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Abstract. In this paper we explore lattice-based position-jump models of diffusion,

and the implications of introducing non-local jumping; particles can jump to a range

of nearby boxes rather than only to their nearest neighbours. We begin by deriving

conditions for equivalence with traditional local jumping models in the continuum limit.

We then generalise a previously postulated implementation of the Robin boundary

condition for a non-local process of arbitrary maximum jump length, and present a

novel implementation of flux boundary conditions, again generalised for a non-local

process of arbitrary maximum jump length. In both these cases we validate our

results using stochastic simulation. We then proceed to consider two variations on the

basic diffusion model: a hybrid local/non-local scheme suitable for models involving

sharp concentration gradients, and the implementation of biased jumping. In all cases

we show that non-local jumping can deliver substantial time savings for stochastic

simulations.
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1. Introduction

Lattice-based position-jump (LBPJ) models are a valuable stochastic tool for modelling

in biology; their intuitive structure and relative ease of implementation make them

well suited for interdisciplinary research. There has been particular interest in their

application to processes such as embryonic development, cancer metastasis and wound

healing (see, for example, [1], [2] and [3]), although similar models have also been applied

to areas such as animal dispersal [4]. Simultaneously, other researchers have worked on

refining and extending the theoretical framework of LBPJ models, with developments

including results for diffusion on unstructured meshes and irregular geometries [5, 6, 7].

Although LBPJ models are a relatively efficient technique for stochastic simulation,

they can become computationally intensive when used to simulate the dynamics of large

numbers of particles. In this paper we demonstrate that allowing particles to jump to

non-nearest neighbour boxes can significantly speed up the simulation of such models.

At present most LBPJ models allow only purely local jumping, so that a particle

can travel only to a nearest neighbour site (see, for example, [8]), while others introduce

a transition matrix approach, whereby any particle can jump to any box with some

set probability (for example, [9]). We consider here an intermediate approach, where

particles can make jumps of non-local but limited range. This approach can be used to

speed up simulations of motile particles since fewer events need to be simulated. The

first part of this paper is concerned with determining the conditions for mathematical

equivalence between the standard, local jump process and our non-local jump process.

In section 2 we provide a brief outline of LBPJ models and propose a general form for

a non-local process of maximum jump length Q, which we expect to provide equivalent

results to a local process in the mean-field limit.

Some LBPJ models may be considered to be equivalent to a partial different

equation (PDE) in the appropriate continuum limit, making possible a variety of

comparative and hybrid models for multiscale problems. The importance of correctly

applied boundary conditions for PDE problems is well known, but the problem of
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implementing equivalent conditions in LBPJ models has received surprisingly little

attention. This is despite work showing that the analytically correct implementations of

simple PDE boundary conditions within a discrete model can be far from intuitive, and

vary considerably depending on the form of the model [10]. In the second part of this

paper, we begin by generalising an implementation of the Robin boundary condition to

a non-local system (section 3), and note how this limits admissible values for the lattice

spacing and/or the diffusion coefficient. In section 4 we present an implementation of

flux boundary conditions in a LBPJ model, and show that for a non-local process of

maximum jump length Q, terms representing flux over the boundary should directly

affect the dynamics of the first Q boxes from the boundary, not just the closest one. We

derive a generalised form for this boundary condition from the continuum limit.

Numerical investigations suggest that the behaviour of non-local systems can

diverge from the behaviour of the equivalent local systems around sharp gradients in

particle numbers. In section 5 we therefore consider how we can implement a hybrid

approach, where regions without sharp gradients in particle concentrations can be

modelled using non-local jumping while other regions use entirely local jumping. In

section 6 we discuss how biased jumping for modelling asymmetric random walks can

be implemented within our framework, and how this affects the boundary conditions.

Finally, we conclude with a discussion of our results, and suggest avenues for further

work that have been opened up by the results we present in this paper.

2. Non-local jumping for diffusion

We begin by defining a spatial lattice over the domain x ∈ [0, L] composed of K boxes

of width h = L/K, as shown in figure 1, such that the centre of the ith box will be

located at xi = (2i − 1)h/2. The distribution of particles over this domain is given by

the vector m(t) = [m1(t),m2(t), ...,mK(t)], where mi(t) denotes the number of particles

in the ith box at time t.
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Figure 1. A representation of the spatial lattice for the individual-based stochastic

model.

2.1. Local position-jump models

For 2 < i < K − 1, particles in box i are permitted to jump to boxes i− 1 or i+ 1, with

rates per unit time of T−i and T+
i , respectively.

The mean number of particles in box i evolves according to

dmi

dt
= T+

i−1mi−1(t)− (T+
i + T−i )mi(t) + T−i+1mi+1(t), (1)

where m(t) = [m1(t),m2(t), ...,mK(t)] is a vector of the mean number of particles at

the lattice points. We now introduce a continuous function u(x, t) as a continuum

approximation to these discrete values. There are several factors which might cause

the jump rates to vary spatially, such as density of particles or the presence of some

signalling profile. Several LBPJ models incorporating these features are described and

implemented in [11] and [12]. In other models movement is restricted by permitting at

most one particle to occupy each lattice site (see, for a recent example, [13]). For now,

however, we will assume that jump rates are independent of both time and position, and

that any number of particles may share the same position, so we drop the subscripts

and write simply T+ and T−. The right-hand side of (1) can be expanded using Taylor

series about x, leading to

∂u(x, t)

∂t
= h

∂u(x, t)

∂x
(T− − T+) +

h2

2

∂2u(x, t)

∂x2
(x, t)(T− + T+) + o(h2).(2)

Note that in the unbiased case, where T = T− = T+, the first order terms cancel (we

discuss biased jumping in section 6). Defining limh→0 Th
2 = D we recover the diffusion

equation,

∂u

∂t
= D

∂2u

∂x2
. (3)
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2.2. Non-local jumping

For a non-local jump process, we write the rates of a jump q box-lengths to the left or to

the right from position i as T−qi or T+q
i , respectively. Jumps for which q = 1, i.e. jumps

to adjacent boxes, are written T±1i to distinguish them from T±i , the rates for the locally

jumping process. For a system of maximum jump length Q, away from any boundary,

assuming position independence again (i.e. T±qi = T±q), upon Taylor expanding about

x we have

∂u(x, t)

∂t
= −h∂u

∂x
(x, t)

(
Q∑

q=−Q,q 6=0

qT q

)
+
h2

2

∂2u

∂x2
(x, t)

(
Q∑

q=−Q,q 6=0

q2T q

)
+ o(h2). (4)

Note again, that in the unbiased case, where T+q = T−q = T q, the first order terms

cancel. We compare the second order term to that of (2) and obtain the equivalence

condition

T =

Q∑
q=1

q2T q. (5)

For example, for a non-local jumping process with Q = 2, this condition is

T = T 1 + 4T 2. (6)

Clearly there are an infinite number of rate choices which satisfy this relationship, but

we will specify the basic non-local jumping rate as

T q =
T

Qq2
, (7)

where T is the jumping rate from the equivalent, local process. This satisfies (5) above,

and also preserves the well-known relation that the mean squared displacement, 〈x2〉,

of a particle scales linearly with time in a diffusion process. For example, doubling the

jump distance reduces the rate at which jumps will occur by a factor of four. With

this result we conclude the first part of this paper, and turn our attention to boundary

conditions.
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2.3. Example

To illustrate the accuracy of non-local jumping, and its potential to save computational

time, we compare 1, 000 local simulations to 1, 000 non-local simulations where Q = 5.

The domain x ∈ [0, 5] was divided into 50 boxes of width h = 0.1. We imposed periodic

boundary conditions, and set D = 1, initializing 1, 800 particles in a peak centred around

x = 2.5, so that our initial condition is

mi(0) =


(i− 17) ∗ 25, for 18 ≤ i ≤ 25,

200− ((i− 26) ∗ 25), for 26 ≤ i ≤ 33,

0, otherwise,

(8)

as shown in figure 2(a). Each repeat of the non-local simulation ran in an average of 11.7

seconds, compared to an average of 39.1 seconds for each repeat of the local simulation.

Inspection of the averaged states of the non-local and local simulations at t = 1, and

comparison to the solution of the diffusion equation ut = Duxx, in figure 2(c) shows the

quality of the fit. We quantify this fit in figure 2(b) using the Histogram Distance Error

(HDE) metric, which is given by

HDE =
1

2

K∑
k=1

|nk − pk|, (9)

where nk is the number of particles in box k normalised against the total number of

particles in the system, and pk is the total number of particles predicted at x = xk by

the PDE solution, normalised against the area under the curve of that solution [14].

