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Abstract14

In this work we implement approximate Bayesian computational methods to improve the15

design of a wound-healing assay used to quantify cell-cell interactions. This is important16

as cell-cell interactions, such as adhesion and repulsion, have been shown to play a role in17

cell migration. Initially, we demonstrate with a model of an unrealistic experiment that we18

are able to identify model parameters that describe agent motility and adhesion, given we19

choose appropriate summary statistics for our model data. Following this, we replace our20
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model of an unrealistic experiment with a model representative of a practically realisable21

experiment. We demonstrate that, given the current (and commonly used) experimental22

set-up, our model parameters cannot be accurately identified using approximate Bayesian23

computation methods. We compare new experimental designs through simulation, and show24

more accurate identification of model parameters is possible by expanding the size of the25

domain upon which the experiment is performed, as opposed to increasing the number of26

experimental replicates. The results presented in this work therefore describe time and27

cost-saving alterations for a commonly performed experiment for identifying cell motility28

parameters. Moreover, this work will be of interest to those concerned with performing29

experiments that allow for the accurate identification of parameters governing cell migratory30

processes, especially cell migratory processes in which cell-cell adhesion or repulsion are31

known to play a significant role.32

Keywords: Cell migration, adhesion, wound-healing, summary statistics, parameter identifica-33
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1 Introduction39

Cell-cell interactions are known to play an important role in several cell migration processes.40

For example, multiple di↵erent cell-cell interactions, such as cell-cell signalling and cell-cell ad-41

hesion [1], have been identified as promoting metastasis in breast cancer. Repulsive interactions42

mediated via ephrins on the surface of neural crest stem cells are known to coordinate the early43

stages of melanoblast migration away from the neural tube [2]. More fundamentally, it is hy-44

pothesised that the emergence of cell-cell interactions over one billion years ago helped establish45

the necessary conditions for multicellular organisms [3].46

47

A well-established approach for studying cell migration is to construct an agent-based model48

(ABM) to simulate the cell migratory process of interest [4–8]. Typically, this involves using49

a computational model to simulate a population of agents on a two-dimensional surface, or in50
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a three-dimensional volume. The agents in the ABM represent cells, and each agent is able to51

move and interact with other agents in the ABM. In this work we use an ABM to simulate a52

wound-healing assay1, an experiment commonly used for studying cell motility [9–15]. Other53

modelling approaches apart from ABMs have been employed to study wound-healing. For in-54

stance, a huge amount of research has been completed using continuum methods to model the55

wound-healing process (see Flegg et al. [16] for a recent review of the field). However, we employ56

an ABM in this work because they provide an intuitive representation of cells, and allow for57

complex behaviours representing biological processes, such as cell-cell interactions and volume58

exclusion, to be easily assigned to agents in the ABM.59

60

If an ABM is an e↵ective2 representation of a cell migration process it can be used for a61

number of purposes. One such purpose for an ABM is to perform in silico experiments to62

test scientific hypotheses. For instance, a recent study used an ABM to demonstrate that a63

simple mechanism of undirected cell movement and proliferation could account for neural crest64

stem cell colonisation of the developing epidermis in the embryonic mouse [4]. Other studies65

involving ABMs have tested hypotheses concerning the influence of matrix sti↵ness and matrix66

architecture on cell migration [17], and the mechanism by which cranial neural crest stem cells67

become ‘leaders’ or ‘followers’ in the embryonic chick to facilitate their collective migration [6–8].68

69

ABMs can also be used to identify parameters in experimental data (with the caveat that70

the parameters are model-dependent). The reasoning behind using an ABM to identify pa-71

rameters in experimental data is as follows: if an ABM is an e↵ective representation of an72

experiment, then the parameter values the ABM requires to reproduce the experimental data73

may be representative of the parameter values in the biological process that is the focus of74

the experiment. For instance, the value of a parameter that describes cell proliferation rate.75

Even if the parameter values in the parameterised ABM are not representative of the parameter76

values in the biological process, the parameterised ABM may still be used to make predictions77

about the process of interest by performing in silico experiments, as described above. These78

predictions can then be experimentally tested.79

1
Wound-healing assays are also often referred to as scratch assays.

2
By an e↵ective representation we mean the ABM captures the salient features of the process of interest, and

is therefore a viable research tool with which to study the process of interest.
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80

Alternatively, if the ABM is an e↵ective representation of an experiment (i.e. the experimental81

data can be reproduced), but the parameters of the ABM are not identifiable, this may suggest82

the experiment is not well-designed (that is, if the experiment has been designed to estimate83

parameters). By parameters not being identifiable we mean that di↵erent parameter values in84

the ABM can reproduce the same experimental data. If this is the case, the ABM can then be85

used to suggest improvements to the experiment’s design, namely by altering the ABM design86

such that the ABM parameters become identifiable. These alterations can then be applied87

to the experiment to improve parameter identifiability. For example, a recent study using an88

ABM has examined the time-points at which data should be collected from an experiment to89

maximise the identifiability of ABM parameters [11]. Other theoretical work has shown how to90

maximise the information content of an experiment by choosing an appropriate experimental91

set-up [18].92

93

The focus of our study is to determine the experimental conditions, and experimental data,94

required for the accurate identification of cell motility and adhesion parameters in an ABM of a95

wound-healing assay. To do so we employ approximate Bayesian computation (ABC), a proba-96

bilistic approach whereby a probability distribution for the parameter(s) of interest is estimated,97

as opposed to a point estimate [10, 19, 20]. Although ABC is well-established in some fields, for98

instance in population genetics [21], its applicability for ABMs representing cell migration is still99

an area of active research [9–11, 22–24]. Recent studies combining ABC and ABMs have been100

able to identify motility and proliferation rates in cell migratory processes [10], and improve the101

experimental design of scratch assays [11]. However, as far as we are aware no study to date has102

used ABC methods to examine the experimental conditions, and experimental data, required103

for the accurate identification of cell motility and adhesion parameters in a wound-healing assay.104

105

Other methods to identify parameters from experimental data using ABMs also exist. For106

instance, a standard approach is to generate point estimates of model parameters that best re-107

produce statistics of the experimental data in the ABM. For example, the generation of motility108

and proliferation rates for agents in an ABM representing a biological process [4]. This approach,109
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while applicable in some circumstances, often gives little insight into how much uncertainty ex-110

ists in the parameters chosen, a factor that can be of importance when analysing biological111

systems. For example, relationships between parameter uncertainty and system robustness are112

thought to be connected in biological function at a systems level [25].113

114

The outline of this work is as follows: in Section 2 we introduce our ABM and define the115

cell-cell interactions we implement. We also outline the method of ABC, and the summary116

statistics we use to analyse the ABM output. In Section 3 we present results and demonstrate117

that, given an ABM representing an unrealistic experiment, we are able to identify ABM pa-118

rameters for agent motility and adhesion. Following this, we replace our ABM representing119

an unrealistic experiment with an ABM that simulates a practically realisable experiment. In120

doing so we show that agent motility and adhesion parameters cannot be successfully identi-121

fied using ABC given the current experimental design. To improve parameter identifiability122

we compare di↵erent experimental set-ups, and show that identification of ABM parameters123

is made more accurate if the size of the domain upon which the experiment is performed is124

expanded, as opposed to the number of experimental replicates increased. Experimentally, ex-125

panding the size of the domain is equivalent to increasing the field of view of the microscope126

used to collect the experimental data. For instance, generating five experimental replicates on127

a larger domain enables more accurate identification of ABM parameters than generating 500128

experimental replicates on a domain eight times smaller. In Section 4 we discuss the results129

presented in this work.130

2 Methods131

In this section we first introduce the ABM. We then define our summary statistics and explain132

