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Abstract

The incorporation of domain growth into stochastic models of biological pro-

cesses is of increasing interest to mathematical modellers and biologists alike. In

many situations, especially in developmental biology, the growth of the under-

lying tissue domain plays an important role in the redistribution of particles (be

they cells or molecules) which may move and react atop the domain. Although

such processes have largely been modelled using deterministic, continuum mod-

els there is an increasing appetite for individual-based stochastic models which

can capture the fine detail of the biological movement processes which are be-

ing elucidated by modern experimental techniques, and also incorporate the

inherent stochasticity of such systems.

In this work we study a simple stochastic model of domain growth. From a

basic version of this model, Hywood et al. [J.D. Hywood, E.J. Hackett-Jones,

and K.A. Landman. Modelling biological tissue growth: discrete to continuum

representations. Phys. Rev. E, 88(3):032704, 2013] were able to derive a Fokker-

Plank equation (FPE) (in this case an advection-diffusion partial differential

equation on a growing domain) which describes the evolution of the probability

density of some tracer particles on the domain. We extend their work so that a

variety of different domain growth mechanisms can be incorporated and demon-

strate a good agreement between the mean tracer density and the solution of

the FPE in each case. In addition we incorporate domain shrinkage (via ele-

ment death) into our individual-level model and demonstrate that we are able

to derive coefficients for the FPE in this case as well. For situations in which the
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drift and diffusion coefficients are not readily available we introduce a numerical

coefficient estimation approach and demonstrate the accuracy of this approach

by comparing it with situations in which an analytical solution is obtainable.

1. Introduction

There are many biological scenarios in which tissue growth plays a significant

role in the distribution of migrating cells. Embryogenesis is one such process

which provides numerous demonstrations of the importance of domain growth

to the final positions of various cell types. At the same time as the embryo is

growing the organisation of complex biological superstructures (such as limbs) is

being orchestrated [5], therefore it is vital that the processes of cell migration and

domain growth are coordinated with each other in order to achieve the correct

results [37]. For example, McLennan et al. [28] examined how a subpopulation

of neural crest cells travelled long distances and responded to growth of the

underlying tissue. They found, not only that cells are carried by the tissue

growth, but also that cellular velocity profiles correspond to the logistic tissue

growth.

There have been several theoretical studies of the interplay between domain

growth and pattern formation in both deterministic [30, 10, 9, 11, 7, 22] and

stochastic [38] regimes. Others investigations have specifically focussed on the

targeted migration of cells on growing domains and have again covered both the

deterministic [26, 32] and stochastic [4, 3] scenarios and indeed mechanisms in

order to segue between the two [2, 40]. The two types of modelling regime tra-

ditionally focus on different scales, with stochastic models able to incorporate

experimental scale details and the inherent noisiness of the biological system,

while deterministic, continuum models tend to focus on the macroscale, ensem-

ble properties and give a clear overview of the behaviour of the system. A mul-

tiscale understanding of the complex processes involved with cell migration can

be achieved by linking these two modelling regimes together in an ‘equivalence

framework’ which provides insight into the interplay between the individual-

level and population-level models. Employing such an equivalence framework

allows us to make use of either modelling regime in order to investigate the

relevant properties of the system.
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Recently Hywood et al. [18] have initiated such a framework by analysing

a discrete, stochastic, on-lattice domain growth model in which the domain is

made up of elements which may proliferate independently and with equal prob-

ability. Using the infinitesimal moments of the underlying stochastic process

[14, 19] the authors were able to derive the coefficients of a Fokker-Planck equa-

tion (FPE) which approximates the spatio-temporal evolution of the expected

occupancy of the lattice sites in the case of an exponentially growing domain.

The work of Hywood et al. [18] is itself an extension of the work of Binder

and Landman [3] who consider a similar process on a deterministically growing

domain.

In Section 2 we review the work of Hywood et al. [18] and describe how it

might be extended to include time-dependent proliferation rates and to incorpo-

rate elemental death. Using this reformulated model we are able to extend this

equivalence framework, in Section 3, to cases where the domain does not grow

exponentially in the mean-field. By deriving the infinitesimal moments of the

stochastic process which underlies domain growth we are able to incorporate sev-

eral biologically-motivated types of domain growth including exponential, linear

and logistic. Importantly, in Section 4 we also consider the case in which indi-

vidual elements are allowed to die as well as proliferate. We derive the drift and

diffusion coefficients of the FPE which describes the expected marker density on

the growing/contracting domain. Not only does this allow for the more realistic

representation of domain growth processes in which apoptosis may occur, but it

also enables the representation of domain shrinkage which may be important for

biological processes such as wound healing [16, 17]. In each situation we confirm

our theoretical findings by comparisons of the mean tracer density (over many

realisations of the individual-level model) to numerical solutions of the derived

FPEs.

There are situations in which the drift and diffusion coefficients of the un-

derlying stochastic process are not readily available. In order to deal with these

situations, in Section 5, we present a Fokker-Plank coefficient estimation ap-

proach [39] which is reminiscent of the equation-free technique [20]. We utilise

this approach in order to find computationally the coefficients of the assumed

FPE and we verify our findings through further numerical simulations.
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We conclude in Section 6 with a brief discussion summarising our findings

and suggesting areas into which this work may be extended.

2. An equivalence framework

In this section we introduce the individual-based model and the continuum

representation between which we hope to derive an equivalence framework. We

extend the basic individual-based model to incorporate time-dependent prolif-

eration rates and elemental death and present the FPE which we expect to

describe the mean-field tracer density.