Our stochastic simulations, here and throughout the rest of the paper, were run

using Gillespie’s direct method for exact stochastic simulation [15]. To reduce the

computational time required we incorporated some recycling of random numbers [16],

and only updated propensity functions when necessary [17]. Averaged simulation results

were compared to the solution of the diffusive limit PDE, generated using Matlab’s

pdepe function and a spatial mesh of 8, 001 points.
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Figure 2. Average results from 2,000 repeats of a diffusion simulation from t = 0 to

t = 1, with periodic boundary conditions, as described in section 2.3. At time t = 0,

we initialized 1, 800 particles in a peak centred on x = 2.5 (a). Half of the simulations

were run using local jumping, and half using non-local jumping with Q = 5. In panel

(c), it can be seen that the averaged state of the non-local simulations at t = 1 (yellow

bars) matches well to both the averaged state of the local simulations (blue bars) and

the PDE solution (red line). The accuracy is confirmed by a HDE comparison of the

local and non-local simulations to the solution of the limiting PDE (b).

3. The Robin boundary condition for local jumping

The first-order reactive boundary condition for the diffusion equation at x = 0 is given

by the Robin boundary condition,

D
∂u

∂x
(0, t) = Ru(0, t), (10)

where R = 0 describes a completely reflective boundary condition, R =∞ a completely

absorbing one, and intermediate values describe different degrees of reactivity. The

jump probability during some small time ∆t is set to be D∆t/h2 for the local case. The

reactive boundary condition at the left-hand boundary is implemented by declaring that

any particle at x1(t) = h/2 which attempts to jump left is either reflected back to h/2

with probability 1− P1,1h or removed from the system with probability P1,1h (we write
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all adsorption probabilities in the form Pq,Qh, where q is the length of the jump and Q

the maximum jump length of the system). It has been shown that the Robin boundary

condition (10) is satisfied in the diffusive limit when P1,1 = R/D as follows [10]. The

mean number of particles in the first box at time t+ ∆t is given by

m1(t+ ∆t) =

(
1− 2D∆t

h2

)
m1(t) +

D∆t

h2

[
m2(t) + (1− P1,1h)m1(t)

]
. (11)

After rearranging, and multiplying through by
√

∆t, this becomes

√
∆t

(
m1(t+ ∆t)−m1(t)

∆t

)
=
D
√

∆t

h

(
m2(t)−m1(t)

h
− P1,1m1(t)

)
. (12)

Taking the diffusive limit (i.e. ∆t→ 0, h→ 0 such that
√

∆t/h remains constant), the

left-hand side vanishes, and we arrive at

D
∂u

∂x

∣∣∣∣
x=0

= DP1,1u(0, t). (13)

Comparison with (10) gives

P1,1 = R/D. (14)

Although this argument is phrased in terms of discrete time steps, it is also applicable

to continuous time simulations with small but non-zero box size h [10].

3.1. Extending to the Q = 2 case

Using the formula stated in (7) to relate the diffusion constant D to the transition

rates, in the case where Q = 2, we find that D/2 describes the rate of jumping to a

neighbouring lattice site, and D/8 the rate of jumping two lattice sites. In this section,

and for the rest of this paper, we discuss implementing boundary conditions at the

left-hand boundary without loss of generality.

We require two adsorption terms, P1,2 for when a molecule hits the boundary as

a result of a length-one jump, and P2,2 for when the contact results from a length-two

jump. Furthermore, we consider that the actual boundary is located at x = 0, h/2 left of

x1. In the local case, particles moving left from x1 will move h/2 left before hitting the

boundary and being reflected back h/2 to the right, finishing at x1 where they began.
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Figure 3. A particle (solid red circle) at x2 attempts to make a length-five jump

leftwards. After moving 3h/2 to the left it hits the boundary and is reflected, travelling

the remaining 7h/2 to the right to finish in x4 (empty red circle).

Analogously, in the non-local case, reflection therefore requires the particle to move

leftwards as far as x1, then making a further move of total length h to the boundary

and back. If this is less than the total length of the jump, all remaining movement takes

place in the rightwards direction, as shown in figure 3. So a leftwards length-two jump

left from box 1 will end up in box 2, and a length-two jump from box 2 will end up

in box 1 (assuming neither is adsorbed at the boundary). Then the equation for mean

particle numbers at x1 is given by

m1(t+ ∆t) =

(
1− 2D∆t

2h2
− 2D∆t

8h2

)
m1(t) +

D∆t

2h2
(m2(t) + (1− P1,2h)m1(t))

+
D∆t

8h2
(m3(t) + (1− P2,2h)m2(t)) , (15)

which can be rearranged to give

m1(t+ ∆t)−m1(t)

∆t
=
D

h2

[(
−3− 2P1,2h

4

)
m1(t) +

(
5− P2,2h

8

)
m2(t) +

1

8
m3(t)

]
.(16)

We then multiply through by
√

∆t, and rearrange the terms to arrive at

√
∆t

(
m1(t+ ∆t)−m1(t)

∆t

)
= D

[√
∆t

8

(
m1(t)− 2m2(t) +m3(t)

h2

)
−
√

∆tP2,2

8

(
m2(t)−m1(t)

h

)
(17)

+
7
√

∆t

8h

(
m2(t)−m1(t)

h

)
+

√
∆t

8h
(−P2,2 − 4P1,2)m1(t)

]
.

We now take the limit as ∆t, h → 0 while keeping the ratio
√

∆t/h constant. All the

terms of (17) apart from the adsorption terms have been arranged into discretizations

of exact derivatives, so the left-hand side, and the first two lines of the right-hand side
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vanish due to the presence of
√

∆t terms. The remaining terms from the final line give

7D
∂u

∂x

∣∣∣∣
x=0

= D(4P1,2 + P2,2)u(0, t). (18)

Recalling the definition of the Robin boundary condition from (10), this reduces to

4P1,2 + P2,2 =
7R

D
. (19)

Clearly this is not sufficient to specify P1,2 and P2,2 uniquely, so we examine the dynamics

at m2(t):

m2(t+ ∆t) =

(
D∆t

2h2
+ (1− P2,2h)

D∆t

8h2

)
m1(t) +

(
1− 2D∆t

2h2
− 2D∆t

8h2

)
m2(t)

+
D∆t

2h2
m3(t) +

D∆t

8h2
m4(t). (20)

Simplifying, we find

m2(t+ ∆t)−m2(t)

∆t
=

D

8h2
[(5− P2,2h)m1(t)− 10m2(t) + 4m3(t) +m4(t)]

=
D

8

(
m2(t)− 2m3(t) +m4(t)

h2

)
+

6D

8

(
m1(t)− 2m2(t) +m3(t)

h2

)
− P2,2D

8h
m1(t) +

D

8h

(
m2(t)−m1(t)

h

)
. (21)

Again, upon multiplying by
√

∆t and taking the diffusive limit as before, the left-hand

side and the first line of the right-hand side go to zero. The remaining terms give

D
∂u(x, t)

∂x

∣∣∣∣
x=0

= P2,2Du(0, t), (22)

which, recalling the Robin boundary condition (10), gives us the adsorption rate for

length-two jumps,

P2,2 =
R

D
. (23)

Substituting this into the relationship derived by considering the dynamics in m1(t),

(19), the adsorption rate for length-one jumps must be

P1,2 =
3R

2D
. (24)

Since P1,2h is a probability, it must be between zero and one in value, and we therefore

note that this result imposes the constraint

0 ≤ h
R

D
≤ 2

3
. (25)
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Hence for a given lattice and diffusion rate our choice of R is restricted, or conversely if

a value of R has been specified then our choice of box size, h, will have to be sufficiently

small. A similar constraint is observed in the local jumping implementation, but the

condition becomes more restrictive in the non-local case as Q increases. We note that

it is also possible to derive a non-local implementation of Robin boundary conditions in

which the adsorption rates depend on the position that the reflecting particle is jumping

from, rather than the length of the jump that took it to the boundary. In this Q = 2 case,

we would then have to require that particles jumping from the first box be adsorped

with probability Rh/D, and particles from the second box with probability 3Rh/D.

Since the larger of these probabilities here is greater than in the length-dependent case,

it places a greater constraint on allowable values of R, D and h. We therefore proceed

by assuming that adsorption probabilities depend on the distance a particle is travelling,

and not on its box of origin.

3.2. Generalised adsorption rates for any value of Q

The method used in the Q = 2 case (i.e. rearranging terms into second derivatives

which will vanish in the diffusive limit until only terms for x1 and x2 remain) can be

used to derive a general result for any jump process of maximum jump length Q. At

box k, where k ≤ Q, the dynamics will be described by

√
∆t

dmk

dt
=

D
√

∆t

Qh2

[
Q∑

j=1

(
χ[0,k−1](j)

(k − j)2
mj(t)

)
+

Q∑
j=1

(
1

j2
mk+j(t)

)

−
Q∑

j=1

[
χ[0,k−1](j)

(k − j)2
+

1

j2

]
mk(t)−

Q−k+1∑
j=1

[
1

(j + k − 1)2

]
mk(t)

+

Q−k+1∑
j=1

[
1− Pj+k−1,Qh

(j + k − 1)2
mj(t)

]]
, (26)

where χ[0,k−1](j) is an indicator function, equal to unity if 0 ≤ j ≤ k − 1, and zero

otherwise. The two terms on the first line of the right-hand side represent particles

jumping into the box at xk from the left and right, respectively. The second line

represents particles jumping from xk, with the first set of brackets encompassing those



Non-local jumping: accelerating simulations and deriving boundary conditions 12

particles which jump without being reflected, and the second those which jump and

are reflected. The final line represents those particles which are reflected into the box

at xk, having avoided being adsorbed by the boundary. We assume that the lattice is

sufficiently large so that no influence from the boundary conditions at the right-hand

boundary need be considered, i.e. K ≥ 2Q.