ABC and its implementation.133

2.1 Agent-based model134

An ABM is a computational model for simulating the behaviour of autonomous agents. The135

agents in the ABM represent cells, and each agent is able to move and interact with other136

agents. The ABM is simulated on a two-dimensional square lattice with lattice spacing � [26]137
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and size L

x

by L

y

, where L

x

is the number of lattice sites in each row, and L

y

is the number of138

sites in each column. Each agent is initally assigned to a lattice site, from which it can move139

into adjacent sites. If an agent attempts to move into a site that is already occupied by another140

agent, the movement event is aborted. Processes such as this whereby one agent is allowed per141

site are often referred to as exclusion processes [26]. In the ABM time evolves continuously,142

and as our ABM can be modelled as a continuous-time Markov process we use the Gillespie143

algorithm [27] to generate sample paths. Attempted agent movement events occur with rate144

P

m

per unit time. P

m

�t, therefore, is the probability of an agent attempting to move in the145

next infinitesimally small time interval �t. In our ABM a lattice site is denoted by v = (i, j),146

where i indicates the column number and j the row number. Each lattice site has four adjacent147

lattice sites (except for those sites situated on nonperiodic boundaries), and so the number of148

nearest neighbour lattice sites that are occupied by an agent, denoted by n, is 0  n  4. We149

denote the set of unoccupied nearest neighbour lattice sites by U .150

151

The ABM domain size for simulations representing unrealistic experiments is L

x

= 100 by152

L

y

= 100, and the lattice sites indexed by 1  j  L

y

and 1  i  10, and 1  j  L

y

and153

91  i  L

x

are initially occupied by agents. In Fig. 1 the initial conditions in the ABM for the154

unrealistic experiment can be seen. The initial condition in Fig. 1 represents a ‘wound’, in that155

agents are positioned either side of a space, the ‘wound’, that they can migrate into. The agent156

migration into this space simulates one aspect of the wound-healing process. We refer to this157

simulation as unrealistic because the uniformity of the initial conditions would not be possible158

in a realistic experimental setting. The initial condition is also improved from our experimen-159

tally realisable simulation as it is ‘double-sided’, as opposed to the ‘single-sided’ experimental160

data that we will later simulate for our ABM of a realistic experiment. It has been shown that161

double-sided initial conditions can provide more information than single-sided initial conditions162

for some model parameters [11]. For instance, double-sided initial conditions can improve pa-163

rameter identifiability if increasing the number of agents in a simulation improves parameter164

identifiability. For the ABM of an unrealistic experiment all simulations have periodic bound-165

ary conditions at the top and bottom of the domain (i.e. for lattice sites indexed by j = 1 or166

j = L

y

), and no-flux boundary conditions at the left-hand and right-hand boundaries of the167
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Figure 1: The initial condition in the ABM for the unrealistic experiment. Yellow indicates a
site occupied by an agent and blue indicates an empty lattice site.

domain (i.e. for lattice sites indexed by i = 1 or i = L

x

).168

169

It is important to stress that throughout this work we assume that cellular processes such170

as migration have constant parameter values associated with them. Inference procedures do ex-171

ist in which the parameter values associated with cell processes are not assumed to be constant,172

but are instead treated as a random variable sampled from a distribution. These methods are173

often important for sensitivity analysis, or if the data is sampled from a heterogeneous pop-174

ulation [28–30]. However, we do not implement these methods in this work as it would serve175

to prematurely complicate our research question. It is also important to acknowledge that in176

migrating cell populations there are often many more factors at play than simply cell motility177

and adhesion. For instance, the cell cycle and a cell’s response to environmental cues may178

be important factors in a cell’s behaviour. Again, however, we have purposely simplified our179

model to first ascertain if we can accurately estimate parameters associated with cell motility180

and adhesion.181

2.2 Cell-cell adhesion models182

In the ABM cell-cell interactions are simulated by altering the probability of an agent attempting183

to move, depending on the number of nearest occupied neighbours, n, an agent has. We employ184

two models to simulate cell-cell interactions in the ABM, one of which has been published185

before [13, 31]. We define T (v0|v) as the transition probability that an agent situated at site v,186

having been selected to move, attempts to move to site v0, where v0 indicates one of the nearest187
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neighbour sites of v. Therefore, T (v0|v) is only non-zero if v and v

0 are nearest neighbours. The188

transition probability in the first model, which we refer to as model A, is defined as189

T

A

(v0|v) = 1� n↵

4
, (1)190

191

where ↵ is the adhesion parameter. The subscript A on the transition probability in Eq. (1)192

indicates that this is the transition probability for model A. If ↵ > 0 Eq. (1) models cell-cell193

adhesion, and if ↵ < 0 Eq. (1) models cell-cell repulsion. The transition probabilities stated in194

Eq. (1) must satisfy195

0 
UX

v

0

2 U

T

A

(v0|v)  1. (2)196

197

Inequality (2) ensures the probability of an agent, if selected to move, attempting to move to198

any of its unoccupied nearest neighbour sites never exceeds unity, and so constrains the value ↵199

can take. The transition probability in the second model, which we refer to as model B [13, 31],200

is defined as201

T

B

(v0|v) = (1� ↵)n

4
, (3)202

203

and must satisfy204

0 
UX

v

0

2 U

T

B

(v0|v)  1. (4)205

206

As in model A if ↵ > 0 Eq. (3) models cell-cell adhesion, and if ↵ < 0 Eq. (3) models cell-cell207

repulsion.208

209

Models A and B simulate di↵erent types of cell-cell adhesion. In model A the transition proba-210

bility is a linear function of n. Meanwhile, in model B the transition probability is a nonlinear211

function of n. Not only may these di↵erent types of cell-cell adhesion be relevant for di↵erent212

cell types, but implementing two models of cell-cell adhesion allows us to test the robustness of213

the methods we present in this work for identifying cell-cell adhesion parameters.214
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2.3 Summary statistics215

