). Furthermore the following joint convergence holds in law

pX,Σ´1e
pd´|γ|q2

2
tM

γ
t pfqq tÑ8ùñ pX,

a
M2α8 p|f |2qpN1 ` iN2qq (3.3)

Remark 3.3. In the above theorem, the convergence in the above theorem holds only
in law. The equation (3.3) actually guarantees that convergence in probability cannot
occur. Some how, local variation of X create in the limit Gaussian oscillations which are
independent of X.

Results concerning the phase boundary between two regions as well as the triple points
have been proved in [13].

The aim of these notes is to give a flavor of how these results are proved, starting with
the case γ P R, presenting a short proof with a presentation similar to the one given in
[2]. Then we wish to explain how stochastic calculus can be used to prove convergence, in
particular in the case of γ P PIII. Aiming for simplicity, we will restrain to the case γ P iR.

4. Tool box

4.1. Required Gaussian results. We display two standard results which are used through-
out the proof. The first is the standard Cameron-Martin formula which describes how a
Gaussian process is affected by an exponential tilt.

Proposition 4.1. Let pY pzqqzPZ be a centered Gaussian field indexed by a set Z. We

let H denote its covariance and P denote its law. Given z0 P Z let us define rPz0 the
probability obtained from P after a tilt by Y pz0q that is

drPz0

dP
:“ eY pz0q´ 1

2
Hpz0,z0q (4.1)

Under rPz0 , Y is a Gaussian field with covariance H, and mean rEz0rY pzqs “ Hpz, z0q.
Proof. By extending Z we can always consider that the collection of variable pY pzqqzPZ is
closed under linear combination. Hence it is sufficient to check that for every z, pY pzqqzPZ
is a Gaussian random variable with meanHpz, z0q and varianceHpz, zq (the covariance can
be recovered from the variances). Using the formula for the expectation of the Gaussian
Z :“ iξY pzq ` Y pz0q for which

ErZ2s “ ´ξ2

2
Hpz, zq ` 1

2
Hpz0, z0q ` iξHpz, z0q
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we have

Ez0reiξY pzqs “ E
”
eiξY pzq`Y pz0q´ 1

2
Hpz0,z0q

ı
“ e´ξ2Hpz,zq`iξHpz,z0q (4.2)

This is the Fourier transform of a Gaussian with the specified mean and variance.
�

The second is the classic gaussian tail bound which says that if Z is a standard Gaussian
variable with variance σ2 (σ ą 0) we have

P rZ ě us ď σ

u
?
2π

e´u2

2 . (4.3)

Finally we include the value of the probability that a Brownian motion remains below an
affine function (a, b ą 0 are fixed number).

P r@t ą 0, Bs ď at ` bs “ 1 ´ e´2ab (4.4)

It can be proved by using the optional stopping theorem for e2apBt´atq.

4.2. A kernel estimates.

Proposition 4.2. For every x, y P R
d with |x ´ y| ď 1 we have

ˇ̌
ˇ̌Ktpx, yq ´ min

ˆ
log

ˆ
1

|x ´ y|

˙
, t

˙ˇ̌
ˇ̌ ď C. (4.5)

Proof. We only need to treat the case where y “ 0. Now we have by construction

Ktp0, xq “ Kp0, xq ´ Kp0, etxq.
From (1.5) we can find C such that

ˇ̌
ˇ̌Kp0, zq ´ max

ˆ
log

1

|z| , 0
˙ˇ̌
ˇ̌ ď C{2

from which we obtain the desired inequality
�

5. The case of γ P R

Theorem 5.1. Let α P r0,
?
2dq, f P CcpRdq (real valued). Then the martingale Mα

t pfq
is uniformly integrable

The main idea for the proof comes from the following observation: When computing the

expectation EreαXtpxq´α2t
2 s (this is what we do using Fubini to compute E rMγ

t pfqs) most
of the contribution comes from Xtpxq which is of order αt ` Op

?
tq (this can be seen

from Cameron-Martin formula, Proposition 4.1). However, when estimating the second

moment, we compute the expectation of EreαpXtpxq`Xtpyqq´α2ts which is mostly carried by
higher values of Xtpxq, for instance when x “ y, most of the contributiom comes from
values Xtpxq which are of order 2αt ` Op

