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1. MOTIVATION

Sources: Ben Avraham/Havlin, Kortchemski, Chhita, Broutin.



RANDOM WALKS AND BROWNIAN MOTION

Source: Mörters/Peres.

For discrete-time simple symmetric random walk X = (Xn)n≥0

on integer lattice Z
d (d ≥ 1), it holds that
(

n−1Xtn2

)

t≥0
→ (Bt)t≥0 ,

where (Bt)t≥0 is Brownian motion [Donsker 1951].



RANDOM WALK ON A PERCOLATION CLUSTER

Bond percolation on integer lattice Z
d (d ≥ 2), parameter p ∈

(0,1). E.g. p = 0.53:

If p > pc(d), then the random walk is diffusive for P-a.e. envi-

ronment. In particular,
(

n−1XC
tn2

)

t≥0
→
(

Bc(d,p)t

)

t≥0
.

See [Sidoravicius/Sznitman 2004, Biskup/Berger 2007, Math-

ieu/Piatnitski 2007], and heat kernel bounds of [Barlow 2004].



PERCOLATION AT CRITICALITY?

Early physics work [Alexander/Orbach 1982].

Left: Part of a large critical perc. cluster (p = pc(2) = 0.5).

Right: CLE(6) gasket. Sources: Barlow/Miller, Sun, Wilson.



RANDOM WALK ON SELF-SIMILAR FRACTAL

GRAPHS

For example, how does random walk behave on the pre-Sierpinski

gasket graphs?

Answer. Can be rescaled to ‘Brownian motion’ on the lim-

iting Sierpinski gasket [Goldstein 1987, Kusuoka 1987, Bar-

low/Perkins 1988]:
(

X
(n)
5nt

)

t≥0
→
(

XBM
t

)

t≥0
.



INCIPIENT INFINITE CLUSTER

At p = pc(d), it is partially confirmed that there is no infinite

cluster. Instead, study the random walk on the ‘incipient infinite

cluster’:
C0|{|C0| = n} → IIC.

Constructed in [Kesten 1986] for d = 2, [van der Hofstad/Jarai

2004] for high dimensions.

‘Dead-ends’

‘Backbone’

Tree-like in high dimensions [Hara/Slade 2000],

see also [Heydenreich, van der Hofstad/Hulsfhof/Miermont

2017].



SRW ON PERCOLATION AT CRITICALITY?

Random walk is subdiffusive for d = 2 and in high-dimensions

[Kesten 1986, Nachmias/Kozma 2009], see also [Heydenreich/

van der Hofstad/Hulshof 2014].

For example, for almost-every-realisation of the IIC in high-

dimensions, we have:

logEIIC
0 τ(R)

logR
→ 3,

where τ(R) = inf{n : dIIC(0, X
IIC
n ) = R}, and

logEIIC
0 τ̃(R)

logR
→ 6,

where τ̃(R) = inf{n : |0−XIIC
n | = R}.

Scaling limit?



E.G. CRITICAL GALTON-WATSON TREES

Let Tn be a Galton-Watson tree with a critical (mean 1), ape-

riodic, finite variance offspring distribution, conditioned to have

n vertices, then

n−1/2Tn → T ,

where T is (up to a constant) the Brownian continuum ran-

dom tree (CRT) [Aldous 1993], also [Duquesne/Le Gall 2002].



E.G. CRITICAL GALTON-WATSON TREES

Let Tn be a Galton-Watson tree with a critical (mean 1), ape-

riodic, finite variance offspring distribution, conditioned to have

n vertices, then

n−1/2Tn → T ,

where T is (up to a constant) the Brownian continuum ran-

dom tree (CRT) [Aldous 1993], also [Duquesne/Le Gall 2002].

Convergence in Gromov-Hausdorff-Prohorov topology implies
(

n−1/2XTn
n3/2t

)

→
(

XT
t

)

t≥0
,

see [Krebs 1995], [C. 2008] and [Athreya/Löhr/Winter 2014].



EXAMPLES OF ‘CRITICAL’ TREES

Finite variance Galton-Watson trees: (n−1/2XTn
n3/2t

) →
(

XT
t

)

t≥0

α-stable Galton-Watson trees: (n−1/αXTn
n1+1/αt

) →
(

XT
t

)

t≥0

Two-dimensional uniform spanning tree: (n−1XU
n13/4t

) →
(

XT
t

)

t≥0

Three-dimensional uniform spanning tree: (n−1XU
n4.62...t

) →
(

XT
t

)

t≥0
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EXAMPLES OF ‘CRITICAL’ TREES

Finite variance Galton-Watson trees: (n−1/2XTn
n3/2t

) →
(

XT
t

)

t≥0

α-stable Galton-Watson trees: (n−1/αXTn
n1+1/αt

) →
(

XT
t

)

t≥0

Two-dimensional uniform spanning tree: (n−1XU
n13/4t

) →
(

XT
t

)

t≥0

Three-dim. uniform spanning tree: (n−1XU
n4.62...t

) →
(

XT
t

)

t≥0



OTHER EXAMPLES OF ‘CRITICAL’ GRAPHS #1a

If pairs of {1,2, . . . , n} are independently connected by an edge

with probability n−1, then one obtains the critical Erdős-Rényi

random graph G(n, n−1):



OTHER EXAMPLES OF ‘CRITICAL’ GRAPHS #1b

E.g. For G(n,1/n), the components of the graph have a complex

structure:

Source: Broutin, n = 40,000.



