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We investigate the effect of turning delays on the behavidgroups of differential wheeled robots and
show that the group-level behaviour can be described byapmat equation with a suitably incorporated
delay. The results of our mathematical analysis are suppday numerical simulations and experiments
with E-Puckrobots. The experimental quantity we compare to our revisedel is the mean time for
robots to find the target area in an unknown environment. Taesport equation with delay better
predicts the mean time to find the target than the standandgoast equation without delay.
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1 Introduction

Much theory has been developed for the coordination and-@oof distributed autonomous agents,
where collections of robots are acting in environments inctlonly short-range communication is
possible [(Reif and Wang, 1999). By performing actions basethe presence or absence of signals,
algorithms have been created to achieve some greater groelptdsk; for instance, to reconnoitre an
area of interest whilst collecting data or maintaining fations (Desai et al., 2001). In this paper, we
will investigate an implementation of searching algorithisimilar to those used by flagellated bacteria,
in a robotic system.

Many flagellated bacteria such Bscherichia coli (E. coliuse a run-and-tumble searching strategy
in which movement consists of more-or-less straight rutsrinpted by brief tumbles (Berg, 1983).
When their motors rotate counter-clockwise the flagellanfarbundle that propels the cell forward with
a roughly constant speed; when one or more flagellar motdaseralockwise the bundle flies apart
and the cell ‘tumbles! (Kim et al., 2003). Tumbles reoridr tell in a more-or-less uniformly-random
direction (with a slight bias in the direction of the previotun) for the next run_ (Berg and Brown,
1972). In the absence of signal gradients the random walkh$ased, with a mean run time 1sec
and a tumble time- 0.1sec. However, when exposed to an external signal gradientell responds
by increasing (decreasing) the run length when moving tdsvéaway from) a favourable direction, and
therefore the random walk is biased with a drift in that diet (Berg) 1975, Koshland, 1980). Similar
behaviour can be observed in swarms of animals avoidingapoesland coordinating themselves within
a groupl(Couzin et al., 2002).

The behaviour oE. coliis often modelled as a velocity jump process where the tireatgpmbling
is neglected as it is much smaller than the time spent run(@tigmer et al.l, 1988; Erban and Othmer,
2004). In such a velocity jump process, particles followgegivelocityu from a set of allowed ve-
locitiesV ¢ RY, d = 2,3, for a finite time. The particle changes velocity probaliitisly according
to a Poisson process with intensiy i.e. the mean run-duration i¥A. A new velocityv is chosen
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according to the turning kern&l(v,u) : V x V — R. Formally the turning kernel represents the proba-
bility of choosingv as the new velocity given that the old velocity wasTherefore, it is necessary that
JT(v,u)dv=1andT >0.

Denoting byp(t, x, V) the density of bacteria which are, at timeat positionx with velocity v, the
velocity jump process can be described by the transportisqu@thmer et al!, 1988)

%(t,x,v) V- Ot X, V) = —A p(t, X, V) + A /VT(v,u) p(t,x, ) du. (1.1)
Assuming thaft andT are constant, one can show that the long-time behaviouedéhsityo(t, x) =

Jv p(t,x,v)dv is given by the diffusion equation (Hillen and Othmer, 200G) A depends on an ex-
ternal signal (e.g. nutrient concentration), then the Itieguvelocity jump process is biased and its
long time behaviour can be described by a drift-diffusiomatepn for o (Othmer and Hillen, 2002;
Erban and Othmelr, 2005).

In this paper, we will study an experimental system baseB-®uckrobots (Bonani and Mondada,
2004). We programme these differential wheeled robotsltovica run-and-tumble searching strategy
in order to find a given target set. In the first set of experitaame concentrate on the simplest possible
scenario: an unbiased velocity jump process in two spatia¢dsions with the fixed speexdt R, the
constant mean run timeé~! € R*, and the turning kernel which is independentiof

S(Ivll-9)

. (1.2)

T(v,u) =
A special feature of th&-Puckrobots is that they can perform turns on the spot as in thesickls
velocity jump process described By ([1.1). In this paper, viltimvestigate in how far[(111) presents
a good description of the behaviour of the robotic systemwaedvill develop an extension of (1.1)
that results in a better match between experimental dataratldematical model. We then apply this
extended velocity jump theory to a biased random walk thinathg incorporation of signals into the
experimental set up.

The paper is organized as follows: in Sectidn 2, we introdheeexperimental system as well as
the obtained data. This data is compared to the classicatityejump theory. In Sectiohl 3, we extend
the velocity jump theory to include finite turning times fanhiased random walks and compare it to
our experimental data, showing a much improved match. Téistheory is in Sectiohl4 applied to a
situation with an external signal and therefore a biasedaarwalk. We conclude our paper, in Section
[B, by discussing the implications of our results .

2 Velocity jump processes in experiments with robots

Equation[(I.11) introduced the density behaviour of the ganvelocity jump process that we are aiming
to investigate using the experimental set-up describeceti@[2.1. In particular, we will initially
concentrate on a simple unbiased velocity jump process théHixed speed € R*, the mean run
durationA ~1 € R* and the turning kernel(1.2). In Sectigh 4 we will presentaions, where the turn-
ing frequency changes according to an external signal, iasléed common in biological applications
(Erban and Othmer, 2005). This fixed-speed velocity jumpese can be viewed as a starting point for
considering more complex searching algorithms. We will destrate that by including a small modifi-
cation (the introduction of a delay to the turning kernelg, @an alter this simple velocity jump process
so that it models the behaviour of tBePuckrobots.
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We are interested in comparing the idealised velocity jumge@ss, given il (111)=(1.2), to robotic
experiments. Due to a restriction in numbers of robots, @rot feasibly talk about a “density” of
robots that could be compared pgt, x,v) as given in[(T11). Therefore, our experiments concentrate
on the escape of robots from a given domain. We may interpigss the target finding ability of the
E-Puckrobots. Using these experiments, we can infer data both@fiutk at the barrier and the exit
times and can compare those to numerical results of velpoitp processes in Sections12.3 2.4,

2.1 Experimental set-up and procedure

To obtain the empirical data, an experimental system ctingief 16 E-Puckrobots was usedz-Puck
robots are small differential wheeled robots with a prograahle microchipl(Bonani and Mondada,
2004). The diameter of each robotis- 75 mm with a height of 50 mm and weight of 200g. Throughout
the experiments, the speed was chosen te 6.8 x 10-?m/sec. The robots turn with an angular
velocity w = 4.65/sec. Full specifications along with a picture are giveln in émpgix A.