2.1. The individual-based model

We begin by introducing the basic stochastic model upon which the rest of

the results of this paper are based. Consider a one-dimensional domain of made

up initially of N0 contiguous elements each of length Δ. We incorporate growth

and shrinkage into this individual-level model by allowing these elements to un-

dergo ‘proliferation events’ and ‘death events’ which are analogous to biological

cell division and cell death events1. In continuous time a domain element is

chosen, uniformly amongst all the elements, to proliferate or to die with expo-

nentially distributed waiting time. We extend the work of Hywood et al. [18] by

introducing time-dependence of the parameter, b(t), of the exponential waiting

time distribution for birth events. This allows us to incorporate a variety of

different types of domain growth in addition to the standard exponential do-

main growth resultant from a time-independent waiting time distribution. In

addition we incorporate the possibility of a time-dependent rate of death, d(t)

into the model.

If domain element i is chosen to proliferate then it does so by pushing all the

elements to its right (including itself) a distance Δ to the right in order to make

room for an identical daughter element which is placed in its original position

(see Fig 1). If element i is selected to die then it is removed from the lattice and

all the elements to its right shift Δ to the left in order to fill the gap left by its

removal (see Fig 2). In order to better understand the dynamics of the domain

1We note that biological cells do not instantaneously disappear, grow or divide, nor do
they have exponentially distributed waiting times between divisions. These are, however,
mathematical idealisations that we have made in order to render the model tractable.
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growth/shrinkage process we can place tracer particles on top of a subset of

the domain elements. We say that these domain elements are ‘marked’. In

general these tracer particles move with the domain elements with which they

are initially associated. In order to complete the specification of the general

individual-level model it is necessary to describe what happens to such tracer

particles upon proliferation/death of the ‘marked’ element with which they are

associated. In a proliferation event the tracer particle moves Δ to the right with

the domain element which was selected to proliferate (see Fig 1 (b)). However,

with a death event the tracer particle remains in the lattice site it currently

occupies and becomes associated with the domain element which shifts to the

left in order to occupy the vacant lattice site (see Fig. 2 (b) and (c)). There is

no limit to the number of tracer particles that can be associated with a single

lattice element. The aim of this paper is to derive a partial differential equation

(PDE) which describes the average behaviour of these tracer particles.

(a) (b)

Figure 1: Examples of growth and division events. Domain elements are white boxes and
tracer particles are represented by smaller red boxes atop particular ‘marked’ elements.
In each subfigure the top configuration shows a domain before a growth event and the
bottom a domain configuration after a growth event. (a) An unmarked element is
chosen to divide. It does so by pushing itself and the intervals to its right one element
length, Δ. Tracer particles move with the elements and a new element (hatched) is
inserted in the empty space. (b) A marked element is selected to divide. It undergoes
the same movement procedure as for the unmarked element taking its tracer particle
with it. Again a new element (hatched) is inserted in the vacant space.

2.2. The Fokker-Planck equation

In particular we aim to derive the coefficients of an FPE which describes the

average density of the tracer particles situated on the domain. If we define the

random variable Mi(t) to be the number of tracer particles associated with the

element at lattice site i, then we can denote the expected occupancy of site i as

Ci(t) = E[Mi(t)]. (1)
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(a) (b) (c)

Figure 2: Examples of element death events. Domain elements are white boxes and
tracer particles are represented by smaller red boxes atop particular ‘marked’ elements.
In each subfigure the top configuration shows a domain before a death event and the
bottom a domain configuration after a death event. (a) An unmarked element (hatched)
is chosen to die. It is removed from the domain and intervals to its right move left-
wards by one element length, Δ, to fill the space. Tracer particles move with their
elements. (b) A marked element (hatched) is chosen to die. It is removed from the
domain. However its tracer particle remains in place. The elements to the right of
the dead element move to the left one element length, Δ, and a previously unmarked
element becomes marked. (c) A marked element (hatched) dies and is removed. Its
tracer particle remains where it is and causes the already marked element that was
immediately to the right of the dead element to become doubly marked as it moves
into the vacant space. There is no limit to how many tracer particles an element can
accrue.

We can then derive a Fokker-Planck equation for the evolution of C(x, t), the

continuous-space function approximating the expected density variables Ci(t),

using the infinitesimal moments [14, 19] of the random variable X(t) which

denotes the position, at time t, of an element initially at X(0) = X0, as in

Hywood et al. [18]. Specifically we use the infinitesimal mean

μ(x, t) = lim
h→0

1
h
E[X(t + h) − X(t)|X(t) = x], (2)

and the infinitesimal variance

σ2(x, t) = lim
h→0

1
h

var(X(t + h) − X(t)|X(t) = x), (3)

which are the drift and diffusion coefficients in the associated Fokker-Planck

equation [14, 19]:

∂C

∂t
= − ∂

∂x
[μ(x, t)C(x, t)] + ∂2

∂x2

[
1
2

σ2(x, t)C(x, t)
]

. (4)

Note that, in contrast to the case of the time-independent birth rate, our in-

finitesimal moments will depend explicitly on time. Our task now, for a wide

range of different random variables, X(t), resultant from a variety of time-

dependent waiting time distributions, is to determine the first two infinitesimal

moments in order to populate the resultant Fokker-Planck equation (4).
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3. Infinitesimal moments for time-dependent growth rates

By allowing the rate of element addition, b(t), to depend on time we are

able to incorporate a wide range of different types of domain growth into the

individual-based model. Since each element proliferates independently of the

other elements we may write down a probability master equation for the number

of elements, K(t), populating the domain at time, t:

dP (K = k, t)
dt

= b(t) ((k − 1)P (K = k − 1, t) − kP (K = k, t)) , (5)

with initial condition

P (K = k, 0) =

⎧⎪⎨
⎪⎩

1, if K = K0,

0, otherwise.
. (6)

From equation (5) we can derive an equation for the mean number of elements,

Km(t), which populate the domain at time t:

dKm

dt
= b(t)Km, (7)

with initial condition Km(0) = K0. Therefore, the mean length of the domain,

L = ΔKm, satisfies
dL

dt
= b(t)L, (8)

with initial condition L(0) = L0 = ΔK0. Using this equation we can directly

link the choice of b(t) to the resulting expected time-dependent length of the

domain, L(t).