The left-hand side of (26) will vanish in the diffusive limit, so we can focus on the

right-hand side, rearranging it to the form,

0 =
D
√

∆t

Qh2

{
Q−k+1∑
j=1

[
1

(j + k − 1)2
mj(t)

]
−

[
Q−k+1∑
j=1

1

(j + k − 1)2

]
mk(t)

+

Q∑
j=1

(
1

j2
mk+j(t)

)
+

(
k−1∑
j=1

1

(k − j)2
mj(t)

)
−

(
k−1∑
j=1

1

(k − j)2
+

Q∑
j=1

1

j2

)
mk(t)

−
Q−k+1∑
j=1

[
Pj+k−1,Qh

(j + k − 1)2
mj(t)

]}
. (27)

We have grouped the reflecting terms, non-reflecting terms, and adsorption events on

separate lines. These three groupings are analysed separately in Appendices A, B and

C, respectively. It can be shown that equation (26) can ultimately be rearranged, in the

diffusive limit, to

0 =
D

Q

{(
Q∑

j=k

j − 2k + 1

j2

)
∂u

∂x

∣∣∣∣
x=0

+

(
Q∑

j=k

1

j

)
∂u

∂x

∣∣∣∣
x=0

−
Q∑

j=k

[
Pj,Q

j2

]
u(0, t)

}
, (28)

plus a collection of terms which vanish in the limit. Rearranging again we obtain

D

Q∑
j=k

[
Pj,Q

j2

]
u(0, t) = D

(
Q∑

j=k

2j − 2k + 1

j2

)
∂u

∂x

∣∣∣∣
x=0

. (29)

Recalling that we wish to replicate the Robin boundary condition (10), this gives us an

expression determining the adsorption rates:

Q∑
j=k

[
Pj,Q

j2

]
=
R

D

Q∑
j=k

[
2j − 2k + 1

j2

]
. (30)

We see that PQ,Q = R/D for any Q. For any other adsorption rate, Pk,Q (k 6= Q), we

note that the left-hand side of (30) can be written

Pk,Q

k2
+

Q∑
j=k+1

[
Pj,Q

j2

]
, (31)
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while the right-hand side can be written

R

D

(
Q∑

j=k+1

[
2j − 2k − 1

j2

]
+

Q∑
j=k+1

[
2

j2

]
+

1

k2

)
. (32)

Since k < Q, and (30) holds for 1 ≤ k ≤ Q, we can substitute k for k + 1 to obtain

Q∑
j=k+1

[
Pj,Q

j2

]
=
R

D

Q∑
j=k+1

[
2j − 2k − 1

j2

]
, (33)

so these terms cancel from (31) and (32). Substituting q for k and multiplying through

by q2 we obtain our final result for q < Q:

Pq,Q =
R

D

(
1 + q2

Q∑
j=q+1

[
2

j2

])
. (34)

3.3. Example

To confirm these analytic results we ran 1, 000 simulations, with a Robin boundary

condition (R = 1) at the left boundary, and a zero-flux boundary condition at the

right boundary, comparing a local jump process to a non-local one with maximum jump

length Q = 5. At time t = 0 we set there to be 1800 particles in a peak centred on

x = 1, as shown in figure 4(a), so that we have

mi(0) =


(i− 2) ∗ 25, for 3 ≤ i ≤ 10,

200− ((i− 11) ∗ 25), for 11 ≤ i ≤ 18,

0, otherwise.

(35)

As can be seen in figure 4(c), the two match well, both with each other and to the

solution of the diffusion equation with D = 1, i.e. ut = uxx.We quantify this fit in

figure 4(b) using the HDE; the good agreement demonstrated by the HDE confirms

the approximation to the diffusive limit. Furthermore, the non-local simulations each

took 7.9 seconds to run on average, while the local simulations required on average 26.7

seconds each. We also study the convergence of the non-local implementation as h→ 0,

by solving the appropriate master equations with the Euler method for decreasing values

of h. We compare these results to the solution of the limiting PDE, and plot the HDE

in figure 4(d), showing the convergence of the solution as h becomes smaller. The
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PDE here, and in all other convergence studies in this paper, was solved using Matlab’s

PDEPE . For this example, we also plot the time taken to simulate this system for a

range of particle numbers and lattice spacing, and it can be seen in figure 5 that non-

local jumping provides the same relative acceleration for a range of lattice spacings and

particle numbers in this case. This makes intuitive sense, as non-local jumping reduces

compuational time by effectively reducing the total jump rate of each individual particle,

and so is not dependent on these other factors.

4. Flux boundary conditions

It is possible to extend this work to derive flux boundary conditions (which correspond

to inhomogenous Neumann boundary conditions when jumping is unbiased). Suppose,

for example, we wish to enforce the boundary condition,

∂u

∂x

∣∣∣∣
x=0

= A. (36)

We will treat A as a constant without loss of generality. Let us begin by considering

only the case of positive flux into the system, i.e. A < 0.

4.1. Flux conditions for local jumping

In the local case we need to add a term to the master equation for box one to account

for particle influx. We require the number of new particles entering the system between

times t and t + ∆t to be proportional to ∆t. Furthermore, we want the relative

contribution of flux to the system to be independent of the choice of lattice size, so

our term should be inversely proportional to the box size h. We will therefore write

the contribution of the flux to the master equation as B1,1∆t/h for some constant B1,1,

where the subscripted numbers indicate the box in question and the maximum jump

length of the system, respectively.

Starting with the purely local jumping process, and treating the boundary as

completely reflecting to jumping particles (hence providing zero net flux), the master
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h = 0.1 h = 0.05 h = 0.02 h = 0.01 h = 0.005 h = 0.0025

Figure 4. Averaged results from 1000 diffusion simulations (500 using local jumping,

and 500 using non-local jumping) from t = 0 to t = 1, with a zero-flux boundary

condition at x = 5 and a Robin boundary condition with R = 1 at x = 0, as described

in section 3.3. For our initial condition (a), we initialized 1, 800 particles in the system

in a peak centred around x = 1. The accuracy of the non-local boundary conditions is

confirmed in (b) by a HDE comparison to the solution of the limiting PDE. This is also

illustrated in panel (c), where we demonstrate that both the non-local (Q = 5, yellow

bars) and local (blue bars) provide a good match to the PDE solution at t = 1 when

averaged over 500 iterations. As h becomes smaller, we see the solution of the master

equations describing the non-local system with Robin boundary condition becomes

closer to the solution of the limiting PDE (d).

equation for box 1 is

m1(t+ ∆t) =

(
1− D∆t

h2

)
m1(t) +

D∆t

h2
m2(t) +

B1,1∆t

h
, (37)

⇒
√

∆t

(
m1(t+ ∆t)−m1(t)

∆t

)
=

√
∆t

h

(
D
m2(t)−m1(t)

h
+B1,1

)
. (38)

Taking the limit ∆t→ 0, h→ 0 such that
√

∆t/h remains constant, this becomes

∂u(t)

∂x

∣∣∣∣
x=0

= −B1,1

D
. (39)
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Figure 5. The time taken to run the simulation described in section 3.3 is seen

in the left-hand figure to scale linearly with the number of particles in the system,

while in the right-hand figure we see simulation time increasing nonlinearly as the box

size h decreases (since the number of jumps in the system scales with 1/h2). When

varying particle numbers, we followed the relative distribution described in (35) while

multiplying by a constant factor. When varying the lattice size, a fixed number of

particles were split between the increased number of boxes. In both cases we see that

the relative acceleration provided by non-local jumping is maintained for a range of

particle numbers and lattice sizes.

Hence A = −B1,1/D, and we can implement the Neumann boundary condition given

by (36) by adding particles to box 1 at rate −AD/h. Figure 6 gives an example of this,

confirming the accuracy of this implementation, starting from an initial distribution of

mi(0) =

 105− (10 ∗ i), for i ≤ 10,

0, otherwise,
(40)

as shown in figure 6(a). We set D = 1 as before, and impose boundary conditions

∂u(t)

∂x

∣∣∣∣
x=0

= −100, (41)

∂u(t)

∂x

∣∣∣∣
x=5

= 0. (42)

We note the good match between the local jumping simulation and the PDE at time

t = 1, and the low value of the HDE, as shown in figures 6(c) and (b), respectively.
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Figure 6. Average results from 1,000 repeats of a diffusion simulation from t = 0 to

t = 1, with a zero-flux boundary condition at x = 5 and an in-flux boundary condition

with A = −100 at x = 0, as described in section 4.1. At time t = 0, we initialize 550

particles in the first ten boxes of the system following a linearly decreasing distribution

(a). In panel (c), it can be seen that the local simulation (blue bars) matches well to

the PDE solution (red line). The accuracy is confirmed by a HDE comparison to the

solution of the limiting PDE (b).