?
tq. By putting a cutoff on the value of Xt

somewhere between αt and 2αt we may reduce significantly the second moment with-
out affecting much the expectation. To exploit this strategy, we introduce the following
proposition.
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Proposition 5.2. Consider pYtqtě0 a collection of positive random variables such that

suptě0 Er|Yt|s ă 8. Assume that there exists Y
pqq
t a sequence of approximation of Xt,

indexed by q ě 1, which satisfies:

pAq lim
qÑ8

sup
tě0

E
“
|Y pqq

t ´ Yt|
‰

“ 0 ;

pBq sup
tě0

E
“
pY pqq

t q2
‰

ă 8 for every q ě 1.

Then pYtqtě0 is uniformly integrable.

Remark 5.3. The fact that pYtqtě0 is bounded in L1 is a consequence of pAq and pBq,
but taking it as an assumption helps for the presentation.

Proof. Given δ ą 0, we want to find M such that for every t ě 0

E
“
|Yt|1t|Yt|ąMu

‰
ď δ (5.1)

We may write, for any M ą 0 and t ą 0,

E
“
|Yt|1t|Yt|ąMu

‰
ď E

“
|Yt ´ Y

pqq
t |1t|Yt|ąMu

‰
` E

“
|Y pqq

t |1t|Yt|ąMu
‰

6 E
“
|Y pqq

t ´ Yt|
‰

` E
“
pY pqq

t q2
‰1{2

P
`
|Yt| ą M

˘1{2

6 E
“
|Y pqq

t ´ Yt|
‰

` M´1{2
E
“
pY pqq

t q2
‰1{2

Er|Yt|s1{2.

(5.2)

where we have used Cauchy–Schwarz inequality in the second inequality and Markov’s
inequality in the third. Using assumption we can take q “ q0pδq which is such that

sup
tě0

E
“
|Y pqq

t ´ Yt|
‰

ď δ{2.

and then take M “ 4δ´1 suptě0 E
“
pY pq0q

t q2
‰
Er|Yt|s, to conclude. �

Proof of Theorem 5.1. We assume without loss of generality that f is nonnegative (if not
we consider the positive and negative part separately) and that

ş
Rd fpxqdx “ 1. Given

x P R
d, t ě 0 and q P R we define the event

At,qpxq :“ t@s P r0, ts, Xspxq ď
?
2ds ` qu. (5.3)

We define

M
α,q
t pfq “

ż

Rd

fpxqeαXtpxq´α2t
2 1At,qpxqdx. (5.4)

We want to apply Proposition 5.2 to the case Yt “ Mα
t pfq and Y

q
t “ M

α,q
t pfq. We need

to check assumptions pAq and pBq. Let us start with pAq we have

E
“
|Yt ´ Y

pqq
t |

‰
“ E

„ż

Rd

fpxqeαXtpxq´α2t
2 1AA

t,qpxqdx



“
ż

Rd

fpxqE
„
eαXtpxq´α2t

2 1AA
t,qpxq


dx

(5.5)

Using Cameron-Martin formula (Proposition 4.1), and then (4.4) we have

E

„
eαXtpxq´α2t

2 1AA
t,qpxq


“ P

”
Ds P r0, ts,Xspxq ` αs ď

?
2ds ` q

ı

ď P r@s ě 0, Bs ď p
?
2d ´ αq ` qs “ e´2p

?
2d´αqq,

(5.6)
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and thus item pAq is satisified. For item pBq we have

E
“
M

α,q
t pfq2

‰
“

ż

R2d

fpxqfpyqE
”
eαpXtpxq`Xtpyqq´α2t1At,qpxqXAt,qpyq

ı
dxdy

“
ż

R2d

eα
2Ktpx,yqqfpxqfpyqrPx,y,t rAt,qpxq X At,qpyqs dxdy.