Summary statistics are lower-dimensional summaries of data that provide a tractable means to216

compare di↵erent sets of data. Summary statistics are important because experimental data is217

often of high dimensionality, and if we want to use experimental data to e�ciently guide com-218

putational algorithms we require ways to accurately summarise it. We now define the summary219

statistics we apply to the ABM output and experimental data. Following this we describe how220

we utilise these summary statistics to implement ABC.221

222

We initially use three summary statistics to evaluate the ABM output, all of which have been223

considered previously [9, 31, 32]. Our aim is to ascertain which summary statistic (or combina-224

tion of summary statistics) is most e↵ective for the identification of agent motility and adhesion225

parameters in the ABM.226

Average horizontal displacement of agents227

The average horizontal displacement of all agents, ī, in a given time interval, [t
i

, t

f

], in the ABM228

is calculated as229

ī =
1

N

NX

k=1

|ik
ti
� i

k

tf
|, (5)230

231

where ī is the average horizontal displacement of agents, N is the total number of agents in the232

simulation, ik
ti

is the column position of agent k at time t

i

, and i

k

tf
is the column position of233

agent k at time t
f

. We only look at the horizontal displacement of agents as this is the direction234

in which the majority of agent displacement occurs, due to the initial conditions of the ABM235

(Fig. 1). It has previously been shown that di↵erent cell-cell interactions have di↵erent e↵ects236

on the average displacement of agents in an ABM [31]. As may be expected, repulsive (adhesive)237

interactions between agents tend to increase (decrease) the average displacement of agents, and238

so the average displacement of agents may be a useful summary statistic for distinguishing239

between repulsive and adhesive cell-cell interactions in the ABM.240
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Agent density profile241

The agent density profile at time t in the ABM is calculated as242

C

t

(i) =
1

L

y

LyX

j=1

{v}. (6)243

244

Here C

t

(i) is the agent density profile and is the indicator function for the occupancy of a245

lattice site v (i.e. 1 if an agent occupies lattice site v, and 0 if it is not occupied by an agent).246

We have shown previously that di↵erent cell-cell interactions have di↵erent e↵ects on the agent247

density profile [31]. For instance, repulsive interactions between agents can create a concave248

agent density profile, whereas adhesive interactions between agents can create a convex agent249

density profile. Therefore, the agent density profile may be an e↵ective summary statistic for250

distinguishing between repulsive and adhesive cell-cell interactions in the ABM.251

Pairwise-correlation function252

The final summary statistic we consider is the pairwise-correlation function (PCF). The PCF253

provides a measure of the spatial clustering between agents in an ABM, and has been used254

frequently in the analysis of cell migratory processes [4, 9, 33, 34]. The PCF has also been255

successfully used as a summary statistic for the parameterisation of ABMs of cell migration256

[10]. We use i

k

t

to denote the column position of agent k at time t, il
t

to denote the column257

position of agent l at time t, and define c
t

(m) to be the number of occupied pairs of lattice sites258

for each nonperiodic3 horizontal pair distance m = 1, . . . , L
x

� 1 at time t. This means c
t

(m) is259

given by260

c

t

(m) =
NX

k=1

NX

l=k+1

{|ik
t

� i

l

t

| = m}, 8 m = 1, . . . , L
x

� 1, (7)261

262

where is the indicator function equal to unity if |ik
t

� i

l

t

| = m, and is equal to zero otherwise.263

In Eq. (7) only the pair agent distances in the horizontal direction are counted. Given the264

translational invariance of the initial conditions in the vertical direction of the ABM, the ma-265

jority of important spatial information will be in the horizontal direction4. Binder and Simpson266

3
By nonperiodic it is meant the distance measured between two agents cannot cross the ABM boundary.

4
This approach is in agreement with previous studies [34], which showed the most relevant information from

the PCF summary statistic is perpendicular to the wound axis in a wound-healing assay.
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[34] demonstrated that is necessary to normalise Eq. (7) to account for volume exclusion. The267

normalisation term is268

ĉ

t

(m) = L

2
y

(L
x

�m)⇢⇢̂, 8 m = 1, . . . , L
x

� 1, (8)269
270

where ⇢ = N/(L
x

L

y

), and ⇢̂ = (N � 1)/(L
x

L

y

� 1). Equation (8) describes the expected271

number of pairs of occupied lattice sites, for each nonperiodic horizontal pair distance, m, in a272

population distributed uniformly at random on the domain. Combining Eqs. (7) and (8), the273

PCF is274

q

t

(m) =
c

t

(m)

ĉ

t

(m)
, (9)275

276

where q

t

(m), the PCF, is a measure of how far c

t

(m) departs from describing the expected277

number of occupied lattice pairs for each horizontal distance of an agent population spatially278

distributed uniformly at random on the ABM domain.279

280

It is important to briefly discuss why we chose these summary statistics and not others that281

have also been used to analyse cell migration [10, 22, 24]. Other summary statistics were ini-282

tially implemented in this study, such as the concavity of agent trajectories, the total distance283

travelled by agents, and the leading edge of the agent population. However, these summary284

statistics were found not to be informative for the identification of agent motility and adhesion285

parameters in our ABM, and so were excluded from this work. The three summary statistics we286

implement are encapsulated in Table 1 for the reader’s convenience, in addition to the properties287

each summary statistic summarises in the agent population.288

289

2.4 Approximate Bayesian computation290

Here we introduce our ABC algorithm [19]. We define M as a stochastic model that takes291

parameters ⇥ and produces data D. This relationship can be written as D ⇠ M(⇥). For the292

ABM presented in this work ⇥ = (P
m

,↵), where ⇥ is sampled from a prior distribution, ⇡, and293

so this relationship can be written as ⇥ ⇠ ⇡. The relationship between ⇡ and ⇥ is often written294
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Summary statistic Description
Average horizontal displacement of
agents

Summarises the displacement of agents into the
‘wound’. This displacement is a↵ected by the adhe-
sion of agents and their motility rate. Mathematically
the average horizontal displacement of agents is de-
fined as

ī =
1

N

NX

k=1

|ik
ti
� i

k

tf
|.

Agent density profile Summarises the macroscopic shape of the population
as it moves into the ‘wound’. We have previously
shown this shape is partly determined by agent inter-
actions and motility [31]. Mathematically the agent
density profile is defined as

C

t

(i) =
1

L

y

LyX

j=1

{v}.

Pair-wise correlation function Summarises the spatial correlations/structure estab-
lished by agent movement and interactions. Mathe-
matically the pair-wise correlation function is defined
as

q

t

(m) =
c

t

(m)

ĉ

t

(m)
.