In the experiments, we use a rectangular a@ngith walls on three of the 4 edges and an opening
to the target are& along the fourth edge A diagram of the arena along with the notation used can
be seen in FigurEl1 and a photo is shown in Fidgdre 5(1) in” AppeRldwhen considering such an
arena, one has to distinguish between the size of the physiaa and the effective arena (shown in
blue in Figurd1) that the robot centres can occupy. The &ffearena used in the experiments has the
dimensiondx = 1.183m and.y = 1.145m= Ly — £/2. The reflective (wall) boundary and the target
boundary will be denoted a&2,, anddQ », respectively, and can be defined as

00, =QNT, 00Q;=00\0Q. 2.1)

Throughout the remainder of the paper, we will also miggresp.n ) to denote the outwards pointing
normal on the reflective (resp. target) boundary.

During the experiments, robots were initialised insiderageable square pef of effective edge
lengthLo = 0.305m, shown in Figurlg 1 and Figuire 5(b) in Append]x A. A shertipd of free movement
within the pen before its removal allowed us to reliably aske all robots into the full domaif at the
same time as well as randomising their initial positionshimitthe pen. We recorded the exit time
for each of the robots, when its geometric centre enteredattyet area”. Each repetition of the
experiment was continued for 300sec or until all 16 robotklké the arena.

The robots were programmed usi@gnd a cross-compiling tool, with the firmware being trans-
ferred onto the robots via bluetooth. A pseudo-code of tgeréhm implemented on the robots is
shown in Tabl€l. This algorithm represents a velocity jumgzpss in the limit adt — 0 (Erban et al.,
2006), and gives a good approximation as long ds < 1. In the experiments we usdd= 0.25sec!
implying a mean run duration of 4sec afAtl= 0.1sec, resulting il At = 2.5 x 10 2 < 1. Note that,

s, w andA can be changed on a software level onEaRuck For w we chose the maximum possible
value, whilst fors we chose a value below the physical maximum. Choosing a loelecity means
that we mitigate the effects of acceleration and decetardt the running speed since the robots can-
not do this instantaneously as the basic velocity jump madglimes. In a practical setting, one could
interprets andw as given characteristics of the system, whilstan be chosen in a way that accelerates
the target finding process for the given application with¢heice ofA likely to represent a trade-off
between sampling an area and time spent reorienting.

We haveQ N.7 =0, butQ N'T # 0, i.e. Q and.7 touch but do not overlap.
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FiG. 1. Schematic showing of the experimental set-up along wittntgiation used throughout this paper. Dotted border lines
correspond to the effective arena and bold lines to the dattema. For further details see the text.

In addition to the algorithm in Tablg 1, robots were also m@dienplement an obstacle-avoidance
strategy using the four proximity sensors placed at angjteg5° and+47.5° from the centre axis in
the front part of thee-Puck Reflective turns were carried out based on the signalsvetteit these
sensors. As the robots are incapable of distinguishingdtwvalls and other robots, those reflections
occur whether a robot collides with the wall2, or another robot. As a consequence we discuss the
importance of robot-robot collisions on the experimergalits in the next section.

2.2 Relevance of collisions for low numbers of robots

For non-interacting particles which can change directimtantaneously, equatidn (fL.1) accurately de-
scribes the mesoscopic density through time. However, iegperiments the robots undergo reflective
collisions when they come into close contact, rather thasipg through or over each other. For a low
number of particles, we used Monte Carlo simulations to destrate that collisions are not the domi-
nant behaviour and have little effect on the distributiopaiticles. In panels (a) and (b) of Figlie 2, we
compare two Monte Carlo simulations: (a) in which partides allowed to pass through one another
and (b) in which collisions are modelled explicitly. In Figl@(c) we present the solution of equation
(I.1). This comparison demonstrates that the mean derfdineainderlying process converges to the
solution of transport equation (1.1). The parameters eyagldn this model comparison are taken di-
rectly from the equivalent robot experime(g;A, £) = (5.8 x 1072m/sec 0.250sec?, 7.5x 1072 m).

In Figure[2(c), for the differential equation, we use a foster numerical scheme withd = /20,
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[1] Robot is started at positior(0) € Qo. Generate; € [0, 1] uniformly at random, sdt= 0 and
- cos2mrq
v(0) _S< sin2mr; > ’
[2] Position is updated accordingx@t + At) = x(t) + At v(t).

[3] Generate;, € [0,1] uniformly at random. Ifrp < A At, then generates € [0,1] uniformly at
random and set
cOS 23 )

v(t+At)=s ( Sin 27

[4] Sett =t + At and continue with stef?].

Table 1.An algorithmic implementation of the velocity jump process

(@ (b) (c)
15 Ly 1.5 Ly 1.5
1 1 1
Ly/2 [ Ly/2
0.5 0.5 0.5
= o 0 - o 0 o
0 Lx/z Lx 0 Lx/z Lx 0 Lx/2 Lx

Fic. 2. Comparison of individual-based simulations w{fhdl). Each plot shows the resulting density at the final time of the
simulation,20sec. (a) Individual-based simulation usintg x 4 x 10* point particles. (b) Individual-based simulation, average
over4 x 10* runs usingl6 particles with hard-sphere interactions(c) Numerical solution tT.1) using a finite volume method
with parameters given in the text.

Ax = Ly/200 andAt = 10~?sec.