4.2. Generalised flux boundary conditions for non-local jumps

For a system in which non-local jumps of maximum length Q are allowed, particles must

be added, not simply to the first box, but to the first Q boxes, with various weights.

These weights should preserve the total flux into the system, and the general result for

their distribution is given below. We parametrised the input with B1,1∆t/h in the local

case, so we will write the input term for the kth box as Bk,Q∆t/h, in the non-local case.

The mean particle dynamics at xk will be given by

√
∆t

dmk

dt
=

D
√

∆t

Qh2

{(
Q∑

j=1

χ[0,k−1](j)

(k − j)2
mj(t)

)
+

Q∑
j=1

(
1

j2
mk+j(t)

)

−

(
Q∑

j=1

χ[0,k−1](j)

(k − j)2
+

Q∑
j=1

1

j2

)
mk(t)−

[
Q−k+1∑
j=1

1

(j + k − 1)2

]
mk(t)
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+

Q−k+1∑
j=1

[
1

(j + k − 1)2
mj(t)

]}
+
Bk,Q

√
∆t

h
, (43)

where 1 < k ≤ Q. We recognise this as the equation from the generalised Robin

boundary case, but without adsorption and with an added input term Bk,Q

√
∆t/h. We

can therefore reuse the results from Appendices A and B, and see that in the diffusive

limit this equation will become

Bk,Q = −D
Q

(
Q∑

j=k

j − 2k + 1

j2
+

Q∑
j=k

1

j

)
∂u

∂x

∣∣∣∣
x=0

. (44)

Consolidating, and imposing the Neumann boundary condition again, this gives us the

general formula for the input term at xk in the reflecting case:

Bk,Q = −AD
Q

(
Q∑

j=k

2j − 2k + 1

j2

)
. (45)

By summing over 1 ≤ k ≤ Q we obtain −AD, showing that the non-local boundary

conditions conserve the total flux from the local boundary conditions.

4.3. Example

In order to demonstrate the necessity of the derived non-local boundary conditions,

rather than applying the simpler, local boundary condition where all new particles are

added to the first box, we ran 1000 simulations of a non-locally jumping system with

Q = 5, using the initial condition and boundary conditions used in the local jumping

simulation in section 4.1, i.e. a no-flux boundary condition at x = 5, a Neumann

condition with A = −100 at x = 0, and the inital distribution of particles illustrated

by figure 7(a). Each simulation was run from t = 0 until t = 1, with D = 1. In half of

these simulations we added new particles to the first five boxes, with rates as required

by our result (45) with Q = 5. The other half of these simulations were identical,

except that all new particles were added to the first box instead of being distributed

over the first five. Figure 7(b) shows the superior fit of the data to the PDE limit in the

first case, figure 7(c) shows the final state of the system, with a close-up of the first five

boxes and illustrates how attempting to use the local implementation of a flux boundary
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condition rather than the derived non-local implementation leads to deviation from the

PDE solution. Each repeat of the non-local simulation ran in an average of 6.7 seconds,

compared to 21.9 seconds for the equivalent local simulations shown in figure 6. As h

becomes smaller, the non-local description can be seen in figure 7 to converge to the

solution of the PDE.

5. Hybrid diffusion schemes

Our non-local jumping method gives results that match well with the results of the

local jumping method in most cases but, in the case of sharp transitions in particle

numbers, we have observed innaccurate results. We speculate that these result from our

derivation of non-local jump rates in section 2.2, where the rates were chosen so that

the second order terms in the expansion matched those of the expanded local model,

but may result in fourth order and higher terms which differ from those of the local

system and lead to different truncation errors [18]. In this light, it would therefore be

useful if we could use non-local jumping in some regions of space to reduce the running

time, but use local jumping in regions where the concentration changes rapidly in space

so as to maintain accuracy.

We have already introduced an implemention of flux boundary conditions in non-

locally jumping systems, and can therefore argue as follows. The lattice can be separated

into two regions, with non-local jumping on the left domain and local on the right (again,

without loss of generality). We can use the local jump rates to calculate the particle

flux from left-to-right, and also from right-to-left, based on the number of particles in

the boxes to either side of the boundary. For left-to-right movement, we implement a

constant flux boundary condition using our result (45). Particles in the boxes concerned

will otherwise continue to jump as normal, with any jump which would have taken them

over the boundary reflecting instead: only the flux terms can take particles over the

boundary to the right, and then only to the first local box. This means that additional,

special jump rates for rightwards movement are required for particles in the Q boxes
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Figure 7. Average results from 1,000 repeats of a diffusion simulation from t = 0

to t = 1, with a zero-flux boundary condition at x = 5 and an in-flux boundary

condition with A = −100 at x = 0, as described in section 4.3. At time t = 0, we

initialize 550 particles in the first ten boxes of the system following a linearly decreasing

distribution (a). In panel (c), it can be seen that the non-local simulation with Q = 5

and corresponding non-local boundary conditions (yellow bars) matches well to the

PDE solution (red line), while the non-local simulation with local boundary conditions

(i.e. all new particles added to the first box, shown by blue bars) deviates from

this solution. The error is particularly evident in the first five boxes, as illustrated

by the close-up (the error bars show the standard deviation of the results). This

difference in accuracy is confirmed by a HDE comparison of both implementations to

the solution of the limiting PDE (b), where the non-local simulation with the derived

non-local boundary conditions is shown in yellow and the non-local simulation with

local boundary boundary conditions is shown in blue again. The apparent decline in

the HDE for both implementations is an artifact of increasing particle numbers. In

panel (d), we see the solution of the master equations describing the non-local system

with flux boundary conditions becomes closer to the solution of the limiting PDE as

h becomes smaller.
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Q=4, Non-local, Local, Hybrid.

Figure 8. Example showing jumping options from boxes within the hybrid zone

around the barrier for Q = 4. The non-local jumps denoted by solid lines all use

standard non-local rates for their length; the dotted hybrid lines use Neumann based

jumping rates. Reflecting particles are not shown.

closest to the boundary (all continue to jump left with unchanged rates).

We now consider movement from right-to-left. Since the right domain is locally

jumping, we only have to implement special conditions in the first box. Particles in this

box may jump right as normal, or jump left with the same probability. When jumping

left, however, they may travel up to Q sites, with probabilities chosen to match the

rates with which particles in those boxes are moving to the right. By implementing the

boundary in this way, we maintain expected levels of flux between the two regions.

An implementation on these conditions for Q = 4 is illustrated in figure 8.
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5.1. Method

We define Bk,Q, the rate with which a particle from a box k ≤ Q places to the left of

the boundary will cross the boundary into the first box of the local domain, as

Bk,Q = −AnD

Q

(
Q∑

j=k

2j − 2k + 1

j2

)
, (46)

where AnD is a measure of the expected flux over the boundary to the right, and is

given by multiplying the number of particles in the cell closest to the boundary on the

non-local side by the local jumping rate. Conversely, particles in the first local box to

the right of the boundary can jump up to Q places to the left, with rates given by

B′k,Q = −AlD

Q

(
Q∑

j=k

2j − 2k + 1

j2

)
, (47)

where AlD is the multiple of the number of particles in the cell closest to the boundary

on the local side and the local jumping rate (i.e. the expected jump rate over the

boundary from right to left).

5.2. Example

We consider a simple morphogen gradient system, where particles are generated in boxes

in the left-half of the domain with probability 5000∆t, and decay with probability 100∆t.

In the diffusive limit this corresponds to the PDE

∂u

∂t
=
∂2u

∂x2
+ 5000H(2.5− x)− 100u, (48)

where H(x) is the Heaviside function. Starting from an empty lattice at time t = 0,

we ran 1,000 simulations until time t = 1 of a standard non-local implementation, and

another 1,000 of a hybrid non-local model with the interface between domains at x = 1.5.

The maximum jump length was Q = 5 in both cases. The results are shown in figure 9.

Figure 9(a) shows the averaged final state of the system, with the hybrid model (yellow

bars) matching the PDE solution (red line) closely, while the unmodified non-local

process deviates slightly around the concentration gradient. The hybrid simulations

each took on average 31.4 seconds to run, compared to 43.4 seconds for an equivalent
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local simulation (not shown), but clearly more significant time saving would be made

for simulations with larger morphogen production regions, or higher equilibrium particle

numbers in that region. Sharp spatial gradients can also be accomodated by using a

finer grid size, and figure 9(d) shows how the master equations representing the non-local

system converge to the solution of the PDE as h becomes smaller.