Given b(t) we can also derive the infinitesimal moments of a general time-

dependent birth process, which will allow us to define the continuous-space

Fokker-Planck equation associated with the individual-level model, as follows.

We begin by deriving the continuous-time master equation for a time-dependent

integer-valued birth process, Y (t) = X(t)/Δ which describes the probability,

p(Y (t + h) = N |Y (t) = n0) of a domain element at position x = n0Δ at time t

being found at position x = NΔ at time t + h, which we will denote as pt
N (h).

In order to derive a master equation for this process we consider a small time

interval δh in which the probability of more than one birth event is o(δh) so
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that we may write

pt
N(h + δh) = (1 − b(t + h)Nδh)pt

N(h) + b(t + h)(N − 1)pt
N−1(h)δh + o(δh). (9)

Since we are considering a continuous time Markov process we may rearrange

equation (9) as

dpt
N (h)
dh

= (N − 1)b(t + h)pt
N−1(h) − Nb(t + h)pt

N (h), (10)

with initial condition

pt
N(0) =

⎧⎪⎨
⎪⎩

1, if N = n0,

0, otherwise.
(11)

In order to solve recurrence relation (10) for pt
N (h) we consider the proba-

bility generating function, G(z, h) = E(zX) =
∑∞

N=n0
zNpt

N (h). Then equation

(10) becomes a first order linear PDE

∂G

∂h
= z(z − 1)(b(t + h))∂G

∂z
, (12)

with initial condition

G(z, 0) = zn0 , (13)

which we can solve using the method of characteristics [36] as

G(z, h) =

⎡
⎣1 + 1

exp(ρ(h))
(z−1) + (exp(ρ(h)) − 1)

⎤
⎦

n0

, (14)

where ρ(h) = −
∫ h

0
b(t + h̄)dh̄. From here we can expand G(z, h) in powers of

z in order to find that pt
N (h) follows a negative binomial distribution

pt
N (h) =

(
N − 1
n0 − 1

)
(1 − exp(ρ(h)))N−n0 (exp(ρ(h)))n0 , (15)

and use this to calculate the moments. Alternatively, we can recognise (using

the properties of probability generating functions) that the first and second

moments are given by

E[Y (t + h)] = lim
z↑1

G′(z, h) = n0e−ρ(h). (16)
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and

var[Y (t + h)] = lim
z↑1

{
G′′(z, h) + G′(z, h) − (G(z, h))2}

= n0e−ρ(h)
(

1 − e−ρ(h) + 2e−ρ(h)
(

1 − eρ(h)
))

(17)

= n0e−ρ(h)
(

e−ρ(h) − 1
)

, (18)

respectively, (where ′ notes differentiation of G(z, h) with respect to z). The

infinitesimal moments for position, X(t), can therefore be calculated as:

μ(x, t) = lim
h→0

1
h

{E[X(t + h)|X(t) = x] − E[X(t)|X(t) = x]}

= Δ lim
h→0

1
h

{E[Y (t + h)|Y (t) = x/Δ] − E[Y (t)|Y (t) = x/Δ]}

= Δn0 lim
h→0

1
h

(e−ρ(h) − 1), (19)

and

σ2(x, t) = lim
h→0

1
h

{var(X(t + h)|X(t) = x) − var(X(t)|X(t) = x)}

= Δ2 lim
h→0

1
h

var(Y (t + h)|Y (t) = x/Δ)

= Δ2n0 lim
h→0

1
h

e−ρ(h)
(

e−ρ(h) − 1
)

. (20)

We can now use equations (19) and (20) to calculate the infinitesimal mo-

ments for a range of time-dependent element division rates.

3.1. Exponential domain growth

The elongation of the developing intestinal tract of the quail embryo can be

well approximated by exponential growth [4] as can the growth of sections of

the embryos of the alligator Alligator mississippiensis [29, 12]. Kulesa et al.

[22] have studied the initiation and positioning of teeth primordia in the same

alligator species. Using a reaction diffusion model they demonstrated that ex-

ponential jaw growth plays a crucial role in the developmental patterning of the

tooth initiation process in agreement with corresponding experimental stud-

ies [33, 34, 35]. Exponential growth has also been found to model the early

stages of unconstrained cancerous tumour growth Gerlee [13]. In addition,

exponentially growing domains are a popular choice for mathematical stud-

ies of domain growth because of their straightforward implementation in both

individual-based [2, 40, 3] and population-level models [26, 10, 9].
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For simple exponential domain growth we choose the time-independent growth

rate, b(t) = b. This choice determines ρ(h) = −bh and consequently the in-

finitesimal moments as

μ(x, t) = xb, (21)

and

σ2(x, t) = Δxb. (22)

It is of comfort to note that our generalised formula gives the same infinitesimal

moments as those derived by Hywood et al. [18] with the resulting PDE:

∂C

∂t
= −b

∂

∂x
[xC(x, t)] + Δb

∂2

∂x2

[
x

1
2

C(x, t)
]

for 0 < x < L(t), (23)

where L(t) = L0 exp(bt) is the mean domain length as defined by equation (8).
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Figure 3: A comparison of the expected occupancy of tracer particles on an exponentially
growing domain in the stochastic and deterministic regimes at different times. The
red curves represent the solution of the Fokker-Planck equation (23) and the (noisy)
black curve represents the expected density of tracer particles averaged over 10,000
realisations of the individual based model. In both cases L(0) = 30, with tracer particles
initially between 15 ≤ x ≤ 20. The rate of element proliferation is b = 0.05 and the
curves are plotted at t = 15, 30, 45, 60. (a) Δ = 1, (b) Δ = 1/2.

