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1
Review of Complex Numbers and Functions

1.1 Complex Numbers

1.1.1 Mathematical Fields

Mathematical fields are sets of "numbers" that possess the usual
sense of addition, subtraction, multiplication and division. They
serve as a foundational concept for algebra, number theory, and
real and complex analysis. For example, any mathematical field
may act as the set of scalars for a vector space, due to the basic
properties that fields possess.

Mathematical Fields

Definition 1.1. In mathematics, a field is defined to be a set of mathematical objects that comes equipped
with an addition operation, and a multiplication operation, which both take two elements of the field and
produce another element of the field. For a field F , equipped with + and ·,

+ : F ×F → F
· : F ×F → F

F must be closed under + and ·, and must also obey the axioms ∀a, b, c ∈ F :
(C+) a + b = b + a, (Commutativity of +)
(A+) a + (b + c) = (a + b) + c, (Associativity of +)
(N+) ∃ an element 0 ∈ F such that a + 0 = a, (Neutral element under +)
( I+ ) ∃ an element −a ∈ F such that a + (−a) = 0, (Inverse under +)

( C· ) a · b = b · a, (Commutativity of ·)
( A· ) a · (b · c) = (a · b) · c, (Associativity of ·)
( N· ) ∃ an element 1 ∈ F such that 1 · a = a, (Neutral element under ·)
( I· ) ∀a 6= 0, ∃ an element a−1 ∈ F such that a−1 · a = 1, (Inverse under ·)

( D ) a · (b + c) = (a · b) + (a · c), (Distributivity of · over +)

The above definition may seem very intimidating, but really all it
says is that addition and multiplication (as well as subtraction and
division) behave as "usual" for a field.

Maths Shorthand
∃: "there exists".
∀: "for all".
∈: "in" or "is an element of".

The simplest example of a field is the set of rational numbers
with the usual addition and multiplciation (and therefore subtrac-
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tion and division). However, the rational numbers don’t contain the
solution to some equations, such as

x · x = 2. (1.1)

To solve such equations, we must add the irrational numbers (such
as
√

2) to the set of rational numbers to get the set of real numbers,
R, that you are used to.

Similarly the real numbers cannot solve certain equations, like

x · x = −1. (1.2)

To “correct” this, we can add a number denoted by i to the reals, Note that engineers often use j instead
of i to avoid confusion with current.
We are not engineers.

defined such that

i2 = i · i = −1 (1.3)

1.1.2 Complex Numbers and their Representations

The Complex Numbers, C

Definition 1.2. We can then define the set of complex numbers C

as a field such that

1. Every real number is also a complex number

2. i is a complex number

3. Every complex number can be written in the form a + ib where
a, b ∈ R, and any such number is a member of C.

4. Addition is defined componentwise, as inherited from the
reals, such that for α = a1 + ia2 and β = b1 + ib2, then

α + β = (a1 + b1) + i(a2 + b2)

5. Multiplication is defined using multiplication inherited from the
reals and i2 = −1, such that

α · β = (a1 + ia2) · (b1 + ib2)

= a1b1 − a2b2 + i(a1b2 + a2b1)

We will adopt the normal convention
and write ab = a · b = a × b inter-
changeably for the multiplication
operation

Figure 1.1: The point (cartesian/rect-
angular) representation of a complex
number.

The Complex Conjugate

Definition 1.3. Let α = a + ib be a complex number. We define α

to be

α ≡ a− ib ∈ C (1.4)

The complex number α is called the complex conjugate of α.
We will always use the overbar to
denote complex conjugation. Other
common notation includes e.g. α∗.

From the definition of the complex conjugate we can immedi-
ately see that

αα = a2 + b2 ∈ R. (1.5)
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Interpreting the real and imaginary “components” as vector compo-
nents in the 2-D plane, we see that αα corresponds to the square of
the distance from the origin, also known as the absolute value (or
modulus) squared.

Absolute Value

Definition 1.4. The absolute value or modulus of the complex
number α = a + ib is denoted |α| and is given by

|α| ≡
√

a2 + b2 =
√

αα

Does the set of complex numbers satisfy the properties of a
field? The set C is clearly closed since the real numbers we use to
build them are closed, and we see that by basing the addition and
multiplication operations on those inherited from the real numbers,
we obviously satisfy most of the C+A+N+I+ C·A·N·I· D axioms.

The one tricky axiom we may wish to verify is I·, the existence
of the multiplicative inverse for any complex number 6= 0. For any
α = a + ib 6= 0 we can use the notion of a complex conjugate to
construct the inverse

α−1 ≡ α

a2 + b2 (1.6)

We can immediately see that αα−1 = α−1α = 1 since

αα

a2 + b2 =
αα

αα
= 1 (1.7)

hence every non-zero α ∈ C has a multiplicative inverse also in C.

Exercise 1.1:

Verify the following:

Theorem 1.1. Let α and β be any complex numbers. Then

αβ = αβ, α + β = α + β, α = α.

Since we can associate each complex number with a vector in
the 2-D plane, we can also see that the component-wise addition of
complex numbers also corresponds to the component-wise addition
of vectors. Recalling the geometric fact that the length of any side
of triangle is less than or equal to the sum of the lengths of the
other two sides, we can, by analogy, deduce the triangle inequality.

The Triangle Inequality

Theorem 1.2 (The triangle inequality). For any two complex
numbers α and β, we have

|α + β| ≤ |α|+ |β|.

Just as 2-D vectors can be expressed in either cartesian form
(x, y), or polar form (r, θ), we can also express complex numbers in
a “polar” form.
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We know that we can clearly express cartesian coordinates in
terms of polar coordinates

x = r cos θ, y = r sin θ. (1.8)

Figure 1.2: The polar representation of
complex number α.

However, we must be careful in expressing the polar coordinates
in terms of the cartesian coordinates. While the expression for r is
clear,

r =
√

x2 + y2, (1.9)

we have for tan θ = y/x, however if we specify

θ = tan−1(y/x), (1.10)

this expression is invalid for points in the second and third quad-
rants (for the normal definition of the arctangent, tan−1). In practice
we must add or subtract π in order to correctly place points in
those quadrants. We can instead specify a related function

Definition of arctan(x, y). In many
programming languages, this 2

variable function is often called
"atan2".

θ = arctan(x, y) ≡



tan−1(y/x) if x > 0,

tan−1(y/x) + π if x < 0, y ≥ 0,

tan−1(y/x)− π if x < 0, y < 0,

+π/2 if x = 0, y > 0,

−π/2 if x = 0, y < 0,

undefined if x = 0, y = 0.

(1.11)

However, even using this approach, there is ambiguity, as the
angle θ is only determined up to an integer multiple of 2π. To ac-
commodate this, we will refer to the value of any of these "angles"
for complex number z = x + iy, as the set of angles, called the
argument of z,

arg z ≡ {arctan(x, y) + 2kπ : k = 0,±1,±2, ...}. (1.12)

For example, arg i = {π
2 + 2kπ, for k = 0,±1,±2, . . .}.

Definition of arg z

It is convenient to have a notation for a specific angle from the
set of arg z. Any half open interval of length 2π will contain one
and only one value of the argument. Specify a particular choice of
this range, is called choosing a particular branch of arg z. (Note that
arg(0) cannot be reasonably defined for any branch.)

Normal convention defines the selection of the branch of arg z
from (−π, π] to be the principal value of the argument, which is
usually written as Arg z with a capital A. The principal value is
particularly important in complex arithmetic in numerical codes,
and is inherently discontinuous, with value jumping by 2π as z
crosses the negative real axis. This line of discontinuity is called the
branch cut of Arg z.

One handy notation is argτ(z) which
is used for the branch of arg(z) taking
values from the interval (τ, τ + 2π].
Thus arg−π(z) is the principal value
Arg (z).

With all these conventions in hand, we can write z = x + iy in the
polar form

z = x + iy = r(cos θ + i sin θ) (1.13)
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where r = |z| =
√

zz and θ ∈ arg(z),

Figure 1.3: Arg (z), where the principal
value of arg(z) has a branch cut
(denoted by the jagged line) along
the negative real axis. Along this axis
Arg (z) = π, while slightly below the
negative real axis Arg (z)→ −π.

In many circumstances, the rectangular form (x + iy) or the polar
form (r[cos θ + i sin θ]) may be more suitable than the other. The
rectangular form, for example is very convenient for addition or
subtraction, whereas in the polar form this can be very difficult.
However, multiplication and division of complex numbers in
polar form provides a very useful geometric interpretation of
multiplication and division.

Exercise 1.2: Polar Multiplication

Show the following using trigonometric identities:

Theorem 1.3. The modulus of the product is the product of
the moduli:

|αβ| = |α||β|

and the argument of the product is the sum of the argu-
ments:

arg(αβ) = arg(α) + arg(β).

(Where the above is to be interpreted as saying that if par-
ticular values are assigned to the arguments on the left
hand side, one can find a value for the right hand side that
satisfies the relation.)

With the properties in Theorem 1.3, we may begin to see a con-
nection to the exponential function, where multiplication becomes
an addition of the exponents. Indeed we can formalise this by
providing a suitable definition for exp(z) where z = x + iy ∈ C

preserves the basic identities satisfied by the real exponential.
We want the complex exponential to share the product-to-sum-of-

the-exponents property of the real exponential such that

eαeβ = eα+β, ∀α, β ∈ C (1.14)

This allows us to simplify the problem of defining the complex
exponential considerably, since it allows the decomposition

ez = ex+iy = exeiy (1.15)

such that all that remains is to define the exponential of a purely
imaginary number!

Another property that will help us proceed is the differentiation
property of the exponential function,

d
dz

ez = ez (1.16)

which we would like to be true, as in the real version.
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Differentiation of a complex function is a bit tricky, (which we
will cover later), but we can just focus on the derivative of the
purely imaginary exponent which we want to be

d
d(iy)

eiy = eiy (1.17)

which by the chain rule gives

d
dy

eiy = ieiy. (1.18)

Taking the second derivative, using this rule, we see

d2

dy2 eiy =
d

dy
(ieiy) = i2eiy = −eiy (1.19)

but we know that the differential equation f ′′(y) = − f (y) is solved
by functions of the form f (y) = A cos y + B sin y, where A and B are
constants.

We can determine these constants by noting that f (0) = ei0 =

e0 = 1 = A cos 0 + B sin 0, and f ′(0) = iei0 = i = −A sin 0 + B cos 0.
Hence A = 1, B = i, and we must have

Euler’s Equation

Theorem 1.4 (Euler’s equation).

eiy = cos y + i sin y, ∀y ∈ R.

This naturally leads to the definition:

The Complex Exponential

Definition 1.5. If z = x + iy ∈ C, for x, y ∈ R, then ez is defined
to be the complex number

ez ≡ ex(cos y + i sin y).

which turns out to be the "right choice", as it obeys all the same
properties as the real exponential, and is holomorphic which we
will define and demonstrate later when we look in detail at the
differentiability of complex functions.

Exponential Polar Form

Euler’s equation allows us to write the polar form of a
complex number particularly compactly,

z = r(cos θ + i sin θ) = r eiθ = |z|eiArg z (1.20)

The complex conjugate z can be written as

z = r(cos θ − i sin θ) = re−iθ = |z|e−iArg z. (1.21)
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Exercise 1.3: Taylor Expansion of Euler’s Equa-
tion

Show that Euler’s equation is formally consistent with the
usual Taylor series expansions

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

cos x = 1− x2

2!
+

x4

4!
− . . .

sin x = 1x− x3

3!
+

x5

5!
− . . .

Exercise 1.4: De Moivre’s theorem

Prove the following,

Theorem 1.5 (De Moivre’s thoerem).

(cos θ + i sin θ)n = cos nθ + i sin nθ, n = 1, 2, 3, . . .

1.1.3 Powers and Roots of Complex Numbers

Let z = reiθ = r(cos θ + i sin θ) be the polar form of the complex
number z. By Theorem 1.3 (or the properties of the exponential
function), we have

z2 = z · z = r2ei2θ . (1.22)

Multiplying by z again, we have

z3 = r3ei3θ . (1.23)

Continuing this procedure provides us with the generalisation of
De Moivre’s theorem for powers of z,

zn = rneiθ = rn(cos nθ + i sin nθ) (1.24)

Exercise 1.5: Generalised De Moivre’s Theorem

The expression above is a useful formula for raising a com-
plex number to a positive integer power n. Show that the
above equation also holds for negative n.

The question arises whether this generalised De Moivre’s theo-
rem will work for n = 1/m, so that that ζ = z1/m is the mth root of
z satisfying

ζm = z. (1.25)

Certainly if we define

ζ = m
√

r eiθ/m, (1.26)
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then ζ satisfies the equation above. However, the the presence of
additional roots due to multiple branches of the argument θ ∈
arg(z) complicates matters, as θ is then defined only up to a value
of 2π.

Example 1.1: Roots of Unity

There are exactly m distinct mth roots of unity, denoted by
11/m, and they are given by

ei2kπ/m = cos
2kπ

m
+ i sin

2kπ

m
(k = 0, 1, 2, . . . , m− 1)

(1.27)

Let ωm ≡ ei2π/m. The complete set of mth roots of unity is

1, ωm, ω2
m, . . . , ωm−1

m . (1.28)

We can also prove that

1 + ωm + ω2
m + . . . + ωm−1

m = 0. (1.29)

This result is obvious from a physical point of view, since
by symmetry the centre of "mass" (1 + ωm + ω2

m + . . . +

ωm−1
m )/m of the system of m unit masses located at the mth

roots of unity must be at the origin.

1.1.4 The Complex Logarithm

We want to define the complex logarithm, log z, as the "inverse" of We will almost always take the loga-
rithm with base e, so log or Log will
always refer to this. In other texts the
notation ln or Ln is often used.

the exponential function; i.e.

w = log z if z = ew. (1.30)

Since ew is never zero, we presume that z 6= 0. To find log z ex-
plicitly, let us write z in polar form as z = reiθ and write w in the
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standard form w = u + iv. Then the equation z = ew becomes

reiθ = eu+iv = eueiv. (1.31)

From this we can deduce that u = Log r, where this is the usual
(real) logarithm of a real number, and v = arg z = θ can take
multiple values.

The Complex Log

Definition 1.6 (The Complex Logarithm). If z 6= 0, then we de-
fine log z to be any of the infinitely many values

log z ≡ Log |z|+ i arg z

= Log |z|+ iArg z + i2kπ (k = 0,±1,±2, . . .)

The multiple-valued nature of log z simply reflects
that the imaginary part of the logarithm is the polar
angle θ; the real part is single-valued. We can choose
a single-value by using, once again, the notion of a
branch cut to resolve the ambiguity, as we did for Arg z.

Definition 1.7. We can define the principal value of of the
logarithm, Log z, to be the value inherited from the principal value
of Arg z,

Log z ≡ Log |z|+ iArg z

1.2 Complex Functions

domain

range

Figure 1.4: A complex function f (z)
with domain X, and range Y.

Let S be a set of complex numbers. A mapping which associates
each element of S to a complex number is called a complex val-
ued function, or function for short. We denote such a function by
symbols like

f : S→ C (1.32)

where S is a subset of C. If z ∈ S, we write the association of the
value f (z) to z by the special arrow

z 7→ f (z) (1.33)

If a function f is defined f : X → Y, (where X, Y ⊆ C) we call the
set X the domain of f , and the set Y the range of f .

Usually, when we use the word "function" to describe f we mean
that f assigns a single value w in the range to each permissible
value of z in the domain. Sometimes we explicitly state that " f is a
single-valued function". Of course there are equations that do not
define single-valued functions, for example w = arg z, w = z1/2,
and w = log z as we saw in the previous section. In general, if
for some values of z there corresponds more than one value of
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f (z), then we say that f (z) is a multi-valued function (note that
technically these are not considered functions). We commonly
obtain multiple-valued functions by taking "inverses" of single
valued functions that are are not one-to-one (see discussion below),
such as in the case of the complex logarithm we discussed above.

1.2.1 Sets on the Complex Plane

Here we will briefly cover notions of point sets in the plane, in
order to be able to more carefully define the domains and ranges
which complex functions map between.

Open and Closed Discs

Definition 1.8. Let α be a complex number. An open disc, de-
noted by D(α, r), of (real) radius r > 0 centred at α is the set of all
complex numbers z, such that

D(α, r) ≡ {z : |z− α| < r}.

Similarly the set D(α, r) ≡ {z : |z− α| ≤ r} is called the closed
disc centred at α, of radius r.

We will make frequent reference to the
neighbourhood D(0, 1), the unit open
disc.

Figure 1.5: The point α is an interior
point of S if you can find some r > 0
such that disc D(α, r) ⊂ S. S is open if
it only contains interior points.

Figure 1.6: The point β is a boundary
point of S̄ if any disc D(β, r) contains
points both inside and outside S̄. S̄ is
closed if it contains all its boundary
points. The set of all boundary points
of a set S is called the boundary of S
and is sometimes denoted ∂S.

Open and Closed Sets

Definition 1.9 (Open Sets). Let S be a subset of the complex
plane. S is called an open set if for every point α in S, there is a
disc D(α, r) centred at α, and of some radius r > 0 such that this
disc D(α, r) is completely contained in S.

Each point α that obeys the condition above is called an inte-
rior point of set S. Open sets contain only interior points.
A point β is called a boundary point of set S if any ∀r > 0,
the disc D(β, r) contains at least one point in S, and at least
one point not in S. The set of all boundary points is called
the boundary or frontier of S.

Definition 1.10 (Closed Sets). A set S is called a closed set if it
contains all of its boundary points.

Note that the set {z : 0 < |z| ≤ 1} is not closed since it
does not contain the boundary point 0. Nor is it open since
points in the set where |z| = 1 are boundary points. (Such
part open part closed sets are sometimes called clopen sets.
Unfortunately.)
Also note that the same set can be considered an open subset
of one space, but not of another. For example, the interval
(0, 2π) is an open subset of the real line R, but it is not an
open subset of C (all points in the interval are boundary
points in this case).
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The closure of a set S is defined to be the union of S and all its
boundary points. We denote this closure by S.

Figure 1.7: Left: The set S is the open
first quadrant on the complex plane.
Right: The set S is the closed first
quadrant which includes the positive
real, and positive imaginary axes.
(Neither of these sets is compact.)

A set S is said to be bounded if there exists a real number C > 0
such that

|z| ≤ C, ∀z ∈ S (1.34)

A set S is said to be compact if and only if it is both closed and
bounded.

There are a few other definitions
of compactness, particularly that
every sequence of elements of S has
a convergent subsequence whose
limit is in S. This can be shown to be
equivalent to our definition, at least on
the complex plane.

Figure 1.8: Left: The open set S is
bounded, but is not compact. Right:
The closed set S is also bounded,
therefore it is compact.

A set S, is said to be connected if given any two points α and β

in S, there exists a path within S that joins α to β. (This relatively
strong definition of connectedness is sometimes called pathwise
connectedess; there are other notions of connectedness that have to
do with topology, which we will not get into in this module.)

Figure 1.9: Examples of connected sets.

A (path-wise) connected set is said to be simply connected if any
closed curve (i.e. a loop) inside the set can be continuously shrunk
down to a point.
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Simply Connected
Pathwise Connected

Not Simply Connected
Not Pathwise Connected

Not Simply Connected
Pathwise Connected

Figure 1.10: Simply connected sets are
path-wise connected sets where any
closed loop can be shrunk to a point.

1.2.2 Limits, Sequences, and Continuity

The definition of the absolute value can be used to designate the
distance between two complex numbers (this is sometimes called a
metric). This allows us to easily define "open" sets (though it is not
the only way to do so, see e.g. any introductory text on topology,
where "openness" is defined by fiat). Having the concept of distance
we can also proceed to introduce notions of limits and convergence,
analogous to those you are used to with the real numbers.

Figure 1.11: The convergence of a
sequence {zn} to w. Each term zn for
n > N lies inside the open disc of
radius ε about w.

Informally, when we have an infinite sequence of complex num-
bers, z1, z2, z3, . . ., we say that the number w is the limit of the se-
quence if the zn eventually (i.e. for large enough n) stay arbitrarily
close to w. More precisely,

Definition of a Cauchy Sequence

Limit of a Complex Sequence

Definition 1.11. A sequence of complex numbers {zn}∞
n=1 is said

to have the limit w ∈ C or to converge to w, i.e.

lim
n→∞

zn = w, or zn → w as n→ ∞

if ∀ε > 0, (ε ∈ R) ∃N such that |zn − w| < ε, ∀n > N.

There is an additional notion of convergence that is
very useful, known as the Cauchy Criterion. In fact,
a necessary and sufficient condition for a complex
sequence to converge is that it obeys this condition

Theorem 1.6 (Cauchy Criterion). A sequence {zn}∞
n=1 will con-

verge if and only if ∀ε > 0, ∃ integer N such that

|zn − zm| < ε, ∀m > N, ∀n > N.

(We will demur from rigorously proving this, for now, as
sufficiency is slightly tricky.) A sequence that obeys the
Cauchy Criterion is called a Cauchy Sequence. Note that
this provides an alternative and very useful definition of
convergence that doesn’t require reference to the notion of
limits.
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A related concept is the limit of a complex-valued function f (z).
Roughly speaking, we say that the number wo is the limit of the
function f (z) as z approaches zo if f (z) stays close to wo whenever z
is sufficiently near zo. More precisely we have,

Figure 1.12: The limit of a function is
defined such that any open disc of wo
contains all the values assumed by f
in some open disc around zo (except
possibly the value f (zo)).

Limit of a Complex Function

Definition 1.12. Let f be a function defined on some (open set)
neighborhood of zo, with the possible exception of the point zo

itself. We say that the limit of f (z) as z approaches zo is the
complex number wo i.e.

lim
z→zo

f (z) = wo,

or f (z)→ wo as z→ zo

if ∀ε > 0, ∃δ > 0, (ε, δ ∈ R) such that

| f (z)− wo| < ε, if |z− zo| < δ.

There is an obvious relation between the limit of a function
and the limit of a sequence; namely, if limz→zo f (z) = wo, then
for every sequence {zn} converging to zo, the sequence { f (zn)}
converges to wo. The converse of this statement is also true.