(5.7)

where
drPx,y,t

dP
“ eαpXtpxq`Xtpyqq´α2

2
ErpXtpxq`Xtpyqq2s

Now let us set tpx, y, tq “ maxpt, log 1
|x´y|^1

q we have

rPx,y,t rAt,qpxq X At,qpyqs ď rPx,y,t

”
Xtpxq ď

?
2dt ` q

ı
. (5.8)

We assume that |x ´ y| ď 1 (if no Now using Cameron-Martin formula (Proposition 4.1),
rPx,y,t, just shifts the mean of Xtpxq by an amount αpt ` Ktpx, yqq so that

rPx,y,t

”
Xtpxq ď

?
2dt ` q

ı
“ P

”
Xtpxq ď

?
2dt ´ αpt ` Ktpx, yqq ` q

ı

ď P

”
Xtpxq ď p

?
2d ´ 2αqt ` q ` C

ı
.

(5.9)

Assuming that α ą
a

d{2 using the Gaussian tail bound we obtain that

rPx,y,t rAt,qpxq X At,qpyqs ď e´ p2α´
?
2dq2t

2 (5.10)

Hence we have

E
“
M

α,q
t pfq2

‰
ď
ż

R2d

e

ˆ
α2´ p2α´

?
2dq2

2

˙
Ktpx,yq

fpxqfpyqdxdy

ď C

ż

R2d

|x ´ y|´ζpα,dqfpxqfpyqdxdy
(5.11)

where ζpα, dq “ α2 ´ p2α´
?
2dq2

2
“ d´ p

?
2d´αq2 ă d. This conclude the proof of pBq and

hence of the theorem. �

6. The case of γ P iR

6.1. A central limit theorem with a random variance.

Theorem 6.1. Let Mt be a real valued continuous martingale associated with a filtration
pFtq, and let vptq be an increasing function such that limtÑ8 vptq “ 8. We assume that
there exists a random variable Z such that the following convergence holds in probability

lim
tÑ8

xMyt
vptq2 “ Z (6.1)

Then Mt{vptq converges in distribution towards a random Gaussian with variance given
by Z, that is to say that for any F8 bounded measurable H we have

lim
tÑ8

E

”
HeiξMt{vptq

ı
“ E

„
He´ ξ2Z

2


(6.2)

This is equivalent to saying that for any F8 random variable Y we have the following
convergence in law

pY,Mt{vptqq ùñ pY,
?
ZN q
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where N is a standard Gaussian which is independent of Y and Z.

Corollary 6.2. Let Wt be a complex valued continuous martingale associated with a fil-
tration pFtq, and let vptq be an increasing function such that limtÑ8 vptq “ 8. We assume
that there exists a random variable Z such that the following convergence holds almost-
surely

lim
tÑ8

xW yt
vptq2 “ 2Z and lim

nÑ8
xW,W yt
vptq2 “ 0, (6.3)

This is equivalent to saying that for any F8 random variable Y we have the following
convergence in law

pY,Wt{vptqq ùñ pY,
?
Z pN1 ` iN2q

where N1,N2 are independent standard Gaussians which are independent of Y and Z.

Proof. If we let M p1q and M p2q denote the real and imaginary part of W the assumption
(6.3) gives us three limits (the limit xW,W yt give one equation for the real part and one
for the imaginary one) which can reads like

lim
tÑ8

xM piqyt
vptq2 “ Z for i P t1, 2u,

lim
tÑ8

xM p1q,M p2qyt
vptq2 “ 0.

(6.4)

We need to show that for any ξ1, ξ1 and ξ2 and Y an F8-measurable variable we have

lim
tÑ8

E

”
eiξ

1Y eipξ1M
p1q
t `ξ2M

p2q
t q{vptq

ı
“ E

„
eiξ

1Y e´ pξ2
1

`ξ2
2

qZ
2


. (6.5)

Now setting xMt :“ ξ1M
p1q
t ` ξ2M

p2q
t we have

xxMyt “ ξ21xM p1qyt ` ξ22xM p2qyt ` ξ1ξ2xM1M2yt,
so that

lim
tÑ8

xxMyt
vptq2 “ pξ21 ` ξ22qZ :“ pZ.