Fig. 3 gives a comparison between the individual-level model and the PDE

for two different values of Δ. The individual-level occupancy is averaged over

10,000 repeats of the stochastic simulation and the PDE is solved as described

in the appendix. The agreement between the two regimes is excellent in both

cases, but improves with decreasing Δ.
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3.2. Linear domain growth

The uniform exponential growth described above may be used to model a

population of cells undergoing proliferation at a fixed rate, independent of space

and time. While this might be a reasonable model of the initial stages of an

unconfined growth it is not realistic for large times and is a poor model for

domain growth in many application areas. In order to increase the biological

applicability of the model we must consider more complex growth rates which

conform to forms of macroscopic growth which are more relevant biologically.

Linear growth, for example, is exhibited in the early development of some fish

[21] and seeds [6]. It has also been found to model the growth of the body

section of some alligator embryos [29]. In addition, linear growth has previously

been investigated in deterministic mathematical models of cell migration and

domain colonisation [26, 9].

Choosing b(t) = r/(1 + rt) can be shown, using equation (8), to give linear

domain growth of the form

L(t) = L0(1 + rt), (24)

in the mean field. Using equations (19) and (20) the corresponding infinitesimal

moments are

μ(x, t) = xr

1 + rt
, (25)

and

σ2(x, t) = Δxr

1 + rt
. (26)

Fig. 4 gives a comparison between the individual-level model and the PDE

for linear domain growth. The individual-level occupancy is averaged over

10,000 repeats of the stochastic simulation and the PDE is solved as described

in the appendix. The agreement between the two regimes is good when Δ = 1

(see Fig 4 (a)) and excellent when Δ = 1/2 (see Fig 4 (b)). In particular, for

Δ = 1 we see that the FPE underestimates the density of tracer particles at the

right-hand end of the domain where the infinitesimal moments are largest. This

underestimation disappears as Δ decreases and the contributions of the higher

order moments, which will be proportional to higher powers of Δ and are not
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Figure 4: A comparison of the expected occupancy of tracer particles on a linearly
growing domain in the stochastic and deterministic regimes at different times. Figure
descriptions and initial conditions are as in Fig. 3. The rate of element proliferation
is given by b(t) = r/(1+rt) with r = 0.5 and the curves are plotted at t = 15, 30, 45, 60.
(a) Δ = 1, (b) Δ = 1/2.

captured in the Fokker-Planck approximation, dissipate.

3.3. Logistic domain growth

McLennan et al. [28] found that the distance from the dorsal neural tube

midline to the distal tip of the lateral mesoderm (a relevant cell migratory

pathway) lengthens non-linearly, according to a logistic function, during cranial

neural crest cell migration in chick embryos. In experiments on turtle and

albatross embryos ([27] and [31] respectively) it has been shown that the mass

of the embryo grows according to a logistic curve. It has also been postulated

that logistic growth is a good model for the underlying tissue growth in cell

migration models in several mathematical papers [26, 9].

Choosing

b(t) = r(ξ − 1)
ξ + exp(rt) − 1

, (27)

and solving equation (8) for the mean domain length gives

L = L0ξ exp(rt)
ξ + exp(rt) − 1

. (28)

Substituting this back into equation (8) gives the recognisable differential equa-

tion for logistic growth
dL

dt
= rL

(
1 − L

L0ξ

)
, (29)
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where ξ is the ratio between final and initial domain sizes2 and r represents the

growth rate. As before we can derive the infinitesimal moments using equations

(19) and (20) as

μ(x, t) = xr(ξ − 1)
ξ + exp(rt) − 1

, (30)

and

σ2(x, t) =
Δxr(ξ − 1)

ξ + exp(rt) − 1
. (31)

Numerical comparisons between the individual-level simulations and the

PDE show good agreement with the same characteristic increase in accuracy

with decreasing Δ (data not shown).

3.4. Gompertzian domain growth

Gompertzian growth, originally devised to model human mortality [15], has

been used to model a wide range of biological growth, from organisms [24]

through to organs [25] and the growth of cancerous tumours [23, 13]. In a one-

dimensional context it has also been used to model the increase in the numbers

of teeth of the alligator Alligator mississippiensis [22].

The differential equation for Gompertzian domain growth takes the form

dL

dt
= rL

(
ln

(
R

L

))
, (32)

where r specifies the rate of growth and R represents the carrying capacity (i.e.

the maximum length to which the domain can grow). This mean-field growth

equation can be recapitulated by choosing

b(t) = r ln
(

R

L0

)
exp(−rt). (33)

Such a growth rate gives infinitesimal moments

μ(x, t) = xr exp(−rt) ln
(

R

L0

)
, (34)

2L0ξ is commonly denoted R, the maximum length to which the domain can grow or
‘carrying capacity’.
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and

σ2(x, t) = Δxr exp(−rt) ln
(

R

L0

)
. (35)

As with previous time-dependent domain growth mechanisms, numerical

comparisons between the individual-level simulations and the PDE show good

agreement, with increasing accuracy for decreasing Δ (data not shown).