6. Boundary conditions for biased diffusion

To incorporate biased diffusion, we divide our probabilities of movement into a

symmetric diffusion term, which can be treated non-locally as usual, and an advection

term promoting movement in the favoured direction. The probability of jumping in

either direction over time step ∆t as a result of diffusion is still given by D∆t/h2 as

usual, while the additional probability of jumping in the favoured direction is given

by b∆t/h, for some constant b. It can be shown that this will produce the advection-

diffusion equation in the diffusive limit,

∂u

∂t
= D

∂2u

∂x2
± b∂u

∂x
. (49)

When deriving constant flux boundary conditions in the case of unbiased diffusion, the

flux at x = 0 was given by −Dux in the diffusive limit, so we could implement constant

flux boundary conditions with the Neumann boundary condition −Dux = A. In the

biased case, we must adapt our flux term to incorporate the directional bias so it is given

by −Dux + bu (assuming, without loss of generality, that the bias is towards rightward

movement).

6.1. Local case

We begin by considering the local case, and write the master equation for the first

lattice site, which includes particles being added to the system during timestep ∆t with

probability J∆t/h,
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h = 0.1 h = 0.05 h = 0.02 h = 0.01 h = 0.005 h = 0.0025

Figure 9. (a) shows the state of a morphogen gradient system at time t = 1, starting

from an initial state with no particles anywhere, as described in section 5.2. Both

simulations are non-local with Q = 5, but the results shown by yellow bars were

obtained using the hybrid method, with the interface positioned at x = 1.5, while the

blue bars represent the standard non-local implementation. The red line shows the

solution to the limiting PDE. It can be seen that the standard non-local simulations

deviate slightly from the PDE solution around x = 2.5, and an enlarged image of this

region is shown in (b). The goodness of fit of the hybrid method to the PDE solution

is shown by the comparison of HDEs in (c). Another approach to sharp gradients

is to adopt a finer lattice, and in (d) we see the solution of the master equations

describing the non-local morphogen gradient system becoming closer to the solution

of the limiting PDE as h becomes smaller, without requiring a hybrid method.
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m1(t+ ∆t) =

(
1−D∆t

h2
− b∆t

h

)
m1(t) +D

∆t

h2
m2(t) + J

∆t

h
, (50)

⇒
√

∆t
m1(t+ ∆t)−m1(t)

∆t
= D

√
∆t

h

m2(t)−m1(t)

h
− b
√

∆t

h
m1(t) + J

√
∆t

h
. (51)

In the diffusive limit, the left-hand side goes to zero, and all
√

∆t/h terms tend to a

constant and cancel. Therefore, we can rearrange to get

J =

(
−D∂m(t)

∂x
+ bm(t)

)∣∣∣∣
x=0

= A. (52)

So the unbiased implementation also works for biased jumping in the local jumping case.

When the bias is towards leftward movement, it is easy to produce the same result by

a very similar method.

6.2. Non-local case

We assume the bias is away from the boundary at x = 0, and begin by deriving a result

for the first box on the lattice, then proceed to derive results for the remaining Q − 1

boxes. We then show that the sum of all the terms added as a result of directional bias

is zero, so total flux is conserved. For the first box, we write the master equation,

√
∆t
m1(t+ ∆t)−m1(t)

∆t
=
D
√

∆t

Qh2

{[
−

Q∑
j=1

1

j2
−

Q∑
j=2

1

j2

]
m1(t)

+

Q∑
j=1

[
1

j2
mj+1(t)

]
+

Q∑
j=2

[
1

j2
mj(t)

]}

− b
√

∆t

h
m1(t) + J1,Q

√
∆t

h
. (53)

We ignore the left-hand side, which will vanish in the diffusive limit. On the

right-hand side, the four summations represent, respectively, particles leaving box 1

by jumping to the right, particles leaving box 1 by jumping to the left and reflecting,

particles jumping directly into box 1 from the right, and particles jumping into box 1

from the right by reflection. The terms outside of the brackets represent advection to

the right and flux into the box from outside the system.
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In our earlier work, we showed that the terms inside the brackets can be rearranged,

collecting most into second derivative terms which vanish in the diffusive limit, and

leaving

0 =
D

Q

(
Q∑

j=1

2j − 1

j2

)
∂u

∂x

∣∣∣∣
x=0

− bu(0, t) + J1,Q. (54)

Recalling the expression for flux in the advective case, we rearrange this to write

J1,Q =
1

Q

(
Q∑

j=1

2j − 1

j2

)[
−D ∂u

∂x

∣∣∣∣
x=0

+ bu(0, t)

]
+

(
1− 1

Q

(
Q∑

j=1

2j − 1

j2

))
bu(0, t).(55)

We therefore apply our boundary condition to arrive at

J1,Q =
1

Q

(
Q∑

j=1

2j − 1

j2

)
A+

(
1− 1

Q

(
Q∑

j=1

2j − 1

j2

))
bu(0, t). (56)

6.3. All other boxes

For some box k, where 1 < k ≤ Q, we can apply similar reasoning, drawing on our

previous work to write

0 =
D

Q

(
Q∑

j=k

2j − 2k + 1

j2

)
∂u

∂x

∣∣∣∣
x=0

− b
√

∆t
∂u

∂x
+ J1,Q

√
∆t

h
. (57)

Having rearranged the bias terms into a first order derivative they vanish in the diffusive

limit. In order to get an expression for flux at the boundary, we include balancing terms

of m1 in the equation, and arrive at our final expression for flux,

Jk,Q =
1

Q

(
Q∑

j=k

2j − 2k + 1

j2

)
A− 1

Q

(
Q∑

j=k

2j − 2k + 1

j2

)
bu(0, t). (58)

We note that in the case b = 0 we recover our unbiased result. Drawing on our

earlier work on boundary conditions, it can be seen that the sum of the advection-

dependent terms over all the boxes will be zero, so we can see that the flux at the

boundary is still conserved when there is a bias in the jump rates. We also note that

the new terms are independent of the boundary flux A. They will therefore need to be

incorporated into the system even for zero-flux boundary conditions where A = 0, or

when a different boundary condition is implemented: it is easy to see that that these

terms are also required for Robin boundary conditions. It therefore seems sensible,
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both for computational efficiency and for accurate particle numbers, to implement these

terms as extra jumps between the first Q boxes, i.e. where these terms call for particles

to be removed from the system, they should instead be moved to one of the sites (chosen

with appropriate probability) where the additional terms require particles to be added.

We note that if the bias instead favours movement towards the boundary then the signs

of these extra terms will all be flipped.

6.4. Example

To demonstrate the necessity for additional boundary flux terms for biased diffusion,

we ran 2, 000 simulations of a biased system with Q = 5. In 1, 000 of these simulations

we used the flux values derived above for biased diffusion (shown as yellow bars in

figure 10(c)) using m1(t) to approximate u(0, t), while in the other 1, 000 we used the

standard, non-local flux implementation for unbiased diffusion (shown in blue). An in-

flux boundary condition with A = −500 was set at x = 0, and an outflux condition with

A = −500 at x = 5. We use D = 1 as usual, and a bias towards rightward movement of

b = 5. The simulations started from the steady state, with 5, 000 particles distributed

uniformly across the domain as shown in figure 10(a). Figure 10(c) shows the average

state of the system at t = 1, with the unbiased boundary conditions giving rise to a

density profile that deviates significantly from the steady state (red line). This illustrates

the need to derive boundary conditions for biased diffusion, and when these are used

our results correspond well to the steady state. The quality of the fit is confirmed in

figure 10(b) by comparison of the HDEs. The non-local simulations ran in an average of

64.0 seconds, compared to 137.8 seconds for an equivalent, local simulation. Non-local

jumping can therefore still deliver significant, albeit smaller, savings in computational

time, even when more complicated boundary condition implementations are required. It

can also be seen, in figure 10(d), that the non-local description converges to the solution

of the continuum PDE as h becomes small.
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(d)

Figure 10. (a) shows the initial state of the system (and also the steady state) with 100

particles in each box, as described in section 6.4. A comparison of HDEs for the derived

asymmetric boundary conditions (yellow) and standard non-local boundary conditions

(blue) is shown in (b), demonstrating the accuracy of the asymmetric implementation.

In (c), the average state of the system at time t is shown: it can be seen that particles

numbers around the boundary deviate significantly from the steady state (red line),

while the asymmetric implementation matches the steady state well. As h becomes

smaller, we see in (d) that the solution of the master equations describing the biased

diffusion system with boundary fluxes becomes closer to the solution of the limiting

PDE.

6.5. Robin boundaries for biased jumping

Recalling our notation from section 3, we choose to let particles which hit the boundary

as a result of the biased jumping term b∆t/h be absorbed with probability P1,Q,

while particles hitting the boundary because of a diffusive term are still adsorped

with probability P1,Qh as before. It is necessary for the probability of adsorption from
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diffusive jumping to scale with h since such jumps scale with ∆t/h2, whereas the biased

jumping terms scale with ∆t/h. The terms describing adsorption from biased jumping

would therefore vanish in the diffusive limit if their adsorption probability scaled with h.