Table 1: The summary statistics we implement and the properties of the agent population they
summarise.

as ⇥ ⇠ ⇡(⇥), which indicates that a new ⇥ sampled from the prior distribution may depend on295

the previous ⇥. This relationship will be relevant later on in this work, however, initially each296

⇥ sampled from ⇡ is independent of the previous ⇥.297

298

The identification of ABM parameters in this work centres around the following problem: given299

a stochastic model, M , and data, D, what is the probability density function that describes ⇥300

being the model parameters that produced data D? More formally, we seek to obtain a poste-301

rior distribution, p(⇥|D), which is the conditional probability of ⇥ given D (and the model, M).302

303

Typically, to compute the posterior distribution a likelihood function, L(D|⇥), is required.304

This is because the likelihood function and posterior distribution are related in the following305

12



manner by Bayes’ theorem:306

p(⇥|D) / L(D|⇥)⇡(⇥). (10)307
308

That is, the posterior distribution is proportional to the product of the likelihood function and309

the prior distribution. Approximate Bayesian computation is a well-known method for esti-310

mating posterior distributions of model parameters in scenarios where the likelihood function311

is intractable i.e. it is impossible or computationally prohibitive to obtain [19].312

313

In many cases for ABC, due to the high dimensionality of the data, D, it is necessary to314

utilise a summary statistic, S = S(D). The summary statistics we employ in this work are315

of varying dimension. For instance, the agent density profile at time t has L

x

data points,316

whereas the average agent displacement at time t has one data point. Therefore we write S(D)317

as S(D)
r,t

, where S(D)
r,t

is the rth data point in the summary statistic at the tth sampling time.318

319

The ABC method proceeds in the following manner: we wish to estimate the posterior dis-320

tribution of ⇥ given D. We now simulate model M with parameters ⇥, sampled from ⇡, and321

produce data D̃. We calculate the di↵erence between a summary statistic applied to D and D̃322

with323

d =
TX

t=1

RX

r=1

|S(D)
r,t

� S(D̃)
r,t

|, (11)324

325

where R is the number of data points in S(D) and T is the number of sampling times. We326

repeat the above process many times, that is, sample ⇥ from ⇡, produce D̃, calculate d with327

Eq. (11), and only accept ⇥ for which d is below a user defined certain threshold (alternatively,328

a predefined number of ⇥ that minimise d can be accepted). This enables us to generate a329

distribution for ⇥ that is an approximation of the posterior distribution, p(⇥|D), given M [35].330

More specific details of the ABC algorithms we implement are introduced when necessary in331

the text.332
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3 Results333

We begin by demonstrating that for an ABM representing an unrealistic experiment we are able334

to identify model parameters, given appropriate summary statistics.335

3.1 Unrealistic experiment336

To ascertain the e↵ectiveness of the chosen summary statistics to identify model parameters, we337

attempt to identify ⇥ from data generated synthetically. Synthetic data is ABM data generated338

with fixed parameter values, and so can be thought of as a simulation equivalent of experimental339

data. To generate the synthetic data using the ABM we proceed as follows:340

1. We choose parameters ⇥ to identify. To help clarify this explanation let us make these341

parameters ⇥ = (P
m

,↵) = (0.5, 0.1) in model A5.342

2. For model A we perform a simulation of the ABM with ⇥ = (0.5, 0.1), generate data,343

D, and calculate summary statistics, S(D), from the simulation at our time-points of344

interest. These times are t = [240, 480, 720]. We choose these times as they are the345

times (in minutes) we will later analyse for the simulations of the practically realisable346

experiment, and correspond to 4 hours, 8 hours and 12 hours into an experiment.347

3. We repeat step 2 ten times and calculate the ensemble average for each summary statistic348

for each individual time-point.349

This procedure generates synthetic data for which we will now attempt to identify the param-350

eters. In this work we present representative results using P

m

= 0.5 and ↵ = 0.1 for model A,351

and P

m

= 0.5 and ↵ = 0.25, and P

m

= 0.5 and ↵ = �0.1 for model B.352

353

Throughout this work we sample P

m

and ↵ for our model from uniform priors. In the case354

of model A, P
m

2 [0, 1] and ↵ 2 [�0.2, 0.25], and for model B, P
m

2 [0, 1] and ↵ 2 [�0.2, 1.0].355

We stipulate these lower and upper bounds for ↵ for both models A and B to make sure in-356

equalities (2) and (4) are satisfied.357

5
A value of Pm = 0.5, given that the simulation time will later be defined to be in minutes, and the length

of a lattice site represents cell length (typically between 10µm-100µm), means that the motility of the agents is

biologically realistic. The parameter ↵ is dimensionless. The experimental realism of these parameters will be

expanded on when we address the simulation of a practically realisable experiment.
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358

We begin by implementing an ABC rejection algorithm that proceeds as follows:359

1. Run 104 ABM simulations, in each case using ⇥ sampled uniformly at random from the360

prior distribution.361

2. Compute the distance d as defined in Eq. (11) for simulation times t = [240, 480, 720].362

3. Accept the 100 parameter values, ⇥, that give the smallest values of d.363

In Fig. 2 the posteriors generated using each of the three summary statistics applied to data364

from simulations of an unrealistic experiment are displayed. The most e↵ective summary statis-365

tic for identifying the synthetic data parameters is the PCF. This is evident in the location of366

the posterior distribution density relative to the red dot (the red dot represents the synthetic367

data parameter values), and the narrow spread of the posterior distribution density as indicated368

by the scale bar in Fig. 2 (c), (f) and (i). The agent density profile summary statistic performs369

less well than the PCF for parameter identification, especially for model A (Fig. 2 (b)). In370

the case of the average agent displacement summary statistic many combinations of P
m

and ↵371

lead to the same average agent displacement, which results in an extended region of possible372

parameter values. To some extent this is to be expected, as increasing either P
m

or ↵ will have373

opposing e↵ects on the average agent displacement. This means that using agent displacement374

as a summary statistic results in parameter identifiability issues in this example.375

376

To quantify the di↵erence between the performance of the di↵erent summary statistics we377

use the Kullback-Leibler divergence (KLD), which is a measure of the information gained in378

moving from the prior distribution to the posterior distribution [36]. The KLD for a discrete379

probability distribution is defined as follows:380

D

KL

(p|⇡) =
X

l

p(⇥
l

|D)log

✓
p(⇥

l

|D)

⇡(⇥
l

)

◆
, (12)381

382

where the index l accounts for all possible discretised parameter pairs (i.e. all combinations of383

P

m

and ↵). A larger D
KL

(p|⇡) value suggests that more information is obtained (the entropy384

of the distribution is reduced) when moving from the prior distribution to the posterior distri-385

bution. However, this does not necessarily mean the posterior distribution is a more accurate386
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Figure 2: (a)-(c) Posterior distributions for model A for an unrealistic experiment with di↵erent
summary statistics: (a) average displacement of agents in the horizontal direction; (b) agent
density profile; (c) PCF. In all cases the red dot indicates the value of the parameters used
to generate the synthetic data, P

m

= 0.5, ↵ = 0.1. As indicated by the colour bar the yellow
regions indicate areas of high relative density of the posterior distribution, while the blue regions
indicate areas of low relative density of the posterior distribution. (d)-(f) Model B, P

m

= 0.5,
↵ = 0.25: (d) average displacement of agents in the horizontal direction; (e) agent density
profile; (f) PCF. (g)-(i) Model B, P

m

= 0.5, ↵ = �0.1: (g) average displacement of agents in
the horizontal direction; (h) agent density profile; (i) PCF.