3.5. Generalised logistic domain growth

We motivate the consideration of generalised logistic domain growth by high-

lighting that it incorporates both logistic and Gompertzian domain growth (see

sections 3.3 and 3.4 respectively) as special cases. The additional parameter,

ν, which allows us to move between these two important types of growth also

allows us to capture many other types of biologically-relevant sigmoidal growth

in between.

The differential equation which specifies generalised logistic growth is given

by
dL

dt
= rL

(
1 −

(
L

R

)ν)
, (36)

where r is the underlying rate of growth, R is the carrying capacity and ν is a

tunable parameter which allows us to segue between different types of growth. In

the limit ν → 1 we recapitulate equation (29) for logistic growth, whereas in the

limit ν → 0 (and r ∝ 1/ν) we recapture the Gompertzian growth equation (32).

A time-dependent birth rate which gives a mean domain length corresponding

to generalised logistic domain growth is

b(t) = rQ exp(−rνt)
1 + Q exp(−rνt)

, (37)

where

Q =
(

R

L0

)ν

− 1. (38)

Predicated on this birth rate, the required infinitesimal moments are

μ(x, t) = xrQ

exp(rνt) + Q
, (39)

and

σ2(x, t) = ΔxrQ

exp(rνt) + Q
. (40)

14



It is of comfort to note that the limits ν → 1 and ν → 0 (and r ∝ 1/ν) return us

to the infinitesimal moments derived for the logistic and Gompertzian growth

regimes respectively.
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Figure 5: A comparison of the expected occupancy of tracer particles on a domain
growing according to generalised logistic growth in the stochastic and deterministic
regimes at different times with Δ = 1/2. Figure descriptions and initial conditions are
as in Fig. 3. The rate of element proliferation is given by equation (37) with r = 0.1,
R = 300 and ν = 0.5. The curves are plotted at t = 15, 30, 45, 60.

Fig. 5 demonstrates a comparison between the expected tracer densities of

the two modelling regimes for generalised logistic domain growth. The agree-

ment is good. As before, for larger values of Δ, the absence of the contribution

of the higher order moments of the process to the FPE description mean that

the PDE underestimates the individual-level density at the right hand side of

the domain, where those moments are largest.

4. Incorporating element death

Although the representation of domain growth is clearly important for the

modelling of many areas of development [29, 4, 30, 28, 27, 31] the representa-

tion of domain shrinkage also has relevant application areas including wound

healing [16, 17], for example. The incorporation of element death is important

in situations where domain elements may proliferate and die even if the net

growth rate is positive: it might be argued that domain growth in which ele-

ment death is possible but the growth rate, b(t), outweighs the death rate, d(t),

can be modelled using a purely growing domain with a reduced positive growth

rate, λ(t) = b(t) − d(t). However, this argument is incorrect since, although

the mean growth rate may be estimated correctly, the second and higher order

moments of the process will be incorrect. In particular, one stark difference is
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that the domain in which death is incorporated explicitly will shrink to zero size

with a non-zero probability, whereas there is no possibility of this happening

in the purely growing domain with reduced net growth rate. In this section we

incorporate elemental death into the model of domain growth and also consider

a pure domain shrinkage model.

4.1. Mixed birth and death

If we continue to include elemental proliferation at a rate b(t), but also

introduce elemental death at a rate d(t) then the equation describing the mean

domain length becomes
dL

dt
= (b(t) − d(t))L, (41)

as one might reasonably expect considering the derivation of equation (8). The

initial condition is, as before, L(0) = L0 = ΔK0, where K0 is the initial number

of elements populating the domain and Δ the length of each of those elements.

In addition the probability master equation which describes the probability,

pt
N (h), of a domain element at position x = n0Δ at time t being found at

position x = NΔ at time t + h is given by

dpt
N (h)
dh

= (N−1)b(t+h)pt
N−1(h)+(N+1)d(t+h)pt

N+1(h)−N(b(t+h)+d(t+h))pt
N(h),

(42)

with the same initial condition as in the pure birth process, given by equation

(11). Note now that N is not necessarily greater than n0 as it was in the pure

birth process. Appealing again to the probability generating function, G(z, t),

we can reduce equation (42) to a first order linear PDE

∂G

∂h
= (z − 1)(b(t + h)z − d(t + h))

∂G

∂z
, (43)

with initial condition

G(z, 0) = zn0 . (44)

This PDE can be solved using the method of characteristics [36] to give

G(z, h) =

⎡
⎢⎢⎢⎣1 + 1

exp(ρ(h))
(z−1) −

∫ h

0
b(t + h̄) exp(ρ(h̄))dh̄

⎤
⎥⎥⎥⎦

n0

, (45)
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where now ρ(h) =
∫ h

0
d(t + h̄) − b(t + h̄)dh̄.