Hence applying (6.2) for xM with ξ “ 1 and H “ eiξ
1Y we obtain the desired limit (6.5)

�

Proof of Theorem 6.1. We need to show that for any H bounded and F8-measurable and
ξ P R we have

lim
nÑ8

E

„
H

ˆ
e
iξ

Mt
vptq ´ e´ ξ2Z

2

˙
“ 0. (6.6)

We first assume that the collection of variables vptq´2xW yt is uniformly essentially bounded,
that is, that there exists M such that for every t ě 0

P
“
vptq´2xMyt ą A

‰
“ 0 (6.7)

Note that this implies also that P rZ ě As “ 0. We assume, to simplify notation that
ξ “ 1 (this entails no loss of generality). We set Hs :“ E rH | Fss and Zs :“ E rZ | Fss.
We have for any 0 ď s ď t
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E

„
H

ˆ
e
i
Mt
vptq ´ e´Z

2

˙

“ E

”
Hpe´Z

2 ´ e´Zs
2 q

ı
` E

„
pH ´ Hsq

ˆ
e
i
Mt
vptq ´ e´Zs

2

˙
` E

„
Hs

ˆ
e
i
Mt
vptq ´ e´Zs

2

˙

“: E1ps, tq ` E2ps, tq ` E3ps, tq. (6.8)

We prove the convergence (6.6) by showing that for i “ 1, 2, 3

lim
sÑ8

lim sup
tÑ8

|Eips, tq| “ 0. (6.9)

Using the fact that z ÞÑ ez is 1-Lipshitz (first line) and has modulus bounded by 1 (second
line) in tz P C : Repzq ď 0u we have

|E1ps, tq| ď E

”
|H|

ˇ̌
ˇe´Z

2 ´ e´Zs
2

ˇ̌
ˇ
ı

ď }H}8
2

E r|Z ´ Zs|s ,

|E2ps, tq| ď E

„
|H ´ Hs|

ˇ̌
ˇ̌ei

Mt
vptq ´ e´Z

2

ˇ̌
ˇ̌


ď 2E r|H ´ Hs|s .
(6.10)

Since Ht and Zt converge respectively to H and Z in L1, (6.9) holds for i “ 1, 2. For
i “ 3, we observe that for fixed t the process

ˆ
e

iMu
vptq ` xMyu

vptq2

˙

uě0

is a martingale. Hence we have

E

„
e

iMt
vptq ` xMyt

vptq2 | Fs


“ e

iMs
vptq ` xMys

vptq2 . (6.11)

Using the short-hand notation Ura,bs “ Ub ´ Ua we have

E

«
e

iMrs,ts
vptq `

xMyrs,ts
vptq2 | Fs

ff
“ 1. (6.12)

Multiplying by Hse
´Zs

2 and taking expectation we obtain that

E

”
Hse

´Zs
2

ı
“ E

«
Hse

´Zs
2 e

iMrs,ts
vptq `

xMyrs,ts
vptq2

ff
(6.13)

Hence we have (using that }Hs}8 ď }H}8)

|E3ps, tq| “
ˇ̌
ˇ̌
ˇE

«
Hse

iMrs,ts
vptq

˜
e

iMs
vptq ´ e

´Zs
2

`
xMyrs,ts
vptq2

¸ffˇ̌
ˇ̌
ˇ

ď E

«
|Hs|

ˇ̌
ˇ̌
ˇe

iMs
vptq ´ e

´Zs
2

`
xMyrs,ts
vptq2

ˇ̌
ˇ̌
ˇ

ff
(6.14)

Taking the limit when t goes to infinity (using dominated convergence which is not a
problem due to (6.7)). We have

lim sup
tÑ8

|E3ps, tq| “ E

”
|Hs|

ˇ̌
ˇ1 ´ e

Z´Zs
2

ˇ̌
ˇ
ı
. (6.15)
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Using dominated convergence again (everything is essentially bounded)

lim
sÑ8

lim sup
tÑ8

|E3ps, tq| “ 0.