With these notions in hand, we can define the concept of continu-
ity of a function:

Cultural Side Note: A more general
(topological) notion of continuity
is that a mapping f : X → Y is
continuous if for any open subset
of the range, W ⊂ Y, the preimage
of f (W) (i.e. the domain set that
corresponds to the range set W, also
known as f−1(W) if f is invertible), is
an open subset of X. For X, Y ⊆ C, this
definition is equivalent to ours.

Continuous Functions

Definition 1.13 (Continuity at a point). Let f be a function
defined in an open disc centred at zo. Then f is called continuous
at zo if

lim
z→zo

f (z) = f (zo).

In other words, for f to be continuous at zo, it must have a
limiting value at zo and this limiting value must be f (zo).

Definition 1.14 (Continuity on a set). A function f is said to be
continuous on a set S if it is continuous at each point of S.

Clearly the definitions for continuity and limits are directly
analogous to those used for normal calculus and analysis on the
real numbers. Because of this analogy, many of the familiar theo-
rems and lemmas on real sequences, limits, and continuity remain
valid in the complex case, such as,
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Limits of Complex Functions

Theorem 1.7. If f (z) and g(z) are complex functions for z ∈ C

and limz→zo f (z) = A and limz→zo g(z) = B, then

lim
z→zo

( f (z)± g(z)) = A± B,

lim
z→zo

f (z)g(z) = AB,

lim
z→zo

f (z)
g(z)

=
A
B

if B 6= 0.

Lemma 1.1. If f (z) and g(z) are continuous complex func-
tions at zo, then so are f (z) ± g(z) and f (z)g(z). The quotient
f (z)/g(z) is also continuous at zo provided g(zo) 6= 0.

Exercise 1.6: Limits of Real and Complex Func-
tions

Let f (z) = u(x, y) + iv(x, y), for z = x + iy, and zo = xo + iyo,
and wo = uo + ivo. Prove that

lim
z→zo

f (z) = wo

if, and only if,

lim
x→xo
y→yo

u(x, y) = uo, and lim
x→xo
y→yo

v(x, y) = vo,

i.e., a complex function has a limit if and only if its real and
imaginary components have the appropriate limits.
[Hint: Use the triangle inequality and the facts that |Re w| ≤
|w| and |Im w| ≤ |w|.]

1.2.3 Injective, Surjective and Bijective Functions

Finally, we review the notion of (single-valued) functions that
are one-to-one (also called injective), onto (also called surjective),
and invertible (also called bijective). Note that these notions are
applicable to more than just complex-valued functions.

One-to-One, Onto, and Invertible Functions

For single valued functions (mutli-valued functions, are,
technically, not considered functions):

Definition 1.15. An injective function is one for which every
element of the domain points to a unique element of the range.
Injective functions are also called one-to-one.
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Definition 1.16. A surjective function is one for which every
element of the range has (at least) one element in the domain which
maps to it. Surjective functions are also called onto.

Definition 1.17. A bijective function is one that is both injective
and surjective. A bijective function perfectly pairs up members
of the domain and range with no overlaps or omissions. Bijective
functions are often called one-to-one and onto, or invertible,
since they admit single-valued inverse functions.

Multi-Valued Function
(Not a function)

Injective/One-to-one
(Not surjective)

Surjective/Onto
(Not injective)

Bijective/One-to-one & Onto
(Invertible)



2
Complex Differentiation and Holomorphic Functions

2.1 The Complex Derivative

Now that we have a reviewed the notions of complex numbers
and complex functions, we turn to the main topic of this part of
the module: the study of functions that are differentiable in (most
of) the complex plane. In studying differentiable functions of real
variables, we took such functions defined on intervals. For complex
variables, we have to select domains of definition in an analogous
manner.

Figure 2.1: A function is only complex
differentiable at a point z if f ′(z) is the
same well-defined value regardless
of which path the complex number
h takes to 0. In other words the
"direction" the derivative is taken in on
the complex plane does not matter.

Derivative of a Complex Function

Definition 2.1 (The Complex Derivative). Let U be an open
subset of C, and let z be a point of U. Let f be a function on U.
We say that f is complex differentiable at z if the limit

f ′(z) ≡ lim
h→0

f (z + h)− f (z)
h

, (2.1)

exists (where h ∈ C). This limit is the derivative of f at z, and
can also be denoted by d f /dz.

Unless otherwise specified, for us, differentiable will always
mean complex differentiable. This is almost the same definition
of derivative as for real variables, with one crucial difference. On
the real line there are two "directions" from which h can approach
zero. But on the complex plane, there are an infinite number of
directions for which this can occur. Indeed, in order for a function
to be considered complex differentiable, this limit must approach
only a single value, regardless of which path h takes.

Example 2.1: The Complex Conjugate

Show that z is nowhere differentiable.
Solution: The finite difference approximation for f (z) = z
takes the form

f (z + h)− f (z)
h

=
(z + h)− z

h
=

h
h

where h ∈ C. Now if h → 0 through real values, then
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h = ∆x, and h = h, and we must have the above quotient
be 1. On the other hand if h → 0 from above, then h = i∆y
and h = −h, so the quotient is −1. Thus there is no simple
way of assigning a unique value to the derivative of z at any
point, and it is not differentiable.
Can you show Re(z), Im(z) and |z| are not differentiable?

Holomorphic (Analytic) Functions

Definition 2.2 (Holomorphic Functions). Let U be an open sub-
set of C. A function f : U → C is called holomorphic on U if
∀z ∈ U, f is complex differentiable at z.

Note that differentiability may be defined at a single point,
whereas a function can only be considered holomorphic1 (or ana-

1 The term holomorphic comes from
the Greek, "holos" for "entire", and
"morphe" for "form" or "shape". This is
sometimes used interchangeably with
analytic, though these mean slightly
different things. We will discuss this
more later.

lytic) on open sets. A function that is holomorphic on the whole
complex plane is called an entire function.

Definition of an entire function.

Example 2.2: dzn/dz

Show that for any positive integer n,

d
dz

zn = nzn−1

Solution: Using the binomial theorem (Worksheet 1) we find

(z + h)n − zn

h
=

nzn−1h + n(n−1)
2 zn−2h2 + . . . + hn

h
.

Thus

d
dz

zn = lim
h→0

(z + h)n − zn

h
= nzn−1

The usual proofs of the calculus of real variables concern-
ing the basic properties of differentiability are valid for complex
differentiability2. 2 We will review them here, for your

reference, but will not go over them in
detail in lecture.

We note that if f is differentiable at z then it is also continuous at
z because

lim
h→0

( f (z + h)− f (z)) = lim
h→0

f (z + h)− f (z)
h

· lim
h→0

h = 0

=⇒ lim
h→0

f (z + h) = f (z).

since (from Thm. 1.7) the limit of the product is the product of the
limits.

Differentiable implies continuous.
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Sum and Product Rules for Complex Derivatives

Let f , g be functions defined on the open set U ⊂ C, and dif-
ferentiable at some point z ∈ U.

Theorem 2.1 (Sum Rule). The sum f + g is differentiable at z and

( f + g)′(z) = f ′(z) + g′(z)

Proof: This follows immediately from Theorem 1.7, that the
limit of the sums is the sum of the limits.

Theorem 2.2 (Product Rule). The product f g is differentiable at
z, and

( f g)′(z) = f ′(z)g(z) + f (z)g′(z).

Proof: We want to find the limit as h→ 0 of

f (z + h)g(z + h)− f (z)g(z)
h

.

We can write the numerator in the form

f (z + h)g(z + h)− f (z)g(z + h) + f (z)g(z + h)︸ ︷︷ ︸
0

− f (z)g(z),

so that the derivative takes the form

( f g)′(z) = lim
h→0

[
f (z+h)− f (z)

h
g(z+h) + f (z)

g(z+h)−g(z)
h

]
= f ′(z)g(z) + f (z)g′(z).

The Quotient Rule

Theorem 2.3 (Quotient Rule). If g(z) 6= 0, then the quotient of
f /g is differentiable at z, and

( f /g)′(z) =
g(z) f ′(z)− f (z)g′(z)

g(z)2

Proof: First we have to show that 1/g is differentiable. As
for real calculus we have,

1
g(z+h) −

1
g(z)

h
= − g(z + h)− g(z)

h
1

g(z + h)g(z)
.

Applying the limit gives,

d(1/g(z))
dz

= − g′(z)
g(z)2

which exists if g(z) 6= 0 and if g′(z) exists. The quotient rule
is then proved using the above result and the product rule.
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The function (g ◦ f )(z) is pronounced
"g circ f ", "g composed with f ", or
sometimes "g after f ". It means to
apply function g to the result of f (z).
Obviously, the domain of g must
overlap with the range of f in order for
g ◦ f to have a non-null domain.

The Chain Rule

Theorem 2.4 (Chain Rule). Let w = f (z). Assume that f is dif-
ferentiable at z and function g(w) is differentiable at w. Then g ◦ f ,
is differentiable at z and

(g ◦ f )′(z) = g′( f (z)) f ′(z)

Proof: Since f (z) is differentiable at z, for h ∈ C, we define
the function ϕ f (h) to be

ϕ f (h) ≡
f (z + h)− f (z)

h
− f ′(z)

such that it is the "error" of the "finite difference" approxima-
tion to f ′(z).
Then we have both

f (z + h)− f (z) = f ′(z)h + hφ f (h) and lim
h→0

ϕ f (h) = 0.

The existence of such a function ϕ f (h) obeying the above
equations can be shown to be equivalent to differentiability
of f at z.
We can then use this alternate definition of differentiability
and let w = f (z) and

k = f (z + h)− f (z)

so that

g( f (z + h))− g( f (z)) = g(w + k)− g(w)

Since g(w) is differentiable at w we have a function ϕg(k)
such that

g(w + k)− g(w) = g′(w)k + kϕg(k), and lim
k→0

ϕg(k) = 0.

Substituting in for k, and dividing by h we find

g ◦ f (z + h)− g ◦ f (z)
h

= g′(w)
f (z + h)− f (z)

h

+
f (z + h)− f (z)

h
ϕg(k).

Taking the limit as h → 0, we note that k → 0 by continuity
of f at z. Then, since ϕg(k) → 0 as k → 0, the last term van-
ishes, and we recover the chain rule.

It follows from the Sum and Product Rules and Example 2.2
that any polynomial in z,

P(z) = anzn + an−1zn−1 + . . . + a1z + a0, (2.2)

is differentiable on the whole plane (i.e. P(z) is an entire function),
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and has derivative given by

P′(z) = nanzn−1 + (n− 1)an−1zn−2 + . . . + a1. (2.3)

Consequently, from the Quotient Rule, any rational function of z,
R(z) ≡ PN(z)/PD(z), is differentiable at every point of its domain
where the denominator PD(z) 6= 0. For the purposes of differenti-
ation, polynomial and rational functions in z can be treated as if z
was a real variable.

2.2 Holomorphic functions on C vs functions on R2

In the previous chapter we viewed complex functions of a
complex variable (e.g. f (z)), as somewhat arbitrary mappings from
the xy-plane to the uv-plane. We have individual names for the real
(x) and imaginary (y) parts of z, and for the real (u) and imaginary
(v) parts of f . Any pair of two-variable functions u(x, y) and v(x, y)
gives us a complex function (u + iv) in this sense. But notice that
there is something special about the pair

u1(x, y) = x2 − y2, v1(x, y) = 2xy, (2.4)

as opposed to (e.g.)

u2(x, y) = x2 − y2 v2(x, y) = 3xy. (2.5)

That is, the complex function u1 + iv1 treats z = x + iy as a single
"unit" because it can be written x2 − y2 + i2xy = (x + iy)2, and thus
respects the complex structure of z = x + iy. However, the formula-
tion u2 + iv2 requires us to break apart3 the real and imaginary parts

3 In real calculus we don’t deal with
functions that look at a number like
3 + 4

√
2 and square the 3 but cube the

4! The interesting calculus functions
treat the number as an indivisible
module.

of z.

Figure 2.2: Close to a differentiable
point zo , the holomorphic function
w = f (z) maps the circular domain to
a circular range, since it can only scale
r by |a| and rotate by Arg (a) about
point wo = f (zo), where a = f ′(zo) and
r = |z− zo |.

We want to consider functions that are functions of z, rather
than functions of x and y separately. Thus z2 = x2 − y2 + i2xy is
a function we consider "admissible", while functions like Re(z),
Im(z) and z are not, as they require explicit separation the real and
imaginary parts of z. Similarly |z| is not the kind of function we are
looking for since z = |z|/z, while the power series expansion of ez

shows us that it can be written in terms of only functions of z in its
entirety.

It will turn out that this vague criteria we are looking for, which
apparently respects the complex structure of z, can be expressed
simply in terms of differentiability. Thus the functions we want
to consider, that treat z as a complex number, rather than a pair of
coordinates, are functions that are holomorphic (thus the "holos"
etymology, since such a function respects the complex number in
its entirety). We will explore why these notions are equivalent more
in later chapters, but we can get a sense of this by considering how
functions approach a particular value f (zo) = wo.

In the domain D(zo, ε), the circular disc centred at zo, a holo-
morphic function w = f (z) at z ∈ D(zo, ε) has the well defined
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approximation as ε→ 0,

f (z) ≈ wo + a(z− zo) =⇒ w− wo ≈ a(z− zo) (2.6)

where wo = f (zo) and a = f ′(zo) ∈ C is the well defined complex
derivative at zo. If we write a = |a|eiArg a, we see that if we zoom
in close enough to a differentiable point zo, a circular domain
centred at zo must map to a circular range centred at wo, since a
only provides an overall scaling and rotation about wo (see Figure
2.2). Hence holomorphic functions map locally circular domains to
locally circular ranges (with no reflections).

Figure 2.3: For a general non-
holomorphic function g(z) =
u(x, y) + iv(x, y) (where x = Re z
and y = Im z) and close to some
point zo = xo + iyo where the par-
tial derivatives of u(x, y) and v(x, y)
exist, circular domains are generally
mapped to elliptical ranges, since
the partial derivatives are, in general,
unrelated.

Let’s consider a general (non-holomorphic) function

on the complex plane, g(z) = u(x, y) + iv(x, y), where x = Re z,
and y = Im z, which is equivalent to a 2-dimensional function
g̃ : R2 → R2, such that g̃({x, y}) = {u(x, y), v(x, y)}. By analogy
with g̃, we can see that near a point zo = xo + iyo where g(zo) = wo

and the partial derivatives are well defined, we can approximate
w = g(z) by

g(z) ≈ wo +

[
∆x

∂

∂x
u(x, y) + ∆y

∂

∂y
u(x, y)

]
+ i
[

∆x
∂

∂x
v(x, y) + ∆y

∂

∂y
v(x, y)

]
. (2.7)

where ∆x = Re(z− zo) and ∆y = Im(z− zo).
Since for a non-holomorphic function there is no particular rela-

tionship between the partial derivatives of u(x, y) and v(x, y), we
see (from Figure 2.3) that "small" circular domains centred at zo

must map to elliptical ranges centred at wo. That is, a function ap-
proaching along the y direction has a different derivative than when
approaching along the x direction, which leads to a "elliptical"
mapping, that treats x and y differently. Hence, non-holomorphic
functions locally map circular domains to elliptical ones.

The above discussion provides us with a few insights:

• To treat the complex input z as a unit, we want functions that
locally map circular domains to circular ranges with only scaling
and rotations allowed (no reflections – why?).

• The above condition is exactly satisfied by holomorphic func-
tions.

• Holomorphic functions are actually quite restricted compared to
general functions on R2.

We can focus a bit more carefully on this last point, that holo-
morphic functions f (z) are special compared to general functions
u(x, y) + iv(x, y). Indeed it turns out that the existence of a complex
derivative is a very strong condition to place on a function, and that
any holomorphic function must also be infinitely differentiable4 on

4 We will not prove this yet, but can do
so once we develop a few more tools,
like Cauchy’s Integral Theorem.the same domain, that is it has well defined (complex) derivatives at

all orders.
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2.3 The Cauchy-Reimann Equations

Figures 2.2 and 2.3 gives us a hint that holomorphic functions must
have a special relationship between u(x, y) and v(x, y) that has to
be satisfied. Here we will find this relationship, by calculating the
derivative along two different paths.

Derivatives from different directions

If the function f (z) = u(x, y) + iv(x, y) is differentiable at zo = xo + iyo, the complex derivative
can be found using Definition 2.1. Approaching from the horizontal direction (see Figure 2.4), we
take h = ∆x → 0,

f ′(zo) = lim
∆x→0

u(xo + ∆x, yo) + iv(xo + ∆x, yo)− u(xo, yo)− iv(xo, yo)

∆x

= lim
∆x→0

[
u(xo + ∆x, yo)− u(xo, yo)

∆x

]
+ lim

∆x→0
i
[

v(xo + ∆x, yo)− v(xo, yo)

∆x

]
We see that the terms in the square brackets are the definitions of the partial derivatives,

f ′(zo) =
∂u
∂x

(xo, yo) + i
∂v
∂x

(xo, yo). (2.8)

Similarly if we approach zo from the vertical direction we take h = ∆y→ 0,

f ′(zo) = lim
∆y→0

[
u(xo, yo + ∆y)− u(xo, yo)

i∆y

]
+ lim

∆y→0
i
[

v(xo, yo + ∆y)− v(xo, yo)

i∆y

]
= −i

∂u
∂y

(xo, yo) +
∂v
∂y

(xo, yo). (2.9)

In order for the value of the derivative to be the same no matter which direction the limit was
taken in, we require the real and imaginary components of Equations 2.8 and 2.9 to be the same,
resulting in the following theorem.

Figure 2.4: A holomorphic function
has the same derivative no matter
which direction the limit is taken
in. Taking the limit vertically and
horizontally allows us to derive the
Cauchy-Reimann equations.

The Cauchy-Reimann Equations

Theorem 2.5 (The Cauchy-Reimann Equations). Let f (z) =

u(x, y) + iv(x, y) be defined on some open set S containing the
point zo. The first partial derivatives of u(x, y) and v(x, y) exist,
are continuous, and satisfy the Cauchy-Reimann equations:

∂u
∂x

=
∂v
∂y

,
∂u
∂y

= − ∂v
∂x

, (2.10)

at zo = xo + iyo, if and only if f (z) is differentiable at zo. These
conditions hold at all points in S, if and only if f (z) is holomor-
phic on S.

(Why do you think we require the partial derivatives to be
continuous in order for the Cauchy-Reimann (CR) equations
to be sufficient conditions for complex differentiability?
I.e. what happens if the CR equations are satisfied but the
partial derivatives are not continuous?)
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Exercise 2.1: CR equations and circular domains

By explicit calculation, show that functions (with con-
tinuous partial derivatives) that obey the Cauchy-Reimann
equations must map locally circular domains to locally circu-
lar ranges, and that such maps must consist of only a scaling
and rotation (with no reflections).

Example 2.3: The exponential function again

Prove that the function f (z) = ez = ex cos y + iex sin y is
entire (i.e. is holomorphic on the entire complex plane) and
find its derivative.
Solution: Since

∂xu = ex cos y, and ∂yv = ex cos y

∂yu = −ex sin y, and ∂xv = ex sin y

the first partial derivatives are continuous and satisfy the
Cauchy-Reimann equations at every point in the plane.
Hence f (z) is entire. Also we notice that

f ′(z) =
∂u
∂x

+ i
∂v
∂x

= ex cos y + iex sin y = f (z)

as we expect.

2.4 Holomorphic and Harmonic Functions

Laplace’s equation in 2-dimensions is an extremely useful equation
in mathematical physics. It can describe the behaviour of a variety
of physical systems, such as 2-D electrostatic potentials, or the
stream functions of irrotational incompressible fluid flow.

Other common notations for the
Laplacian operator ∇2 are ∆ or ∇ · ∇.

Laplace’s Equation

Definition 2.3 (Harmonic function). A real-valued function
φ(x, y) is said to be harmonic on a (simply-connected open)
set S if all its second-order partial derivatives exist and are
continuous on S and φ satisfies Laplace’s equation:

∇2φ ≡ ∂2φ

∂x2 +
∂2φ

∂y2 = 0 (2.11)

at each point in S.

Taking the partial derivatives of the Cauchy-Reimann equations
gives us

∂2u
∂x2 =

∂2v
∂x∂y

, and
∂2u
∂y2 = − ∂2v

∂y∂x
. (2.12)



26 complex analysis

Similarly we have

∂2v
∂y2 =

∂2u
∂x∂y

, and
∂2v
∂x2 = − ∂2u

∂y∂x
. (2.13)

The equality of mixed partials (the Clairaut-Schwartz theorem),
then allows us to prove:

Harmonic Real and Imaginary Parts

Theorem 2.6. If f (z) = u(x, y) +iv(x, y) is holomorphic on a
(simply-connected open) set S, then the real functions u(x, y) and
v(x, y) are both harmonic on S.

Definition 2.4 (Harmonic Conjugate). Conversely, if we are
given a function u(x, y) that is harmonic on some open simply-
connected set, we can find some v(x, y), also harmonic, such that
f (z) = u + iv is holomorphic on the same set. The function v(x, y)
is called the harmonic conjugate of u,

Note will show later that if f (z)
is holomorphic then u and v have
continuous partial derivatives of all
orders.

Example 2.4: Finding a harmonic conjugate

Construct an analytic function whose real part is

u(x, y) = x3 − 3xy2 + y

Solution: First we verify that u is harmonic on the whole plane:

∂2u
∂x2 +

∂2u
∂y2 = 6x− 6x = 0.

Now we have to find the harmonic conjugate of u, v(x, y) such that the Cauchy-Reimann equa-
tions are satisfied. Thus we must have

∂v
∂y

=
∂u
∂x

= 3x2 − 3y2 (2.14)

and
∂v
∂x

= −∂u
∂y

= 6xy− 1. (2.15)

If we hold x constant and integrate Eq. 2.14 with respect to y we get

v(x, y) = 3x2y− y3 + ψ(x)

where ψ(x) is the "constant" of integration (since we only integrate with respect to y). Taking the
partial derivative of v with respect to x we find

∂v
∂x

= 6xy + ψ′(x) = 6xy− 1

where the second equality comes from Eq. 2.15 above. This gives ψ′(x) = −1, so ψ(x) = −x + a
where a is some constant. Hence the harmonic conjugate of u is

v(x, y) = 3x2y− y3 − x + a

and the analytic function is

f (z) = x3 − 3xy2 + y + i(3x2y− y3 − x + a)

= z3 − i(z− a).
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Figure 2.5: Above in Example 2.4 the
path z̃o → z̃ we chose to integrate
over was in two pieces, the vertical
line segment {xo , yo} → {xo , y}
(along which dx = 0) followed by the
horizontal line segment {xo , y} →
{x, y} (along which dy = 0). Since any
path will do (e.g. the dotted lines), this
one makes the integrals easy!