representation of the parameter distribution. Therefore, the KLD should not be seen as ubiq-387

uitously applicable to inference problems similar to those described in this work. In particular,388

the KLD should be used with caution in scenarios in which an informative prior is used. In389

such scenarios, other methods to measure the improvement of an inference procedure have been390

examined and may be more suitable [37].391

392

To compute the KLD we discretise our posterior distribution onto a lattice with 26 equally393

spaced values of P
m

and 26 equally spaced values of ↵. Computing D

KL

(p|⇡) for all nine plots394
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in Fig. 2 gives: (a) 1.77; (b) 1.70; (c) 2.32; and (d) 2.15; (e) 2.57; (f) 3.35; and (g) 2.45; (h)395

2.72; (i) 3.27. In tandem with the proximity of the peak of the posterior distribution densities396

to the red dots in Fig. 2 (c), (f) and (i), compared to Fig. 2 (a)-(b), (d)-(e) and (g)-(h), this is397

increase in the KLD suggests that the PCF summary statistic is more e↵ective for parameter398

identification than the average agent displacement and agent density profile summary statistics.399

3.2 Practically realisable experiment400

In the previous section we demonstrated that for unrealistic experimental conditions the PCF401

summary statistic is best able to identify synthetic data parameters (for data generated from an402

ABM of an unrealistic experiment), and so moving forward we will only use the PCF summary403

statistic for parameter identification. Previous work has combined summary statistics to im-404

prove parameter identification, and how best to combine summary statistics has been the focus405

of a significant amount of research, with a wide range of di↵erent methods examined [10, 37–40].406

However, in this case combining our summary statistics results in a negligible improvement to407

the posterior distribution6.408

409

We now replace our ABM that represents an unrealistic experiment with an ABM that rep-410

resents an actual experiment, and examine if synthetic data parameters can be identified in411

the ABM. That is, from this point on, we generate all synthetic data from an ABM based on412

a realistic experimental set-up. We provide brief details of the experiment here, however, a413

more detailed description can be found in the supplementary material (Section S2). In Fig. 3414

a typical initial frame of the experimental data can be seen.415

416

In total we have data from five replicates of the experiment. Therefore, we now generate417

our synthetic data from five replicates of the ABM, using the same procedure as described in418

Section 3.1. One key di↵erence between the unrealistic and practically realisable experiments419

is the size of the domain and, because of this, the number of agents in a simulation.420

421

The experimental images were captured by a microscope with a field of view of 597.24 µm422

6
An example of a posterior distribution generated by combining all three summary statistics can be found in

the supplementary material (Section S1).
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Figure 3: Typical initial frame of the experimental data. The cells are positioned such that they
will migrate primarily horizontally into the space without cells, this space represents a wound
(the direction of migration is indicated by the white arrow).

by 597.24 µm. The cell size in the experimental images is consistent with each cell occupying a423

26 µm by 26 µm square lattice site. Given the size of the microscope field of view this means424

the ABM domain size is L

x

= 23 by L

y

= 23. We use the average initial conditions from the425

experiment to generate the initial conditions in the ABM of a realistic experiment. Exact details426

of how the initial condition is generated in the ABM, and how experimental data is mapped to427

a lattice, can be found in the supplementary material (Section S3).428

429

We also alter the ABM to have flux (nonperiodic) boundary conditions at the left-hand and430

right-hand boundaries of the domain (i.e. for lattice sites with j = 1 or j = N

y

). The left-most431

column is kept at or above a constant density throughout the simulation time course. That is,432

after any movement event from the left-most column in the simulation the column density of433

the left-most column is calculated, and if found to be below a certain density agents are added434

to empty sites in this column chosen uniformly at random until the required density is achieved.435

This mechanism ensures that the agent density profile in the ABM replicates the evolution of436

the experimental data throughout the simulation. Further details regarding the implementation437

of this boundary condition are provided in the supplementary material (Section S3). The top438

and bottom boundaries of the ABM domain remain periodic as cells were seen to move in and439

out of the microscope field at these boundaries in the experimental images, at an approximately440

equal rate.441

442

To reduce computational time we now implement a Markov Chain Monte Carlo variant of443
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ABC [19]. Details of the implementation of the algorithm are given in the supplementary ma-444

terial (Section S4). As before we sample from uniform priors P

m

2 [0, 1] and ↵ 2 [�0.2, 0.25]445

for model A, and P

m

2 [0, 1] and ↵ 2 [�0.2, 1.0] for model B, and collect simulation data at446

t = [240, 480, 720]. We collect simulation data at three time-points so that the computational447

time is of practical length (our longest ABC Markov Chain Monte Carlo implementations took448

approximately 192 hours). A value of P
m

= 0.5, given that the simulation time is in minutes,449

and the length of a lattice site is 26 µm, means that the motility of the agents is biologically450

realistic. To be precise, the agents here are approximately five times faster than cell motility451

rates previously published [4, 9]7. However, the cells considered in [4, 9] are not thought to452

exhibit cell-cell adhesion, and so a higher motility rate for the agents is sensible as agent move-453

ment is reduced by cell-cell adhesion in our ABM.454

455

In Fig. 4 it can be seen that the synthetic data parameters cannot be accurately identified456

using ABC, with the PCF summary statistic, given the current ABM design. This is evident457

in the location of the red dots (indicating the parameter values used to generate the synthetic458

data) relative to the posterior distributions, and the wide spread of the posterior distributions459

(indicated by the scale bar in Fig. 4). We have included the ABC Markov chain Monte Carlo460

traces corresponding to Fig. 4 in the supplementary material (Section S5).461

462

A possible reason why the synthetic data parameters cannot be identified is that the synthetic463

data does not accurately represent the parameter values used to generate it, making parameter464

identification infeasible. To examine this possibility we calculated the variance in the PCF465

synthetic data. In Fig. 5 (a)-(c) the blue line indicates the variance in the PCF synthetic data466

for the current simulation design generated from five replicates of the ABM on a domain of467

dimension L

x

= 23 by L

y

= 23.468

469

If the variance in the summary statistics of the synthetic data precludes accurate identifica-470

tion of model parameters using ABC, a sensible strategy may be to examine methods to reduce471

the variance in the summary statistics of the synthetic data. Reducing the variance of the472

summary statistics may mean the synthetic data is a more accurate reflection of the parameters473

7
Using the relationship that the di↵usion coe�cient is equal to Pm�

2
.