In the Monte Carlo simulations we initialise particles irethffective pen for 20sec where they
undergo hard-sphere collisions. They are then releasedhmtlarger arena where in one simulation
they are point-particles and in the other they undergo méfecollisions as hard-spheres. Instead of
removing particles at the target boundary as shown in Fidui@s we do in the robot experiments),
this edge of the domain is closed so that all edges corresgoreflective boundary conditions. For
transport equation (1.1), we model the initial conditioraagtep function over the pen. These densities
are visualised in Figuid 2. Formally, this initial conditioan be written as

_ XaoO(IVll~-9)
PO.XY) = B (2.2)

wherey g, denotes the indicator function of the initial regi@q. The corresponding boundary condition
is p(t,x,v) = p(t,x,V') for x € Q4 where the reflected velocity is defined as

vV =v-2(v-ng)ng, (2.3)

whereng, is the outward pointing normal at the positiorE 0 Q.
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After 20sec, we record the density in each of the scenaridspagsent the results in Figuré 2.
There is minimal visible discrepancy between the Monte €sitnulations presented in Figure 2 for
our choice of parameter values. In order to compare the ireelations given in Figurgl 2 we also
employed a pairwise Kolmogorov-Smirnov test (Peacock3) 98 value (of the Kolmogorov-Smirnov
metric) close to zero denotes a good fit between the two stionka It corresponds to the probability
that one can reject the hypothesis that the distributioasdantical. When comparing the two Monte
Carlo simulations, a value of 27 x 102 was obtained; when comparing equationl(1.1) with the hard-
sphere Monte Carlo simulation, a value 065x 102 was obtained; finally when comparing equation
(L) with the point-particle Monte Carlo simulation, awmabf 340 x 10-2 was obtained. This supports
the visual observation that all three density distribusiane all highly similar.

In the limit whereN — oo, for N being the number of robots, transport equation|(1.1) caritered
by the addition of a Boltzmann-like collision term_(Harrl&@71; Cercignani, 1988). It can be shown
that the effects of collisions between robots are neglgibt the presented study (Franz etlal., 2014).

2.3 Comparison between theory and experiments: loss of massime

In this and subsequent sections we compare the results apalditions of the experiments described
in Sectio 2.1 with numerical results obtained by solving torresponding mathematical equations.
One way of interpreting the experimental exit-time datayi€bnsidering the expected mass remaining
inside the aren® at a given time. For the experimental data this quantity astetl as a solid (black)
line in Figure[B(d). We compare this result to the variatibthe remaining mass with time from a
numerical solution of (1]11) combined with the following balary conditions:

p(t,x,v) =0, XE€EIQs,V-Ngy <0,

2.4
pt.XV) = plt.x,V), X €3y, 24

where the reflected velocity is defined by[(213). As demonstrated in Seclion 2.2, such gacson is
reasonable since collisions do not have a major impact ipdnameter regime chosen here. The initial
condition for transport equatioh (1.1) is identical to trendition given in equatiof (2.2). The mass
remaining in the domain is then defined as

m(t):'/é/\;p(t,x,v)dxdv,

and is plotted as a dotted (red) line in Figlife B(a). Theahitiass is normalized to 1. An obvious
observation from Figurg[3(a) is that the transport equatisctription does not match the experimental
data well, with the robots exiting the arena significantlywgr than predicted. In this figure, we use
a first-order finite volume method withd = 71/20, Ax = 1.183 Y200 andAt = 10~3sec in order to
solve transport equation (1.1).

2.4 Comparison between theory and experiments: mean exit tiotdemm

An alternative way to interpret the experimental data isdosider mean exit times. Throughout the
experiments only 708 of the 808-(50 x 16) robots left the arena befotgy= 300sec. The average
exit time of those 708 robots was 122sec. In order to be able to compare experimental exit times
with the mean exit time problems, it is necessary to estirtetenean exit time of all 800 robots. Using
the best exponential fit on the mass over time relation (gufe[$(a)), we can estimate the mean exit
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FiGc. 3. (Colour available online.XComparing the experimental results (solid black line) ttusons of (T.1) and (3:2)(3.3).
Panel(a) shows the relative mass of the system over time. The datedréd) shows the numerical solution to equat{@rdl)

with boundary conditiong2.4), the dashed line (blue) shows the numerical solution of yiséesn of equation.2)-3.3) with
boundary conditiong3.4). Panel(b) shows the mean exit time averaged over all velocity dirastics the x-coordinate along the
arena edge. The adsorbing boundary is at x=1.183 m. Thediditie (red) shows the mean exit time computed using equation
(2.8) with boundary conditiongZ2.6), the dashed line (blue) shows the mean exit time computed esjuation(3.21) with
boundary conditiong3.22) In order to allow direct comparison with the experimentatal the shorter bold lines represent the
average of theoretically derived exit times over the redity from which the robots were released in the experimentaiaie.

For both plots parameters and numerical methods are desdrib the text.

time of the remaining 92 robots to be 488sec. The approximate mean exit time established in the
experiments is therefore 158! sec; this value is plotted as the solid (black) line in Fé§§i(b). In order

to be able to compare this value to analytic results, onedesformulate the transport equati¢n{1.1)
into a mean exit time problem. Let us therefore define the negériime T = 7(Xo, Vo) of a robot that
starts at positiomg € Q2 with velocityvg € V. This mean exit time satisfies the following equation

Vo - Ox, T(X0, Vo) — A T(Xo, Vo) + A /\/T(uo,vo)r(xo,uo)duo =-1. (2.5)

In Sectior B, in which delays are modelled, a derivationyggifor the mean exit time problem; setting
the delay term to zero allows one to see how equafiod (2.5piivet. This so-called “backwards
problem” satisfies the following boundary conditions

T(Xo,Vo) =0, Xo€0Q7,vo-ng >0,

2.6
T(Xo,Vo) = T(Xo,Va)a X0 € 0Q4, (2.6)

wherev; is again the reflected velocity with respecitpas defined in(2]3). Due to the arena shape, by
taking the spatial average in tledirection