The Harmonic Conjugate

Theorem 2.7. If u(x, y) is harmonic on an open simply-connected
domain, the harmonic conjugate of u is given by the line integral

v(z̃) =
∫ z̃

z̃o
(∂xu)dy− (∂yu)dx + C (2.16)

where C is a constant of integration, and the line integral is
performed over any path from some arbitrary fixed point z̃o =

{xo, yo} to the point z̃ = {x, y} (i.e. the result is path indepen-
dent).

Note that if the domain is not simply-connected (e.g. a
punctured disc) the harmonic conjugate is not always guar-
anteed to exist. (In this case the line integral may be path
dependent.)

It may seem surprising that the condition that a complex function
being complex differentiable leads to such strong restrictions on
the functions u and v. This fact does have an extraordinary benefit
though, often problems involving Laplace’s equation on strange
domains can be more easily solved by considering composition of
holomorphic functions.

We know that if we have two functions

f : S1 → S2, and g : S2 → S3, (2.17)

that are both holomorphic with S1, S2, S3 ⊆ C then the composition
of the two functions,

g ◦ f : S1 → S3 (2.18)

is also holomorphic on S1 (by the chain rule).

Figure 2.6: To solve Laplace’s equation
on the half-annular domain S1 (here
with a Dirichlet boundary condition),
we could use the holomorphic map
f (z) = Log z to map onto the rect-
angular domain S2 where it is easier
to find the harmonic function Re(g).
The solution on S1 is then given by
Re[w(z)] = Re[(g ◦ f )(z)].

Application: Solving Laplace’s Equation on
Weird Domains (by Conformal Mapping)

Suppose we are trying to find a real function u satisfying

∇2u = 0 (2.19)

in S1, with boundary condition u = h(x, y) on the boundary
∂S1.
This is of course equivalent to finding a holomorphic func-
tion, w(z), whose real part satisfies the boundary condition
on ∂S1.
If S1 is an awkward shape, but we can find a holomorphic
function f (z) that maps it to a more helpful domain S2, then



28 complex analysis

we can define

w = g ◦ f

or w(z) = g( f (z)) (2.20)

We are now looking for a holomorphic function g on the nice
domain S2 such that the boundary condition

Re[(g ◦ f )(z)] = h(x, y) on ∂S1 (2.21)

is satisfied. As long as f (z) is invertible we can write the
equivalent boundary condition on ∂S2 as

Re[g(z)] = h( f−1(z)) on ∂S2 (2.22)

Cultural sidenote: a function that is
holomorphic and invertible is often
called a holomorphism.

2.5 Angles under holomorphic maps

Another property of holomorphic functions is that they are confor-
mal. Roughly, speaking this means that they preserve angles. In
order to understand this fully, we need to figure out what we mean
by angles on the complex plane.

Let’s consider an open set S ⊆ C and define γ : [a, b]→ S to be a
curve in S, so we can write

γ(t) = x(t) + iy(t) (2.23)

such that t ∈ [a, b] is the parameter that traces the curve. We can
assume that γ is differentiable, so that it’s derivative is

γ′(t) = x′(t) + iy′(t) ∈ C. (2.24)

Figure 2.7: The derivative γ′(t) is in
the direction of the tangent to the
curve γ at point γ(t).

We can interpret the complex number γ′(t) as a "vector" in the
direction of a tangent at the point γ(t). Thus the derivative, γ′(t), if
it is not 0, defines the direction of the curve at the point.

Figure 2.8: The angle between two
curves is the angle between the
tangent vectors.

If two curves γ(t) and η(t) both pass through some point zo,
such that zo = γ(to) = η(t1), then the tangent vectors γ′(to)

and η′(t1) determine an angle θ which is defined to be the angle
between the curves.

If we have two complex numbers z = a + ib and w = c + id, then

zw = ac + bd + i(bc− ad). (2.25)

We notice that ac + bd is what we would expect from the dot or
scalar product of the vectors {a, b} and {c, d}. We can thus define
an equivalent scalar product of the complex numbers to be

〈z, w〉 = Re(zw). (2.26)

The cosine and sin of the angle θ between z and w on the complex
plane can be determined using this scalar product,

cos θ =
〈z, w〉
|z||w| , and sin θ =

〈z,−iw〉
|z||w| . (2.27)
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Conformal Maps

Definition 2.5 (A Conformal Map). A mapping that preserves
angles and orientation (handedness) is called a conformal
map.

Theorem 2.8. If f : S→ C is holomorphic and f ′(zo) 6= 0, at
some zo ∈ S, then the angle between the curves γ and η at zo is
the same as the angle between the curves f ◦ γ and f ◦ η at f (zo)

with the same orientation, and the mapping is conformal at zo.

Proof: We already have a sense, from discussing Figure 2.2,
of how holomorphic functions only allow local scaling and
rotations, and thus preserve angles and orientations, but
here we will give a more formal approach. Let the curves
γ and η be defined as above and γ′(to) = z, and η′(t1)=

w. We then have the angle between γ and η at zo given by
Equation 2.27. We must also have ( f ◦ γ)′(to) = f ′(zo)γ′(to)

and ( f ◦ η)′(t1)= f ′(zo)η′(t1).
Let f ′(zo) = α ∈ C. Then the inner product of the tangent
vectors of f ◦ γ and f ◦ η is given by,

〈αz, αw〉 = Re(αzαw) = αα〈z, w〉, (2.28)

since αα = |α|2 is real. The angle between f ◦ γ and f ◦ η at
f (zo) is then given by

cos θ =
〈αz, αw〉
|αz||αw| =

〈z, w〉
|z||w| , (2.29)

and sin θ =
〈αz,−iαw〉
|αz||αw| =

〈z,−iw〉
|z||w| , (2.30)

This clearly fails when α = f ′(zo) = 0.

Figure 2.9: Level curves of u(x, y) =
x2 − y2 (solid) and its harmonic
conjugate v(x, y) = 2xy (dotted). The
holomorphic map w(z) = z2 = u + iv
is conformal everywhere except z = 0
since w′(0) = 0, and will of course
map these level curves to lines of
constant u and v. Note that the level
curves of u and v meet at right angles,
since they map to the orthogonal grid,
except at z = 0 (at this non-conformal
point, angles between curves are
actually doubled by w(z)).

Note that while maps like z 7→ z also preserve angle, they in-
volve a reflection such that the orientation of the angles is reversed.
Such maps are not considered conformal because of this orientation
change.

This conformal property of holomorphic maps, allows us to
determine another interesting relationship between a harmonic
function u(x, y) and its harmonic conjugate v(x, y). If we define the
level curves of u and v (see Figure 2.9) to be where

u(x, y) = constant (2.31)

v(x, y) = constant. (2.32)

then it must be that on the z-plane the level curves of u are orthog-
onal to the level curves of v everywhere the function w(z) = u + iv
is holomorphic with non-zero derivative, since, on the w-plane,
the lines of constant u are vertical lines, and lines of constant v are
horizontal lines.
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Figure 2.10: Conformally mapping a
mosaic of Bath Gorgons using different
holomorphic maps (up to constant
scale factors).
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2.6 Poles and Branch Cuts

As discussed above some complex functions are only holomorphic
on part of the complex plane. In some locations they may encounter
a pole, where the value of the function is infinite, or a branch cut,
where the function experiences a jump. In this section we will
examine a few examples of these in more detail to prepare us for
contour integration

isolated
singularities

non-isolated
singularity

Figure 2.11: The singular points
discussed in Definitions 2.6 - 2.8 are
isolated singularities. That is one
can always draw a small enough
circle around each one such that no
other singularity is inside that circle.
A Non-isolated singularity, zo , is a
singularity that is also the limit point
of a sequence of other singularities,
such that ∀ real ε > 0, there is always
another singularity within the region
|z− zo | < ε.

Types of Singular Points

A singular point is a point at which a mathematical "misbe-
haves", i.e. it is not well defined, or in our case, blows up or
is no longer differentiable. There are few different classes
of singularities which we will encounter in this unit. Let U
be an open subset of C, containing point zo ∈ U, and let f
be a complex differentiable function in the domain U but
excluding point zo (expressed as U \ {zo}).

Definition 2.6 (Removable Singularities). A singularity is
called removable if there exists a holomorphic function g defined
on all of U, such that f (z) = g(z) for all z ∈ U \ {zo}. g(z) is a
continuous replacement for the function f .

A removable singularity is a point zo where the func-
tion f (zo) appears to be undefined, but if we define
g(zo) = limz→zo f (z) it stays well behaved. The standard
example of a removable singularity is the Sinc function
f (z) = sin(z)/z at point z = 0.

Definition 2.7 (Pole/Non-essential Singularity). A singularity
is called a pole or a non-essential singularity of f if there exists
a holomorphic function g on U and natural number n ∈ N such
that

f (z) =
g(z)

(z− zo)n , ∀z ∈ U \ {zo} (2.33)

The smallest number n for which this is true is called the order of
the pole of f at zo.

Poles play an important role in contour integration. A first
order pole, i.e. a pole where (z − zo) f (z) is holomorphic on
U, is often called a simple pole.

Definition 2.8 (Essential Singularity). A singularity at zo is
called essential if ∀n ∈ N, the function g(z) = (z− zo)n f (z) is
not holomorphic at zo.

It can be shown that f has an essential singularity at a point
if and only if the (Laurent) power series expansion has
infinitely many negative powers (more on this later).
An example of an essential singularity is point zo with the
function f (z) = exp(1/(z− zo)).
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Branch Points

Another type of special point for functions in the complex
plane are branch points.

Definition 2.9 (Branch Point). The point zo is called a branch
point for the complex (multiple) valued function f (z) if the value
of f (z) does not return to its initial value as a closed curve around
the point zo is traced, such that f varies continuously while the
path is traced.

What matters here is the local behaviour of the function f
near zo. What may happen on paths that are some distance
away from zo is not relevant. More precisely, this behaviour
must occur for all curves that enclose the point zo and are
sufficiently close to it.

Figure 2.12: Surface plot of Im(log z).
The different branches of log z arise
because it is multi-valued, with value
continuously spiralling upwards when
going around the branch point. Such
a surface indicating the branches is
called a Riemann surface. Different
branches are akin to different "floors"
in the spiral parking garage. (Source:
Wikimedia Commons user Leonid2.)

branch point
for log(z)

Figure 2.13: Two different regions
on which we can choose a branch of
log(z) to be holomorphic, since it does
not enclose the branch point.Consider the function log(z). If we restrict ourselves to the re-

gion U in the figure above to the left we may define log(z) uniquely,
since there is no way to draw a loop that encloses the branch point
z = 0 within the domain U. To define log(z) in U, we can, for exam-
ple, simply choose the angle θ to be between zero and π/2 for any
point z = reiθ ∈ U.Alternatively we could define the θ in region U
to be between 2π and 3π/2.

We can enlarge the region we are looking at to the domain V,
and log(z) in V can still be defined uniquely, as long as we don’t
enclose a branch point to allow loops that will become discontinu-
ous.
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Branch Points at Infinity

You may encounter some texts discussing branch points (or
singularities) at infinity, which may a bit difficult to under-
stand. However, it is easy to understand by considering the
inverse map:

w = 1/z (2.34)

such that w → 0 as z → ∞. Then we can examine what hap-
pens at the point w = 0 in the w-plane. For example:

log(z) = − log(w) (2.35)

and since w = 0 is a branch point of − log(w) we can con-
clude that z = ∞ is a branch point of log(z). Similar argu-
ments can also be made about singularities at infinity.

with a wavy branch cut

Figure 2.14: Possible different branch
cuts for the same multi-valued func-
tion log(z). Top: The principal branch
log(z) = Log(z), with a branch
cut along the negative real axis,
so that z = reiθ has θ ∈ (−π, π).
Middle: A different branch where
log(z) = Log(ze−iπ) + iπ. Since Log
has the standard branch cut along the
negative real axis, Log(ze−iπ) has a
branch cut along the positive real axis,
such that θ ∈ (0, 2π). Bottom: A wavy
branch cut in the complex plane.

Note that the choice of branch cut is completely arbitrary for a
particular function. Branch cuts are usually, but not always, taken
between pairs of branch points. For log(z) we have branch points
at z = 0 and z = ∞, which we can approach from any direction.
The figure to the right shows multiple ways to choose the branch
of log(z). All of them are equally valid, though only the first two
are easy to write in terms of the principal value Log(z). Each of
these choices of branch cut joins the branch point at z = 0 with the
branch point at z = ∞.

2.6.1 Complex Powers and Inverse Trigonometric Functions

One important use of the logarithmic function is to define complex
powers of z. The definition is motivated by the identity

zn = (elog z)n = en log z (2.36)

for any integer n.

Complex Powers

Definition 2.10 (Complex Powers). If α is a complex constant,
and z 6= 0, then we can define zα by

zα ≡ eα log(z). (2.37)

Among other things, this means that each value of log(z) leads
to a particular value of zα.

Example 2.5: (−2)i

Find all the values of (−2)i:
Solution: Since log(−2) = Log2 + i(π + 2kπ) we have

(−2)i = ei log(−2) = eiLog2e−π−2kπ , k ∈ Z. (2.38)
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It is clear that each branch of log z yields a branch of zα. For
example using the principal branch of log z we obtain the principal
branch of zα, namely eαLogz.

Since ez is entire, and Log(z) is analytic in the slit domain C \
(−∞, 0], the chain rule implies that the principal branch of zα is also
analytic in the slit domain.

Other branches can be constructed using other branches of
log(z), with different holomorphic domains.

"Branch chasing" — figuring out which branch to choose —
for complicated functions is often a tedious task; fortunately, for
simple applications this is not often necessary. We examine some of
the subtleties involved in the examples below.

Figure 2.15: Bruce Banner consults
with the Ancient One about his choice
of branch cut.

Example 2.6: Clip the Branches!

Define a branch of (z2 − 1)1/2 that is holomorphic in the exte-
rior of the unit circle, |z| > 1.
Solutions: Our task, restated, is to find a function w = f (z)
that is holomorphic outside the unit circle and satisfies

w2 = z2 − 1. (2.39)

Note that the principal branch of (z2 − 1)1/2, namely,

e(1/2)Log(z2−1). (2.40)

will not work, since it has branch cuts wherever z2 − 1 is
negative real, and this constitutes the whole y-axis as well
as a portion of the x-axis. But if we experiment with some
alternative expressions for w we are led to consider the
solution

w = z
(

1− 1
z2

)1/2
, (2.41)

such that the principal branch of (1− 1/z2)1/2, i.e.,
e(1/2)Log(1−1/z2), has branch cuts where 1− 1/z2 is nega-
tive real, and this only occurs when 1/z2 is real and greater
than one, i.e. the cut is between the segment on the real line
[−1, 1]. Thus,

w = f (z) = ze(1/2)Log(1−1/z2) (2.42)

satisfies the requirement of being
holomorphic outside the unit circle.

branch cuts for branch cut for
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Since we know that trigonometric functions can be expressed in
terms of exponentials, and the inverses of exponentials are multi-
valued logarithms, it should come as no surprise that the inverse of
trig functions are logarithms.

The Inverse Sine Function

The inverse sine function w = sin−1 z is defined by the equa-
tion

z = sin w, (2.43)

and is a multi-valued function given by

w = sin−1 z = −i log[iz + (1− z2)1/2]. (2.44)

Proof: From the equation

z = sin w =
eiw − e−iw

2i
(2.45)

we find that

e2iw − 2izeiw − 1 = 0. (2.46)

Using the quadratic formula we can solve for eiw:

eiw = iz + (1− z2)1/2, (2.47)

where of course the square root has two possible values. The
expression for w above thus follows.

Note that we can obtain a branch of the multi-valued function
sin−1(z) by first choosing a branch of the square root, and then
selecting a suitable branch of the logarithm.

Example 2.7: Principal Branch of Sin−1

Suppose z is real and lies in the interval (−1, 1). If the princi-
pal values are used for the terms in (2.44), what is the range
of sin−1 z?
Solution: With principle values we have

Sin−1z ≡ −iLog[iz + e(1/2)Log(1−z2)]. (2.48)

For |z| = |x| < 1, clearly 1− z2 lies in the interval (0, 1], and
its Log is real. Hence the exponential term is positive real.
Consequently the bracketed expression lies in the right half
plane. In fact, it also lies on the unit circle, since

|iz + (1− z2)1/2| =
√

x2 + (1− x2) = 1. (2.49)

Taking the Log and multiplying by i, we get

−π

2
< Sin−1x <

π

2
, (2.50)

which matches the normal convention for arcsin.
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Exercise 2.2: Complex Inverse Trig

Find the inverse cosine and inverse tangent functions, and
show they are given by

cos−1 z = −i log[z + (z2 − 1)1/2] (2.51)

tan−1 z =
i
2

log
i + z
i− z

, (z 6= ±i). (2.52)

Exercise 2.3: Derivatives of Inverse Trig

Use the chain rule to determine the derivatives of sin−1 z,
cos−1 z and tan−1 z.



3
Complex Integration and Cauchy’s Integral Theorem

In the previous chapter, we discussed how the derivative on
the complex plane is modified by the extra degree of freedom with
which a point can be approached. This two-dimensional property
of the complex plane also modifies integration, since a general
(line) integral between two points will require us to choose one
of an infinite number of possible paths. In this chapter, we will
find that if a function f (z) is the complex derivative of an entire
function F(z), then we can use the standard fundamental theorem
of calculus approach and find that the integral only depends on
F(z) evaluated at the end points. We will also find that if a function
is holomorphic inside (and on) a closed loop, then its integral over
that loop must be zero. This result is known as Cauchy’s integral
theorem.

3.1 Contours

Contour integrals are carried out by integrating along a series of
curves in the complex plane. While we have an intuitive grasp for
what a curve is, let’s be a bit more explicit about the definitions of
smooth curves, contours, and the interior and exterior of a domain.

Smooth curves

Definition 3.1 (A smooth arc). A set of points γ in the complex
plane is said to be a smooth arc if it is the range of some conin-
uous complex-valued function z = z(t), where t ∈ [a, b] is a
real-valued parameterisation, and satisfies the following conditions

(1) z(t) has continuous derivative on [a, b],

(2) z′(t) never vanishes on [a, b],

(3a) z(t) is one-to-one on [a, b].

smooth arc smooth closed
curve

not smooth not smooth
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Definition 3.2 (Smooth Closed Curves). The set of points γ is
called a smooth closed curve if it is the range of some continu-
ous function z = z(t) with t ∈ [a, b], satisfying the conditions (1)
and (2) above, as well as

(3b) z(t) is one-to one on the half-open interval [a, b) but z(b) =
z(a) and z′(b) = z′(a).

Both smooth arcs and smooth closed curves are considered
to be smooth curves. Smooth arcs have distinct end points,
while smooth closed curves have their endpoints joined.

You can imagine that an artist with a pen on a paper, drawing
a smooth curve. She is not allowed to lift the pen from the paper
during the sketch; mathematically, we are requiring that z(t) is
continuous. Second we insist that the curves be drawn with an
even, steady stroke, specifically, the pen point must move with
a well-defined (finite) velocity that must also vary continuously.
Finally, we require that no point on the curve be drawn twice, the
artist cannot cross over her own points. The only exception to
this is for smooth closed curves, where we allow the endpoints to
coincide.

Suppose that the artist is able to draw a smooth arc between two
points which obeys the rules we have laid out above. Then it should
be clear that there are exactly two natural orderings over which we
can traverse the smooth arc. We can start at one point and go to the
other, or vice versa.

Figure 3.1: The directed smooth arc
described by z(t), taken from z(a) to
z(b).

initial/�nal
point

choice of
direction

Figure 3.2: The directed smooth closed
curve is given by a smooth closed
curve with an initial/end point and a
choice of direction (counterclockwise).

A smooth arc, together with a choice of the order over which
to traverse it is called a directed smooth arc. The ordering can be
indicated by an arrow on the arc.

A directed smooth closed curve is slightly more complicated,
and we must decide which direction to traverse the curve along
from an initial point. We say say that a smooth closed curve is
directed when we have (a) designated an initial point, and (b)
chosen one of the two directions from this point.

Contours

Definition 3.3 (Contours). A contour Γ is either a single point
zo or a finite sequence of directed smooth curves (γ1, γ2, . . . , γn)

such that the terminal point of γk coincides with the initial point of
γk+1, for each k = 1, 2, . . . , n− 1.

Definition 3.4 (Simple Closed Contours). A contour is said
to be closed or a loop if its initial and terminal points coincide.
A simple closed contour is a closed contour with no repeated
points other than the initial/final point.
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contour contour closed
contour

simple closed
contour

With any simple closed contour, it turns (via a theorem due
to French mathematician Camille Jordan) out that we can always
define an interior domain, and an exterior domain.

The Jordan Curve Theorem

Theorem 3.1 (The Jordan Curve Theorem). A simple closed
contour separates the plane into two domains, each having the
curve as its voundary. One of these domains, called the interior, is
bounded; the other, called the exterior, is unbounded.

Interior

Exterior

Interior

Exterior

The formal proof of the Jordan Curve
Theorem is quite involved, so we will
not attempt it here.

Alternate names for counterclockwise
include "anticlockwise", "lefthandwise",
and "widdershins" (meaning "counter
the sun’s direction"). The use of
widdershins is often contrasted
with "deisul" (clockwise - meaning
"following the sun") in folklore.

The Orientation of a Contour

Imagine yourself walking along the complex plane, follow-
ing the path of a contour. If the interior of the contour is
on your left we would consider the contour to have a pos-
itive orientation. If the interior is on your right, we call it
negative.

Definition 3.5 (Orientation of Contours). A contour is said to
be positively oriented if the interior domain is on the left as the
contour is traversed.
A contour is said to be negatively oriented if the interior domain
is on the right as the contour is traversed.