OTHER EXAMPLES OF ‘CRITICAL’ GRAPHS #1c

E.g. Largest connected component Cn1 of G(n,1/n) has n2/3

vertices and rescaling distance by n1/3 yields a fractal scaling

limit for the space [Addario-Berry/Broutin/Goldschmidt]:



OTHER EXAMPLES OF ‘CRITICAL’ GRAPHS #2

E.g. Discrete loop-tree given by a critical GW tree, with α-stable

offspring distribution, α ∈ (1,2].

Relates to boundary of critical percolation cluster on a random

planar map [Curien/Kortchemski]. Source: Budzinski



RANDOM CONDUCTANCE MODEL

AND BOUCHAUD TRAP MODEL

Random conductance model (RCM):

Equip edges of graphs with random weights (c(x, y)) such that

P(c(x, y) ≥ u) = u−α, ∀u ≥ 1,

for some α ∈ (0,1).

Symmetric Bouchaud trap model (BTM):

Add exponential holding times, mean τx, to vertices. In the case

where τ is random and heavy-tailed, behaviour similar to RCM.



SUBDIFFUSIVITY OF RCM AND BTM IN 1D

On Z, in the heavy-tailed regime, the conductance/holding time

environment remains inhomogeneous in the limit:

The limit measure is described as a Poisson random measure.

The associated trapping leads to a subdiffusive scaling limit for

the RW [Barlow/Cerny 2011, Cerny 2011]:
(

n−1X
RCM/BTM

n1+α−1
t

)

t≥0
→
(

XFIN
t

)

t≥0
.



THE MOTT RANDOM WALK

Environment (ω = (ωi)i∈Z,P) jump times of 1-dim. Poisson pro-

cess, intensity ρ, conditioned on ω0 = 0. Continuous-time ran-

dom walk (X = (Xt)t≥0, Pω) on ω with X0 = ω0, jumping at rate

1. Probability of jumping from ωi to ωj is

c(ωi, ωj)

c(ωi)
,

where c(ωi, ωj) := e−|ωi−ωj|, c(ωi) :=
∑

j 6=i c(ωi, ωj).

Process is diffusive if ρ > 1, subdiffusive if ρ ≤ 1. Scaling limits

known [C./Fukushima/Junk 2021].



2. STOCHASTIC PROCESSES ASSOCIATED WITH

RESISTANCE METRICS



PROBABILITY AND POTENTIAL THEORY

To study random walks on general graphs, powerful techniques

are provided from the deep connections with potential theory/

electric networks.

If the boundary of a region D is held at potential f , then what

is the potential inside the domain? Answer given by solution to

‘Dirichlet problem’:

∆v = 0 inside D,

v = f on ∂D.

Probabilistic solution: v(x) = Exf(Bτ(∂D)).

[Kakutani 1944]



RANDOM WALKS ON GRAPHS

Let G = (V,E) be a finite, connected graph, equipped with

(strictly positive, symmetric) edge conductances (c(x, y)){x,y}∈E.

Let µ be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator ∆,

as defined by:

(∆f)(x) :=
1

µ({x})

∑

y: y∼x
c(x, y)(f(y)− f(x)).

Transition probabilities: P(x, y) = c(x, y)/c(x), where c(x) =
∑

{x,y}∈E c(x, y).

Holding times: exponential, mean µ({x})/c(x).



ELECTRICAL ENERGY AND RESISTANCE METRIC

Suppose we view G as an electrical network with edges assigned
conductances according to (c(x, y)){x,y}∈E.

Define a quadratic form on G by setting

E(f, g) =
1

2

∑

x,y:x∼y
c(x, y) (f(x)− f(y)) (g(x)− g(y)) .

Then E(f, f) is electrical energy dissipated in network if vertices
are held at voltages according to f . Also, for any µ, E is a
Dirichlet form on L2(µ), and

E(f, g) = −
∑

x∈V

(∆f)(x)g(x)µ({x}).

The effective resistance between x and y is given by

R(x, y)−1 = inf {E(f, f) : f(x) = 1, f(y) = 0} .

R is a metric on V , e.g. [Tetali 1991], and characterises the
weights (and therefore the Dirichlet form) uniquely [Kigami 1995].