1 rby/2
Tx(Xo, Vo) = L—y/ ) /ZT(X07YO7VO)dYOa (2.7
kY

one can further simplify the mean exit time problem. In theecevhere the turning kernel is given by
equation[(1.R), one can obtain a problem with two parameteand6, where6 € (—m, 1] is the angle
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defining the velocityg by vo = s(cog6),sin(0)). For 1x = 1x(Xo, 6)

ot AT
scos(e)ﬁ—x — AT+ _2n/ Tx(Xo, @) dpp = -1,
Xo -1

1«(0,0) = (0, 11— 6), (2.8)
T
T(Ly, 8) =0, oe (-3
When initial direction cannot be specified, the mean-exittirom a giverx-position is given by

1 m

ﬁlnrx(m,e)de,

whereTy is the solution of[(Z18). This is plotted as the dotted (réa in Figure B(d). The numerical
solution was performed using an upwind-scheme inxaérection withAx = 1.1825nmy200 and an
angular discretisation a6 = 11/20. Additionally, we take the spatial average of the meahtene
from the initial regionQq and plot this as the bold dashed line in Figdre B(b). Thisdioes not match
well with the corresponding average mean-exit time founthi robot experiments. The numerical
solution of equation[{2]18) predicted a mean exit time of .49%ec, meaning an underestimation of
19.25sec or 18% compared to the experimental exit time of I&Bsec. In the following section we
will extend the classical velocity jump theory to improvéstmatch with the experimental data.

3 Modelling turning delays

In Sectio 2.2, we observed that collisions between robo¢s ot play a major role in explaining the
discrepancy between the transport equafiod (1.1) and fheriexental data presented in Sections$ 2.3 and
[2.4. As well as assuming independently moving particlesttiinsport equatiof (1.1) is also predicated
on the assumption that the reorientation phase takes ajitdglamount of time compared to the running
phase. Since this assumption is not satisfied in our robarerents, this section extends the original
model through the inclusion of finite turning times.

3.1 Introduction of a resting state

Let us initially state two assumptions that apply to the tabgeriment, but might not extend to velocity
jump processes in biological systems, like the run-andstermotion ofE. Coli (Berg, 1988), which
has motivated the searching strategies implemented oniscobo

(a) a new directionv’ € V is chosen as soon as the particle enters the reorientatiomlifte”)
phase;

(b) the time it takes for a particle to reorient (“tumble”) fromlacityv € V to v/ € V is specified
by the functiorK (V/,v) : V xV — R*.
Assumption(b) implies that the turning time is constant in time and equalgfach particle and, in
particular, does not depend on the particle’s history. Rerrbbots studied in this paper, we can ad-
ditionally assume that reorientation phase is equivalert tlirected rotation with a constant angular
velocity w € R*. Therefore, the turning time depends only on the angle kenvtiee current velocity
v €V and the new velocity’ € V andK takes the form

1 vV
K(V = — — . 3.1
Vov) warm(uvn ||v/||) 31)
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We now extend the classical model{1.1) through the intridoof aresting state ft,x, v, n) that for-
mally defines the number of particles currently “tumblingir6ing) towards their new chosen velocity
v and remaining turning timg. The densityp(t, x,Vv) will now only denote the particles which are at
timet in the run phase. The update of the extended system is giveungh

%(t,x,v) + V- Oxp(t,x,v) = —=A p(t, X,V) +r(t,x,v,0"), (3.2)
L txvm) — (X m) = [ pltxu) T (v 8(n —K(v,u))du. (3.3)
ot on \Y

In (3.2) we can see that running particles will enter a tunpiblase with raté and particles that have
finished the tumble signified through= 0 will re-enter the run-phase. Equatidn (3.3) represerds th
linear relation between andn and shows that particles enter the tumble phase dependitigeon
newly chosen velocity direction. In order to guarantee eovettion of mass throughout the system, we
introduce the non-negativity condition fgrthrough

r(t,x,v,n) =0, for t>0, xe€Q, veV and n<0.

Additionally, the boundary conditions for the systdm [3{@)3) are given through

p(t,x,v) =0, X€E0Qs,V-Ny <O,
p(t,X,V) = —r(t,X,V,OjL)/(V'an), Xe an}a V-Ng < 07
34
T XYM~ ) =801~ KOV ) VD)XV, K€ 004, Vg <0,

r(t,X,V,n):O, XG@.Q(@,V-WZ>O,

whereV' is the reflected velocity of given by [2.B8). In order to show that the systdm1(3[2)F(33) i
actually consistent, we prove that mass in the system iseceed if no target is present.

LEMMA 3.1 The total mass in systef@.2)-(3.3) with the boundary conditions given (@.4)in the case
of reflective boundaries everywhe?, = 0Q ,0Q 5 = 0) given through

M(t)://p(t,x,v)dvdx+/7// r(t,x,v,n)dndvdx,
QN aJ/v/o

is conserved.
Proof. We define for every point € dQ, the two subset¥ ™ andV~ of V as follows
VH(x)={veV :v.ny >0}, V (xX)={veV :v-ny<O0}. (3.5)
Additionally, let us define
Rtxv) = [ rtxv.mdn.
0
Integrating[(3.B) with respect tip € [0, ), we obtain after reordering for¢ 9Q:

i—?(t,x,v) =—r(t,x,v,0") +A / p(t,x,u)T(v,u)du.
N
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Hence, for every point ¢ dQ we obtain

% [p(t,x, V) + R(t,x, V)] = =Ap(t,x,v) + A /V p(t,x,u)T(v,u)du—v-Oxp(t,x,v).
Integrating this with respect toe Q andv € V gives

/ /i[p(t,x,v)—i—R(t,x,v)] dvdx:—/ /V-Dxp(t,x,v)dvdx. (3.6)
Ja Jv ot Ja
Using the divergence theorem, we can evaluate the integriddeoright hand side to be
. .v-D dvdx = / / V- Ng(X t,x,v)dvdx
| [ v [ | venat) pit.xv)
/ / (V-ng)p txvdvdx+/ / (V-ng) p(t,x,v)dvdx
20 JV+(x 20

// (v-ngz) p(t,x,v)dvdx — // r(t,x,v,0")dvdx,
00 JV+(x 00

where we have used the second boundary conditidn ih (3.4eifest step. Additionally, fox € 9Q
andv € V~ (x), we obtain by integrating the third boundary condition itdj3vith respect ta € [0, )

TR (LX) = —r(EXV,0%) + (V1) Pt X V).