A circular contour is positively oriented if it is followed
counterclockwise, and negatively oriented if the it is fol-
lowed clockwise.
The contours in the figures above are both positive.

With these definitions of the contours along which we can inte-



40 complex analysis

grate, we are now ready to discuss contour integrals.

3.2 Contour Integrals

3.2.1 Complex-valued Integrals over the Real Line

Suppose we have a continuous function f (t), that takes a value
from the real interval [a, b] and maps it to the complex plane.

f : [a, b]→ C. (3.1)

We can write f in terms of its real and imaginary parts

f (t) ≡ u(t) + iv(t), (3.2)

and the indefinite integral of f can just be written in terms of
normal integrals of real functions∫

f (t)dt =
∫

u(t)dt + i
∫

v(t)dt (3.3)

Exercise 3.1: Integration By Parts

Verify that integration by parts is valid, i.e.,∫
f (t)g′(t)dt = f (t)g(t)−

∫
g(t) f ′(t)dt, (3.4)

assuming that f ′ and g′ exist and are continuous. (Hint:
The proof is the same as in ordinary real calculus, from the
product rule)

Similarly, we can define the definite integral of F over [a, b] to be∫ b

a
f (t)dt =

∫ b

a
u(t)dt + i

∫ b

a
v(t)dt. (3.5)

Thus the integral is defined in terms of the ordinary integrals
of the real functions u and v. Consequently, by the fundamental
theorem of calculus, the function

F(t) =
∫ t

a
f (s)ds (3.6)

is differentiable, and its derivative is f (t).

Exercise 3.2: Absolute Value of an Integral vs
Integral of an Absolute Value

Show that using simple properties of the integral of real-
valued functions, one has the inequality,∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣ ≤ ∫ b

a
| f (t)|dt (3.7)

(Hint: Break it up into Riemann sums, and use the triangle
inequality.)
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Integral Along A Curve

Definition 3.6 (Integral Along a Curve). Let smooth curve
γ : [a, b]→ U ⊆ C be defined on a closed interval of real numbers
[a, b], and let f be a continuous function on the open set U. We
can define the integral of f along γ to be∫

γ
f (z)dz =

∫ b

a
f (γ(t))

dγ

dt
dt. (3.8)

Note that it does not really matter what parameterisation we use,
as can be easily seen defining the new parameterisation as s(t), and
applying the chain rule to convert an integral over s to one over t.
The result is the same no matter what parameterisation is used.

Figure 3.3: The contour Cr for Example
3.1.

Example 3.1: A Very Important Example

Compute the integral

∮
Cr
(z− zo)ndz, where n is an inte-

ger, and Cr is the circle |z− zo| = r traversed once in the coun-
terclockwise direction.
Solution: A suitable parameterisation for Cr is given by z =

γ(t) = zo + reit, with t ∈ [0, 2π]. Setting f (z) = (z− zo)n, we
have

f (γ(t)) = (zo + reit − zo)
n = rneint, and γ′(t) = ireit

Hence, we must have∮
Cr
(z− zo)

ndz =
∫ 2π

0
(rneint)(ireit)dt

= irn+1
∫ 2π

0
ei(n+1)tdt. (3.9)

If n 6= −1 we have∮
Cr
(z− zo)

ndz = irn+1
∫ 2π

0
ei(n+1)tdt

= irn+1 ei(n+1)t

i(n + 1)

∣∣∣∣2π

0
= 0. (3.10)

However, if n = −1 then we must have∮
Cr
(z− zo)

ndz = ir0
∫ 2π

0
e0dt = i

∫ 2π

0
dt = 2πi (3.11)

Thus, regardless of the value of r,

∮
Cr
(z− zo)

ndz =

0 for n 6= −1,

2πi for n = −1.
(3.12)

We will see that this calculation plays an important role
later.
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3.2.2 Bounding Contour Integrals

Many times, in theory and in practice, it is not actually necessary to
evaluate a contour integral. What may be required is simply a good
upper bound on its magnitude. We therefore turn to the problem of
estimating contour integrals.

Suppose that function f is continuous on the directed smooth
curve γ and that f (z) is bounded by the constant M on γ : [a, b] →
C, i.e.,

| f (z)| ≤ M, ∀z on γ. (3.13)

Let’s divide the parameterisation of γ up into n partitions each of
length ∆t = (b − a)/n, The integral can be approximated by the
Riemann sum ∫

γ
f (z)dz ≈

n

∑
k=1

f (tk)∆zk (3.14)

where tk ≡ a + k∆t, and ∆zk = γ(tk)− γ(tk−1).

Figure 3.4: An integral along a di-
rected smooth curve can be approx-
imated using a Riemann sum if you
partition the parameterisation of curve
γ.

We have by the triangle identity∣∣∣∣ n

∑
k=1

f (tk)∆zk

∣∣∣∣ ≤ n

∑
k=1
| f (tk)||∆zk| ≤ M

n

∑
k=1

∆zk (3.15)

Furthermore, we notice that the sum of the lengths ∆zk cannot be
greater than the length `(γ) of γ (since chords are always shorter
than the arc length), hence∣∣∣∣ n

∑
k=1

f (tk)∆zk

∣∣∣∣ ≤ M`(γ). (3.16)

Taking the limit as n→ ∞ gives us∣∣∣∣ ∫
γ

f (z)dz
∣∣∣∣ ≤ M`(γ). (3.17)

Applying this to a finite sum of different curves Γ = ∑m γm, we
have proved:

This theorem is sometimes called
Darboux’s inequality.

Bounding a Contour Integral

Theorem 3.2. If f is continuous on the contour Γ and if | f (z)| ≤
M for all z on Γ, then∣∣∣∣ ∫Γ

f (z)dz
∣∣∣∣ ≤ M`(Γ). (3.18)

In particular, we have,∣∣∣∣ ∫Γ
f (z)dz

∣∣∣∣ ≤ [max
z on Γ

| f (z)|
]
× `(Γ). (3.19)
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Integrands with Antiderivatives

Theorem 3.3. Suppose that there exists† a holomorphic function
F(z) on U such that F′(z) = f (z), and that curve γ has value
α = γ(a), and β = γ(b) at the end points. Then,∫

γ
f (z)dz = F(β)− F(α) (3.20)

Proof: We know from the definition above∫
γ

f (z)dz =
∫ b

a
F′(γ(t))γ′(t)dt.

By the chain rule, the expression under the integral sign is
the derivative d

dt F(γ(t)). Then by ordinary calculus on the
real and imaginary parts of F, the integral is equal to

∫
γ

f (z)dz = F(γ(t))
∣∣∣∣b
a
= F(γ(b))− F(γ(a)). (3.21)

† Such a function F, where F′(z) =
f (z), is sometimes called a primative
of f , or an antiderivative of f . Note
that this is not guaranteed to exist for
arbitrary f .

In general for such an f , if a path Γ consists of n connected
curves γ1, . . . , γn, with zj being the end point of the jth curve, then
we can chain together the above to find∫

Γ
f (z)dz = F(z1)− F(z0) + . . . + F(zn)− F(zn−1)

= F(zn)− F(z0). (3.22)

Thus, if the antiderivative of the integrand exists, the integral over a
path Γ acts exactly as we expect from regular calculus.

Lemma 3.1. If f is a continuous function on U that has a holomorphic
antiderivative F, and Γ is any closed path, then∫

Γ
f (z)dz = 0. (3.23)

This follows from the theorem above. It is also straightforward to
prove the following: Theorems 3.3 and 3.4 are the complex

analogues of the path independence
of a potential function that is the
antiderivative of a vector field.

Theorem 3.4. Let U be a connected open set, and let f be a continuous
function on U. If the integral of f along any closed path in U is equal to
0, then f has an antiderivative F on U, that is, there exists a function F
which is holomorphic such that F′(z) = f (z).

It may seem that Theorem 3.4 is a little bit useless, since it seems
that we’d have to test all possible closed paths and show the in-
tegrals are all zero. In the next section we will see that Cauchy’s
integral theorem will provide a simple condition for this property
to hold.

For now we can simply summarise the two theorems above by
saying that a given continuous function has an antiderivative in
domain U if and only if its integral around every loop in U is zero.
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3.3 Cauchy’s Integral Theorem

In the last section we saw that if a continuous function f possesses
a holomorphic anti-derivative in a domain U, its integral around
any loop in U is zero and vice versa. Now we are going to show
how this property ties in with whether f is itself holomorphic or
not. Our first task will be to develop the necessary geometry.

3.3.1 Deformation of Contours

Figure 3.5: Deforming contours can be
thought of as stretching and shrinking
an infinitely elastic rubber band.

The critical notion in this regard is the continuous deformation
of one loop into another within the domain U. Deformations are
quite easily visualised but somewhat harder to express in precise
mathematical language. (We already discussed these briefly when
reviewing the notion of simply connected domains.) In informal
terms, we say that a loop Γ0 can be continuously deformed into
a loop Γ1 in the domain U if Γ0 (considered as an elastic string
with indicated orientation) can be continuously moved, stretched,
and shrunk about the complex plane without leaving U, in such a
manner that it ultimately coincides with Γ1.

Expanding circular contours Shrinking a contour to a point
Reversing orientation of a contour by

shrinking to a point

Figure 3.6: Examples of continuous
deformations of contours within the
domain U.

Loops that can be continuously
deformed into one another are some-
times called homotopic. The deforma-
tion between the two contours is called
a homotopy.

Continuous Deformation

Definition 3.7 (Continuously Deformable Loops). The loop
Γ0 is said to be continuously deformable to the loop Γ1 in the
domain U, if there exists a function z(s, t) continuous on the unit
square 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, that satisfies the following conditions

(i) For each fixed s in [0, 1], the function z(s, t) parameterises a
closed contour in U.

(ii) The function z(0, t) parameterises the closed contour Γ0.

(iii) The function z(1, t) parameterises the closed contour Γ1.
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Example 3.2: Deformation in an Annulus

By finding a deformation function z(s, t), prove that the loop
Γ0 : z = e2πit, for 0 ≤ t ≤ 1, can be continuously deformed
to the loop Γ1 : z = 2e2πit, for 0 ≤ t ≤ 1 in the domain U
consisting of an annulus with 1

2 < |z| < 3.
Solution: The intermediate loops Γs, for 0 ≤ s ≤ 1 are con-
cetric circles with radii varying from 1 to 2. The function

z(s, t) = (1 + s)e2πit, for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 (3.24)

is a deformation function which takes Γ0 to Γ1.

A few elementary observations about continuous deformations
are in order. First, notice that if z(s, t) generates a deformation of
loop Γ0 into loop Γ1, then z(1− s, t) deforms Γ1 into Γ0. Furthermore,
if in a given domain Γ0 can be deformed to a single point and Γ1

can be deformed to a point, then Γ0 can be deformed into Γ1.
It should be clear that simply connected domains, i.e. connected

domains without holes, are of particular interest to the study of
deformed loops since we have,

Definition 3.8 (Simply Connected Domains). Any domain U possess-
ing the property that every loop in U can be deformed (through U) to a
point is called a simply connected domain.

Deformation Invariance Theorem

Theorem 3.5 (Deformation Invariance Theorem). Let f be a
function that is holomorphic on a domain U, containing closed
contours Γ0 and Γ1. If these loops can be continuously deformed
into on another in U then∫

Γ0

f (z)dz =
∫

Γ1

f (z)dz (3.25)

A rigorous proof of the Deformation Invariance Theorem is
beyond the scope of this course, however, we will instead
attempt to prove a slightly weaker version of this theorem
for the special case when the two contours are linked by
a deformation function z(s, t) whose second-order partial
derivatives are continuous, and that f ′(z) is continuous.

—

(Weaker) Proof: Assume that the deformation function z(s, t)
has continuous partial derivatives up to second order for
0 ≤ s ≤ 1, and 0 ≤ t ≤ 1, and f ′(z) is continuous. Now, for
each fixed s the equation z = z(s, t), 0 ≤ t ≤ 1, defines the
loop Γs in U. Let I(s) be the integral of f along this loop,

I(s) ≡
∫

Γs
f (z)dz =

∫ 1

0
f (z(s, t))

∂z(s, t)
∂t

dt. (3.26)
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We wish to take the derivative of I(s) with respect to s. The
assumptions guarantee that the integrand above is continu-
ously differentiable, so with constant limits of integration,
we are allowed to bring the derivative inside the integral
(this is called the Liebniz Integral Rule; see margin),

dI(s)
ds

=
∫ 1

0

[
f ′(z(s, t))

∂z
∂s

∂z
∂t

+ f (z(s, t))
∂2 f
∂t∂s

]
dt. (3.27)

On the other hand observe that

∂

∂t

[
f (z(s, t))

∂z
∂s

]
= f ′(z(s, t))

∂z
∂t

∂z
∂s

+ f (z(s, t))
∂2z
∂t∂s

. (3.28)

Because of the equality of mixed partials, the expression
above is the same as the the integrand of dI/ds above. Thus,
we have

dI(s)
ds

=
∫ 1

0

∂

∂t

[
f (z(s, t))

∂z
∂s

]
dt (3.29)

= f (z(s, 1))
∂z
∂s

(s, 1)− f (z(s, 0))
∂z
∂s

(s, 0). (3.30)

But since each Γs is closed we have z(s, 1) = z(s, 0) and
∂sz(s, 1) = ∂sz(s, 0), so that dI/ds is zero, and consequently
I(s) must be a constant. In particular I(0) = I(t) so that∫

Γ0

f (z)dz =
∫

Γ1

f (z)dz. (3.31)

Theorem 3.6 (The Liebniz Integral
Rule). Let f (x, t) be a function such
that both f (x, t) and its partial derivative
∂x f (x, t) are continuous in t and x.
Suppose that the boundary functions a(x)
and b(x) are both continuous and have
continuous derivatives. Then,

d
dx

∫ b(x)

a(x)
f (x, t)dt

= f (x, b(x))b′(x)

− f (x, a(x))a′(x)

+
∫ b(x)

a(x)
∂x f (x, t)dt.

This is straightforward to prove
using the fundamental theorem of
calculus.

A rather straightforward, but important, consequence of the
deformation invariance theorem is known as Cauchy’s integral
theorem:

Cauchy’s Integral Theorem

Theorem 3.7 (Cauchy’s Integral Theorem). If f is holomorphic
in a simply connected domain U, and Γ is any closed contour in U,
then ∫

Γ
f (z)dz = 0 (3.32)

Proof: In a simply connected domain, any loop can be
shrunk to a point. The integral of a continuous function
over a single point is zero, therefore by the deformation
invariance theorem, the integral over any loop that can be
continuously deformed to a point must be zero.
This leads us naturally to apply the results above to Theo-
rems 3.3 and 3.4 from the previous section:

Theorem 3.8. If a function is holomorphic on a simply con-
nected domain, then in that domain it has an anti-derivative, its
contour integrals are independent of path, and its loop integrals
vanish.
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Example 3.3: Very Important Example Revisited

In the previous section we showed that if Cr is any positively
oriented circle centred at zo with any radius r, and n is an
integer then

∮
Cr
(z− zo)

ndz =

0 for n 6= −1,

2πi for n = −1.
(3.33)

If n is a positive integer or zero, then Cauchy’s integral
theorem applies to the integral, since the integrand is holo-
morphic in the entire complex plane, which is obviously
simply connected.
(z − zo)n has an anti-derivative (z− zo)n+1/(n + 1), and the
loop integral must be zero.
If n is negative, then (z− zo)n is only analytic in the punc-
tured plane, with the point zo deleted. This domain is not
simply connected, so the theorems of this section do not
apply.
In fact for n = −1 the function (z − zo)n does not even have
an antiderivative in the punctured plane (since any branch
of log(z) will have a discontinuity at a branch cut), and the
loop integral fails to vanish.
For n ≤ −2 (z− zo)n still has an antiderivative,
(z− zo)n+1/(n + 1), away from point zo, and the loop in-
tegral is zero.
Thus we see that both cases can occur when the domain is
not simply connected.

The main value of the deformation invariance theorem is that it
allows us to replace complicated contours with more familiar ones,
for the purpose of integration.

Figure 3.7: Deforming an elliptical
contour to a circular one.

Example 3.4: Elliptical contour

Evaluate
∫

Γ
1
z dz where Γ is the ellipse defined by x2 + 4y2 = 1

traversed once in the positive (counter-clockwise) sense.
Solution: The integrand 1/z is holomorphic everywhere on
the complex plane except for the origin. We can continu-
ously deform the this contour to the unit circle Γ0 oriented
positively. Thus we must have∫

Γ

1
z

dz =
∫

Γ0

1
z

dz = 2πi (3.34)
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Figure 3.8: Contour and poles for
Example 3.5.

Example 3.5: Missing the poles

Evaluate ∮
|z|=2

ez

z2 − 9
dz (3.35)

where the integral is around the circle with |z| = 2 once in
the positive (ccw) direction.
Solution: The integrand ez/(z2 − 9) is holomorphic every-
where except at z = ±3, where the denominator vanishes.
We can see that since the contour does not contain either
of these poles, it can be shrunk to a point in the domain of
analyticity, and thus the integral is zero. We can obtain the
same result by applying Cauchy’s theorem directly.

Example 3.6: In or Out?

Determine the possible values for∮
Γ

1
z− a

dz, (3.36)

where Γ is any circle not passing through z = a, traversed
once in the counterclockwise direction.
Solution: The integrand is holomorhic in the domain
U = C \ {a} consisting of the complex plane with the point
z = a removed. If this point lies exterior to Γ, then Γ can be
continuously deformed to a point in U, and so the integral
vanishes. If a lies in the interior of Γ, the contour can be
continuously deformed in U to a positively oriented circle
centred at z = a, and thus by Equation (3.12) in Example 3.1,
we have

∮
Γ

dz
z− a

=

0 if a lies outside Γ,

2πi if a lies inside Γ.
(3.37)

Example 3.7: Two Poles One Contour

Find ∫
Γ

3z− 2
z2 − z

dz (3.38)

where Γ is the simple closed contour shown in Figure 3.9.

—

Solution: We don’t need an exact description of the contour
Γ. Since the integrand f (z) = (3z − 2)/(z2 − z) is holomor-
phic in U = C \ {0, 1}, i.e., the entire complex plane with the
points z = 0 and z = 1 removed, we can deform Γ into the
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barbell shaped contour shown in Figure 3.9 without chang-
ing the value of the integral (by the Deformation Invariance
Theorem). This integral can be further simplified by noting
that the integration along the line segment is to the left for
one part of the contour, and to the right later in the contour,
at the same place in the complex plane and therefore must
cancel out.
Thus we must have∫

Γ
f (z)dz =

∫
C0

f (z)dz +
∫

C1

f (z)dz (3.39)

where C0 is the counterclockwise circular contour around
the pole at z = 0 and C1 is the counterclockwise circular
contour around the pole at z = 1.
We will derive a much more powerful and flexible method
to evaluate the integrals around these poles when we cover
Cauchy’s Residue Theorem, however, for now we can use a
partial fraction expansion to rewrite the integrand as

3z− 2
z2 − z

=
A
z
+

B
z− 1

,

=
Az− A + Bz

z(z− 1)
,

⇒ A = 2, B = 1.

which gives us∮
Γ

3z− 2
z(z− 1)

dz =
∮

C0

(
2
z
+

1
z− 1

)
dz +

∮
C1

(
2
z
+

1
z− 1

)
dz,

=
∮

C0

2dz
z︸ ︷︷ ︸

2×2πi

+
∮

C0

dz
z− 1︸ ︷︷ ︸
0

+
∮

C1

2dz
z︸ ︷︷ ︸

0

+
∮

C1

dz
z− 1︸ ︷︷ ︸

2πi

,

= 6πi.

Figure 3.9: Contours and poles for
Example 3.7.

3.4 Cauchy’s Integral Formula

We now turn to the second important result of this chapter due
to Cauchy, Cauchy’s Integral Formula. Given a function f that is
holomorphic inside and on the simple closed contour Γ, we know
from Cauchy’s Integral Theorem that

∮
Γ f (z)dz = 0. However, if we

consider the integral

∮
Γ

f (z)
z− zo

dz,

where zo is an interior point to the contour Γ, we should not ex-
pect that this integral vanishes, since the integrand is no longer
holomorphic inside the contour, and Cauchy’s theorem no longer
applies.
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In fact, rather remarkably, we will show that for all zo inside Γ,
the value of this integral is proportional to f (zo).

Figure 3.10: Contours and pole for the
proof of Cauchy’s Integral Formula.

Cauchy’s Integral Formula

Theorem 3.9 (Cauchy’s Integral Formula). Let Γ be a simple
closed positively oriented contour. If f is holomorphic in some
simply connected domain U containing Γ and zo is any point in
the interior of Γ, then

f (zo) =
1

2πi

∮
Γ

f (z)
z− zo

dz. (3.40)

Proof: The function f (z)/(z− zo) is holomorphic every-
where in U except for point zo. Hence by the Deformation
Invariance Theorem, we can deform the contour freely to
the circle Cr centred at zo (see Figure 3.10) which is also
positively oriented.
We can then write,∮

Γ

f (z)
z− zo

dz =
∮

Cr

f (z)
z− zo

dz, (3.41)

=
∮

Cr

f (zo)

z− zo
dz︸ ︷︷ ︸

f (zo)×2πi

+
∮

Cr

f (z)− f (zo)

z− zo
dz. (3.42)

where we’ve just split the denominator into two parts since
f (z) = f (zo) + ( f (z)− f (zo)). For the second integral we
can shrink the circle Cr to arbitrarily small radius r. Since f
is holomorphic and thus does not blow up anywhere on Cr,
we can define the maximum magnitude

Mr ≡ max
z on Cr

[| f (z)− f (zo)|]. (3.43)

Then for z on Cr we have, by Theorem 3.2,∣∣∣∣ ∮Cr

f (z)− f (zo)

z− zo
dz
∣∣∣∣ ≤ ∫Cr

| f (z)− f (zo)|
r

dz (3.44)

≤ Mr

r
× `(Cr) =

Mr

r
× 2πr, (3.45)

so that we find ∣∣∣∣ ∮Cr

f (z)− f (zo)

z− zo
dz
∣∣∣∣ ≤ 2πMr. (3.46)

But since f (z) is holomorphic, and thus a continuous func-
tion, we must have Mr → 0 as r → 0, so this term must
vanish as we shrink the contour. Therefore we are left with∮

Γ

f (z)
z− zo

dz = 2πi f (zo), (3.47)

which proves the theorem.
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One remarkable consequence of Cauchy’s formula is that by
merely knowing the values of the holomorphic function f on Γ we
can compute the integral

∮
Γ[ f (z)/(z− zo)]dz for any zo, and hence

all values of f inside Γ. In other words, the behaviour of a function
holomorphic in a region is completely determined by its behaviour
on the boundary!