We can expand G(z, h) in powers of z in order to find the explicit probability

distribution pt
N(h):

pt
N(h) =

min(n0,N)∑
j=0

(
n0
j

)(
N + n0 − j − 1

n0 − 1

)
αn0−jβN−j(1 − α − β)j , (46)

where

α = 1 − 1
χ(h)

, (47)

and

β = 1 − exp(ρ(h))
χ(h)

, (48)

with

χ(h) = exp(ρ(h)) +
∫ h

0
b(t + h̄) exp(ρ(h̄))dh̄, (49)

and use this to calculate the moments. Alternatively (and more straightfor-

wardly), we can use the properties of probability generating functions in order

to find the infinitesimal moments as

μ(x, t) = Δn0 lim
h→0

1
h

(
e−ρ(h) − 1

)
, (50)

and

σ2(x, t) = Δ2n0 lim
h→0

1
h

e−ρ(h)

(
1 − e−ρ(h) + 2e−ρ(h)

∫ h

0
b(t + h̄)eρ(h̄)dh̄

)
, (51)

respectively.

For simplicity we let the birth and death rates b and d take constant values in

what follows, although we stress that the infinitesimal moments we have derived

(see equations (50) and (51)) are for general time-dependent birth and death

rates.

We emphasise the importance of explicitly considering elemental death as

well as birth: consider a domain which is initially populated with n0 domain

elements. Then we can use equation (46) to calculate the probability that all

the elements of the domain die, p0(∞) (i.e. that the domain size reduces to

zero). We find that

p0(∞) =

⎧⎪⎨
⎪⎩

1 if b ≤ d,(
d
b

)n0 if b > d.

(52)
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When the rate of element death outweighs that of element proliferation the

domain is certain to shrink to zero as time progresses. However, even when

the rate of element proliferation is greater than the rate of element death there

is still a non-zero probability of domain extinction. Although, in a biological

context, we may not be interested in the long-time behaviour of the domain, this

extreme example serves to illustrate the point that simply considering the net

rate of growth may not be sufficient to capture the detailed domain expansion

behaviour.

The importance of considering elemental death as well as division is re-

enforced by calculating the infinitesimal moments of the stochastic process. We

use equations (50) and (51) to find

μ(x, t) = x(b − d), (53)

and

σ2(x, t) = Δx(b + d). (54)

If we choose the net growth rate b − d to match that given in the pure exponen-

tial birth process of Section 3.1 then the advective terms in the Fokker-Planck

equations corresponding to the infinitesimal means will match, however, the

diffusive terms corresponding to the infinitesimal variances will differ.
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Figure 6: A comparison of the expected occupancy of tracer particles on a domain
growing with constant birth and death rates, b > d in the stochastic and deterministic
regimes at different times with. Figure descriptions and initial conditions are as in
Fig. 3. The rate of element proliferation is b = 0.1 and the rate of element death is
d = 0.05, giving net growth rate b − d = 0.05 as in Fig. 3. The curves are plotted at
t = 15, 30, 45, 60. (a) Δ = 1, (b).
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Fig. 6 demonstrates the importance of considering elemental death as well

as growth. The net growth rate is λ = b − d = 0.05, the same as that given

in Fig. 3, but because we are considering both birth and death the behaviour

of both the PDE and the individual-based model are markedly different from

those of the pure growth model. By time t = 60 it is clear to see that the

tracer particles in this mixed birth and death process have spread much further

than in the pure growth process of Section 3.1, (note the different scales on the

x-axes of the two figures.). The underestimation of the tracer density at the

right hand end of the domain for large values of Δ (see Fig. 6 (a)) is also much

more pronounced in this mixed birth and death regime. This is because higher

order moments neglected in the PDE description are larger and so the disparity

between the two modelling regimes is greater. However, even with Δ as large

as 1/2 (see Fig. 6 (b)) we see an excellent agreement between the two models.

4.2. Domain shrinkage

For completeness we include an example of domain shrinkage through a pure

death process. The constant rate of elemental death is given by d = 0.05. The

first two infinitesimal moments can be calculated as

μ(x, t) = −xd, (55)

and

σ2(x, t) = Δxd. (56)

For reasons discussed previously, in Fig. 7 (a), for long times we see that

there is a significant disparity between the FPE solution and the individual-

based simulations at the right-hand end of the domain for large Δ. Generally

though, the agreement between the FPE solution and the mean tracer density

in the individual-based model is excellent.

It is interesting to note that the support of the profile reduces with time and

the height of the peak increases giving the simulations the look of a reaction/advection-

diffusion equation running in reverse. If the time arrow on the figures were to be

removed it would be easy to assume that the density profile evolves from left to

right instead of the other way around. Since the backwards diffusion equation is

known to be unstable this cannot be what is happening here, since our solution
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Figure 7: A comparison of the expected occupancy of tracer particles on a domain
growing with constant death rate, d in the stochastic and deterministic regimes at
different times. Figure descriptions are as in Fig. 3. In both cases L(0) = 300, with
tracer particles initially between 150 ≤ x ≤ 200. The rate of element death is d = 0.05.
The curves are plotted at t = 15, 30, 45, 60. Note that the time arrow is in the opposite
direction to previous figures, since the domain shrinks as time progresses. (a) Δ = 1,
(b) Δ = 1/2.

is stable. In order to gain a greater insight into what is actually happening we

can expand the governing FPE:

∂C

∂t
= dC(x, t) + d

(
x + Δ

2

)
∂C(x, t)

∂x
+ dxΔ

2
∂2C(x, t)

∂x2 . (57)

The diffusivity is, of course, positive since it is proportional to the infinitesimal

variance, σ2(x, t). There is an advection term in the negative x-direction which

is larger for larger values of x, causing the profile to shrink. In addition there

is a source term which is proportional to C(x, t) which is responsible for the

appearance of the exponentially decaying tails of the profile.

5. Fokker-Plank coefficient estimation approach

For some growth rates specified in the individual-level model it may not be

possible to derive analytically the coefficients of the FPE which corresponds

to the tracer density. In such situations we require an alternative method in

order to derive the FPE coefficients. In this section we introduce a method

which allows us to approximate numerically the coefficients of such an FPE.