SUMMARY

RANDOM WALK X WITH GENERATOR ∆

l

DIRICHLET FORM E on L2(µ)

l

RESISTANCE METRIC R AND MEASURE µ



EXAMPLES OF CONNECTIONS

Voltages and hitting probabilities: Use battery to

set v(a) = 1, v(b) = 0. Voltages in remainder of

network given by

v(x) = Px(τa < τb).

(Key: both sides solve discrete Dirichlet problem.)

Effective resistance and escape probabilities:

Px(τy < τ+x ) =
1

c(x)R(x, y)
.

Effective resistance and Green’s function density:

Ey(time in z before hitting x)

µ({z})
=

R(x, y) +R(x, z)−R(y, z)

2
.



RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F be a set. A function R : F ×F → R is a resistance metric

if, for every finite V ⊆ F , one can find a weighted (i.e. equipped

with conductances) graph with vertex set V for which R|V×V is

the associated effective resistance.



EXAMPLES

- Effective resistance metric on a graph;

- One-dimensional Euclidean (not true for higher dimensions);

- Any shortest path metric on a tree;

- Resistance metric on a Sierpinski gasket, where for ‘vertices’

of limiting fractal, we set

R(x, y) = (3/5)nRn(x, y),

then use continuity to extend to whole space.



RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one corre-

spondence between resistance metrics and a class of quadratic

forms called resistance forms.

The relationship between a resistance metric R and resistance

form (E,F) is characterised by

R(x, y)−1 = inf {E(f, f) : f ∈ F , f(x) = 1, f(y) = 0} .

Moreover, if (F,R) is compact, then (E,F) is a regular Dirichlet

form on L2(µ) for any finite Borel measure µ of full support.

(Version of the statement also hold for locally compact spaces.)



A FIRST EXAMPLE

Let F = [0,1], R = Euclidean, and µ be a finite Borel measure

of full support on [0,1].

Associated resistance form:

E(f, g) =
∫ 1

0
f ′(x)g′(x)dx, ∀f, g ∈ F ,

where F = {f ∈ C([0,1]) : f is abs. cont. and f ′ ∈ L2(dx)}.

Moreover, integration by parts gives:

E(f, g) = −
∫ 1

0
(∆f)(x)g(x)µ(dx).

where ∆f = d
dµ

df
dx.

If µ(dx) = dx, then the Markov process naturally associated with

∆ is reflected Brownian motion on [0,1].



SUMMARY

RESISTANCE METRIC R AND MEASURE µ

l

RESISTANCE FORM (E,F), DIRICHLET FORM on L2(µ)

l

STRONG MARKOV PROCESS X WITH GENERATOR ∆,

where

E(f, g) = −
∫

F
(∆f)gdµ.



3. CONVERGENCE OF RESISTANCE METRICS AND

STOCHASTIC PROCESSES



MAIN RESULT [C. 2018, C./HAMBLY/KUMAGAI 2017]

Write Fc for the space of marked compact resistance metric

spaces, equipped with finite Borel measures of full support. Sup-

pose that the sequence (Fn, Rn, µn, ρn)n≥1 in Fc satisfies

(Fn, Rn, µn, ρn) → (F,R, µ, ρ)

in the (marked) Gromov-Hausdorff-Prohorov topology for some

(F,R, µ, ρ) ∈ Fc.

It is then possible to isometrically embed (Fn, Rn)n≥1 and (F,R)

into a common metric space (M,dM) in such a way that

Pn
ρn

(

(Xn
t )t≥0 ∈ ·

)

→ Pρ

(

(Xt)t≥0 ∈ ·
)

weakly as probability measures on D(R+,M).

Holds for locally compact spaces if lim infn→∞Rn(ρn, BRn(ρn, r)
c)

diverges as r → ∞. (Can also include ‘spatial embeddings’.)



PROOF IDEA 1: RESOLVENTS

For (F,R, µ, ρ) ∈ Fc, let

Gxf(y) = Ey

∫ σx

0
f(Xs)ds

be the resolvent of X killed on hitting x. NB. Processes associ-

ated with resistance forms hit points.

We have [Kigami 2012] that

Gxf(y) =

∫

F
gx(y, z)f(z)µ(dz),

where

gx(y, z) =
R(x, y) +R(x, z)−R(y, z)

2
.

Metric measure convergence ⇒ resolvent convergence ⇒ semi-

group convergence ⇒ finite dimensional distribution convergence.



PROOF IDEA 2: TIGHTNESS

Using that X has local times (Lt(x))x∈F,t≥0, and

EyLσA(z) = gA(y, z) =
R(y,A) +R(z,A)−RA(y, z)

2
,

can establish via Markov’s inequality a general estimate of the

form:

sup
x∈F

Px

(

sup
s≤t

R(x,Xs) ≥ ε

)

≤
32N(F, ε/4)

ε

(

δ +
t

infx∈F µ(BR(x, δ))

)

,

where N(F, ε) is the minimal size of an ε cover of F .