Example 3.8: Using Cauchy’s Integral Formula

Compute the integral ∮
Γ

ez + sin z
z

dz (3.48)

where Γ is the circle |z− 2| = 3 traversed once in the counter-
clockwise direction.
Solution: The function f (z) = ez + sin z is holomorphic inside
and on Γ, and the point zo = 0 lies inside this circle. Hence
we can use Cauchy’s Integral Formula to get∮

Γ

ez + sin z
z

dz = 2πi f (0) = 2πi(e0 + sin 0) = 2πi.

(3.49)

Figure 3.11: Contour and poles for
Example 3.9.

Example 3.9: Using Cauchy’s Int. Formula Again

Evaluate the integral ∫
Γ

cos z
z2 − 4

dz (3.50)

along the contour shown in Figure 3.11.
Solution: The integrand fails to be holomorphic at points
z = ±2. However, only one of these (z = 2) is inside the
contour Γ. Thus we can recast the integrand as∫

Γ

cos z
z2 − 4

dz =
∫

Γ

(cos z)/(z + 2)
z− 2

dz

= 2πi
cos z
z + 2

∣∣∣∣
z=2

= 2πi
cos 2

4

=
iπ cos 2

2
.

We will return to Cauchy’s Integral Formula shortly, but first we
need to consider the general properties of complex power series
and introduce the concept of analyticity.



4
Series Representations of Complex Functions

4.1 Convergence of Series

In Chapter 1, we briefly reviewed the concept of sequences. Here
we will develop a few more tools to deal with series, which, as you
should already know from 1st year Maths, can form a sequence
made of partial sums.

Formal Definition of a Series

Definition 4.1 (Series). A series is an expression of the form
c0 + c1 + c2 + . . ., or, ∑∞

k=0 ck where the terms ck are complex
numbers. The nth partial sum of a series, usually denoted Sn, is
defined to be the sum of the first n + 1 terms, i.e. Sn ≡ ∑n

k=0 ck. If
the sequence of partial sums {Sn} has a limit S, the series is said
to converge to S, and we write S = ∑∞

k=0 ck. A series that does
not converge is said to diverge.

Notice that the notion of a convergence of a series has been
defined in terms of convergence for a sequence.

Clearly one way to demonstrate that a series converges to S is to
show that the remainder after summing the first n + 1 terms, i.e.,

S−
n

∑
k=0

ck → 0 (4.1)

as n → ∞. Here we will use this to prove that the Geometric Series
converges only inside the unit circle.

We will use this extensively in the
proofs to come!

The Geometric Series

Theorem 4.1 (Geometric Series). The geometric series 1 + z2 +

z3 + z4 + . . . converges to the value 1/(1 − z) for any complex
number z with |z| < 1.

Proof : Let Sn(z) = 1 + z + . . . + zn. Multiplying by z we find

zSn = Sn + zn+1 − 1

Solving for Sn we get

Sn =
1− zn+1

1− z
.
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The series converges to S = 1/(1− z) iff S− Sn → 0 as n→ 0,

S− Sn =
1

1− z
− 1− zn+1

1− z
(4.2)

=
zn+1

1− z
(4.3)

Taking the limit n→ ∞ we must then have

∞

∑
n=0

zn =
1

1− z
, iff |z| < 1, (4.4)

since zn+1 → 0 only for z in the interior of the unit circle.

Another important way to establish the convergence of a series
involves comparing it with another series whose convergence is
known.

The Comparison Test

Theorem 4.2 (The Comparison Test). Suppose that the terms ck

satisfy the inequality

|ck| ≤ Mk (4.5)

where 0 ≤ Mk ∈ R, for all integers k larger than some number K.
Then, if the series ∑∞

k=0 Mk converges, so does ∑∞
k=0 ck.

Proof: This theorem seems very obvious, however, we will
prove it just to be pedantic. This is most easily done using
Theorem 1.6, the Cauchy Criterion for the convergence of
sequences.
For any real ε > 0, since the series ∑k Mk converges, ∃N ∈N

such that the partial sums must obey,∣∣∣∣
(

n+m

∑
k=0

Mk

)
−
(

n

∑
k=0

Mk

) ∣∣∣∣ < ε, ∀n ≥ N, ∀m > 0.

And hence we must have that

|Mn+1 + Mn+2 + . . . + Mn+m| < ε

⇒ Mn+1 + Mn+2 . . . + Mn+m < ε

(since each Mk is real and positive). Choosing
n > max(N, K), we therefore must have

|cn+1|+ |cn+2|+ . . . + |cn+m| < ε

Applying the triangle identity, |cn + . . . + cn+m| ≤ |cn|+ . . . +
|cn+m|, we find that

|cn+1 + cn+2 + . . . + cn+m| < ε,

⇒ |Sn+m − Sn| < ε, ∀n > max(N, K), ∀m > 0,

where {Sn} = {∑n
k ck} is the sequence of partial sums, which

we have just shown satisfies the Cauchy Criterion, and thus
must also converge.
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Example 4.1: Comparing To the Geom. Series

Show that the series

∞

∑
k=0

3 + 2i
(k + 1)k (4.6)

converges.
Solution: We can compare the series above with the conver-
gent geometric series, with z = 1/2,

∞

∑
k=0

1
2k =

1
1− 1

2
= 2. (4.7)

Since |3 + 2i| =
√

13 < 4, we see that for k ≥ 3,∣∣∣∣ 3 + 2i
(k + 1)k

∣∣∣∣ < 4
(k + 1)k ≤

1
2k , (4.8)

hence, the series must converge.

Example 4.2: Absolute Convergence

Definition 4.2 (Absolutely Convergent). A series ∑∞
k=0 ck

is said to be absolutely convergent if the series ∑∞
k=0 |ck| is

convergent.

Prove the following:

Theorem 4.3. Any absolutely convergent series must also be con-
vergent.

Proof: Let Mk = |ck|, and apply the comparison test.

The Ratio Test

Theorem 4.4 (Ratio Test). Suppose that the terms of the series
∑∞

k=0 ck have the property that the ratios |ck+1/ck| approach a
limit L as k→ ∞. Then the series converges if L < 1 and diverges
if L > 1.

You will prove this on a worksheet.

Example 4.3: Applying the Ratio Test

Show that the series ∑∞
k=0 4k/k! converges.

Solution: ∣∣∣∣ ck+1
ck

∣∣∣∣ = 4k+1

(k + 1)!
k!
4k =

4
k + 1

. (4.9)

This ratio approaches zero as k → ∞, therefore by the Ratio
Test, the series converges.
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The kinds of sequences and series that often arise in complex
analysis are those where the terms are functions of a complex z.
Thus if we have a sequence of functions f1(z), f2(z), . . ., we must
consider the possibility that for some values of z the sequence
converges, while for others it diverges, as we saw for the geometric
series.

In applying this theory to holomorphic functions, we need a
somewhat stronger notion of convergence. Consider the sequence
of real functions

{ fn(x)} = {xn} (4.10)

on the half open interval x ∈ [0, 1). Clearly for any given x in
the interval xn → 0 for sufficiently large n. We call this kind of
convergence pointwise convergence.

Figure 4.1: The functional sequence
{ fn(x)} = {xn} is pointwise conver-
gent, but not uniformly convergent on
the interval 0 ≤ x < 1.

However, the curve y = xn for large n is a poor approximation to
the curve y = 0 since as x → 1 the difference between the functions
remains large. What we want instead is the property of uniform
convergence.

Uniform Convergence

Definition 4.3. The functional sequence { fn(z)}n is said to con-
verge uniformly to f (z) on the set U if for any real ε > 0, ∃N ∈
N such that ∀n > N,

| f (z)− fn(z)| < ε, ∀z ∈ U. (4.11)

We say that the series ∑∞
k=0 fk(z) converges uniformly to S(z)

on U if the sequence of partial sums {Sn(z)} converges uniformly
to S(z) on U.

The essential feature of uniform convergence is that for a given
ε > 0, one must be able to find an integer N that is independent of
z ∈ U such that the error | f (z)− fn(z)| is less than ε for all possible
n > N. In contrast, for pointwise convergence, N can depend upon
z. Note, uniform convergence on U implies pointwise convergence
on U, i.e. uniform convergence is a stronger property.

4.2 Power Series

Power Series

Definition 4.4 (Power Series). A power series is defined as a se-
ries of the form

∞

∑
n=0

an(z− zo)
n = a0 + a1(z− zo) + a2(z− zo)

2 + . . . (4.12)

where an is the complex coefficient of the nth term, and zo is some
fixed point on the complex plane.
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By using the comparison test, it is easy to prove the following:

Theorem 4.5. Let {an} be a sequence of complex numbers, and let r > 0
be a real number such that the series ∑∞

n=0 |an|rn converges. Then the
series

∞

∑
n=0

anzn (4.13)

must converge absolutely and uniformly for |z| ≤ r.

Example 4.4: ∑ zn/n!

For any r > 0 show that the series

∑ zn/n! (4.14)

converges absolutely and uniformly for |z| ≤ r.
Solution: Let us define the series ∑n cn where cn = rn/n!,
then we have

cn+1

cn
=

rn+1

(n + 1)!
n!
rn =

r
n + 1

. (4.15)

Take n ≥ 2r. Then the right hand side is ≤ 1/2 Hence for all
n sufficiently large, we have

cn+1/cn ≤ 1/2 (4.16)

Therefore there exists some positive integer N such that

cn ≤ cN/2n−N = (cN2N)/2n (4.17)

for all n > N. We may therefore apply the comparison test
with the geoemetric series, with z = 1/2, to get absolute and
uniform convergence.

A given power series about a particular point can be shown to
converge within a particular radius r, called the radius of conver-
gence. Outside this radius, the series diverges.

Radius of Convergence

Theorem 4.6 (Radius of Convergence). Let ∑ anzn be a power
series. If it does not converge absolutely for all z, then there exists
a number r (that may be zero) called the radius of convergence,
such that the series converges absolutely for |z| < r, and does not
converge absolutely for |z| > r

Proof: Suppose that the series does not converge absolutely
for all z. Let r be the least upper bound of those numbers
s ≥ 0 such that ∑ |an|sn converges. Then ∑ |an||z|n diverges
if |z| > r, and converges if |z| < r by the comparison test.

If a power series has non-zero radius of convergence, then it
is called a convergent power series. If D is a disc centred at the
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origin and contained in the disc D(0, r), where r is the radius of
convergence, then we say that the power series converges on D.

Example 4.5: Radius of Convergence of ∑ nzn

Find the radius of convergence of the series

∞

∑
n=0

nzn. (4.18)

Solution: We can apply the ratio test and see that this series
converges if limn→∞ |cn+1/cn| < 1 and diverges if this limit
is larger than 1.

lim
n→∞

∣∣∣∣ (n + 1)zn+1

nzn

∣∣∣∣ = lim
n→∞

n + 1
n
|z| = |z| (4.19)

Thus ∑ nzn converges if |z| < 1 and diverges if |z| > 1.

4.3 Analytic Functions

It is convenient for us to have a name for the type of functions
that can be expressed as a convergent power series. We call such
functions analytic and with some clever use of Cauchy’s Integral
Formula, we will see that a function is analytic if and only if it is
holomorphic!

Analytic Functions

Definition 4.5 (Analytic Function). A function f (z) is called an-
alytic about a point zo if there exists a power series

∞

∑
n=0

an(z− zo)
n (4.20)

and some r > 0 such that the series converges absolutely for |z −
zo| < r, and that for such z we have

f (z) =
∞

∑
n=0

an(z− zo)
n. (4.21)

It should be obvious that polynomial functions can be expressed
as power series (just set an = 0 for n greater than the degree of the
polynomial), but a much wider class of functions turn out to be
expressible as convergent power series as well.

Suppose f is a function on the open set U. We say that f is
analytic on U if f is analytic at every point of U.

The next theorem, is easy to prove, but it gives us practice in a
way of finding power series expansions for a function at a point.
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Power Series at zo = 0

Theorem 4.7. Let f (z) = ∑ anzn be a power series (centred at
z = 0) whose radius of convergence is r. Then f is analytic in the
open disc D(0, r) ≡ {z : |z| < r}.

Figure 4.2: If f is a power series
centred at z = 0, with a radius of
convergence r, we can choose a point
zo within D(0, r) and a disc D(zo , s)
where |z|+ s < r such that f is analytic
anywhere in D(zo , s).

Proof: We have to show that f has a power series expansion
at an arbitrary point zo of the disc so that |zo| < r. Let s > 0 be
such that |zo| + s < r. We shall see that f can be represented by
a convergent power series at zo converging on a disc D(zo, s) with
radius s centred at zo.

We can write z as

z = zo + (z− zo) (4.22)

so that zn = (zo + (z− zo))n, so that by the binomial theorem we
have

f (z) =
∞

∑
n=0

an

(
n

∑
k=0

(
n
k

)
zn−k

o (z− zo)
k

)
. (4.23)

If |z− zo| < s, then |zo|+ |z− zo| < r, and hence the series

∞

∑
n=0
|an|(|zo|+ |z− zo|)n =

∞

∑
n=0
|an|

[
n

∑
k=0

(
n
k

)
|zo|n−k|z− zo|k

]
(4.24)

converges. Then we can interchange the order of the summations†

to get

† We are allowed to exchange the
order of summation for any finite
sum, by the normal commutativity
of addition. If an infinite sum is
absolutely convergent, then for any
ε > 0 we can always find an N large
enough so that the sum of of the the
terms for n > N are smaller than ε.
Thus we can exchange the sums for
the first (finite) N terms in the series
to get the same value, whereas the
difference the infinite tails can be made
arbitrarily small.

f (z) =
∞

∑
k=0

[
∞

∑
n=k

an

(
n
k

)
zn−k

o

]
︸ ︷︷ ︸

bn

(z− zo)
k (4.25)

which converges absolutely also. Thus, the function f is analytic at
zo.

Generalising slightly, we can say that the above theorem shows
that if f has a power series expansion on a disc D(zo, r), that is

f (z) = ∑ an(z− zo)
n (4.26)

for |z− zo| < r, then f is analytic on this disc.

4.4 Differentiation of Power Series

Let D(0, r) be a disc of radius r > 0. A function f on the disc
for which there exists a power series ∑ anzn having a radius of
convergence ≥ r such that

f (z) =
∞

∑
n=0

anzn (4.27)

for all z in the disc is said to admit a power series expansion on
this disc. We shall now see that such a function is complex differen-
tiable and thus is holomorphic on this domain, and the derivative is
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indeed given by the "obvious" power series,

∞

∑
n=0

nanzn−1 = a1 + 2a2z2 + 3a3z3 + . . . . (4.28)

The Derivative of a Power Series

Theorem 4.8. If f (z) = ∑ anzn has radius of convergence r > 0,
then:

(i) The series ∑ nanzn−1 has the same radius of convergence,

(ii) The function f is holomorphic on D(0, r) and its derivative is
equal to ∑ nanzn−1.

Proof:

(i) For any w ∈ D(0, r), except w = 0, choose z ∈ D(0, r) \ {0}
such that |z| < |w|. Then by Example 4.5 the series

∞

∑
n=0

n
∣∣∣∣ z
w

∣∣∣∣n (4.29)

converges (since z/w < 1) and hence each term n|z/w|n must
be bounded by some M ∈ R, so that

n|z|n < M|w|n, ∀n ∈N. (4.30)

Thus we see that

n|an|zn−1 <
M
|z| |an||w|n, ∀n ∈N (4.31)

and the series must be convergent by the comparison test
since M

|z| ∑ anwn is convergent for |w| < r. Therefore the radii
of convergence must be the same.

(ii) Let |z| < r, and choose some small enough real δ > 0 such
that |z|+ δ < r. We consider complex numbers h such that
|h| < δ. We have

f (z + h) = ∑ an(z + h)n

= ∑ an(zn + nzn−1h + h2Pn(z, h)) (4.32)

where Pn(z, h) is a polynomial in z and h given by

Pn(z, h) =
n

∑
k=2

(
n
k

)
hk−2zn−k. (4.33)

We can then use the estimate

|Pn(z, h)| ≤
n

∑
k=2

(
n
k

)
δk−2|z|n−k = Pn(|z|, δ). (4.34)

Rearranging we see

f (z + h)−∑ anzn︸ ︷︷ ︸
f (z)

−∑ nanzn−1h = ∑ h2Pn(z, h) (4.35)
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Since we showed above that both series on the left are abso-
lutely convergent for any z within the radius of convergence
of f , the series on the right hand side must also be absolutely
convergent.

We divide by h to obtain the finite difference

f (z + h)− f (z)
h

−∑ nanzn−1 = h ∑ anPn(z, h) (4.36)

≤ |h|Pn(|z|, δ) (4.37)

where the right hand side goes to zero as h → 0 (since δ is
independent of h). Therefore we must have that

f ′(z) ≡ lim
h→0

f (z + h)− f (z)
h

= ∑ nanzn−1. (4.38)

Thus we see that the following lemma must be true:

Analytic Functions are Holomorphic

Lemma 4.1. Any analytic function is also holomorphic within its
radius of convergence.

The kth Derivative of a Power Series

From Theorem 4.8 we see also see that the kth derivative of
f = ∑ anzn is given by the series

f (k)(z) = k!ak + hk(z) (4.39)

where hk(z) is a power series that has no constant term, so
that hk(z) → 0 as z → 0. Therefore we obtain the standard
expression for the coefficients of the power series in terms of
the derivatives

an =
f (n)(0)

n!
(4.40)

If instead we are expanding about a point zo, then we find

an =
f (n)(zo)

n!
. (4.41)

To show that the definitions of analytic and holomorphic are
interchangeable, it only remains to be shown that the implication
also goes the other way, by circling back to Cauchy’s Integral
Formula.

4.5 Holomorphic Functions are Analytic

Let’s consider a function f (z) that is holomorphic on and inside a
circle CR : |z− zo| = R, centred on point zo.
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Using Cauchy’s Integral Formula on CR we can swap the names
of symbols around replace z by w and zo by z, we find

f (z) =
1

2πi

∮
CR

f (w)

w− z
dw (4.42)

for any z inside CR.
Note that the denominator of the integrand above can be re-

placed by a geometric series in the interior of the CR

1
w− z

=
1

w− zo − (z− zo)

=
1

w− zo

(
1

1− ζ

)
=

1
w− zo

(
1 + ζ + ζ2 + . . .

)
(4.43)

where ζ ≡ z−zo
w−zo

, has |ζ| < 1 allowing the geometric series to
converge since |w− zo| = R and z is in the (open) interior of CR, so
we must have |z− zo| < R.

Theorem 4.9 (Integrals of Convergent
Sequences of Functions). Let {gn} be
a sequence of continuous functions on
a domain U, converging uniformly to a
function g. Then

lim
n→∞

∫
γ

gn(z)dz =
∫

γ
g(z)dz.

Proof: Uniform convergence on a
domain U means that for any real
number ε > 0 one can find an N ∈ N

such that |gn(z)− g(z)| < ε for any
n ≥ N and z ∈ U, therefore,∣∣∣∣ ∫

γ
gndz−

∫
γ

gdz
∣∣∣∣ ≤ ∫

γ
|gn − g|dz

≤ ε`(γ),

where `(γ) is the length of the contour.
Hence, the integral of the sequence
also uniformly converges to the
integral of the limit.

—

Theorem 4.10 (†Integrals of Conver-
gent Series). If ∑ fn is a series of continu-
ous functions converging uniformly on U,
then∫

γ

∞

∑
n=0

fn(z)dz =
∞

∑
n=0

∫
γ

fn(z)dz.

Proof: Let {gk} = {∑k
n=0 fn}. Then

by the Theorem 4.9 above, the integral
of this sequence of partial sums also
converges to the infinite sum of the
integrals of each term.

Since f (z) is holomorphic in and on the circle, it is also bounded,
and the series is uniformly convergent in this domain, thus we are
allowed† to integrate term by term, swapping the integral and the
infinite sum,

f (z) =
∞

∑
n=0

1
2πi

∮
CR

f (w)

(w− zo)
ζndw (4.44)

=
∞

∑
n=0

1
2πi

∮
CR

f (w)

(w− zo)

(
z− zo

w− zo

)n
dw (4.45)

=
∞

∑
n=0

1
2πi

[∮
CR

f (w)

(w− zo)n+1 dw
]

︸ ︷︷ ︸
an

(z− zo)
n (4.46)

This proves the following theorem:

Holomorphic Functions are Analytic

Theorem 4.11. In the circle CR where f (z) is holomorphic, f (z)
can be expressed in terms of a convergent power series:

f (z) =
∞

∑
n=0

an(z− zo)
n (4.47)

where

an =
1

2πi

∮
CR

f (w)

(w− zo)n+1 dw. (4.48)

Therefore combining the above with Theorem 4.8 we now
see that a function is analytic if and only if it is holomor-
phic. We may now use the terms interchangeably, as we
previously hinted.
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Thus we see that any differentiable function can be expanded
as a power series — a very remarkable fact that is characteristic of
complex differentiability.

4.5.1 Holomorphic/Analytic Functions are Infinitely Differentiable

Using very similar arguments we can prove another somewhat
weird looking, but surprisingly useful theorem:

Theorem 4.12. Let γ be a directed curve in an open set U and let g(z)
be a continuous function for all z on γ. For any z ∈ U that is not on the
curve γ we can define the function

G(z) ≡
∫

γ

g(w)

w− z
dw. (4.49)

This function is analytic (and holomorphic) on U \ γ, and its nth derivative
is given by

G(n)(z) = n!
∫

γ

g(w)

(w− z)n+1 dw. (4.50)

Note that in contrast to Eq. (4.42), here
γ is not necessarily a closed loop and
g(z) is a completely arbitrary function
(not necessarily holomorphic) that is
only required to be continuous along
γ.