Our method is reminiscent of the equation-free method [20], a computer-aided

multiscale methodology which enables models at a fine/microscopic level to in-

form models at a coarse/macroscopic level through a series of appropriately

initialised realisations of the microscopic model. Traditionally the equation-free
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technique has been used to coarse-grain microscopic models when the macro-

scopic evolution equations exist conceptually, but are not available in a simple

closed form. This is analogous to the situation we face when attempting to

derive the coefficients of an FPE corresponding to the individual-level growth

model for which the functional form of the growth rate precludes the use of

analytical methods for deriving the FPE coefficients.

Our computer-assisted approach will allow us to determine the dependency

of the drift and diffusion coefficients on the time and space variables. Specif-

ically, given a simulation in a particular configuration at time, t, we can run

the microscopic model forward a short period of time, δt, in order to determine

where each tracer particle resides at time t + δt. If we repeat this sufficiently

many times we may approximate the mean and standard deviation of the dis-

placement of each tracer particle at a given time and space. The appropriate

approximations for the drift and diffusion coefficients are therefore given by

μδt(x, t) =
1
δt

〈X(t + δt) − X(t)|X(t) = x〉 , (58)

σ2
δt(x, t) = 1

δt

{〈
(X(t + δt) − X(t))2|X(t) = x

〉 − μδt(x, t)2}
, (59)

respectively, where 〈·〉 denotes the average over many appropriately initialised

simulations.

We note that these approximations to the drift and diffusion coefficient be-

come exact (see equations (2) and (3)) in the limit δt → 0. In a computational

simulation, however, we cannot realise this limit. Instead continuous time is

divided into a discrete mesh of spacing δt. For each point of this time mesh

we approximate the drift and diffusion coefficients for each of the spatial lattice

sites naturally defined by the individual-level simulation. It may appear that

the smaller the value of δt the more accurate an approximation we will achieve

to the drift and diffusion coefficients. Whilst in theory this is true, since only

a finite number of realisations of the microscopic system are possible, taking a

value of δt which is too small will result in regions of the time mesh for which

we have few or no data points over which to average. This will lead to noisy

or absent data points in our approximations. In practice there is a balance to

be struck between taking δt small enough so as to achieve an accurate approxi-

mation at a fine resolution, and taking δt large enough to ensure each x and t
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pair have sufficient data points in order to that we may calculate a meaningful

average.

In order to ensure that the short bursts of simulation of the microscopic

model are appropriately initialised, we simply run several repeats of the individual-

based model recording the positions and times of each proliferation/death event.

For each point in the time mesh we can extract the positions of each of the

elements populating the domain at the current time point and subsequently

calculate their positions at the next time point. Using these quantities it is

straightforward to approximate the drift and diffusion coefficients of the micro-

scopic process as in equations (58) and (59).

As an example we have approximated the drift and diffusion coefficients of

the exponential domain growth process (see Fig. 8). These should be compared

to the analytical formulae (21) and (22) respectively.

t

x

 

 

10 20 30 40 50 60

200

400

600

800

0

10

20

30

40

50

60

(a)

t

x

 

 

10 20 30 40 50 60

200

400

600

800

0

10

20

30

40

50

60

70

(b)

Figure 8: The approximated (a) drift, μδt(x, t), and (b) diffusion, σ2
δt(x, t), coefficients.

The linear dependence on x and the independence of t appear in both coefficients. The
colour bars in both subfigures are distorted by the randomness in the approximations
of the coefficients for large x (for a given time) where only a few instances of that
length at that time have been realised, making the approximation noisier than at other
points in the domain. Parameters are as in Fig. 3 with Δ = 1/2 and time-interval
δt = 0.1. The approximations are made by averaging over 1000 realisations of the
individual-level model.

Since, in this paper, we are considering uniform (isotropic) domain growth

we can determine a priori that the drift coefficient will depend linearly on the

spatial variable. In addition, in the case of purely time-dependent birth and

death rates the diffusion coefficient will also depend linearly on the spatial vari-

able. In order to demonstrate this principle we have averaged the approximated

drift and diffusion coefficients of the exponential domain growth process over the
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realisations of the temporal mesh in order to show their linear dependence on x

(see Fig. 9 (a)). As a result of this linear dependence it is possible to average

over all the realisations in the spatial mesh and, adjusting for the position of

the elements, calculate a more accurate approximation for the time-dependence

of the drift and diffusion coefficients. We give a demonstration of the temporal

dependence of the drift and diffusion coefficients for the uniform exponential

domain growth process in Fig. 9 (b). The agreement with the result derived

analytically is good for both coefficients.
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Figure 9: The dependence of the approximated drift (green) and diffusion (red) coeffi-
cients on (a) x (b) t. The analytically derived values are plotted in black for compar-
ison. The approximation to the temporal dependence is noisier for small times where
the average time-step of the individual-based model is large and fewer proliferation
events occur per fixed time-step, δt. Parameters are as in Fig. 8.

We note that, although the drift coefficient will always depend linearly on

the spatial variable in a uniform (isotropic) domain growth process, in general

the diffusion coefficient will not. The coefficient estimation approach will still

be applicable, however the diffusion coefficient will need to be approximated ex-

plicitly for every space and time point (as in Fig. 8) rather than being averaged

over the space coordinate. Similarly the coefficient estimation approach will

still be applicable for non-uniform (anisotropic) domain growth processes, but

both the drift and diffusion coefficients will need to be approximated explicitly

for every space and time point.