Integrating this with respect o € dQ andv € V and using the last boundary condition [n_(3.4) we
obtain

/ /a—Rdvdx = / / dvdx
aQ Jv ot o)
= / / r(t,x,v,0") dvdx+/ / (V' -ng) p(t,x, V') dvdx
o)

/ / ((t,%,v,0") dvdx+/ / (V-np) plt,x,v) dvex. (3.7)
Q VH(x)

Summing up the results fromn (3.6) am&?), we obtadlydt = 0 and hence the total makKt) in the
system is conserved. O

3.2 Transport equation with turning delays

We eliminate the resting state from systdm {(3[2)4(3.3) aevile the generalization of the transport
equation[(T1) to a transport equation with a suitably ipooated delay. This can be done by solving
(3.3) forr using the method of characteristics, which results in

r(t,x,v,0) =r(0,x,v,t) + A /\/T(v,u) p(t —K(v,u),x,u)H(t — K(v,u))du, (3.8)

whereH is the Heaviside step function. Let us assume Kyat u) is given by [3.1). TheK (v,u) <
m/w. Considering times$ > 11/, we haver (0,x,v,t) = 0. We can now substitute (3.8) info (B.2) to
obtain

ap

3t (t,x,v) +Vv-Oxp(t,x,v) = —Ap(t,Xx,V) +)\/T (v,u) p(t —K(v,u),x,u)du, (3.9
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fort > m/w. Note that[(3.D) only considers particles in the runningsehand hence does not strictly
conserve mass. The boundary conditions for transport equ@9) are

p(t,x,v) =0, Xe€0Qs,V-ny <O, (3.10)
p(t,x,v) = pt —K(v,V'),x,V'), Xx€dQy,v-ny <O0. '
3.3 Equation for mean-exit time
Equation[(3:B) can be rewritten ag'p = 0, where the operatay is given by
MPp=— f}f v-Oxp— )\p+/\/Tvu p(t — K(v,u),x,u)du. (3.11)

For a forward problem specified by p = 0, coupled with initial and boundary conditions, the backward
problem is given by the adjoint operatef™q = 0, with final condition and adjoint boundary conditions
(Lewins, 1965). The adjoint operator is given by:

(M p,q) = (p,.#*q) where <p,q>:/j;/g/vp(t,x,v)q(t,x,v)dvdxdt.

Using integration by parts and the divergence theorem, we se

(Ap,q) = / //< —v-Oxp— Ap—i—/\/Tvu p(t — K(v, u)xu)du)qdvdxdt

/ / / ( +v-Oxq— Aq+/\/T (u,v)q(t+K(u,v),x u)du) dvdxdt
+/ // p(t,x,v)q(t,x,v)[v-n]dScdvdt (3.12)
—oJv /oo
where we used the boundary conditions
tlm p(t,x,v) :tgrpmq(t,x,v) =0. (3.13)
We will also assume the following boundary conditions

q(t,x,v) =0, X€E0Qs,V-Nngy >0,
q(t,x,v) =qt+ KV ,v),x,V), X€dQyp,v-ny>0.

Then the last term i (3.12) is equal to zero as it is shown ipekgix B. Using[(3.72)£(3.14) and the

variable sef(to,Xo,Vo) to indicate starting times and positions, we can write thekbards equation
*q= 0 in the following form:

(3.14)

a -
- % (to, X0, Vo) — Vo - Ox,d(to, X0, Vo) = —Aq(to, X0, Vo) + A /\/T(uo,vo)q(to+ K (Uo, Vo), X0, Uo)dUo.
(3.15)
More precisely, we should write(tg, X0, Vo) = p(t, X,V |to,Xo,V0), i-€. q gives the probability that the
particle is at the positior with velocity v at timet given that its initial position and velocity at tinig
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wereXg andvp, respectively. Lep = p(t,Xo, Vo) be the probability that the particle is i2 at timet
given that the initial position and velocity is givenxasandvg, respectively. Then

p(t,Xo,Vo)=/ / p(t,x,VIO,Xo,Vo)dvdX=/ / P(0,x,v| —t,Xo,Vo) dvdx.
QJVv QJV

Substitutingo = —t into (3.1%) and using the Taylor expansion, we obtain

a 3
a—f(t,Xo,vO)—Vo-onp(t,Xo,Vo) = —Ap(t,Xo,Vo)Jr/\/VT(uO,Vo)P(t—K(Uo,Vo),Xo,uo)duo

—  —Ap(t,xo,V0) +A /V T (Ug. Vo) p (t, X0, Ug) dlug

7]
—A /\/T(Uo,Vo)K(Uo,Vo)a—f(t,Xo, Up)dug+.... (3.16)

The probability of a single particle leavin@ in time intervallt,t +dt) is p(t, Xo, Vo) — p(t +dt, X0, Vo) &~
—0dp/0t(t,xp,Vvp)dt. Consequently, the expected exit time is given by

0 d 00
T(Xo,Vo) = —/ t—p(t7Xo7Vo)dt:/ p(t;Xo, Vo) dt,
o ot 0
where we use the fact thpa(t, xo,vo) — 0 ast — . Integrating[(3.16) over time, we obtain

Vo - Ox, T(X0, Vo) — A T(Xo,Vo) + A /\/T(uo,vo)r(xo,uo)duo

: (3.17)

= — (1+A/ T(Uo,Vo)K(Uo,Vo)dUo) R
v

where we neglected the higher order terms. By Taylor-exipgnithe boundary terms from equation
(3.10) and integrating in time, we obtain the following bdany conditions

T(Xo,Vo) =0, X0€0Q45,Vg-Ngy >0,

3.18
T(X0,V0) = T(X0,V0) +K(Vp,V0), X0 € dQ%, Vo-nz >0, (3-18)

where the reflected velocity, is given by [Z.8), i.evy = vo — 2(Vo - Ng)nz.