Figure 4.3: For a given point zo , we can
choose a radius R < min(|γ(t)− zo |)
so that CR does not overlap with the
curve γ(t).

Proof: Let zo ∈ U, and zo not on γ. Since U is an open set, we
can choose a circle CR of some radius R > 0 centred at zo such that
it does not overlap the curve γ (see Figure 4.3).

For z in the interior of CR we can expand the denominator of the
integrand using a convergent geometric series as before, and we
find

G(z) =
∞

∑
n=0

∫
γ

g(w)

(w− zo)n+1 dw(z− zo)
n (4.51)

since we know |w − zo| > |z − zo| for all w on γ, and z in the
interior of CR. Thus the function G(z) is analytic (and holomorphic
by Theorem 4.8) since we can write it as a power series about any
point zo in U \ γ,

G(z) =
∞

∑
n=0

an(z− zo)
n (4.52)

an ≡
∫

γ

g(w)

(w− zo)n+1 dw,

which converges within the radius R.
From Equation (4.41) and Theorem 4.8 we see that we can write

an as,

an =
G(n)(zo)

n!
(4.53)

Therefore we must have that

G(n)(zo) = n!an = n!
∫

γ

g(w)

(w− zo)n+1 dw. (4.54)
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Why do we care about functions and derivatives of the strange
integral form given by Equation (4.49)? Well, consider Cauchy’s
Integral Formula written in the form of Equation (4.42), for any
function f (z) holomorphic in the interior of CR.

f (z) =
1

2πi

∮
CR

f (w)

w− z
dw.

for any z interior to CR. It follows from Theorem 4.12 above, that
such a function must be have a derivative given by

f ′(z) =
1

2πi

∮
CR

f (w)

(w− z)2 dw. (4.55)

But it if we set G(z) = f ′(z) and g(w) = f (w)/(w − z) (which
is continuous and well defined for w along CR, since z is not on
CR), then we have that f ′(z) is also expressible as a power series by
Equations (4.52), and hence is also analytic.

This can be carried on to show that any analytic (holomorphic)
function can be differentiated any number of times, and the nth
derivative will also be analytic (holomorphic),

Holomorphic Functions are Infinitely Differen-
tiable

Theorem 4.13. If f is holomorphic (analytic) in a domain U, then
all its derivatives f ′, f ′′, . . . f (n), . . . exist and are also holomor-
phic (analytic) in U. Hence, holomorphic functions are infinitely
differentiable.

We also get a general expression for the derivatives of f , in
terms of an integral!

Generalised Cauchy Integral Formula

Theorem 4.14 (The Generalised Cauchy Integral Formula). If
f is holomorphic inside and on the simple closed positively oriented
contour Γ and if z is any point inside Γ, then its nth derivative is
given by

f (n)(z) =
n!

2πi

∮
Γ

f (w)

(w− z)n+1 dw. (4.56)

Example 4.6: Derivatives of e5z

Compute
∫

Γ e5z/z3dz where Γ is the circle |z| = 1 traversed
once counterclockwise.
Solution: Observe that f (z) = e5z is holomorphic inside an
on Γ. Therefore, from Theorem 4.14 above, with z = 0 and
n = 2, we have∫

Γ

e5z

z3 dz =
2πi
2!

f ′′(0) = 25πi. (4.57)
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4.6 Taylor and Maclaurin Series

Taylor and Maclaurin Series

Definition 4.6 (Taylor Series). If f is analytic at zo, then the se-
ries

f (zo) + f ′(zo)(z− zo) +
f ′′(zo)

2!
(z− zo)

2 + . . .

=
∞

∑
k=0

f (k)(zo)

k!
(z− zo)

k, (4.58)

is called the Taylor Series for f around zo. When zo = 0, it is
also known as the Maclaurin Series for f .

Theorem 4.15. If f is analytic in the open disc |z − zo| < R, then
the Taylor series converges to f (z) for all z in this disc. Futhermore, the
convergence of the series is uniform for any closed subdisc |z− zo| ≤ S <

R (which implies pointwise convergence in the open disc of radius R).

Figure 4.4: Given S < R, to prove that
the Taylor Series converges uniformly
for any |z− zo | ≤ S, we make use of the
circular contour CT , where S < T < R.

Proof: Let CT be a (positive) circular contour with S < T < R.
Then by Theorems 4.11 and 4.14, and we have for |z| ≤ S,

f (z) =
∞

∑
n=0

an(z− zo)
n (4.59)

an =
1

2πi

∮
CT

f (w)

(w− zo)n+1 dw =
f (n)(zo)

n!
. (4.60)

Thus the Taylor Series converges to f (z) converges for |z| < S. We
just need to show that this converges uniformly in this domain as
well.

Let us define the partial sum of the Taylor series

fN(z) ≡
N

∑
n=0

an(z− zo)
n (4.61)

From Equation (4.3) in our derivation of the Geometric Series, we
know that for |ζ| < 1, we have

1
1− ζ

− (1 + ζ + ζ2 + . . . + ζn) =
ζn+1

1− ζ
(4.62)

Taking ζ = (z− zo)/(w− zo) the error in the partial sum is

f (z)− fN(z) =
∮

CT

f (w)

w− z
dw−

N

∑
n=0

an(z− zo)
n (4.63)

=
1

2πi

∮
CT

f (w)

w− z

(
z− zo

w− zo

)n+1
dw (4.64)

since |ζ| < 1 for |z− zo| < S < |w− zo| = T.
Since f is holomorphic and continuous on CT , there must exist a

maximum for f (w) in the integrand. Setting

M ≡ max
w on CT

| f (w)|,
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the error is then bounded by

| f (z)− fN(z)| ≤
1

2πi
M2πT
(S− T)

(
S
T

)N+1
(4.65)

The right hand side is independent of z, and since S/T < 1, given
any ε > 0, we can always choose an N large enough such that the
error is less than ε for any n > N. Therefore the convergence is
uniform for |z| ≤ S.

The above theorem immediately implies the following lemma:

Lemma 4.2. The Taylor Series will converge to f (z) everywhere inside
the largest open disc, centred at zo, over which f is analytic.

Branch cut for

(a)

(b)
pole for 

Example 4.7: Tinker, Something, Soldier, Sailor

Compute and state the convergence properties of the Taylor
series for (a) Log (z) around zo = 1, (b) 1/(1 − z) around
zo = 0 and (c) ez around zo = 0.
Solution:

(a) The derivatives of Log z in general are

dkLog z
dzk = (−1)k+1(k− 1)!z−k for k = 1, 2, . . . ,

so that evaulating at z = 1 gives us

Log z =
∞

∑
k=1

(−1)k+1(z− 1)k

k
. (4.66)

This converges for |z− 1| < 1, since the largest open
disk centred at +1 we can have before we run into the
branch point at z = 0 has a radius of 1.

(b) The derivatives of 1
1−z are given by

dk

dzk (1− z)−1 = k!(1− z)−j−1.

Evaluating these at z = 0 gives us the Taylor series,

1
1− z

= 1 + z +
2!z2

2!
+ . . . =

∞

∑
k=0

zk (4.67)

(which of course is just the geometric series), which
converges for |z| < 1, since there is a pole where the
function is no longer holomorphic at z = 1.

(c) Since the derivative of ez is just ez, we can evaluate
this at z = 0 to get

ez = 1 + z +
z2

2!
+

z3

3!
+ . . . (4.68)

as expected. This converges for all z, since ez is ana-
lytic on the entire complex plane.



66 complex analysis

4.7 Laurent Series

We are now ready to introduce a very important (for Complex
Analysis anyways) generalisation of the power series, the Laurent
Series.

Obviously, it is easily to generalise the
following for a Laurent Series centred
around a point zo , where

f (z) =
∞

∑
n=−∞

an(z− zo)
n.

Laurent Series

Definition 4.7 (Laurent Series). A Laurent Series is a series
that can be written as

f (z) =
∞

∑
−∞

anzn. (4.69)

Let U be a set of complex numbers. We say that the Laurent
series converges absolutely on U if the two series,

f+(z) ≡ ∑
n≥0

anzn and f−(z) ≡ ∑
n<0

anzn

converge absolutely on U. If this is the case then f (z) can be re- Similarly, f (z) is said to converge
uniformly on U if f+(z) and f−(z)
both converge uniformly on U.

garded as the sum,
f (z) = f+(z) + f−(z). (4.70)

†It is straightforward to instead prove
a related theorem on the open annulus
following a similar procedure to the
proof of Theorem 4.15 (on the conver-
gence properties of Taylor expansions)
by introducing contours that sit in
between the boundary and an interior
closed annulus††. This would show
uniform convergence of the Laurent
Series for any closed annular domain
interior to the open annulus, but only
pointwise convergence in the whole
open annulus.

††Under no circumstances should
you refer to a closed annulus as a
"clenched annulus".

Laurent Series of a Function

Let r, R ∈ R be positive numbers with 0 ≤ r < R. Consider
the closed † annular domain A consisting of all complex
numbers z such that r ≤ |z| ≤ R, which is bounded by the
positively oriented contours CR and Cr.

Theorem 4.16. Let A be the closed annulus above, and let f be a
holomorphic function everywhere in A. Let some s and S define the
radii of the closed sub-annulus such that r < s ≤ |z| ≤ S < R.
Then f has a Laurent expansion,

f (z) =
∞

∑
n=−∞

anzn, (4.71)

which converges absolutely and uniformly on s ≤ |z| ≤ S. The co-
efficients an are obtained by the formula:

an =

 1
2πi
∮

CR

f (w)
wn+1 dw, if n ≥ 0,

1
2πi
∮

Cr

f (w)
wn+1 dw, if n < 0.

(4.72)

Proof: For z such that s ≤ |z| ≤ S, we can use Cauchy’s Integral
Formula over the closed contour Γ shown in Figure 4.5,

f (z) =
1

2πi

∮
Γ

f (w)

w− z
dw

=
1

2πi

∫
CR

f (w)

w− z
dw− 1

2πi

∫
Cr

f (w)

w− z
dw (4.73)

where we note that the two radial paths (chosen such that they do
not intersect z) cancel out, and Cr is traversed clockwise, acquiring
a minus sign.
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The first integral is handled in the same way as the proof of
Theorem 4.11, by expanding using the geometric series, and inter-
changing the integral and the sum,

1
2πi

∫
CR

f (w)

w− z
dw =

∞

∑
n=0

[
f (w)

wn+1 dw
]

zn. (4.74)

Figure 4.5: Above: The closed annulus
A centred at z = 0 and bounded by
the circular contours Cr and CR. For
any z such that r < s ≤ |z| ≤< R,
the Laurent Series for a function
holomorphic on A converges. Below:
For f holomorphic in the open interior
of annulus A, i.e. {z : r < |z| < R},
we can use the contour Γ to prove
Theorem 4.16.

The second integral can be expanded in a similar fashion, by
writing

w− z = −z
(

1− w
z

)
. (4.75)

Then, since |w/z| < 1 for w on Cr, the geometric series converges,
allowing us to expand,

1
z

1
1− w/z

=
1
z

(
1 +

w
z
+
(w

z

)2
+ . . .

)
=

∞

∑
k=0

wk

zk+1 . (4.76)

So that the second integral becomes

− 1
2πi

∫
Cr

f (w)

w− z
dw = − 1

2πi

∫
Cr

∞

∑
k=0

f (w)

(
wk

zk+1

)
dw, (4.77)

=
−∞

∑
n=−1

(
1

2πi

∫
Cr

f (w)

wn+1 dw
)

zn, (4.78)

where k = −(n + 1) and we can interchange the sum and the in-
tegral because the series converges uniformly. This completes the
proof of Theorem 4.16.

Example 4.8: Laurent Series of 1/[z(z− 1)]

Find the the Laurent Series (centred at z = 0) for the func-
tion

f (z) =
1

z(z− 1)
, for 0 < |z| < 1. (4.79)

Solution: We can write f using partial fractions

f (z) =
1

z− 1
− 1

z
. (4.80)

Then for one term we get the geometric series,

1
z− 1

= − 1
1− z

= −1− z− z2 − . . . (4.81)

f (z) = −1
z
− 1− z− z2 + . . . . (4.82)

What happens if we want the Laurent series for |z| > 1?
Then we can write

1
z− 1

=
1
z

(
1

1− 1/z

)
=

1
z

(
1 +

1
z
+

1
z2 + . . .

)
, (4.83)

so that we find the Laurent Series,

f (z) =
1
z2 +

1
z3 +

1
z4 + . . . . (4.84)
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(a)

(b)

(c)

Figure 4.6: The different domains for
Example 4.9. The function 1/[(z −
1)(z− 2)] has poles at z = 1 and z = 2.

Example 4.9: Different Regions, Different Series

For the function
1

(z− 1)(z− 2)
(4.85)

find the Laurent series (centred at zo = 0) in

(a) the region |z| < 1,

(b) the region 1 < |z| < 2,

(c) the region |z| > 2.

Solution: Using partial fractions we can write

1
(z− 1)(z− 2)

=
1

z− 2
− 1

z− 1
(4.86)

Now in each region we have to proceed slightly differently
to keep the series convergent:

(a) For |z| < 1 we have

1
z− 2

= −1
2

1
1− z

2
= −1

2

∞

∑
k=0

( z
2

)k
(4.87)

1
z− 1

= −
∞

∑
k=0

zk (4.88)

This gives us the series expansion

1
(z− 1)(z− 2)

=
∞

∑
k=0

(
1− 1

2k+1

)
zk (4.89)

which converges in the region |z| < 1.

(b) For 1 < |z| < 2, the first expansion in part (a) is valid,
but we need to replace the second.

1
z
=

1
z

1
1− 1

z
=

1
z

∞

∑
k=0

1
zk (4.90)

So that the series can be written as

1
(z− 1)(z− 2)

= −
∞

∑
k=0

zk

2k+1 −
∞

∑
k=0

1
zk+1 (4.91)

= . . .− 1
z2 −

1
z
− 1

2
− z

4
− . . . (4.92)

for 1 < |z| < 2.

(c) For |z| > 2 we can use Equation (4.90) as well as

1
z− 2

=
1
z

1
1− 2

z
=

∞

∑
k=0

2k

zk+1 , (4.93)

which gives us,

1
(z− 1)(z− 2)

=
∞

∑
k=0

2k − 1
zk+1 =

1
z2 +

3
z3 +

7
z4 + . . . .

(4.94)
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4.8 Singularities and Zeros Revisited

With Laurent Series properly defined and well understood, we are
now ready to revisit our discussion of singularities that were given
by Definitions 2.6 - 2.8. In terms of Laurent Series, these definitions
now become:

Cultural Sidenote: If f is holomorphic
on an open set U except at a discrete
set of points which are poles, then f is
sometimes called meromorphic on U.
This derives from the Greek "meros"
meaning part, and "morphe" meaning
shape or form and should not to be
confused with the term Mer-Morphic.

Isolated Singularities

Definition 4.8 (Singularities in terms of Laurent Series coef-
ficients). Let f have an isolated singularity at zo, and let us have
a Laurent Series expansion of f convergent in 0 < |z − zo| < R
given by

f (z) =
∞

∑
n=−∞

an(z− zo)
n. (4.95)

Then,

(i) If an = 0 for all n < 0 we say that zo is a removable sin-
gularity of f ;

(ii) If a−m = 0 for some positive integer m, but an = 0 for all
n < −m, we say that zo is a pole of order m for f ;

(iii) If an 6= 0 for an infinite number of negative values of n we
say that zo is an essential singularity of f .

We can also use the Laurent Series expansion to classify the
zeros of an analytic function f , i.e., point zo where f is analytic and
f (zo) = 0.

Zeros of order m

Definition 4.9. A point zo is called a zero of order m for the
function f if f is analytic at zo, and f and its first m − 1 deriva-
tives vanish at zo but f (m)(zo) 6= 0.

Using the Laurent series expansion, it is then easy to show

Theorem 4.17. Let f be analytic on zo. Then f has a zero of order
m at zo if and only if f can be written as,

f (z) = (z− zo)
mg(z) (4.96)

where g is analytic at zo and g(zo) 6= 0.

Just as a pole of order 1 is called a simple pole, a zero of order 1
is often called a simple zero. For instance the zeros of the function
sin z, which occur at integer multiples of π are all simple zeros,
since the first derivative at these points is nonzero.



5
The Calculus of Residues

We have already seen how the theory of contour integration pro-
vides insight into the properties of holomorphic functions. We have
developed all the tools we need to compute integrals of analytic
functions in terms of their power series expansions, and use these
to evaluate certain real integrals.

5.1 Cauchy’s Residue Theorem

Let us consider the problem of evaluating the integral

∮
Γ

f (z)dz, (5.1)

where Γ is a simple closed positively oriented contour and f (z) is
holomorphic on and inside Γ except for a single isolated singularity
at zo lying interior to Γ.

Figure 5.1: If f (z) is holomorphic
inside and on Γ except at a simple pole
at zo , we can deform the contour Γ to
the circle C, where the Laurent Series
for f (z) centred at zo converges in the
punctured disc bounded by C.

As we showed in the previous chapter, the function f (z) has a
Laurent Series expansion,

f (z) =
∞

∑
n=−∞

an(z− zo)
n (5.2)

converging in some punctured neighbourhood of zo, such as the
circle C (see Figure 5.1). Via the Deformation Invariance Theorem
(Theorem 3.5), the integral over Γ can be deformed to integration
over C without modifying the result of the integral,

∮
Γ

f (z)dz =
∮

C
f (z)dz. (5.3)

Since the Laurent Series (uniformly) converges everywhere on the
contour C, the integral on the right hand side can be computed by
term-wise integration of the Laurent Series along C. For all n 6= −1
the integral is zero [see Example 3.1], and for n = −1 we obtain the
value of 2πia−1. The coefficient a−1 of this Laurent expansion about
the pole zo is the key to the calculus of residues.
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Cauchy’s Residue Theorem

Definition 5.1 (Residues of a Pole). If f has an isolated singu-
larity at the point zo, then the coefficient a−1 of 1/(z − zo) of the
Laurent series expansion for f around zo is called the residue of
f at zo and is denoted by

Res( f ; zo), Reszo f , or Res(zo),

where the latter can be used when there is no ambiguity as to
which function we mean.

Theorem 5.1 (Cauchy’s Residue Theorem). Let U be an open
set and Γ a closed positively oriented contour in U that is tra-
versed once. Let f be analytic on U except at a finite number of
points z1, . . . , zm. Then,∮

Γ
f (z)dz = 2πi

m

∑
k=1

Res( f ; zk). (5.4)

Proof: We can deform the contour Γ to the contour consisting
of circles Ck surrounding each of the m poles, which are well sepa-
rated, since the singularities are isolated, and connected by linear
paths that are traversed once in each direction. Since the integrals
along the straight paths cancel out, the contour integral becomes,

∮
Γ

f (z)dz =
m

∑
k=1

∮
Ck

f (z)dz (5.5)

= 2πi
m

∑
k=1

Res(zk), (5.6)

by applying the results of Example 3.1 for each circular contour.

Figure 5.2: Contours for the proof of
Cauchy’s Residue Theorem. Such a
finite sum of closed contours Cn is
often called a chain (sometimes shown
with the connecting cancelling paths
omitted).
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Example 5.1: Residue of ze3/z

Find the residue at z = 0 of the function f (z) = ze3/z and
compute ∮

|z|=4
ze3/zdz, (5.7)

where the contour is traversed once in the counterclockwise
direction.
Solution: Since ew has a Taylor expansion,

ew =
∞

∑
k=0

wk

k!
, (5.8)

for all w ∈ C. The Laurent expansion for f (z) around z = 0
is then given by,

ze3/z = z
∞

∑
k=0

1
k!

(
3
z

)k
= z + 3 +

32

2!z
+

33

3!z2 + . . . (5.9)

Hence we find,

Res(0) = a−1 =
32

2!
=

9
2

. (5.10)

Since z = 0 is the only singularity inside |z| = 4, we have∮
|z|=4

ze3/zdz = 2πi · 9
2
= 9πi. (5.11)

Figure 5.3: Contour and pole for the
function f (z) = ze3/z for Example
5.1. Note that the pole at z = 0 is an
essential singularity.

5.2 Calculating Residues

Cauchy’s Residue theorem allows us to calculate the contour inte-
grals around isolated singularities in terms of their residues, which
are given by the value of the Laurent series coefficient a−1. In par-
ticular, for the three different types of isolated singularities, we
see:

• If f has a removable singularity at zo, then all the coefficients of
the negative powers of (z− zo) in the Laurent expansion are zero,
and so, the residue of a function at a removable singularity is
zero.

• If f has an essential singularity at zo (e.g. in Example 5.1) to
determine the residue we must determine the Laurent series
expansion for f about zo, and the coefficient a−1.

• If f has a pole at zo, it turns out that we can find a simple for-
mula to evaluate the residue.

If the singularity is a simple pole (i.e. a pole of order 1) then for z
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near zo where the Laurent Series is convergent, we have

f (z) =
a−1

z− zo
+ a0 + a1(z− zo) + a2(z− zo)

2 + . . . (5.12)

⇒ (z− zo) f (z) = a−1 + (z− zo) [a0 + a1(z− zo) + . . .] , (5.13)

giving us the following theorem:

Residue of a Simple Pole

Theorem 5.2 (Residue at a Simple Pole). Let f be a function
that has an isolated simple pole at zo. Then the residue of f at zo

can be given by,

Res( f ; zo) = lim
z→zo

(z− zo) f (z). (5.14)

Example 5.2: Simple Poles

Find the residues at the simple poles of

f (z) =
ez

z(z + 1)
. (5.15)

Solution: f (z) has simple poles at z = 0 and z = −1. There-
fore we have

Res( f ; 0) = lim
z→0

z f (z) = lim
z→0

ez

z + 1
= 1, (5.16)

Res( f ;−1) = lim
z→−1

(z + 1) f (z) = lim
z→−1

ez

z
= −e−1. (5.17)

Example 5.3: Denominators with Simple Zeros

Prove the following theorem:

Theorem 5.3. Let f (z) = P(z)/Q(z), where the functions P(z)
and Q(z) are both analytic at zo, and Q(z) has a simple zero at
zo, while P(zo) 6= 0. Then, the residue of f at zo is given by,

Res( f ; zo) =
P(zo)

Q′(zo)
. (5.18)

Proof: Obviously, f has a simple pole at zo, so we can apply
Theorem 5.2. Using the fact that Q(zo) = 0, we see that

Res( f ; zo) = lim
z→zo

(z− zo)
P(z)
Q(z)

,

= lim
z→zo

P(z)[
Q(z)−Q(zo)

z−zo

] ,

=
P(z)
Q′(z)

.
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To obtain the general formula for the residue at a pole of order
m we need some method of picking out the coefficient a−1 from the
Laurent expansion.