Using the reasoning from section 6.1, and noting that the non-local Robin condition at

the left-hand boundary is D∂u/∂x+ bm = Ru if the bias is towards leftward movement,

and D∂u/∂x− bu = Ru if towards rightward movement, it is easy to see that the local

implementation of Robin conditions is unchanged at P1,1 = R/D when the bias moves

particles away from the boundary, and P1,1 = R/(D + b) when the bias moves them

towards the boundary.

In the non-local case, we recall that the additional terms derived in sections 6.2 and

6.3 must also be incorporated here, but when the bias favours movement away from the

boundary it is clear that the adsorption terms will remain unchanged. When movement

towards the boundary is favoured by the bias, adsorption rates Pk,Q remain unchanged

for k ≥ 2, and it can be shown that for k = 1 the result derived in (30) becomes instead

P1,Q +
bQ

D
P1,Q +

Q∑
j=2

[
Pj,Q

j2

]
=
R

D

Q∑
j=1

[
2j − 1

j2

]
. (59)

Using the same reasoning applied to the symmetric case, we obtain our new value for

P1,Q:

P1,Q =
R

D + bQ

(
1 +

Q∑
j=2

[
2

j2

])
. (60)

We note that this result preserves the symmetric rates when b = 0 as expected. A

lower adsorption rate also makes intuitive sense in this context. Our value of R is

parametrising the proportion of particles in each of the first Q boxes which should be

adsorped over a short time period, and this proportion is unchanged by the introduction

of advection terms into the master equation. When the bias favours movement away

from the boundary, the number of particles in the first box which hit the boundary

and have a chance of being adsorped remains the same, but when the bias moves

particles towards the boundary there will be more reflecting particles. In order to

keep the proportion of particles adsorped from the box constant, the adsorption rate is
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therefore be lower when advection moves particles towards the boundary, but unchanged

otherwise.

To illustrate this result we ran 1, 000 simulations, using the same parameters, and

the same initial condition, as used in figure 4, except for the addition of a bias towards

leftward movement with b = 2. It can be seen in figure 11 that our derived modifications

to the adsorption rates result in a good match to the PDE solution by both local and

non-local simulations. Each non-local jumping simulation ran in an average of 8.8

seconds, compared to an average of 23.8 seconds, showing that, even in this complicated

case, non-local jumping can accelerate stochastic simulations of LBPJ models. Figure

11(d) shows the convergence of the non-local system to the limiting PDE for small h.

7. Discussion

Computational time can provide a barrier to the use of exact stochastic algorithms

such as the Gillespie algorithm and its extensions. This is especially true for variants

of the inhomogeneous stochastic simulation algorithm, where a spatially-inhomogenous

chemical reaction system is modelled as a collection of well-mixed subsystems that

particles can diffuse between and react within. A number of adaptations have been

proposed to accelerate the simulation of systems where diffusion events occur much

more frequently than reaction events, such as the multinomial simulation algorithm [19].

Other developments include adaptive mesh refinements to focus computational resources

efficiently on important regions of the lattice [20]. Our non-local diffusion model suggests

a new avenue of research in this regard, by reducing computational time, as illustrated

by comparisons throughout this article, while retaining the option of tracking individual

particles, and remaining relatively simple to implement and explain. These time savings

arise from the need to simulate fewer diffusion events, which outweighs the increased

number of possible events to be checked, at least when implemented in an efficiently

sorted, next subvolume method style algorithm [21].

We have presented a framework for using non-local jumping to accelerate stochastic
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(d)

Figure 11. (a) shows the initial state of the system (and the steady state) with 1800

particles placed in a peaked profile about x = 1, as described in section 6.5. In (c) we

see the averaged system state at time t = 0.2, averaged over 1, 000 simulations, with

a good match between both local (blue bars) and non-local (yellow bars) simulations,

and the PDE solution (red line). The HDEs confirm this match in (b) their rising

values resulting from the rapidly dropping number of particles in the system. In (d)

we see the solution of the master equations describing the biased diffusion system with

Robin boundary condition becoming closer to the solution of the limiting PDE as h

becomes smaller.

diffusion simulations, developing the initial theory to incorporate hybrid systems and

asymmetric jumping. We have also derived generalised boundary conditions for local

and non-local jumping, corresponding to flux and Robin boundary conditions in the

diffusive limit. Simulations have demonstrated the accuracy with which these models

correspond to their locally, jumping and PDE equivalents, and have also shown the time-

saving potential these methods offer. In future work we will extend our implementation

to two-dimensional diffusion systems, and anticipate that the use of binary searching will
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allow reductions in computational time to be maintained despite the greatly increased

number of possible jump events for a non-local system in higher dimensions. We also

intend to rigourously justify the incorporation of higher order reactions, following recent

work on the convergence of the reaction-diffusion master equation [22], and to study

other jump length distributions which satisfy the condition given by (5).
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Appendix A. Proofs by induction: reflecting terms

In this and the two following appendices, we apply the same method: we write each

expression so that all terms are grouped with some variable mi(t), then we take the

highest value of i and rearrange all mi(t) terms, along with the appropriate values of

mi−1 and mi−2(t), into a second derivative which will vanish in the diffusive limit. This

step is repeated until only terms of m1(t) and m2(t) have not been rearranged into

second derivatives.

Appendix A.1. Case when k = 1

D
√

∆t

Qh2

{
−

[
Q∑

j=2

1

j2

]
m1(t) +

Q∑
j=2

[
1

j2
mj(t)

]}
. (A.1)

We apply the method described above, removing one variable at a time by rearranging

it into a second derivative which will vanish in the diffusive limit. To begin the proof

by induction, we assume that after s ≤ Q − 4 steps of this method the expression will

be of the form

D
√

∆t

Qh2

{
−

[
Q∑

j=2

1

j2

]
m1(t) +

Q−s−2∑
j=2

[
1

j2
mj(t)

]

+

[
1

(Q− s− 1)2
−

Q∑
j=Q−s+1

[
j −Q+ s

j2

]]
mQ−s−1(t)

+

[
Q∑

j=Q−s

[
j −Q+ s+ 1

j2

]]
mQ−s(t)

+h2
Q∑

j=Q−s+1

[
Q∑
i=j

[
i− j + 1

i2

]
(mj−2(t)− 2mj−1(t) +mj(t))

h2

]}
. (A.2)

Assume this conjecture holds true for some value of s, then rearrange so that mQ−s is

only present inside a second derivative term, i.e.

D
√

∆t

Qh2

{
−

[
Q∑

j=2

1

j2

]
m1(t) +

Q−s−3∑
j=2

[
1

j2
mj(t)

]
[

1

(Q− s− 2)2
−

Q∑
j=Q−s

[
j −Q+ s+ 1

j2

]]
mQ−s−2(t)
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1

(Q− s− 1)2
+ 2

Q∑
j=Q−s

[
j −Q+ s+ 1

j2

]
−

Q∑
j=Q−s+1

[
j −Q+ s

j2

]]
mQ−s−1(t)

+ h2
Q∑

j=Q−s

[
j −Q+ s+ 1

j2

](
mQ−s−2(t)− 2mQ−s−1(t) +mQ−s(t)

h2

)

+h2
Q∑

j=Q−s+1

[
Q∑
i=j

[
i− j + 1

i2

]
(mj−2(t)− 2mj−1(t) +mj(t))

h2

]}
. (A.3)

It is clear that the first and second lines match our conjecture for s+1, while the fourth

line can be incorporated into the fifth to satisfy our conjecture again. Checking the

coefficients of the third line then, we find

1

(Q− s− 1)2
+ 2

Q∑
j=Q−s

[
j −Q+ s+ 1

j2

]
−

Q∑
j=Q−s+1

[
j −Q+ s

j2

]

=
1

(Q− s− 1)2
+ 2

1

(Q− s)2
+

Q∑
j=Q−s+1

[
j −Q+ s+ 2

j2

]

=

Q∑
j=Q−s−1

[
j −Q+ s+ 2

j2

]
, (A.4)

which matches our conjecture. We complete our proof by induction by noting that our

conjecture is true for s = 1. We can then use it by setting s = Q− 4, the last value for

which our induction is valid due to the summation from j = 2 to Q− s− 2, to arrive at

the expression

D
√

∆t

Qh2

{
−

[
Q∑

j=2

1

j2

]
m1(t) +

1

22
m2(t)

+

(
1

32
−

Q∑
j=5

[
j − 4

j2

])
m3(t) +

(
Q∑

j=4

[
j − 3

j2

])
m4(t)

+h2
Q∑

j=5

[
Q∑
i=j

[
i− j + 1

i2

]
(mj−2(t)− 2mj−1(t) +mj(t))

h2

]}
. (A.5)

Twice more we rearrange this term to form second derivatives, leaving an expression

entirely in terms of m1(t) and m2(t),

=
D
√

∆t

Qh2

{
−

[
Q∑

j=2

1

j2

]
m1(t) +

(
1

22
−

Q∑
j=4

[
j − 3

j2

])
m2(t)