3.4 Comparison between the transport equation theory withydetéad experimental results

Let us now compare the extended theory developed in Se@IdH8.B to the experimental data using
the same approach as in Sectibnd 2.3[anH 2.4. For the case afeha given in Figuld 1, we write

Q = (0,Ly) x (—Ly/2,Ly/2) and .7 = (Lx,») x (—Ly/2,Ly/2) and we simplify equatior (3.17) by

integrating over thg-direction to obtain an average value fofor our position along the-axis. Let us

define this average:
1 rby/2

Tx(X0, 0) = L—y/ ) /ZT(Xo,yo,Vo)dyo- (3.19)
-y

By writing vo = (véx),véy)), integrating[(3.117) and using(3]18), we obtain the follogvequation forr
v) / .
K
v I%_ o [K(oYo) Tx+ A /VT(UONO)TX(XOvUO)dUO

9% Ly (3.20)

=— (1+)\ /\/T(uo,vo)K(uo,vo)du(J) .
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In the case wher€ is the unbiased, fixed-speed, 2-dimensional turning keyineh by [1.2) and using

B.1), we haverg = (véx),vé”) = s(cosb,sinB) and we can evaluate the second integral term in equation
(3:20) explicitly to be

d "L 1 66— T
| oo K(uo,vo)duo = [ "o =16 6.jd0. = 5.
Then [3.20) can be rewritten as follows
O0Tx AT B m 2sA0)
scos(e)% — AT+ ZT./,,TTX(XO’(D)dqo_ (1+ 20 Lo ) (3.21)

whereA(0) is defined by

—(m+0)sin(0), for @€ (—m—m/2,

A(B)=<¢ Bsin(0), for @e[-m/2,1/2],
(rr—0)sin(0), for 0 ¢ [m/2,m.

Interestingly, the contribution of free turning on the rigtand side of[(3.21) is given asA /(2w),
which can be explained using a simple averaging argumecause every tumble takes an average time
of rt/(2/omeg3.

The boundary conditiong (3.118) simplify to

«(Lx,0) =0, 0c(—m/2,1m/2),

TX(O’G) = TX(O,T[— 9)+7T—TZ|9|’ ee (_7-[/2’ 7.[/2) (322)

The numerical solution of (3.21]=(3]22) can be further difiggl by considering the symmetry in angle
x(X0,0) = Tx(X0, —0), i.e. it is sufficient to solve[(3.21) whergp, 8) are restricted to the domain
(0,Ly) x (0, ) with boundary condition$ (3.22).

3.4.1 Comparison between theory and experiments: loss &6 maer time

In this section, we show that the transport theory with delagtter explains the experimental data with
robots by considering the loss of mass over time, as we diceati®[Z.38. In Figuré]3(h), we plot
the mass remaining in the system against time. The solidKplae represents the experimental data,
whilst the results of the classical theory are shown as ddtel) line. The dashed (blue) line shows a
numerical solution of systerh (3.2)=(B.3) that incorpasdlke finite reorientation time into the analysis.
The numerical solution was achieved using a first order fiileme method paired with an upwind
scheme for((3]3). Fof(3.2) we usék = 1.183ny200,At = 10 3sec andA8 = 71/20. For [3.8) we
used the samat = 10 3sec and a discretisation df) = 3.38 x 10 2sec corresponding to the time
it takes to turn from one velocity direction to the next. Rigig(a) demonstrates that the inclusion of
turning delays provides an improved match to the experiaielata.

3.4.2 Comparison between theory and experiments: meatiragiproblem

The mean exit time problem from Section]2.4 can also be baibeielled by the transport equation the-
ory with suitable incorporated delays as is demonstrat€tgare $(b). The solid (black) line represents
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again the experimental data, whilst the classical resuitslaown as dotted (red) lines. The numerical
solution of [3.211) with the boundary conditiohs (3.22) iswh as the dashed (blue) line. This numerical
solution was obtained using the same method as in Sdciiban?l.4ve again plot the average over the
initial pen as a bold dashed line. The bold dashed line indéca predicted mean exit time of 183sec
compared to the experimental value 156sec, an error of approximately7®6 or 431 sec. This repre-
sents a strong improvement to the discrepancy o8%@seen for the model that neglected the turning
events (dotted red line) and goes to show that turning timesaeed non-negligible and can be built
into our model in a consistent manner.

4 Incorporation of a signal gradient

In this section, we are aiming to formulate velocity jump ratsdthat incorporate changing turning
frequencied\. In particular, we are interested in turning frequencies trepend on the current velocity
of the robot as well as its position in the domain, Ae= A (x,v). The general velocity jump model for
this case can be formulated as (Ef.{1.1))

ap

Pt +v-Oxp=—-A(X,v)p+ / A(X,u)T(v,u) p(t,x,u)du, (4.2)
N

with the boundary conditions given ih(2.4). Similarly, wancformulate this system by incorporating
the resting period (cf[{312)=(3.3))

%_Fv.uxp:—/\(x,v) p(t,x, V) +r(t,x,v,0"),
Jr or @2
& an :/V/\(x,u) p(t,x,u) T (v,ux) 8(n — K(v,u))du,

with boundary condition$ (3.4). The systdm {4.2) can agaifobmulated in the form of a delay differ-
ential equation (cf[(3]19))

%-ﬁ-v- Oep = —A(X,V) p+ / A(x,u) T(v,u) p(t — K(v,u),x,u)du, (4.3)
NV

where boundary conditions take the foim (3.10). Similadythe derivation in Sectiop 3.3, one can

derive the backwards problem, with the mean first passagedimation taking the form (c{_(2.5))

vo-onr—)\(xo,vo)r+)\(xo,vo)/T(u,vo)r(xo,u)du
Y (4.4)
=— <1+/\(xo,vo)/vT(u,vo)K(u,vo)du) ,

with boundary conditions given i (2.6).