Residue of an mth Order Pole

Theorem 5.4 (Residue of an mth Order Pole). If f has a pole of
order m at zo, then

Res( f ; zo) = lim
z→zo

1
(m− 1)!

dm−1

dzm−1 [(z− zo)
m f (z)] . (5.19)

Proof: The Laurent expansion for f around zo is

f (z) =
a−m

(z− zo)m + . . . +
a−1

z− zo
+ a0 + a1(z− zo) + . . . ,

(z− zo)
m f (z) = a−m + . . . + a−1(z− zo)

m−1

+ a0(z− zo)
m + a1(z− zo)

m+1 + . . . .

We can differentiate the above m− 1 times to find

dm−1

dzm−1 [(z− zo)
m f (z)] = (m− 1)! a−1 + m!a0(z− zo)

+
(m + 1)!

2
a1(z− zo)

2 + . . . ,

⇒ lim
z→zo

dm−1

dzm−1 [(z− zo)
m f (z)] = (m− 1)!a−1.

Example 5.4: Higher Order Poles

Compute the residues at the singularities of

f (z) =
cos z

z2(z− π)3 . (5.20)

Solution: f (z) has a pole of order 2 at z = 0 and a pole of
order 3 at z = π. Applying Theorem 5.4 we find

Res( f ; 0) = lim
z→0

1
1!

d
dz

[z2 f (z)]

= lim
z→0

d
dz

[
cos z

(z− π)3

]
= lim

z→0

[
−(z− π) sin z− 3 cos z

(z− π)4

]
= − 3

π4 .

Res( f ; π) = lim
z→π

1
2!

d2

dz2 [(z− π)3 f (z)]

= lim
z→π

1
2

d2

dz2

[cos z
z2

]
= lim

z→π

1
2

[
(6− z2) cos z + 4z sin z

z4

]
= −6− π2

2π4 .
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Exercise 5.1: Residue Practice

Compute the residue at each singularity of the following
functions

(a) cot z;

(b) e3z

z−2 ;

(c) z+1
z2−3z+2 ;

(d) cos z
z2 ;

(e) e1/z

z−2 ;

(f) z−1
sin z .

Figure 5.4: Contour and poles for
f (z) = (1− 2z)/[z(z− 1)(z− 3)] in
Example 5.5. Note that the contour
does not enclose the pole at z = 3.

Example 5.5: Missing a Pole

Evaluate ∮
|z|=2

1− 2z
z(z− 1)(z− 3)

dz. (5.21)

where the contour is traversed once in the counterclockwise
direction.
Solution: The integrand f (z) = (1− 2z)/[z(z− 1)(z− 3)] has
simple poles at z = 0, z = 1, and z = 3. However, only the
first two of these points lie inside the contour. Thus by the
residue theorem∮

|z|=2
f (z)dz = 2πi[Res(0) + Res(1)]. (5.22)

Evaluating the residues we find,

Res(0) = lim
z→0

z f (z) = lim
z→0

1− 2z
(z− 1)(z− 3)

=
1
3

, (5.23)

Res(1) = lim
z→1

(z− 1) f (z) = lim
z→1

1− 2z
z(z− 3)

=
1
2

. (5.24)

This gives us∮
|z|=2

f (z)dz = 2πi
(

1
3
+

1
2

)
=

5πi
3

. (5.25)

Exercise 5.2: Contour Integral Practice

Evaluate each of the following integrals by means of
Cauchy’s Residue Theorem. You may assume that all con-
tours are positively oriented.

(a)
∮
|z|=5

sin z
z2−4 dz

(b)
∮
|z|=3

ez

z(z−2) dz

(c)
∮
|z|=2π tan z dz

(d)
∮
|z|=3

eiz

z2(z−2)(z+5i) dz

(e)
∮
|z|=1

1
z2 sin z dz

(f)
∮
|z|=3

3z−2
z4+1 dz

(g)
∮
|z|=8

1
z2+z+1 dz

(h)
∮
|z|=1 e1/z sin(1/z) dz
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Applications of Cauchy’s Residue Theorem

Having established Cauchy’s residue theorem and the basics of the
calculus of residues, we now turn to their applications in evaluating
certain useful real integrals.

Figure 6.1: Q: Why did the Mathemati-
cian name his dog Cauchy?
A: Because his favourite long-dead
uncle was named Cauchy and the dog
was the only family he had left.

6.1 Trigonometric Integrals Over [0, 2π]

We would like to use Cauchy’s residue theorem to evaluate real
integrals of the form ∫ 2π

0
Q(cos θ, sin θ)dθ (6.1)

where Q(cos θ, sin θ) is a rational function (with real coefficients) of
cos θ and sin θ which is finite over [0, 2π].

We want to recast this integral into a parameterised form of a
contour integral ∫

C1

F(z)dz (6.2)

where C1 is the positively oriented unit circle |z| = 1. We start by
parameterising C1 by

z = eiθ , (0 ≤ θ ≤ 2π). (6.3)

For such z we have 1/z = e−θ . We can use these substitutions in the
expressions for the trigonometric functions

cos θ =
eiθ + e−iθ

2
=

1
2

(
z +

1
z

)
; (6.4)

sin θ =
eiθ − e−iθ

2i
=

1
2i

(
z− 1

z

)
. (6.5)

When integrating along C1, we also have

dz = ieiθdθ ⇒ dθ =
dz
iz

. (6.6)

With these substitutions we can rewrite the trigonometric integral
as ∫ 2π

0
Q(cos θ, sin θ)dθ =

∮
C1

F(z)dz (6.7)
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where the new integrand F is

F(z) ≡ Q
[

1
2

(
z +

1
z

)
,

1
2i

(
z− 1

z

)]
· 1

iz
. (6.8)

By Cauchy’s residue theorem our trigonometric integral must equal
2πi times the sum of the residues of those poles of F which lie
inside C1.

Example 6.1: Trig Integral

Evaluate

I =
∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ. (6.9)

Solution: We note that the denominator, 5 + 4 cos θ

is never zero, so the integrand is finite over
[0, 2π]. We can then perform the substitutions
above for cos θ, sin θ, and dθ to find,

I =
∮

C1

[
1
2i

(
z− 1

z

)]2

5 + 4
[

1
2

(
z + 1

z

)] dz
iz

. (6.10)

Some algebra reduces this to

I = − 1
4i

∮
C1

(z2 − 1)2

z2(2z2 + 5z + 2)
dz. (6.11)

The integrand,

F(z) = − 1
4i

(z2 − 1)2

z2(2z2 + 5z + 2)
(6.12)

has simple poles at z = −1/2 and z = −2, and a pole of order 2 at z = 0. However, only −1/2 and
0 lie inside the unit circle, so we have

I = 2πi
[

Res
(

F;−1
2

)
+ Res(F; 0)

]
. (6.13)

Using the techniques of the preceding section, we have

Res
(

F,−1
2

)
= lim

z→− 1
2

(z + 1/2)F(z)

= − 1
4i

lim
z→− 1

2

(z2 − 1)2

2z2(z + 2)

= − 3
16i

;
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Res (F, 0) = lim
z→0

1
1!

d
dz

[z2F(z)]

= − 1
4i

lim
z→0

d
dz

[
(z2 − 1)2

2z2 + 5z + 2

]
= − 1

4i
(2z2 + 5z + 2) · 2(z2 − 1)2z− (z2 − 1)2(4z + 5)

(2z2 + 5z + 2)2

∣∣∣∣
z=0

=
5

16i
.

Thus, the contour integral is given by

I = 2πi
[
−3
16i

+
5
16

]
=

π

4
. (6.14)

Figure 6.2: Contour and poles for
Example 6.2.

Example 6.2: Trig Integrals Cont’d

Evaluate

I =
∫ π

0

dθ

2− cos θ
. (6.15)

Solution: The trick here is that the integral is taken over
[0, π] instead of [0, 2π]. However, it is easy to see that since
cos θ = cos(2π − θ),∫ π

0

dθ

2− cos θ
=
∫ 2π

π

dθ

2− cos θ
,

and, therefore, ∫ 2π

0

dθ

2− cos θ
= 2I.

Substituting for cos θ and dθ, we have

2I =
∮

C1

1

2− 1
2

(
z + 1

z

) · dz
iz

= −2
i

∮
C1

dz
z2 − 4z + 1

.

By the quadratic formula the zeros of the denominator are

z− ≡ 2−
√

3, z+ ≡ 2 +
√

3,

so that the integrand

F(z) ≡ 2i
z2 − 4z + 1

=
2i

(z− z−)(z− z+)

has simple poles at these points. But only z− lies inside C1,
which has residue given by

Res(F; z−) = lim
z→z−

(z− z−)F(z)

= lim
z→z−

2i
z− z+

=
2i

z− − z+
= − i√

3
.
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This gives us

2I = −2πi
i√
3
=

2π√
3

I =
π√

3
.

Exercise 6.1: Practice on Trig Integrals on the Unit Circle

Using Cauchy’s Residue Theorem, verify each of the following:

(a)
∫ 2π

0
dθ

2+sin θ = 2π√
3

;

(b)
∫ π

0
8dθ

5+2 cos θ = 8π√
21

;

(c)
∫ π

0
dθ

(3+2 cos θ)2 = 3π
√

5
25 ;

(d)
∫ π
−π

dθ
1+sin2 θ

= π
√

2;

(e)
∫ 2π

0
dθ

1+a cos θ = 2π√
1−a2 , for a2 < 1;

(f)
∫ 2π

0
sin2 θ

a+b cos θ dθ = 2π
b2 (a−

√
a2 − b2),

for a > |b| > 0.

6.2 Improper Integrals and the Cauchy Principal Value

If f (x) is a function continuous on the nonnegative real axis a ≤
x < ∞, then the improper integral of f over [a, ∞) is defined by

∫ ∞

a
f (x)dx ≡ lim

b→∞

∫ b

a
f (x)dx, (6.16)

provided this limit exists.

Example 6.3: An Improper Integral

Find ∫ ∞

0
e−2xdx. (6.17)

Solution: ∫ ∞

0
e−2xdx = lim

b→∞

∫ b

0
e−2xdx

= lim
b→∞

−e−2x

2

∣∣∣∣b
0

= lim
b→∞

[
−e−2b

2
+

1
2

]
=

1
2

.

Similarly when f (x) is continuous on (−∞, a], we set

∫ a

−∞
f (x)dx ≡ lim

c→−∞

∫ a

c
f (x)dx. (6.18)

If it turns out that both of the above limits exist for a function f
continuous on the whole real line, then f is said to be integrable
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over (−∞, ∞), and we can define∫ ∞

−∞
f (x)dx ≡ lim

c→−∞

∫ 0

c
f (x)dx + lim

b→∞

∫ b

0
f (x)dx (6.19)

=
∫ 0

−∞
f (x)dx +

∫ ∞

0
f (x)dx. (6.20)

Thus the improper integral over (−∞, ∞) can be computed by
taking a single limit,∫ ∞

−∞
f (x)dx = lim

R→∞

∫ R

−R
f (x)dx. (6.21)

However, this last limit may exist even for certain non-integrable
functions f . Consider f (x) = x. This function is non integrable over
(−∞, ∞) since the limit

lim
b→∞

∫ b

0
xdx = lim

b→∞

b2

2
(6.22)

is not finite. However, we if we instead take the dual limit

lim
R→∞

∫ R

−R
xdx = lim

R→∞

x2

2

∣∣∣∣R
−R

= lim
R→∞

0 = 0. (6.23)

For this reason we introduce the following definition:

Cauchy Principal Value of an Improper Integral

Definition 6.1 (The Cauchy Principal Value). Given any func-
tion f continuous on (−∞, ∞), the limit

lim
R→∞

∫ R

−R
f (x)dx (6.24)

(if it exists) is called the Cauchy Principal Value of the integral
of f over (−∞, ∞). We typically write

P
∫ ∞

−∞
f (x)dx ≡ lim

R→∞

∫ R

−R
f (x)dx. (6.25)

This is not to be confused with the
principal value we discussed in
Chapter 1, that chooses a branch of a
multi-valued complex function.

Several different notations are used
for the Cauchy Principal Value of the
integral of a function f including

• p.v.
∫

f (x)dx;

• PV
∫

f (x)dx;

• V.P.
∫

f (x)dx;

•
∫ ∗

L f (z)dz.

In our previous example, P
∫ ∞
−∞ f (x)dx = 0. Whenever the

improper integral exists, it must equal its principal value. Contour
integration and the theory of residues can be used to compute
principal value integrals for certain functions.

Figure 6.3: The contour consisting of
the real line between [−R, R], and the
semi-circle SR.

Cauchy Principal Value and Semicircular Con-
tours

Let f (z) be a holomorphic except at a finite number of poles.
Suppose that f (x) is the restriction to the real line of the
function f , and is a continuous function of real variable x
that is well defined (finite) for the entire real line. Let γR

be the closed positively oriented path, denoted in Figure
6.3, consisting of the real interval between [−R, R] and the
semi-circle of radius R, SR, in the upper half plane.
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Theorem 6.1 (Evaluating Improper Integrals). If there exists
real numbers B > 0 and α > 0 such that for all |z| sufficiently
large, we have

| f (z)| ≤ B/|z|1+α (6.26)

Then

lim
R→∞

∫
SR

f (z)dz = 0, (6.27)

and

P
∫ ∞

−∞
f (x)dx = 2πi ∑ residues of f in the upper half plane.

(6.28)

Proof: The integral over SR has f bounded by B/R1+α by as-
sumption, and thus is itself bounded by (B/R1+α) × πR. Since
πB/Rα tends to 0 as R→ ∞ for α > 0, the integral over SR must be
zero. Then we must have

P
∫ ∞

−∞
f (x)dx = lim

R→∞

∫
γR

f (z)dz (6.29)

so that application of Cauchy’s residue theorem gives us the de-
sired result.

Figure 6.4: Contour and Poles for
Example 6.4.

Example 6.4: Cauchy Principal Value

Evaluate

I = P
∫ ∞

−∞

dx
x4 + 4

. (6.30)

Solution: We can define the integral

IR ≡
∫ R

−R

dx
x4 + 4

(6.31)

which can be interpreted as a contour integral of an analytic
function,

IR =
∫

γR

dz
z4 + 4

(6.32)

where γR. This complex function is holomorphic except at 4

different poles given by

z4 = −4 ⇒ zk = 21/2eiπk/4, k = 1,−1, 3,−3 (6.33)

The poles within the contour γR as R → ∞ are those in the
upper half plane, which are the poles z1 =

√
2eiπ/4 = 1 + i

and z3 =
√

2ei3π/4 = −1 + i. Meanwhile the poles z−1 = 1− i
and z−3 = −1− i are in the exterior of the contour γR.
We can ignore the integral along the semicircular path SR as
R→ ∞ as long as the integrand goes to zero faster than 1/R.
The inequality ∣∣∣∣ 1

z4 + 4

∣∣∣∣ ≤ B/R4 (6.34)
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is indeed satisfied for some constant B when |z| = R, hence
the theorem above applies, and we have

P
∫ ∞

−∞

dx
x4 + 4

= 2πi[Res(z1) + Res(z3)]

= 2πi
(

lim
z→z1

z− z1

z4 + 4
+ lim

z→z3

z− z1

z4 + 4

)
= 2πi

[
1

(z1 − z−1)(z1 − z3)(z1 − z−3)

+
1

(z3 − z1)(z3 − z−1)(z3 − z−3)

]
= 2πi

[
1

4i(2 + 2i)
+

1
−4i(−2 + 2i)

]
= 2πi

[
−1− i

16
+

1− i
16

]
=

π

4
.

Exercise 6.2: Practice on Integrals over (−∞, ∞)

Using the calculus of residues verify each of the following,

(a) P
∫ ∞
−∞

dx
x2+2x+2 = π;

(b) P
∫ ∞
−∞

x2

(x2+9)2 dx = π
6 ;

(c)
∫ ∞

0
x2+1
x4+1 dx = π√

2
;

(d) P
∫ ∞
−∞

dx
(x2+1)(x2+4) =

π
6 ;

(e) P
∫ ∞
−∞

x
(x2+4x+13)2 dx = − π

27 ;

(f)
∫ ∞

0
x2

(x2+1)(x2+4)dx = π
6 .

6.3 Improper Integrals Involving Trig Functions

In this section we develop methods to evaluate integrals of the
general forms

P
∫ ∞

−∞

P(x)
Q(x)

cos mxdx, or P
∫ ∞

−∞

P(x)
Q(x)

sin mxdx, (6.35)

where m is real and P(x)/Q(x) is a rational function continuous on
the real line. We can often use the semicircular contour approach
from above, but some modifications are necessary.

Example 6.5: Real Trig, Complex Problems

Compute

I = P
∫ ∞

−∞

cos 3x
x2 + 4

dx (6.36)

Solution: In utilising semicircular contours our first inclina-
tion is to deal with the complex function

f (z) =
cos 3z
z2 + 4

. (6.37)
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However, with this choice for f (z) the modulus does not go
to zero in either the upper or lower half-plane. We see that
when z = ±ρi we have

lim
ρ→∞

∣∣∣∣ cos 3z
z2 + 4

∣∣∣∣ = lim
ρ→∞

e−3ρ + e3ρ

2| − ρ2 + 4| → ∞. (6.38)

To get around this problem, we notice that since cos 3x is the
real part of e3ix, we have

I = Re(Io), where Io ≡
∫ ∞

−∞

e3ix

x2 + 4
dx. (6.39)

To evaluate this new integral we can deal with the function

f (z) ≡ e3iz

z2 + 4
(6.40)

This function has singularities at z = ±2i. We can evaluate
the absolute value of f (z)

| f (z)| = | f (x + iy)| = |e
3ixe−3y|
|z2 + 4| =

e−3y

|z2 + 4| , (6.41)

and see that in the upper half plane where y ≥ 0,

| f (z)| ≤ 1
|z2 + 4| , (6.42)

so that for any R > 2, the integral over the upper semi-circle
SR is bounded by ∣∣∣∣∫SR

f (z)dz
∣∣∣∣ ≤ πR

R2 − 4
(6.43)

which goes to zero as R→ ∞.
We then have

Io = lim
R→∞

∫ R

−R
f (x)dx = 2πi Res( f ; 2i) (6.44)

Res( f ; 2i) = lim
z→2i

(z− 2i) f (z) = lim
z→2i

e3iz

z + 2i
=

e−6

4i
(6.45)

⇒ Io =
2πi
4ie6 =

π

2e6 . (6.46)

Thus we have

I = Re(Io) =
π

2e6 . (6.47)

Figure 6.5: Contour and poles for
Example 6.5.

A useful result for evaluating indefinite integrals of trigonomet-
ric functions is known as Jordan’s Lemma.
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Jordan’s Lemma†

Lemma 6.1 (Jordan’s Lemma). Let R be a positive real number,
and let f be a continuous complex valued function defined every-
where on the (positively oriented) semicircle SR in the upper half
plane. Suppose that for a given R there exists a non-negative real
number N(R) such that | f (z)| ≤ N(R), ∀z ∈ SR. Then for all
real s > 0, ∣∣∣∣∫SR

f (z)eiszdz
∣∣∣∣ ≤ πN(R)

s
. (6.48)

† Jordan’s Lemma is not to be con-
fused with Jordan’s Lambda.

Note that an equivalent lemma holds
for the semicircular contour in the
lower half plane if s < 0.

Proof: The contour SR can be parameterised by z = Reiθ where
θ ∈ [0, π]∫

SR

f (z)eiszdz =
∫ π

0
f (Reiθ)eiRs cos θ−Rs sin θ(iReiθdθ).

Then we have∣∣∣∣∫SR

f (z)eiszdz
∣∣∣∣ ≤ R

∫ π

0
| f (Reiθ)||eiRs cos θ−Rs sin θ |dθ

≤ RN(R)
∫ π

0
e−Rs sin θdθ.

The integrand in the last line above is symmetric about θ = π/2, so
that we see ∫ π

0
e−Rs sin θdθ = 2

∫ π/2

0
e−Rs sin θdθ

Figure 6.6: From the plot of sin θ we
can clearly see that sin θ ≥ 2θ/π for
θ ∈ [0, π/2].

From Figure 6.6, we see that sin θ ≥ 2θ/π for θ ∈ [0, π/2], so that
integral is bounded by

2
∫ π/2

0
e−Rs sin θdθ ≤ 2

∫ π/2

0
e−2Rsθ/πdθ =

( π

Rs

)
[1− e−Rs] ≤ π

Rs
.

Thus we must have ∣∣∣∣∫SR

f (z)eiszdz
∣∣∣∣ ≤ πN(R)

s
,

which proves Jordan’s Lemma.
Let’s take a look at an example where Jordan’s Lemma proves

useful.

Example 6.6: Using Jordan’s Lemma

Compute

I = P
∫ ∞

−∞

x sin x
1 + x2 dx (6.49)

We can evaluate the integral

Io ≡ P
∫ ∞

−∞

xeix

1 + x2 dx (6.50)

and then take the imaginary part to evaluate I. To apply
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Jordan’s lemma, we see∣∣∣∣ z
1 + z2

∣∣∣∣ ≤ M/R (6.51)

for z ∈ SR for some constant M given large enough R. Thus
Jordan’s lemma (with s = 1) tells us

lim
R→∞

∣∣∣∣∫SR

zeiz

1 + z2 dz
∣∣∣∣ ≤ lim

R→∞

πM
1× R

= 0 (6.52)

so that by Cauchy’s residue theorem we have

Io = 2πi Res
(

zeiz

(z + i)(z− i)
;+i
)
=

2πi
2e

. (6.53)

Taking the imaginary part gives us

I = Im(Io) =
π

e
. (6.54)

Converting the trigonometric function into the real or imaginary
part of an integral doesn’t always work, consider the following
example.