19



0.0 0.5 1.0

P
m

-0.20

0.00

0.20
α

0.000

0.001

0.002

0.003

(a)

0.0 0.5 1.0

P
m

0.0

0.5

1.0

α

0.000

0.006

0.012

0.018

(b)

0.0 0.5 1.0

P
m

0.0

0.5

1.0

α

0.000

0.002

0.004

(c)

Figure 4: Posterior distributions for simulations of the realistic experiment described in Section
2.5 using the PCF as a summary statistic for an ABM of dimension L

x

= 23 and L

y

= 23. The
synthetic data is generated from five replicates of the ABM. (a) Model A: P

m

= 0.5, ↵ = 0.1,
(b) model B: P

m

= 0.5, ↵ = 0.25, (c) model B: P
m

= 0.5, ↵ = �0.1. In all cases the red dot
indicates the value of the parameters used to generate synthetic data.
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Figure 5: The variance in the PCF synthetic data for model B with P

m

= 0.5, ↵ = 0.25 and
di↵erent ABM domain sizes. Panels (a)-(c) display synthetic data generated from five replicates
of the ABM, panels (d)-(f) display synthetic data generated from 500 replicates of the ABM.
The domain size is indicated in the legend.

values used to generate it. This may also explain why parameter identification for the unreal-474

istic experiment was successful, as the variance in the summary statistics of the synthetic data475

was much smaller than for the practically realisable experiment (data not shown).476

477

We conjectured that the variance in the summary statistics of the synthetic data could be478
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reduced in two ways:479

1. increasing the number of ABM replicates used to generate the synthetic data;480

2. increasing the size of the ABM domain while keeping the column density of the initial481

conditions invariant. An example of this proposed initial condition is given in Fig. 6 (b),482

in which the domain is twice the size of that in Fig. 6 (a). Importantly, increasing the483

size of the ABM domain increases the number of agents in the simulation, and can be484

thought of as equivalent to increasing the field of view of the microscope.485
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Figure 6: Increasing the size of the simulation domain while keeping the initial column densities
the same. The domain in (b) is twice the size of that in (a), however, the average initial density
of each column is the same in both (a) and (b).

In Fig. 5 the variance in the PCF synthetic data for model B with P

m

= 0.5 and ↵ = 0.25486

for di↵erent domain sizes and varying numbers of replicates can be seen. It is evident that the487

variance in the PCF calculated from 500 replicates of our ABM on a L

x

= 23 by L

y

= 23 sized488

domain (blue line in Fig. 5 (d)-(f)) is greater than the variance in the PCF calculated from five489

replicates of our ABM on a L

x

= 23 by L

y

= 184 sized domain (purple line in Fig. 5 (a)-(c)).490

This can be understood by considering Eq. (7): the number of occupied lattice pairs for each491

horizontal pair distance used to generate the PCF does not increase linearly with the number492
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of agents. Specifically, the number of occupied lattice pairs for each horizontal pair distance493

that generates the PCF is proportional to8494

N(N � 1)

2
. (13)495

496

Therefore, the identification of parameters in experimental data using the PCF as a summary497

statistic may be best facilitated by increasing the size of the domain upon which the experiment498

is performed, rather than increasing the number of replicates of an experiment with a smaller499

domain. Further variance plots for models A and B for the PCF summary statistic can be found500

in the supplementary material (Section S6).501

502

It is important to note that it is also the case for the agent density profile synthetic data,503

that increasing the size of the domain is more e↵ective at reducing variance in the synthetic504

data than increasing the number of replicates. If generated from 500 replicates of our ABM on505

an L

x

= 23 by L

y

= 23 sized domain, the agent density profile synthetic data will have greater506

variance than the agent density profile synthetic data generated from five replicates of our ABM507

on an L

x

= 23 by L

y

= 184 sized domain (data not shown). In this case the reduction in vari-508

ance is an artefact of the lattice-based model. This is because the density of each column in the509

ABM can take on a greater range of values between 0 and 1 as the column length is increased,510

leading to a reduction in variance in the agent density profile synthetic data (especially in the511

initial conditions of the simulations used to generate the synthetic data). However, as we do not512

use the agent density profile summary statistic to identify parameters in the current simulation513

design we do not pursue this matter further.514

3.3 Improving the experimental design515

We now confirm that more accurate identification of synthetic data parameters can be carried516

out by expanding the domain upon which the experiment is performed, as opposed to increasing517

the number of experimental replicates.518

519

8
This is not quite correct as a distance of ‘0’ between agents, that is they share the same column, is not

accounted for in Eq. (7). To make Eq. (13) exact is not trivial as the expected number of agents each agent

shares a column with depends on both the column position and simulation time.
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In Fig. 7 (a)-(c) we plot the posterior distribution for synthetic data generated from 500520

replicates of our ABM on a L

x

= 23 by L

y

= 23 sized domain, while in Fig. 7 (d)-(f) we plot521

the posterior distribution generated from synthetic data generated from five replicates of our522

ABM on a L

x

= 23 by L

y

= 184 sized domain9. As predicted, it is apparent that increasing the523

domain size is more e↵ective for parameter identification than increasing the number of repli-524

cates used to generate the synthetic data. This is evident in the location (and narrow spread) of525

the posterior distribution relative to the red dot, whereby the peak of the posterior distribution526

is closer to the red dot in the case of Fig. 7 (d)-(f) compared to Fig. 7 (a)-(c). Despite this,527

the identification of the parameters for repulsive interactions remains somewhat elusive (Fig. 7528

(f)). A possible reason for this is that the repulsive interaction we present here is a weak one,529

due to the constraint of Eqs. (2) and (4), and larger values of |↵| are easier to identify as they530

have a more profound e↵ect on the behaviour of the agent population.531

532

Computing D

KL

(p|⇡) for all six plots in Fig. 7 gives: (a) 2.55; (b) 2.69; (c) 1.53; and (d)533

3.69; (e) 2.97; (f) 3.54. In tandem with the proximity of the peak of the posterior distribution534

densities to the red dots in Fig. 7 (d)-(f) compared to Fig. 7 (a)-(c), this increase in the KLD535

suggests that generating synthetic data on a larger domain is more e↵ective for improving pa-536

rameter identification than increasing the number of replicates used to generate the synthetic537

data.538

4 Discussion539

In this work we have presented methods to identify motility and adhesion parameters in an540

ABM of a wound-healing assay. Our findings suggest that for a commonly performed exper-541

iment increasing the size of the experimental domain can be more e↵ective in improving the542

accuracy of parameter identification, when compared to increasing the number of replicates543

of the experiment. This is because increasing the size of the domain, which is equivalent to544

increasing the number of cells in the experiment, more e↵ectively reduces the variance in the545

summary statistics of the synthetic data from which the parameters are identified. The reason546

for this reduction in variance is explained by Eq. (7), where the number of agent pair counts that547