4.1 Experiments with a signal gradient

In order to compare these generalised velocity jump modeéxperimental results, we introduce an
external signal into the robot experiments presented iti@€2.1. The signal is incorporated in the
form of a colour gradient that can be measured by the lighd@®ron the bottom of the-Puckrobots.
The colour gradient is layed out in such a way that it chantperahex-axis in Figuré 1l with the darker
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end closer to the target area. The reaction of the robotsd@dtour gradient is implemented using the
internal variable and a changing turning frequengyz) that are updated according to

dz _S-z
d¢ (4.5)
A=X+Ar(1l-a(S-2),

whereSe [0, 1] represents the measured signal with increasing valuBaaficating a darker colour in
the gradient. The way the turning frequency is changed isvatetd by models of bacterial chemotaxis
Erban and Othmer (2004).

According to results from_Erban and Othimer (2005), a maaiscdensity formulation for the
robotic system is given through the hyperbolic chemotagistion

2
1 d%n an:SZA—D( aAoSts DS),
0

2o Tt T dno oL+ Aota)

(4.6)
whereS: Q — R indicates the colour gradient amgt,x) describes the concentration of robots(in
Equation [[4.6) can be approximated by the velocity jump essd4.11) with the form for the turning
frequency given by

ataAg
S 14+ Aota

Because the gradient of the colour sigBalas chosen to be parallel to tkeaxis in the experimental
setting, we can again simplify the formulation of the exiéi problem[(414) by averaging along the
y-axis. The resulting equation takes the form

A(%,V) = Ao— yv-OS(x).

4.7)

0t 2ssinf — A(x0) B m
0059 3+ =5 min(0, 71 6) ~A(.6) T+ T/o T(x,6.)d6. =—1-A(x 8),_, (438)
whereA (x, 0) is given through
A(x,60) = Ao — yscosO di(xx) . (4.9

Because the colour changes linearly alongxttais, we approximate the sign&(x) by a linear func-
tion. The values at the end-points were taken directly frobot measurements and hengg) takes

the form s
Sx)=023+039%,  xo033ml. (4.10)
Lx ox
We will use this linear form ofS(x) for all comparisons between experimental data and the efriv

models.

4.2 Comparison between models and experimental results

We now want to compare the experimental data to the genedalislocity jump models presented
in (@.1)-{4.9). The numerical solutions were achieved gigite exact same methods and parameters
as in Sectiom_2]13 and the results can be seen in Flgure 4. Taenpter values used for the robots
arelg = 0.25sec?!, a = 8, t, = 10sec and = 5.8 x 1072 m/sec. The experimental procedure was
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FiG. 4. (Colour available online) Comparison between velocity guptocess and experimental data for experiment including
colour gradient.(a) Mean mass in system over time. Solid line (black): expetiahelata; dotted line (red): numerical solution
of (@) dashed line (blue): numerical solution (.2). Turning frequency (x,v) as given inf@.7).

(b) Mean exit time averaged over all velocities. Solid line ¢Bla experimental data; dotted line (red): numerical saat

of (A.8) for w = «; bold dotted line (red): average of dotted line ov@p; dashed line (blue): numerical solution ¢.8) for

w = 4.65rad sec?; bold dashed line (blue): average of dashed line o@gr Turning frequency\ (x, 8) as given inf9)

For both plots parameters and numerical methods are givehertext.

equivalent to the one presented in Seclibn 2, i.e. we regi¢lageexperiment 50 times with 16 robots,
each time waiting until all of the 16 robots have left the @en

In Figure[4(a) we plot the mass left in the system over timee 3tlid (black) line represents the
percentage of robots still in the arena at that point in tifftee dotted (red) line is a numerical solution
of the velocity jump equation (4.1) with the correspondinghbdary condition$(214). The dashed (blue)
line is a numerical solution of the velocity jump system wigisting state given i (4.2) and boundary
conditions as in(314).

In Figure[4(b) we plot the mean exit time in dependence oftjmrsalong thex-axis. The horizontal
solid (black) line again indicates the experimentally nueed exit time of 7877 sec. The dotted (red)
line shows a numerical solution ¢f(#.8) with instant tunine. w = «. The dashed (blue) line shows a
numerical solution of{4]8) witlw = 4.65radsec?. For both of these solutions the boundary conditions
are given in[(26). The bold horizontal lines again indidgheaverage over the initial pedy.

In both plots in Figurgl4, we see that the models includingeinirning delays (represented through
the dashed (blue) lines) give an improved match comparedetoniodels without this delay. The nu-
merically estimated exit time for the model with instantiimg (cw = «) is 65.59sec (error of 16%
compared to experimental data); with finite turning timds 176 sec (error of %). The remaining
difference between the models and the experimental datbeaxplained by noisy measurement of
the signalS(x) as well as the fact that we used linear approximafion {4.¢6)aged over all robots to
obtain the numerical results. We can conclude from thisf Istiedy of robot experiments including a
colour gradient signal that this signal indeed improvegdanget finding capacity of the robots and that
the models developed in Sectibh 3 can be generalised toparate turning frequencies that change
according to external signals.
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5 Discussion

In this paper, we have studied an implementation of a runtamble searching strategy in a robotic
system. The algorithm implemented by the robots is motd/atea biological system — behaviour of
the flagellated bacteriur. coli. Bio-inspired algorithms are relatively common in swarnbatics.
Algorithms based on behaviour of social insects have beg@teimented previously in the literature,
see for example Garnier et al. (2005); Krieger etlal. (20@0@bb (2000) and Fong etlal. (2003). One
of the challenges of bio-inspired algorithms is that roladsnot have the same sensors as animals.
For exampleE. coli bias their movement according to extracellular chemicatesys. In biological
models, chemical signals often evolve according to thetimmwf reaction-diffusion partial differential
equations (Franz and Erban, 2012; Franz et al.,|2013). Tdret@n implementation of the full run-and-
tumble chemotactic model in the robotic system requirdseeispecial sensors for detecting chemical
signals, e.g. robots for odour detecting (Russell, 200d)eplacing chemical signals by suitable cari-
catures of them, e.g. using glowing floor f6fPuckrobots (Mayet et al., 2010).