Figure 6.7: Pole and Contours for
Example 6.7.

Example 6.7: Using Jordan’s Lemma Redux

Evaluate the integral

I = P
∫ ∞

−∞

sin x
x + i

dx. (6.55)

Solution: We note that we cannot say that this integral is
given by the imaginary part of the integral

P
∫ ∞

−∞

eix

x + i
dx (6.56)

since the complex valued denominator spoils this approach.
Moreover we can’t use sin z/(z + i) either since it is un-
bounded in both upper and lower half-planes. Instead we
will try the substitution sin x = (eix − e−ix)/(2i), which
splits the integral into two parts

I =
1
2i

(
P
∫ ∞

−∞

eix

x + i
dx−P

∫ ∞

−∞

e−ix

x + i
dx
)

. (6.57)

For the first integral we have

I1 ≡ P
∫ ∞

−∞

eix

x + i
dx = 0 (6.58)

since by Jordan’s lemma we must have

lim
R→∞

∫
S+

R

eiz

z + i
dz = 0 (6.59)
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where S+
R is the semicircular contour in the upper half plane,

since 1/(z + i) → 0 along S+
R as R → ∞, and there are no

singularities in the upper half plane.
For the second integral we have

I2 ≡ P
∫ ∞

−∞

e−ix

x + i
dx (6.60)

involves the function e−iz which is unbounded in the upper
half-plane, so we can close the contour in the lower half-
plane with the semicircle S−R . Applying Jordan’s Lemma for
s < 0 in the lower half plane we have

lim
R→∞

∫
S−R

e−iz

z + i
dz = 0. (6.61)

Noting that the closed contour for the lower half plane is
negatively oriented, we can obtain

I2 = −2πi Res
(

e−iz
z + i

;−i
)
= −2πi lim

z→−i
e−iz = −2πi

e
, (6.62)

giving the solution

I =
1
2i
(I1 − I2) =

π

e
. (6.63)

Exercise 6.3: Practice on Improper Trig Integrals

Using the calculus of residues verify each of the following,

(a) P
∫ ∞
−∞

cos(2x)
x2+1 dx = π

e2 ;

(b) P
∫ ∞
−∞

x sin x
x2−2x+10 dx = π

3e3 (3 cos 1 + sin 1);

(c)
∫ ∞

0
cos x

(x2+1)2 = π
2e .

Exercise 6.4: More Improper Trig Integrals

Compute the following integrals,

(a) P
∫ ∞
−∞

e3ix

x−2i dx;

(b) P
∫ ∞
−∞

x sin(3x)
x4+4 dx;

(c) P
∫ ∞
−∞

e−2ix

x2+4 dx.

6.4 Indented Contours: Singularities on the Real Line

In the previous sections the integrands f (x) were assumed to be
defined and continuous over the whole interval of integration. In
this section, we will explore definite real integrals where | f (x)| →



applications of cauchy’s residue theorem 87

∞ at particular (finite) points in that interval. We will see that these
improper integrals can be evaluated using the Cauchy’s principal
value approach, and by choosing the appropriate contours to be
able to apply the residue theorem.

Let f (x) be continuous and finite on [a, b] except at the point
c ∈ (a, b). Then the (improper) integral of f over [a, b] is given by

∫ b

a
f (x)dx ≡ lim

r→0

∫ c−r

a
f (x)dx + lim

s→0

∫ b

c+s
f (x)dx, (6.64)

for r > 0 and s > 0, provided these limits exist.

Example 6.8: An Improper Integral on One Side

Determine the value of the improper integral,∫ 1

0

1√
x

dx. (6.65)

Solution: The integrand goes to infinity at x = 0, so our im-
proper integral is one sided:

∫ 1

0

1√
x

dx = lim
s→0

∫ 1

s

1√
x

dx = lim
s→0

2
√

x
∣∣∣∣1
s
= 2. (6.66)

Let’s consider an example where the integral of a singular inte-
grand does not converge when taken from each side.

Example 6.9: An Undefined Indefinite Integral

Determine the limits of both,

lim
r→0

∫ 2−r

1

dx
x− 2

and lim
s→0

∫ 4

2+s

dx
x− 2

. (6.67)

Solution: Both limits are infinite, since

lim
r→0

∫ 2−r

1

dx
x− 2

= lim
r→0

Log |x− 2|
∣∣∣∣2−r

1
= lim

r→0
Log r− Log 1→ −∞

lim
r→0

∫ 4

2+s

dx
x− 2

= lim
s→0

Log |x− 2|
∣∣∣∣4
2+s

= lim
s→0

Log 2− Log s→ ∞.

The value of the improper integral

∫ 4

1

dx
x− 2

= lim
r→0

∫ 2−r

1

dx
x− 2

+ lim
s→0

∫ 4

2+s

dx
x− 2

(6.68)

does not exist because it depends on how each of r and s approach
0. We can define the Cauchy Principal Value of this integral by
approaching the singularity symmetrically.
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The Cauchy Principal Value
of an Integral Over a Singularity

Definition 6.2 (The Cauchy Principal Value of an Integral
Over a Singularity). Let f (x) be continuous and finite on [a, b]
except at the point c ∈ (a, b). Then the symmetric limit

P
∫ b

a
f (x)dx ≡ lim

r→0+

[∫ c−r

a
f (x)dx +

∫ b

c+r
f (x)dx

]
(6.69)

is called the Cauchy Principal Value of the integral
∫ b

a f (x)dx.
When the f (x) is continuous on the whole real line except at c,
then the integral over (−∞, ∞) has Cauchy Principal Value

P
∫ ∞

−∞
f (x)dx ≡ lim

R→∞
r→0+

[∫ c−r

−R
f (x)dx +

∫ R

c+r
f (x)dx

]
. (6.70)

If the integral is over an interval with a finite number of isolated
singularities we extend the definition of the principal value in the
natural way.

Thus we saw that while the improper integral
∫ 4

1
1

x−2 dx does not
exist, its Cauchy Principal Value is

P
∫ 4

1

dx
x− 2

= lim
r→0+

Log 2− Log r + Log r− Log 1

= Log 2.

Figure 6.8: To apply Cauchy’s Residue
theorem to find the integral of a
function which is singular at z = c,
we use the semi-circular contour Sr to
close the contour as we approach the
singularity at c by taking z→ 0.

consider the principal value of an integral from (−∞, ∞),
given by Equation (6.70). In order to use a closed contour and
Cauchy’s Residue Theorem to evaluate the principal values of such
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integrals we need to connect the two sides of the principal value
at the singularity x = c. If we continued along the x-axis, we’d
pass through c and the integrand would become undefined. We
instead want to detour around c in a way that depends on r, so that
we can take the limit as r → 0. It is often convenient to choose the
semi-circle Sr, as shown in Figure 6.10, so that we need to find the
value

lim
r→0+

∫
Sr

f (z)dz. (6.71)

If c is a first order pole we can determine the value of this inte-
gral with the following lemma.

Integral of an Arc Around a Simple Pole

Lemma 6.2 (An Arc Around a Simple Pole). If function f has
a simple pole at z = c and Tr is the counterclockwise directed cir-
cular arc defined by

Tr = {z = c + reiθ |θ1 ≤ θ ≤ θ2} (6.72)

then

lim
r→0+

∫
Tr

f (z)dz = i(θ2 − θ1)Res( f ; c). (6.73)

The value of (6.71) for the clockwise directed half-circle Sr in
Figure 6.10 is given by

lim
r→0+

∫
Sr

f (z)dz = −iπ Res( f ; c). (6.74)

Figure 6.9: Contour of the circular arc
for Lemma 6.2.

Proof: Since f has a simple pole at c, its Laurent expansion has
the form

f (z) =
a−1

z− c
+

∞

∑
k=0

ak(z− c)k (6.75)

valid in some punctured neighbourhood of c, 0 < |z− c| < ρ1 where
the Laurent expansion converges. For radius r such that 0 < r < ρ1,
we can then write∫

Tr
f (z)dz = a−1

∫
Tr

dz
z− c

+
∫

Tr
g(z)dz (6.76)

where g(z) ≡ ∑∞
k=0 ak(z− c)k is analytic at c and hence is bounded

in some neighbourhood of this point,

|g(z)| ≤ M, for |z− c| < ρ2. (6.77)

Therefore, for 0 < r < ρ2, we must have∣∣∣∣∫Tr
g(z)dz

∣∣∣∣ ≤ M`(Tr) = M(θ2 − θ1)r (6.78)
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which goes to zero as r goes to zero. This gives us

lim
r→0+

∫
Tr

g(z)dz = 0. (6.79)

For the remaining term we can parameterise the arc as we did in
Example 3.1 to obtain∫

Tr

dz
z− c

=
∫ θ2

θ1

1
reiθ rieiθdθ = i

∫ θ2

θ1

dθ = i(θ2 − θ1). (6.80)

which is independent of r. Thus the limit of the integral around the
circular arc Tr is given by

lim
r→0+

∫
Tr

f (z)dz = a−1i(θ2 − θ1) = i(θ2 − θ1)Res( f ; c). (6.81)

Example 6.10: An Indented Contour

Evaluate

I = P
∫ ∞

−∞

eix

x
dx. (6.82)

Solution: First we note that the integrand is continuous
except at x = 0. Hence

I = lim
R→∞
r→0+

(∫ −r

−R

eix

x
+
∫ R

r

eix

x

)
. (6.83)

We can introduce the complex function f (z) ≡ eiz/z which
has a simple pole at the origin, but is elsewhere analytic. To
apply Cauchy’s Residue Theorem we must form a closed
contour containing the segments [−R,−r] and [r, R]. Observ-
ing that Jordan’s Lemma applies to f (z) we can close the
contour on the "outside" using the semi-circular contour of
radius R, S+

R , in the upper half plane joining z = −R and
z = R. To join z = −r to z = r we indent around the origin
using the half circle Sr going clockwise around the origin.
Since there are no singularities inside this closed contour, the
residue theorem gives us∫ −r

−R

eixdx
x

+
∫

Sr

eizdz
z

+
∫ R

r

eixdx
x

+
∫

S+
R

eizdz
z

= 0 (6.84)

Applying Jordan’s Lemma, we have

lim
R→∞

∫
S+

R

eizdz
z

= 0. (6.85)

While Lemma 6.2 provides

lim
r→0+

∫
Sr

eizdz
z

= −iπ Res(0) = −iπ. (6.86)

This gives us the solution

I = P
∫ ∞

−∞

eixdx
x

= iπ. (6.87)

Figure 6.10: Contour for Example 6.10.
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Extra: What About Higher Order Poles on the Real Line?

You are probably wondering what happens if instead of a simple pole of the integrand along the
real line, there is a higher order pole or essential singularity. This case is more complicated than
that of the simple pole since Lemma 6.2 no longer applies. One may be tempted to conclude that
such an integral is always undefined, however, this is not always true.
If a function has a Laurent expansion with a term given by

a−n(z− c)−n, (6.88)

with integer n ≥ 2 and a−n 6= 0, then this term has an anti-derivative

a−n

1− n
(z− c)1−n. (6.89)

The integral of this term along Tr of Figure 6.9 is then given by

In(r) ≡
∫

Tr
a−n(z− c)−ndz =

a−n

1− n
r1−nei(1−n)θ

∣∣∣∣θ2

θ1

(6.90)

= − a−n

n− 1
r−(n−1)[e−i(n−1)θ2 − e−i(n−1)θ1 ] (6.91)

= − a−n

n− 1
r−(n−1)e−i(n−1)θ1 [e−i(n−1)(θ2−θ1) − 1] (6.92)

Here clearly Ir → ±∞ as r → ∞ as long as the exponential terms do not cancel out. That is,

lim
r→0+

In(r) =


0 if n ≤ 0 (since this term is analytic and goes to zero by continuity);

i(θ2 − θ1)a1 if n = 1 (by Lemma 6.9);

0 if n ≥ 2 and ∃k ∈ Z such that θ2 − θ1 = 2kπ
n−1 ;

±∞ otherwise.

(6.93)

So we see that for higher order poles we usually get undefined integrals over these shrinking arcs
unless the angle traversed by the arc happens to be just the right value for the order of the pole.
For the clockwise semi-circular arc Sr like we saw in Figure 6.10, where θ2 = 0 and θ1 = π, we
have

lim
r→0+

In(r) =


0 if n ≤ 0;

−iπa−1 if n = 1;

0 if n is odd and n > 2;

±∞ otherwise.

(6.94)

Exercise 6.5: Practice on Indented Contours

Using the calculus of residues, verify each of the following,

(a) P
∫ ∞
−∞

e2ix

x+1 dx = πie−2i;

(b) P
∫ ∞
−∞

eix

(x−1)(x−2)dx = πi(e2i − ei);

(c)
∫ ∞

0
sin(2x)

x(x2+1)2 dx = π
(

1
2 −

1
e2

)
;

(d)
∫ ∞

0
cos x−1

x2 dx = −π
2 ;

(e) P
∫ ∞
−∞

sin x
(x2+4)(x−1)dx = π

5 [cos(1)− e−2];

(f) P
∫ ∞
−∞

x cos x
x2−3x+2 dx = π[sin(1)− 2 sin(2)].



92 complex analysis

6.5 Integrals Involving Branch Cuts

While trying to apply residue theory to compute an integral of
f (x) it may turn out that the complex function f (z) is multi-valued.
If this happens we need to modify our approach by taking into
account not only the isolated singularities of f (z), but also the
branch points and branch cuts. Since the functions are not analytic
(holomorphic) at these branch points and branch cuts, we must
carefully select the contours we use to apply Cauchy’s Integral
and Residue Theorems. Indeed, we will often find it necessary
to integrate along the branch cuts in the following instructive
examples.

Figure 6.11: To calculate the integral
of
√

z around the unit circle, using the
Cauchy Integral Theorem, we need
to bypass the branch cut by taking
the closed contour Γ. The straight
lines γ1 and γ2 are drawn separated
from the branch cut for clarity, but
are to represent evaluations using the
lower and upper values of the branch
respectively along the real axis.

Example 6.11: Integrating
√

z on the Unit Circle

Consider the square root function

f (z) =
√

z =
√

reiθ/2, 0 ≤ θ < 2π. (6.95)

such that it has a branch cut along the positive real axis.
Determine the integral of f (z) around the unit circle.
Solution: While there are no poles inside the unit circle, we
can’t just apply the Cauchy Integral Theorem directly to
the unit circle |z| = 1 since there is a discontinuity on this
contour as we cross the positive real line at z = 1. Instead we
will construct the contour Γ, such that∮

Γ
f (z)dz =

∫
C1

f (z)dz +
∫

γ1

f (z)dz +
∫

Cε

f (z)dz +
∫

γ2

f (z)dz.

Note that here the integrals over the straight lines γ1 and γ2

do not cancel out, since along γ1 the integrand has the value√
xeiπ = −

√
x, while the integrand along γ2 has the value√

x.
We see that the integral around the branch point at the
origin must be bound by∣∣∣∣∫Cε

√
zdz
∣∣∣∣ ≤ 2πε

√
ε (6.96)

so that if we shrink the radius ε→ 0+ we find

lim
r→0+

∫
Cε

√
zdz→ 0. (6.97)

Since there are no poles inside the contour Γ, Cauchy’s
Integral Theorem says ∮

Γ
f (z)dz = 0 (6.98)

So that we find∫
C1

√
zdz = −

∫ 0

1
(−
√

x)dx−
∫ 1

0

√
xdx

= −2
∫ 1

0

√
xdx = −4/3 (6.99)
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Figure 6.12: Contour and poles for
Example 6.12.

Example 6.12: Integrating Along a Branch Cut

Calculate the integral

I ≡
∫ ∞

0

dx√
x(x + 4)

(6.100)

where
√

x denotes the principal (positive) value for x > 0.
Solution: Including the explicit limits, what we are looking
for is

I = lim
R→∞
ε→0+

∫ R

ε

dx√
x(x + 4)

.

We start by considering the branch of
√

z defined by
√

z = e(Log r+iθ)/2 =
√

reiθ/2, 0 ≤ 0 < 2π.

which has a branch cut along the positive real axis. With this
choice of

√
z we consider the complex function

f (z) ≡ 1√
z(z + 4)

.

Then according to our choice of branch, on the upper side of
the branch cut, we have f (x) = 1/[

√
x(x + r)] as desired.

Now, we would like to be able to use Cauchy’s Residue
Theorem to evaluate this, so we need to find a closed con-
tour containing the positive real line, taking into account
the branch point (and pole) at the origin as well as the pole
at z = −4. We consider the closed contour of Figure 6.12,
where ε is small enough and R large enough so that the pole
at −4 lies inside the contour. Then we have∫

Γ
=

(∫
CR

+
∫

γ1

+
∫

Cε

+
∫

γ2

)
f (z)dz = 2πiRes( f ;−4)

As we let the radius R→ ∞, we see

lim
R→∞

∣∣∣∣ ∫CR

f (z)dz
∣∣∣∣ ≤ lim

R→∞

∫
CR

dz
|
√

z||z + 4|

≤ lim
R→∞

∫
CR

dz√
R(R− 4)

≤ lim
R→∞

2πR√
R(R− 4)

= 0.

As we let the inner radius ε→ 0+ we find,

lim
ε→0+

∣∣∣∣ ∫Cε

f (z)dz
∣∣∣∣ ≤ lim

ε→0+

2πε√
ε(4− ε)

= 0.

Thus all that remains are the integrals along the top and
bottom of the branch cut. On the top of the branch cut the
integrand takes the value

f (x) =
1√

x(x + 4)



94 complex analysis

while on the bottom of the branch cut, the integrand takes
the value

f (x) = − 1√
x(x + 4)

Thus we find

lim
R→∞
ε→0+

[∫ ε

R

−dx√
x(x + 4)

+
∫ R

ε

dx√
x(x + 4)

]
= 2πi Res( f ;−4)

lim
R→∞
ε→0+

2
∫ R

ε

dx√
x(x + 4)

= 2πi Res( f ;−4)

I = πi Res( f ;−4) =
π

2
.

Figure 6.13: Poles and Contour for
Example 6.13.

Example 6.13: A Pole Along the Branch Cut

Determine the Cauchy Principal Value

I ≡ P
∫ ∞

0

dx
xλ(x− 4)

, where 0 < λ < 1. (6.101)

Solution: Here we have a singularity at x = +4, which lies
on the interval of integration, and we should also take the
positive real branch of xλ in the denominator. The integral
can then be recast as the limit

I = lim
R→∞

ε,δ→0+

(∫ 4−δ

ε
+
∫ R

4+δ

)
dx

xλ(x− 4)
. (6.102)

To evaluate this we must draw the contour as we did in the
previous example around the branch, but also indent around
the singularity at z = 4. We choose the branch

f (z) =
1

eλ(Log r+iθ)(reiθ − 4)
, for z = reiθ , 0 ≤ θ < 2π.

and form the contour Γ shown in Figure 6.13. From
Cauchy’s Integral Theorem we then have,

0 =
∮

Γ
f (z)dz

=

[ ∫
CR

+
∫

γ1

+
∫

S−δ
+
∫

γ2

+
∫

Cε

+
∫

γ3

+
∫

S+
δ

+
∫

γ4

]
f (z)dz (6.103)

since f (z) has no singularities in the interior of the closed
contour. We can gather the contour integrals ofγ1 with γ4

and γ2 with γ3, by noting that the integrands differ by a
factor of e−2πiλ between the top and bottom of the branch
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cut yielding,

0 = (1− e−2πiλ)

[∫ 4−δ

ε
+
∫ R

4+δ

]
dx

xλ(x− 4)

+

[∫
CR

+
∫

S−δ
+
∫

Cε

+
∫

S+
δ

]
f (z)dz

(6.104)

So that the solution is given by

I = P
∫ ∞

0

dx
xλ(x− 4)

= lim
R→∞

ε,δ→0+

−1
1− e−2πiλ

[∫
CR

+
∫

S−δ
+
∫

Cε

+
∫

S+
δ

]
f (z)dz (6.105)

For 0 < λ < 1 it is straightforward to repeat the estimates
from Example 6.12, to find

lim
ε→0+

∫
Cε

f (z)dz = 0, and lim
R→∞

∫
CR

f (z)dz = 0.

(6.106)

Along the upper half circle S+
δ , function f agrees with the

principal value

f+(z) ≡
1

eλLog z(z− 4)
(6.107)

while along the lower half circle S−δ , the function f takes the
value

f−(z) = e−2πiλ f+(z) (6.108)

The residues of interest are

Res( f+; 4) = lim
z→4

e−λLog z = 4−λ (6.109)

Res( f−; 4) = 4−λe−2πiλ (6.110)

Since z = 4 is a simple pole of f+ and f−, Lemma 6.2 tells us∫
S+

δ

f (z)dz = −πi Res( f+; 4) = −iπ4−λ (6.111)∫
S−δ

f (z)dz = −πi Res( f−; 4) = −iπ4−λe−2πiλ (6.112)

which are independent of δ.
Thus we have

I = iπ4−λ 1 + e−2πiλ

1− e−2πiλ

= π4−λi
eiπλ + e−iπλ

eiπλ − e−iπλ

= π4−λ cot(πλ). (6.113)
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Exercise 6.6: Practice on Integrals with Branch Cuts

Using the calculus of residues, verify each of the following,

(a)
∫ ∞

0

√
x

x2+1 dx = π√
2

;

(b)
∫ ∞

0
xα−1

x+1 dx = π
sin(πα)

,

for 0 < α < 1;

(c)
∫ ∞

0
xα

(x+9)2 dx = 9α−1πα
sin(πα)

,

for −1 < α < 1, α 6= 0;

(d)
∫ ∞

0
xα

(x+1)2 dx = π(1−α)
4 cos(απ/2) ,

for −1 < α < 3, α 6= 1;

(e)
∫ ∞

0
xα−1

x2+x+1 dx = 2π√
3

cos
( 2απ+π

6
)

csc(απ),
for 0 < α < 2, α 6= 1;

(f) P
∫ ∞

0
xα

x2−1 dx = π
2 sin(πα)

[1− cos(πα)],

for −1 < α < 1, α 6= 0.
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