+

(
Q∑

j=3

[
j − 2

j2

])
m3(t)
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+h2
Q∑

j=4

[
Q∑
i=j

[
i− j + 1

i2

]
(mj−2(t)− 2mj−1(t) +mj(t))

h2

]}
, (A.6)

=
D
√

∆t

Qh2

{
−

(
Q∑

j=2

[
1

j2

]
+

Q∑
j=3

[
j − 2

j2

])
m1(t) +

(
Q∑

j=2

[
j − 1

j2

])
m2(t)

+h2
Q∑

j=3

[
Q∑
i=j

[
i− j + 1

i2

]
(mj−2(t)− 2mj−1(t) +mj(t))

h2

]}
. (A.7)

Taking the diffusive limit, all the second derivative terms go to zero, while m1(t) and

m2(t) form a first derivative, so that (A.7) simplifies to

D
√

∆t

Qh

(
Q∑

j=2

[
j − 1

j2

])(
m2(t)−m1(t)

h

)
. (A.8)

In the diffusive limit this becomes

D

Q

(
Q∑

j=2

[
j − 1

j2

])
∂u

∂x

∣∣∣∣
x=0

. (A.9)

Appendix A.2. Case when k > 1, but 2k − 1 ≥ Q

We begin by noting that 2k − 1 is the length of jump required for a particle to travel

left from box k and be returned to the same box by reflection. We therefore begin by

considering the case 2k − 1 ≥ Q, where only boxes to the left of xk will contribute

reflecting particles to the total number in k, and later combine this with the case

2k − 1 < Q, where we must also consider particles reflecting into box k which started

from boxes to the right.

We therefore begin by considering the following reflecting terms,

D
√

∆t

Qh2

{
Q−k+1∑
j=1

[
1

(j + k − 1)2
mj(t)

]
−

[
Q−k+1∑
j=1

1

(j + k − 1)2

]
mk(t)

}
. (A.10)

If Q < 2k− 2 then there will be values of l, Q− k+ 1 < l < k, such that the coefficients

of ml(t) are zero. We then use our established iteration 2k − 1 − Q times, so that all

remaining m terms from m1(t) to mQ−k+1 have non-zero coefficients, i.e.

D
√

∆t

Qh2

{
Q−k−1∑
j=1

[
1

(j + k − 1)2
mj(t)

]

+

[
1

(Q− 1)2
− (2k −Q− 1)

Q−k+1∑
j=1

1

(j + k − 1)2

]
mQ−k(t)
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−

[
1

Q2
− (2k −Q)

Q−k+1∑
j=1

1

(j + k − 1)2

]
mQ−k+1(t)

}
. (A.11)

In the case Q = k − 1 this yields

D

Q

{
(k − 1)

k2
+

k − 2

(k + 1)2

}
∂m

∂x

∣∣∣∣
x=0

. (A.12)

Otherwise, after a further Q− k − 1 iterations, we have

D
√

∆t

Qh2

{[
1

k2
−

Q−k+1∑
j=3

[
j − 2

(j + k − 1)2

]
+ (k − 2)

Q−k+1∑
j=1

[
1

(j + k − 1)2

]]
m1(t)

−

[
1

(k + 1)2
+

Q−k+1∑
j=3

[
j − 1

(j + k − 1)2

]
− (k − 1)

Q−k+1∑
j=1

[
1

(j + k − 1)2

]]
m2(t)

}
. (A.13)

In the diffusive limit this becomes

D

Q

(
Q∑

j=k

[
j − 2k + 1

j2

])
∂u

∂x

∣∣∣∣
x=0

, (A.14)

which is consistent with our result for k = 1.

Appendix A.3. Case when k > 1, but 2k − 1 < Q

Considering the case where 2k − 1 < Q, the contribution of reflection to the master

equation can be divided into two parts,

D
√

∆t

Qh2

{
k∑

j=1

[
1

(j + k − 1)2
mj(t)

]
−

[
k∑

j=1

1

(j + k − 1)2

]
mk(t)

−

[
Q−k+1∑
j=k+1

1

(j + k − 1)2

]
mk(t) +

Q−k+1∑
j=k+1

[
1

(j + k − 1)2
mj(t)

]}
. (A.15)

From our previous result, it is clear that the first line of this expression will end up

contributing

D

Q

(
2k−1∑
j=k

j − 2k + 1

j2

)
∂u

∂x

∣∣∣∣∣
x=0

, (A.16)

to the value of Bk, so we can concentrate on the second line. After Q − 2k iterations,

this can be reduced to

−

[
Q−k+1∑
j=k+1

[
1

(j + k − 1)2

]
+

Q∑
j=2k+1

[
j − 2k

j2

]]
mk(t)+

[
Q∑

j=2k

[
j − 2k + 1

j2

]]
mk+1(t).(A.17)
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After a further k− 1 iterations, all terms of mi, i > 2, have been rearranged into second

derivatives and will vanish in the diffusive limit. We are left with

D
√

∆t

Qh2

{
−

[
(k − 1)

Q∑
j−2k

[
j − 2k + 1

j2

]
− (k − 2)

Q∑
j=2k+1

[
j − 2k

j2

]

−(k − 2)

Q−k+1∑
j=k+1

[
1

(j + k − 1)2

]]
m1(t)

+

[
k

Q∑
j−2k

[
j − 2k + 1

j2

]
− (k − 1)

Q∑
j=2k+1

[
j − 2k

j2

]

−(k − 1)

Q−k+1∑
j=k+1

[
1

(j + k − 1)2

]]
m2(t)

}
. (A.18)

After rearranging and taking the diffusive limit, it can be seen that the expression

resolves to

D

Q

Q∑
j=2k

[
j − 2k + 1

j2

]
∂u

∂x

∣∣∣∣
x=0

. (A.19)

Adding the terms from (A.16) and (A.19), we obtain

D

Q

Q∑
j=k

[
j − 2k + 1

j2

]
∂u

∂x

∣∣∣∣
x=0

, (A.20)

which has been shown to hold for all values of k.

Appendix B. Proofs by induction: non-reflecting terms

Appendix B.1. Case when k = 1

The non-reflecting jumping terms relative to the first lattice box are given by

D
√

∆t

Qh2

{
−

[
Q∑

j=1

1

j2

]
m1(t) +

Q∑
j=1

[
1

j2
mj+1(t)

]}
. (B.1)

As in Appendix A, the mQ+1(t) term can be removed from this expression by rearranging

it, together with some other terms, into a second derivative, which will vanish as ∆t→ 0.

The resulting expression is given by

D
√

∆t

Qh2

{
−

[
Q∑

j=1

1

j2

]
m1(t) +

Q−3∑
j=1

[
1

j2
mj+1(t)

]
+

[
1

(Q− 2)2
− 1

Q2

]
mQ−1(t)

+

[
1

(Q− 1)2
+ 2

1

Q2

]
mQ(t)

}
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+

(
1

Q2

D
√

∆t

Q

mQ−1(t)− 2mQ(t) +mQ+1(t)

h2

)
. (B.2)

This is the the expression after one step (i.e. the conversion of the last term into a

second derivative) so we conjecture that after s steps, for s ≤ (Q− 3), it will be of the

form

D
√

∆t

Qh2

{
−

[
Q∑

j=1

1

j2

]
m1(t) +

Q−s−2∑
j=1

[
1

j2
mj+1(t)

]

+

[
1

(Q− s− 1)2
−

Q∑
j=Q−s+1

(
(j −Q+ s)

1

j2

)]
mQ−s(t)

+

[
Q∑

j=Q−s

(j −Q+ s+ 1)
1

j2

]
mQ−s+1(t)

}

+
D
√

∆t

Q

Q∑
j=Q−s+1

(
Q∑
i=j

[
i− j + 1

i2

]
mj−1(t)− 2mj(t) +mj+1(t)

h2

)
, (B.3)

where the terms on the last line will vanish in the diffusive limit. This holds for s = 1,

so we use a proof by induction again (not shown here). The next step is to remove the

mQ−s+1(t) term by separating it out into another vanishing second derivative, so the

expression becomes

D
√

∆t

Qh2

{
−

[
Q∑

j=1

1

j2

]
m1(t) +

Q−s−3∑
j=1

[
1

j2
mj+1(t)

]

+

[
1

(Q− s− 2)2
−

Q∑
j=Q−s

(
(j −Q+ s+ 1)

1

j2

)]
mQ−s−1(t)

+

[
1

(Q− s− 1)2
−

Q∑
j=Q−s+1

(
(j −Q+ s)

1

j2

)
+ 2

Q∑
j=Q−s

(
(j −Q+ s+ 1)

1

j2

)]
mQ−s(t)

}

+

(
Q∑

j=Q−s

(j −Q+ s+ 1)
1

j2
D
√

∆t

Q

mQ−s−1(t)− 2mQ−s(t) +mQ−s+1(t)

h2

)

+
D
√

∆t

Q

Q∑
j=Q−s+1

(
Q∑
i=j

[
i− j + 1

i2

]
mj−1(t)− 2mj(t) +mj+1(t)

h2

)
. (B.4)

It is clear that the first and second lines of this expression recapitulate the postulated

general form after s + 1 steps, as do the fourth and fifth when taken in combination.