The main goal of this paper is to study how the mathematiedhdeveloped foE. coli applies
to the robotic system based &iPucls. Thus we do not focus on technological challenges condecte
with sensing changing chemical signals or their analogResgell| 2001; Mayet et al., 2010), we do,
however, incorporate a constant signal in order to showttietleveloped theory works for unbiased
as well as biased velocity jump processes. If the collistoetsveen particles (robots or bacteria) and
reorientation times can be neglected, then this velocitygprocess is described by the transport equa-
tion (T.1) or [(41) (in the biased case) and the long time Wiebais given by a drift-diffusion equation
(Hillen and Othmer, 2000). In Sectibn .2 we show that cioliis between robots are negligible in our
experimental set up. However, we still observe quantigadifferences between the results based on the
transport equatior (1.1) and robotic experiments.

In Sectior 8 we identify turning delays as the main mechamisntributing to differences between
the mathematical theory developed Earcoliand the results of experiments wiiPucls. We introduce
the resting state in equatioris (3.2)=[3.3) and then dehied@ransport equation with deldy (8.9). Our
delay term is different from models of tumbling Bf coli, because the underlying physical process is
different. Tumbling times oE. coli are exponentially distributed, i.e. they can be expliditigluded
in mathematical models by using transport equations wtikh tnto account probabilistic changes to
and from the resting (tumbling) state (Erban and OthimerdP0d the case of robots, the turning time
depends linearly on the turning angle. The selection of niction is effectively instant and the
main contributing factor to turning delays is the finite timgnspeed of robots. In Sectiéh 4 we apply
the developed theory to an experiment incorporating arreatsignal and show that similar transport
equations can be developed for this situation.

We have studied a relatively simple searching algorithmivated byE. Coli behaviour, but the
transport equations and velocity jump processes natuaglhear in modelling of other biological sys-
tems, such as modelling chemotaxis of amoeboid cells (EabdrOthmer, 2007) or swarming be-
haviour as seen in various fish, birds and insects (Cartilld/£2009; Erban and Haskovec, 2012).
We conclude that the same delay terms a$ in (3.9) would bécappe whenever we implement these
models inE-Pucls. From a mathematical point of view, it is also interestiogénsider coupling of
(3:9) with changing extracellular signals, because sitmaalsduction also has its own delay which can
be modelled using velocity jump models with internal dynesr{Franz et al., 2013; Erban and Othmer,
2004; Xue and Othmer, 2009). Considering higher densitiestmots, the transport equation formal-
ism needs to be further adapted to incorporate the effestsbot-robot interactions. We have recently
investigated this problem and reported our results in Fediad. (2014).
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Appendix A Robot specifications

A photo of a collection oE-Puckrobots and the arena are given in Figure 5. Full details oEttiRuck
specifications are:
i. Diameter: 75 mm. Height: 50 mm. Weight: 200g.
ii. Speed throughout experiments85 10-?msec?, (max speed: A3msec?).
iii. Turning speed throughout experiments68radsec?.
iv. Processor: dsPIC 30 CPU @ 30 MHz (15 MIPS), (PIC Microcalier.)
v. RAM: 8 KB. Memory: 144 KB Flash.
vi. Autonomy: 2 hours moving. 2 step motors. 3D acceleronsete
vii. 8 infrared proximity and light, (TCRT1000)
viii. Colour camera, 640x480,
ix. 8 LEDs on outer ring, one body LED and one front LED,
X. 3 microphones, forming a triangle allowing the deterrtioraof the direction of audio cues.
xi. 1 loudspeaker.
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(b)

FIG. 5. (a)Collection of E-Puckrobots. (b) Photo showing the arena built for the experiments, remagleh and edges made
from cut down medium density fibre.

Appendix B Derivation of adjoint boundary condition (B.14)
Using [2.1) and{3]5), the last term [0 (31 12) can be rewritts follows

/70:0/\//09 p(t7x7v)q(t7X,V)[V~n] dSdvdt
- /—0:0 /ﬁQggUng /\‘/Jr {p(t,X,V)q(t,x,V) - p(t,X,Vl)q(t,X,Vl)}[V . n] dvdSdt,

whereV' is given by [2.8). Separating the above integral into thesa$d Q4 anddQ », and using the
boundary conditio{3.10), we have

/*0:0/\//0_(2 p(t7x7v)q(t7X,V)[V~n] dS,dv dt
:/—Z /am /v {p(t.x,v)q(t,x,v) — p(t — K(V,v),x,v) q(t,x,v)} [v-n] dvdS,dt
- /—oo/mg /v {p(t:x;V)a(t,x,v)} [v-njdvdScdt.

We shift the time variable in the first term on the right hartkesio deduce
[ [ ptxvattxv)iv-ndsdvet
-0 JV JOQ
:/ / p(t,x,v) {q(t,x,v) —q(t+K(V',v),x,v') } [v-n]dvdSdt
—00J9Qg, JVT
[ t,x,v) q(t,x,v) !} [v-n]dvdS.dt.
[ Lo, e XV a0V ) v njaves,

The first term on the right hand side is zero becagy@$e+ K(V/,v),x,V') = q(t,x,v) in (3.14). The

second term vanishes whg(ft, x,v') = 0. Thus we conclude that the last term[in (3.12) is equal to zer
wheng satisfies the boundary conditiohs (3.14).
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