To remove the boundedness assumption, we need a truncation proceedure to make the
Given A ą 0 we set

T pA, tq :“ infts : xMys “ Avptq2u and M pA,tq
s :“ Ms^T .

pM pA,tq
s qsě0 is a martingale and we have we have

lim
tÑ8

vptq´2xM pA,tqyt “ Z ^ A. (6.16)

Repeating the previous computation withM replaced by M pA,tq, we obtain for every A ą 0

lim
tÑ8

E

«
H

˜
e
i
ξM

pA,tq
t
vptq ´ e´ ξ2Z^A

2

¸ff
“ 0 (6.17)

Letting A to infinity we have

lim
AÑ8

sup
tě0

P

”
M

pA,tq
t “ Mt;Z ^ A “ A

ı
“ 1, (6.18)

we conclude that

lim
tÑ8

E

„
H

ˆ
e
i
ξMt
vptq ´ e´ ξ2Z

2

˙
“ 0. (6.19)

�

Let us consider

M
iβ
t pfq “

ż

Rd

fpxqeiβXtpxq`β2t
2 dx (6.20)

We want to show that M
iβ
t pfq converges to a standard complex Gaussian. Hence from

Corollary 6.2, setting Wt :“ M
iβ
t pfq for better readability, we need to prove that

lim
tÑ8

xW,W yt “ and lim
tÑ8

xW,W yt “ 0. (6.21)

We have

dWt “ iβ

ż

Rd

fpxqeβ2t
2 eiβXtpxq pdXtpxqq dx

Hence computing the quadratic variation we have

dxW yt “ β2

ż

R2d

fpxqfpyqeβ2teiβpXtpxq´XtpyqqdxX¨pxq,X¨pyqydxdy

“ β2

ˆż

R2d

Qtpx, yqfpxqfpyqeβ2teiβpXtpxq´XtpyqqdxX¨pxq,X¨pyqydxdy
˙
dt

“: β2At

(6.22)

and similarly

dxW,W yt “ β2

ˆż

R2d

Qtpx, yqfpxqfpyqeβ2teiβpXtpxq`XtpyqqdxX¨pxq,X¨pyqydxdy
˙
dt

“: β2Bt

(6.23)

We have

lim
tÑ8

E

„ˇ̌
ˇ̌Aptq
φptq ´ 1

ˇ̌
ˇ̌


“ 1 and lim
tÑ8

E

„ˇ̌
ˇ̌Bptq
φptq

ˇ̌
ˇ̌


“ 0. (6.24)
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We have

ErAts “
ż

R2d

fpxqfpyqQtpx, yqeβ2t
E

”
eiβpXtpxq´Xtpyqq

ı
dxdy

“
ż

R2d

fpxqfpyqQtpx, yqeβ2Ktpx,yqdxdy “ φptq.
(6.25)

Hence we just have to evaluate the second moment and show that it is small. We have

pAt :“ At ´ ErAts “
ż

R2d

ξtpx, yqdxdy (6.26)

where

ξtpx, yq :“ fpxqfpyqQtpx, yq
´
eβ

2teiβpXtpxq´Xtpyqq`β2t ´ eβ
2Ktpx,yq

¯
.

Setting ζtpx, yq “ eiβpXtpxq´Xtpyqq`β2t ´ eβ
2Ktpx,yq we have

Er| pAt|2s “
ż

R4d

E
“
ξtpx1, y1qξtpx2, y2q

‰
dx1dx2dy1dy2. (6.27)

We have

E
“
ζtpx1, y1qζtpx2, y2q

‰

“
´
eβ

2pKtpx1,x2q`Ktpy1,y2q´Ktpx1,y2q´Ktpx2,y1qq ´ 1
¯
eβ

2pKtpx1,y1q`Ktpx2,y2qq (6.28)

Lemma 6.3. There exists a constant C (which depends on β) which is such that if

|xi ´ yi| ď e´t, for i P t1, 2u (6.29)

then we have

|E
“
ζtpx1, y1qζtpx2, y2q

‰
| ď Ce2β

2tpe´t|x1 ´ y1| _ 1q´1 (6.30)