Metric measure convergence ⇒ estimate holds uniformly in n ⇒

tightness (application of Aldous’ tightness criterion).

Similar estimate also gives non-explosion in locally compact case.



4. APPLICATIONS



AN EASY FIRST EXAMPLE

Discrete space/process:

Space = {0,1, . . . , n},

Edge resistances = n−1,

Vertex masses = deg(x)/2n,

Process = SRW, holding time mean 1/n2.

Continuous space/process:

[0,1] equipped with Euclidean metric,

Lebesgue measure,

Process = BM, reflected at boundary.



TREES

For any sequence of graph trees (Tn)n≥1 such that

(V (Tn), anRn, bnµn) → (T , R, µ) ,

it holds that (

a−1
n Xtanbn

)

t≥0
→ (Xt)t≥0 .

- Critical Galton-Watson trees with finite variance conditioned
on size, an = n1/2, bn = n. (Also α-stable versions.)
- 2d-UST, an = n5/4, bn = n2 (w/Barlow/Kumagai).

Source: Chhita.
- 3d-UST, an = n1.62..., bn = n3 (w/Angel, Hernandez-Torres,
Shiraishi).
- Many other interesting models...e.g. G. Andriopoulos:
- weakly biased random walk on branching random walk;
- RWRE/ERRW on trees.



CONJECTURE FOR CRITICAL PERCOLATION

Bond percolation on integer lattice Z
d:

At criticality p = pc(d) in high dimensions, incipient infinite

cluster (IIC) conjectured to have same scaling limit as Galton-

Watson tree, e.g. [Hara/Slade 2000]. So, expect
(

IIC, n−2RIIC, n
−4µIIC

)

to converge, and thus obtain scaling limit for random walks.

cf. work of [Ben Arous, Fribergh, Cabezas 2016] for branching

random walk. NB. Diffusion scaling limit constructed [C. 2009].

Other graphs that are ‘asymptotically trees’ for which scaling limit is proved: 1-d Mott
random walk (C./Fukushima/Junk 2021), RW on range of RW (C./Shiraishi 2021).



RANDOM WALK SCALING

ON CRITICAL RANDOM GRAPH

Consider largest connected component Cn1 of G(n,1/n):

It holds that:
(

Cn1 , n
−1/3Rn, n

−2/3µn
)

→ (F,R, µ) ,

cf. [Addario-Berry, Broutin, Goldschmidt 2012]. Hence, as in

[C. 2012],
(

n−1/3Xn
tn

)

t≥0
→ (Xt)t≥0 .



RANDOM WALK SCALING

ON CRITICAL RANDOM LOOPTREES

Let Ln be a discrete loop-tree given by a critical GW tree, with

α-stable offspring distribution, α ∈ (1,2].

Then
(

Ln, n
−1/αRn, n

−1µn
)

→ (F,R, µ) ,

[Archer 2018], cf. [Curien, Kortchemski 2014]. Hence,
(

n−1/αXn
tn1+1/α

)

t≥0
→ (Xt)t≥0 .



HEAVY-TAILED RCM ON FRACTALS #1

Suppose that P(c(x, y) ≥ u) = u−α for u ≥ 1 and some α ∈ (0,1).
For gaskets, can then check that resistance homogenises [C.,
Hambly, Kumagai 2016]

(

Vn, (3/5)
nRn,3

−nµn
)

→ (F,R, µ) ,

where:
-(up to a deterministic constant) R is the standard resistance,
- µ is a Hausdorff measure on fractal.
Hence VSRW converges to Brownian motion (spatial scaling
assumes graphs already embedded into limiting fractal):

(Xn
t5n)t≥0 → (Xt)t≥0 .



HEAVY-TAILED RCM ON FRACTALS #2

It further holds that

νn := 3−n/α
∑

x∈Vn

c(x)δx → ν =
∑

i

viδxi,

in distribution, where {(vi, xi)} is a Poisson point process with in-

tensity cv−1−αdvµ(dx). Hence CSRW (and discrete time random

walk) converges:
(

X
n,νn
t(5/3)n3n/α

)

t≥0
→ (Xν

t )t≥0 ,

where the limiting process Xν is the Fontes-Isopi-Newman

(FIN) diffusion on the limiting fractal.

Similarly scaling result for heavy-tailed Bouchaud trap model.



MOTT RANDOM WALK

For ρ < 1, the Mott random walk satisfies:
(

n−1X
n1+1/ρt

)

t≥0

d
→
(

Z
(ρ)
t

)

t≥0
.

with respect to the annealed law [C./Fukushima/Junk 2021].

Ongoing work on ‘aging’ with [Kious/Scali].