9
A Markov chain Monte Carlo trace corresponding to Fig. 7 (e) can be found in the supplementary material

(Section S5).
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Figure 7: (a)-(c) Posterior distributions for simulations of the realistic experiment using the PCF
as a summary statistic for an ABM simulated on a domain of dimension L

x

= 23 by L

y

= 23
with synthetic data generated from 500 replicates. (a) Model A: P

m

= 0.5, ↵ = 0.1, (b) model
B: P

m

= 0.5, ↵ = 0.25, (c) model B: P
m

= 0.5, ↵ = �0.1. (d)-(f) Posterior distribution plots
for simulations of the experiment using the PCF as a summary statistic for an ABM simulated
on a domain of size L

x

= 23 by L

y

= 184 with synthetic data generated from five replicates.
(a) Model A: P

m

= 0.5, ↵ = 0.1, (b) model B: P
m

= 0.5, ↵ = 0.25, (c) model B: P
m

= 0.5,
↵ = �0.1. Further figure information can be found in Fig. 4.

generate the PCF increases nonlinearly with the number of agents on the domain. In addition,548

increasing the size of the experimental domain may make the collection of experimental data549

less time-consuming, as potentially fewer replicates of the experiment will have to be conducted.550

For instance, five replicates of the experiment on a larger domain provides more information551

about parameters than 500 replicates of the experiment on a smaller domain (in the examples552

we have presented in this work). Therefore, a comprehensive study of all summary statistics553

commonly used for analysing cell migration, to understand how their variance scales with the554

size of the experimental domain, is an interesting avenue for further research.555

556

We also studied using the average horizontal displacement of agents and the agent density557

profile as summary statistics. These were found to be less e↵ective than the PCF in parameter558

identification. This was especially the case for the averaged agent displacement, whereby a559

range of adhesion and motility parameters could result in the same average agent displacement.560

This result suggests that agent displacement may not be a suitable summary statistic for iden-561

24



tifying cell motility and adhesion parameters, due to parameter identifiability issues.562

563

The most obvious extension to the work presented here is to experimentally validate the find-564

ings. That is, expand the wound-healing experimental domain and demonstrate: i) the cell565

migratory process can be e↵ectively described by the model we have presented here; and ii)566

the experimental parameters are identifiable given a larger experimental domain. If validated,567

evidence may be provided that demonstrates which adhesion model, A or B, is more applicable568

to the cell type under consideration. Subsequently, we could add further agent behaviours to569

the ABM, such as the role of the cell cycle. This may allow us to better capture the behaviour of570

the cell populations we have studied here, and so produce more realistic models of cell migration.571

572

To conclude, the findings presented in this work will be of particular interest to those con-573

cerned with performing experiments that enable the e↵ective parameterisation of cell migratory574

processes. In particular, cell migratory processes in which cell-cell adhesion or repulsion are575

known to play an important role. More generally, we have also suggested time and cost-saving576

alterations to a commonly performed experiment for identifying cell motility parameters.577
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[17] D. K. Schlüter, I. Ramis-Conde, and M. A. J. Chaplain. Computational modeling of single-636

cell migration: the leading role of extracellular matrix fibers. Biophysical Journal, 103(6):637

1141–1151, 2012.638

[18] J. Liepe, S. Filippi, M. Komorowski, and M. P. H. Stumpf. Maximizing the information639

content of experiments in systems biology. PLoS Computational Biology, 9(1):e1002888,640

2013.641

27



[19] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without642
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S1: Combining summary statistics15

In Fig. S1 we plot the posterior distribution generated from combining all three summary

statistics1. As described in the main text, there is little di↵erence between Fig. S1 in the

supplementary material and Fig. 7 (e) of the main text. We quantify the di↵erence between

the posterior distributions in Fig. S1 and Fig. 7 (e) as follows:

Di↵erence =
1

N

NX

n

|pA(⇥
n

|D)� p

B(⇥
n

|D)|, (S1)

where the index n accounts for all possible discretised parameter pairs, pA(⇥
n

|D) is the posterior16

distribution in Fig. S1, and p

B(⇥
n

|D) is the posterior distribution in Fig. 7 (e). The di↵erence17

between the posterior distributions in Fig. S1 and Fig. 7 (e) is 0.00006, which shows that the18

performance of all three summary statistics is little di↵erent from the performance of the PCF19

summary statistic individually. By means of comparison the di↵erence between the posterior20

distributions in Fig. 7 (b) and Fig. 7 (e) is 0.00031.21

0.0 0.5 1.0

P
m

0.0

0.5

1.0

α

0.000

0.008
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0.024

(a)

Figure S1: Posterior distribution plot for simulations of the experiment using all three summary
statistics for an ABM simulated on a domain of dimension L

x

= 23 by L

y

= 184 with synthetic
data generated from five replicates. Model B: P

m

= 0.5, ↵ = 0.25.

1
To combine all three summary statistics we implement Eq. (11) (equivalently Eq. (S3)). If the condition

stipulated in Section S4 fails for any individual summary statistic the parameter values are rejected.

2



S2: Experimental methods22

The details of the experiment we aim to identify cell motility and adhesion parameters from is as23

follows: Fucci2a 3T3 flp-In cells were maintained in dulbeccos modified eagle medium (DMEM)24

containing 10% fetal calf serum, 1% Penicillin/Streptomycin and 100µg/ml Hygromycin B [1].25

A silicon well (Ibidi) was attached to the surface of a 24-well glass-bottomed plate (Greiner26

bio-one) by surface tension and allowed to attach overnight. Cells were plated within the in-27

sert and allowed to attach phenol-red free DMEM (Biochrom) containing 10% fetal calf serum,28

and 1% Penicillin/Streptomycin. Cells migrating from the leading edge of the cell mass were29

then imaged with a 20x objective using a Nikon A1R inverted confocal microscope in a heated30

chamber supplied with 5% CO2 in air. All image analysis tasks (required to generate the initial31

conditions for the ABM of a practically realisable experiment) were performed using custom32

written macros for the Fiji [2] distribution of ImageJ an open source image analysis package33

based on NIH Image [3]. The cell nucleus of each cell was identified by merging of the green34

and red channels containing the Fucci signal followed by segmentation. The centre of mass of35

each object in the segmented image was then determined automatically.36

37

In total we have data from five replicates of the experiment. Each data set contains cell38

track data for every cell for sixty-four hours imaged at twenty minute intervals. Therefore,39

we have the information required to apply our summary statistics to the experimental data.40

More specifically, we have the position of all cells at each time interval so that the expected41

horizontal displacement of cells, cell density profile, and PCF may be computed.42

S3: Practically realisable experiment ABM design43

Initial conditions44

To map the position of cells in the experimental images where cell position is a continuous

variable, (x, y), to a discrete lattice site, (i, j), we use the following formulae

i =
l
x

�

m
, j =

l
y

�

m
, (S2)
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where d·e denotes the ceiling function and � is as defined in the main text. Given the experi-45

mental data and the lattice size no two cells were mapped to the same lattice site2.46