Proof. We have eβ
2pKtpx1,y1q`Ktpx2,y2qq ď e2β

2t so we just have to bound the first term in
(6.28). Now notice that Kt is Lipshitz with constant Cet (this just obtained by integrating
the fact that Qt is Lipshitz with constant Cet for a different C). Hence we have

pKtpx1, x2q ` Ktpy1, y2q ´ Ktpx1, y2q ´ Ktpy1, x2qq ď 2Cet|x2 ´ y2| ď 2C (6.31)

where the last inequality follows from (6.29). This implies that

|eβ2pKtpx1,x2q`Ktpy1,y2q´Ktpx1,y2q´Ktpx2,y1qq ´ 1|
ď C |Ktpx1, x2q ` Ktpy1, y2q ´ Ktpx1, y2q ´ Ktpx2, y1q| (6.32)

and we are left with showing that

|Ktpx1, x2q ` Ktpy1, y2q ´ Ktpx1, y2q ´ Ktpx2, y1q| ď Cpet|x1 ´ y1| _ 1q´1. (6.33)

Let us assume that |x1 ´x2| ě 3e´t (of this is not the case then (6.31) allows to conclude).
Set s “ logp 3

|x1´x2| q. From (6.29), we have

minp|x1 ´ x2|, |y1 ´ y2|, |x1 ´ y2|, |x2 ´ y1|q ě e´s, (6.34)

and for this reason

|Ktpx1, x2q ` Ktpy1, y2q ´ Ktpx1, y2q ´ Ktpx2, y1q|

“ |Kspx1, x2q ` Kspy1, y2q ´ Kspx1, y2q ´ Kspx2, y1q| (6.35)
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and repeating (6.31) we have

|Kspx1, x2q ` Kspy1, y2q ´ Kspx1, y2q ´ Kspx2, y1q|

ď 2Ces|x2 ´ y2| ď 2Ces´t “ 6C

et|x1 ´ x2| (6.36)

which is the desired result.
�

Now we have

Er| pAt|2s ď C

ż

R4d

e2β
2t

1 ^ et|x1 ´ x2|

2ź

i“1

Qtpxi, yiq|fpxiqfpyiq|dxidyi

ď C 1ep2β2´dqt
ż

R2d

|fpx1qfpx2q|
p1 ^ et|x1 ´ x2|qdx1dx2 ď C2ep2β2´dqtρptq (6.37)

where

ρptq “
#
te´t if d “ 1,

e´t if d ě 2.

Hence we have

VarpAtq “ Er| pAt|2s ď CρptqpErAtsq2,

which, since ρptq converges to zero, implies that ErAts concentrates around its mean.

In a similar manner we have

Er|Bt|2s “
ż

R4d

Erζ 1px1, y1qζ 1px2, y2qs
2ź

i“1

Qtpxi, yiqfpxiqfpyiqdxidyi (6.38)

with ζ 1px, yq :“ eiβpXtpxq`Xtpyqq`β2t. We have

Erζ 1px1, y1qζ 1px2, y2qs “ eβ
2pKtpx1,x2q`Ktpy1,y2q`Ktpx1,y2q`Ktpx2,y1q´Ktpx1,y1q´Ktpx2,y2qq.

(6.39)
Similarly to Lemma 6.3 we can prove that if (6.31) holds then we have

Erζ 1px1, y1qζ 1px2, y2qs ď Ce´2β2tp|x1 ´ y1| _ e´tq´4β2

. (6.40)

Altogether this yields

Er|Bt|2s ď Ce´2β2t

ż

R4d

p|x1 ´ y1| _ e´tq´4β2

2ź

i“1

Qtpxi, yiqfpxiqfpyiqdxidyi

“ C 1e´2pβ2`dqt
ż

R2d

p|x1 ´ y1| _ e´tq´4β2 |fpx1qfpy1q|dx1dy1

ď C2ep2β2´3dqt

(6.41)

The proof is going to make use of the following proposition
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