Rearranging the coefficients of mQ−s, we can rewrite them as

1

(Q− s− 1)2
+

Q∑
j=Q−s+1

[
−(j −Q+ s)

1

j2
+ 2(j −Q+ s+ 1)

1

j2

]
+ 2

1

(Q− s)2
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=
1

(Q− s− 1)2
+ 2

1

(Q− s)2
+

Q∑
j=Q−s+1

[
(j −Q+ s+ 2)

1

j2

]

=

Q∑
j=Q−s−1

[
(j −Q+ s+ 2)

1

j2

]
, (B.5)

which matches the general form again, completing our proof by induction. When

s = Q− 3, we can write

D
√

∆t

Qh2

{
−

[
Q∑

j=1

1

j2

]
m1(t) +

1

12
m2(t) +

(
1

22
−

Q∑
j=4

[
j − 3

j2

])
m3(t) +

(
Q∑

j=3

[
j − 2

j2

])
m4(t)

}

+
D
√

∆t

Q

Q∑
j=4

(
Q∑
i=j

[
i− j + 1

i2

]
mj−1(t)− 2mj(t) +mj+1(t)

h2

)
, (B.6)

and hence remove m4(t) from the expression as before, subsuming it into the second

derivative term,

D
√

∆t

Qh2

{
−

[
Q∑

j=1

1

j2

]
m1(t) +

[
1

12
−

Q∑
j=3

[
j − 2

j2

]]
m2(t)

+

(
1

22
−

Q∑
j=4

[
j − 3

j2

]
+ 2

Q∑
j=3

[
j − 2

j2

])
m3(t)

}

+
D
√

∆t

Q

Q∑
j=3

(
Q∑
i=j

[
i− j + 1

i2

]
mj−1(t)− 2mj(t) +mj+1(t)

h2

)
. (B.7)

Noting that the coefficients of m3(t) can be consolidated as
Q∑

j=2

[j − 1] /Q we then do

the same to m3(t) and are left with an expression in terms of m1(t) and m2(t) alone:

D
√

∆t

Qh2

{
−

[
Q∑

j=1

(
1

j2

)
+

Q∑
j=2

(
j − 1

j2

)]
m1(t)

+

[
1

12
−

Q∑
j=3

[
j − 2

j2

]
+ 2

Q∑
j=2

(
j − 1

j2

)]
m2(t)

}

+
D
√

∆t

Q

Q∑
j=2

(
Q∑
i=j

[
i− j + 1

i2

]
mj−1(t)− 2mj(t) +mj+1(t)

h2

)
. (B.8)

Then rearranging, and discarding the second derivative terms completely, gives us

D
√

∆t

Qh

(
Q∑

j=1

1

j

)(
m2(t)−m1(t)

h

)
, (B.9)

so in the diffusive limit, keeping the ratio
√

∆t/h constant, we arrive at

D

Q

(
Q∑

j=1

1

j

)
∂u

∂x

∣∣∣∣∣
x=0

. (B.10)
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Appendix B.2. Case when k 6= 1

Having found this expression for the the first box, we now generalise this to derive an

expression for the kth box. The relevant expressions are

D
√

∆t

Qh2

{(
k−1∑
j=1

1

(k − j)2
mj(t)

)
−

(
k−1∑
j=1

1

(k − j)2
+

Q∑
j=1

1

j2

)
mk(t)

+

Q∑
j=1

(
1

j2
mk+j(t)

)}
, (B.11)

where the four summations represent particles jumping in from the left, out to the left,

out to the right and in from the right, respectively.

We notice that, taken together, the terms for jumping in from and out to the right

are the same as the whole expression for the first box, except defined for mk and mk+j

rather than for m1 and mk+1. We therefore know that after Q− 1 steps, using the same

approach as before, these terms will reduce to

−

(
Q∑

j=1

1

j

)
mk(t) +

(
Q∑

j=1

1

j

)
mk+1(t), (B.12)

plus some second derivative terms which will vanish in the diffusive limit. Discarding

these derivative terms for simplicity, the system becomes

D
√

∆t

Qh2

{(
k−1∑
j=1

1

(k − j)2
mj(t)

)
−

(
k−1∑
j=1

1

(k − j)2
+

Q∑
j=1

1

j

)
mk(t)

+

Q∑
j=1

(
1

j

)
mk+1(t)

}
. (B.13)

Taking another step to eliminate mk+1(t), and discarding the resulting second derivative

again, this becomes

0 =
D
√

∆t

Qh2

{(
k−2∑
j=1

1

(k − j)2
mj(t)

)
+

(
1

12
−

Q∑
j=1

1

j

)
mk−1(t)

+

(
Q∑

j=1

1

j
−

k−1∑
j=1

1

(k − j)2

)
mk(t)

}
. (B.14)

In the case where k = 2, the first term is zero, and in the diffusive limit this expression

becomes

D

Q

(
Q∑

j=2

1

j

)
∂u

∂x

∣∣∣∣
x=0

. (B.15)
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After another iteration of the method we get the expression (discarding the second

derivative again),

0 =
D
√

∆t

Qh2

{(
k−3∑
j=1

1

(k − j)2
mj(t)

)
+

(
1

22
−

Q∑
j=1

1

j
+

k−1∑
j=1

1

(k − j)2

)
mk−2(t)

+

(
1

12
+

Q∑
j=1

1

j
− 2

k−1∑
j=1

1

(k − j)2

)
mk−1(t)

}
. (B.16)

In the case where k = 3, the first term is zero again, and in the diffusive limit this

expression becomes

D

Q

(
Q∑

j=3

1

j

)
∂m

∂x

∣∣∣∣
x=0

. (B.17)

For k > 3, it can be shown by induction that the general form for this equation after a

total of s > Q+ 1 steps is

D
√

∆t

Qh2

{(
Q+k−s−2∑

j=1

1

(k − j)2
mj(t)

)

+

(
1

(s−Q+ 1)2
−

s−Q−1∑
j=1

k − 3− j
j2

−
Q∑

j=1

1

j
+ (s−Q)

k−1∑
j=1

1

j2

)
mQ+k−s−1(t)

+

(
s−Q∑
j=1

s−Q+ 1− j
j2

+

Q∑
j=1

1

j
− (s−Q+ 1)

k−1∑
j=1

1

j2

)
mQ+k−s(t)

}
, (B.18)

plus some vanishing second derivative terms. It therefore follows that after s = Q+k−2

steps the remaining terms will be

D
√

∆t

Qh2

{(
1

(k − 1)2
−

k−3∑
j=1

k − 2− j
j2

−
Q∑

j=1

1

j
+ (k − 2)

k−1∑
j=1

1

j2

)
m1(t)

+

(
k−2∑
j=1

k − 1− j
j2

+

Q∑
j=1

1

j
− (k − 1)

k−1∑
j=1

1

j2

)
m2(t)

}
, (B.19)

which can be consolidated in the diffusive limit to yield

D

Q

(
Q∑

j=k

1

j

)
m2(t)−m1(t)

h
=
D

Q

(
Q∑

j=k

1

j

)
∂u

∂x

∣∣∣∣
x=0

. (B.20)

Appendix C. Proof by induction: adsorption terms

We wish to evaluate

D
√

∆t

Qh

Q−k+1∑
j=1

[
Pj+k−1,Q

(j + k − 1)2
mj(t)

]
. (C.1)
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We separate terms out into second derivatives as before, until the only terms which will

not vanish in the diffusive limit are m1 and m2,

D
√

∆t

Qh

{(
Pk,Q

k2
−

Q∑
j=k+2

[
(j − 1− k)Pj,Q

j2

])
m1(t) +

Q∑
j=k+1

[
(j − k)Pj,Q

j2

]
m2(t)

+

(
Q−k+1∑
j=3

[(
Q−k+1∑
i=j

(i+ 1− j)Pi+k−1,Q

i2

)
mj−2(t)− 2mj−1(t) +mj(t)

h2

])}
. (C.2)

As our final step, we separate these terms into an expression in terms of m1(t) alone,

and a first derivative term,

D
√

∆t

Qh

{(
Q∑

j=k

[
Pj,Q

j2

])
m1(t)

+

Q∑
j=k+1

[
(j − k)Pj,Q

j2

]
h

(
m2(t)−m1(t)

h

)

+

(
Q−k+1∑
j=3

[(
Q−k+1∑
i=j

(i+ 1− j)Pi+k−1,Q

i2

)
mj−2(t)− 2mj−1(t) +mj(t)

h2

])}
. (C.3)

The extra value of h means that first derivative terms also vanish in the diffusive limit,

so taking that limit this expression will tend to

D
√

∆t

Qh

(
Q∑

j=k

[
Pj,Q

j2

])
u(0, t), (C.4)

as stated in the main text.
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