47

The application of Eq. (S2) to the initial frames of the five experiments allowed the average48

initial condition for the experimentally realistic ABM to be calculated. These initial condi-49

tions are expressed in terms of the average initial density of each column. These average initial50

column densities are:51

Column Initial density

1st 0.8261

2nd 0.7826

3rd 0.8261

4th 0.8261

5th 0.8261

6th 0.7391

7th 0.6957

8th 0.6087

9th 0.5217

10th 0.2609

11th 0.2174

12th 0.0870

13th � 23rd 0

52

To generate the initial conditions at the start of each ABM realisation each site in a column53

receives an agent uniformly at random at a probability equal to the average initial column54

density of the column the site is in. Therefore, the initial condition in the ABM is generated55

such that an ensemble average of the initial conditions of many realisations would equal the56

averaged initial conditions from the experiment. This initial condition is then used in the57

experimentally realistic ABM simulations. An example of this initial condition can be seen in58

the main text.59

2
If two cells did map to the same lattice site, one of these cells would be placed in the nearest unoccupied

lattice site to the original lattice site. If there was more than one nearest unoccupied lattice site, one of these

sites would be chosen uniformly at random for the cell to be mapped to.
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Boundary conditions60

Following the start of the simulation the density of the first column is checked after each agent61

movement event out of the first column in the ABM. If the first column’s density is below62

0.6, agents are added uniformly at random to empty sites in the first column until the density63

of the first column is greater than 0.6. This mechanism and density ensures that the agent64

density profile in the ABM matches the experimental density profile for the entire course of the65

experimental data throughout the simulation.66

S4: Markov chain Monte Carlo ABC algorithm67

We define a transition kernel w that proposes ⇥0 values as a bivariate uniform distribution. The68

transition kernel ensures P
m

2 [0, 1] and ↵ 2 [�0.2, 0.25] for the model A, and P

m

2 [0, 1] and69

↵ 2 [�0.2, 1.0] for the model B. The parameter d⇤ is a constant selected so that approximately70

one percent of the proposed parameter sets are accepted, the value of which is obtained through71

trial and error.72

73

To implement a Markov chain Monte Carlo method (Metropolis-Hastings algorithm) we proceed74

as follows [4]:75

R1 If at ⇥ step to ⇥0 according to a transition kernel w(⇥ ! ⇥0).76

R2 Simulate D̃ from the model using ⇥0 and calculate the summary statistic S(D̃) at each

sampling point. That is, for each individual t = [240, 480, 720] calculate d:

d =
RX

r=1

|S(D)
r,t

� S(D̃)
r,t

|, (S3)

If d > d

⇤ (at any t) reject ⇥0 and return to R1.77

R3 Calculate78

h = min

✓
1,

⇡(⇥0)w(⇥0 ! ⇥)

⇡(⇥)w(⇥ ! ⇥0)

◆
.79

R4 Accept ⇥0 with probability h.80

R5 Return to 1 until 106 steps have been attempted.81

5



Initially, we sample ⇥ randomly from the prior distribution until a parameter set has been82

accepted (R4).83

S5: Markov chains: trace plots84

In Fig. S2 (d)-(i) the Markov chain traces for the posterior distributions for Fig. 4 in the main85

text are displayed. The mean and variance values for these chains are: (d) mean = 0.4722,86

variance = 0.0115; (e) 0.2202, 0.0050; (f) 0.6236, 0.0356; (g) -0.0377, 0.0102; (h) 0.0087, 0.0176;87

(i) -0.0734, 0.0074. The reason as to why the estimation of the values of P
m

and ↵ in the88

synthetic data is inaccurate in Fig. S2 is because the synthetic data (in conjunction with the89

PCF summary statistic) does not provide an accurate enough representation of the parameters90

with which the synthetic data was generated i.e. the parameters are not identifiable. Therefore,91

the Markov chain Monte Carlo ABC algorithm is not able to work e↵ectively.92

93

In the case of Fig. S3 (corresponds to Fig. 7 (e) in the main text) the same algorithm ac-94

curately estimates the parameter values used to generate the synthetic data. This is because95

the synthetic data in this case is an accurate representation of the parameters used to generate96

it. The mean and variance values for these chains are: (b) 0.5627, 0.0086; (c) 0.2718, 0.0017.97
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Figure S2: Markov chain Monte Carlo trace plots for Fig. 4 in the main text. In panels (a)-(c)
the yellow dot indicates the initial value of the chain used to generate the posterior distributions,
and the red dot indicates the parameter values used to generate the synthetic data. In panels
(d)-(i) the red line indicates the value of the parameter used to generate the synthetic data.
Panels (d)-(i) display individual parameter trace plots. Panels (a), (d) and (g) correspond to
model A, P

m

= 0.5, ↵ = 0.1. Panels (b), (e) and (h) correspond to model B, P
m

= 0.5, ↵ = 0.25.
Panels (c), (f) and (i) correspond to model B, P

m

= 0.5, ↵ = �0.1.
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Figure S3: Markov chain Monte Carlo trace plots for Fig. 7 (e) in the main text. In panel (a)
the yellow dot indicates the initial value of the chain used to generate the posterior distribution,
and the red dot indicates the parameter values used to generate the synthetic data. In panels
(b) and (c) the red line indicates the value of the parameter used to generate the synthetic data.
Panels (b) and (c) display individual parameter trace plots. Panels (a), (b) and (c) correspond
to model B, P

m

= 0.5, ↵ = 0.25.
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S6: Further variance plots for models A and B for the PCF98

summary statistic.99
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Figure S4: The variance in PCF synthetic data for model A with P

m

= 0.5, ↵ = 0.1 for di↵erent
ABM domain sizes. Panels (a)-(c) display synthetic data generated from five replicates of the
ABM, panels (d)-(f) display synthetic data generated from 50 replicates of the ABM and panels
(g)-(i) display synthetic data generated from 500 replicates of the ABM.
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Figure S5: The variance in the synthetic data for model B with P

m

= 0.5, ↵ = 0.25 for di↵erent
ABM domain sizes. Panels (a)-(c) display synthetic data generated from five replicates of the
ABM, panels (d)-(f) display synthetic data generated from 50 replicates of the ABM and panels
(g)-(i) display synthetic data generated from 500 replicates of the ABM.
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Figure S6: The variance in PCF synthetic data for model B with P

m

= 0.5, ↵ = �0.1 for
di↵erent ABM domain sizes. Panels (a)-(c) display synthetic data generated from five replicates
of the ABM, panels (d)-(f) display synthetic data generated from 50 replicates of the ABM and
panels (g)-(i) display synthetic data generated from 500 replicates of the ABM.
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