Fig. 10 displays two further confirmatory examples of the agreement between

time-dependence of the analytically derived and approximated drift and diffu-

sion coefficients for two other ((a) linear and (b) Gompertzian) time-dependent

processes. The agreement is excellent in both cases. The PDE solutions found
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using these drift and diffusion coefficients3 are compared to the individual level

simulations for linear and Gompertzian domain growth in Fig. 11 (a) and (b)

respectively. We find that the agreement is good in both cases, although not as

good as in the situation in which we employed the analytical expression for the

drift and diffusion coefficients in order to solve the PDE.
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Figure 10: The dependence of the approximated drift (green) and diffusion (red) coef-
ficients on t for (a) linear domain growth and (b) Gompertzian domain growth. The
analytically derived values are plotted in black for comparison. Parameters for (a)
are as in Fig. 4. Parameters for (b) are L0 = 30, r = 0.1 and R = 300. In both
cases Δ = 1/2, δt = 0.1 and coefficients are averaged over 1000 realisations of the
individual-level model.
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Figure 11: A comparison of the expected occupancy of tracer particles on domains grow-
ing according to (a) linear and (b) Gompertzian growth in the stochastic and deter-
ministic regimes at different times. The coefficients of the FPE solved to find the red
curves are determined using the coefficient estimation approach and are those displayed
in Fig. 10. Figure descriptions and initial conditions are as in Fig. 3. Parameters
are as in Fig. 10. Δ = 1/2 in both cases.

3Note that when employing the given coefficients in order to solve the associated FPE, we
average the values of the drift and diffusion coefficient at each time-point over a window of
size 10 (a convolution) in order to make the curves smoother.
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6. Discussion

Beginning with individual-based, stochastic models for the density of tracer

particles on a discrete growing domain we have derived analytically the drift

and diffusion coefficients of a set of PDEs which correspond to the expected

tracer density. We have exemplified this stochastic-deterministic equivalence

framework for a range of different time-dependent growth models. In each

case we have attempted to provide a biological context in which such a growth

process might occur. We note, however, that processes we have investigated are

by no means exhaustive in terms of describing biological growth [30, 13]. Our

generalised method allows the analytical derivation of the associated drift and

diffusion coefficients for any time-dependent growth rate in the individual-based

model. In addition, we have incorporated the possibility of elemental death into

the individual-based model and derived the coefficients of the corresponding

PDE for these general time-dependent birth and death rates. This approach

highlights that a process in which both elemental birth and death occur cannot

simply be approximated by a birth-only process with the reduced net growth

rate since, although the drift coefficient may be correct, the diffusion coefficient

will not be. Clearly, in situations in which the net birth rate is negative a simple

birth process will not suffice.

For representative examples of our pure-birth, birth-death and pure-death

processes we have carried out numerical simulations which contrast the expected

tracer density in the individual-level model with the solution of the continuous

PDE model. We see good agreement in each case with the correspondence in-

creasing with decreasing element size, Δ. We suggest that FPE underestimates

the density of tracer particles at the right-hand end of the domain where the

infinitesimal moments, neglected by the FPE description of the individual-level

process, are largest. The agreement between the two descriptions improves with

decreasing Δ as the higher order moments become negligible.

We have also presented a Fokker-Plank coefficient estimation approach to

deal with situations in which the infinitesimal moments cannot be derived ana-

lytically. Using short bursts of appropriately initialised stochastic simulation it

is possible to approximate numerically the dependence of the drift and diffusion

coefficients of an assumed underlying FPE on space and time. These coefficients
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can then be used to solve the corresponding PDE for the tracer density. We ver-

ified our computer assisted approach in cases where the coefficients are known

analytically and we were able to demonstrate that the solution of the PDE,

with the approximated coefficients, gave a good representation of the expected

density of the tracer particles.

As yet we have considered only the relatively straight-forward case of uni-

formly growing domains in which each element is selected to proliferate or

die with equal probability. It is not immediately evident what effect, allow-

ing anisotropic element proliferation will have on the corresponding drift and

diffusion coefficients [11]. We have postulated that, even in situations where

such coefficients can not be derived analytically, our coefficient estimation ap-

proach will still allow us to derive numerical approximations to such coefficients.

A further challenge will lie in the adaptation of these methods to multivariate

diffusion processes which will correspond to higher dimensional PDEs.

Since tissue growth is an important factor in the transport of cells across

the domain, and often does not occur uniaxially or uniformly, these extensions

will constitute an important step forward in our ability to model cell migration

effectively at both and individual and collective level.

Appendix - Numerical solution of the PDE

In order to solve the PDE (4) we use we use a Lagrangian formulation,

making a transformation of coordinates of the form [1, 9, 11, 8]

x = Γ(X, τ) and Ct = τ. (60)

The advection due to domain growth is defined by the strain rate, s = μx

satisfying

s = ΓXτ

ΓX
, (61)

and the subscripts denote partial derivatives with respect to the appropriate

variables. This leads to the system of PDEs:

Cτ = 1
ΓX

(
σ2CX

2ΓX

)
X

− sC, (62)

ΓXτ = sΓX , (63)
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where Γ(X, 0) = X , Γ(0, t) = 0. The boundary conditions C(0, t) = 0 and

C(L(t)) = 0 (where L(t) is the deterministic domain length) are appropriate for

tracer density which vanishes at the boundary.

We transform the system to one of first order and employ the NAG library

routine D03PE and the Matlab’s NAG toolbox in order to solve the the PDEs

numerically.
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