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Abstract

Mathematical models describing cell movement and proliferation are important tools in de-

velopmental biology research. In this work we present methods to include the effects of do-

main growth on the evolution of spatial correlations between agent locations in a continuum

approximation of a one-dimensional lattice-based model of cell motility and proliferation.

This is important as the inclusion of spatial correlations in continuum models of cell motility

and proliferation without domain growth has previously been shown to be essential for their

accuracy in certain scenarios. We include the effect of spatial correlations by deriving a sys-

tem of ordinary differential equations that describe the expected evolution of individual and

pair density functions for agents on a growing domain. We then demonstrate how to simplify

this system of ordinary differential equations by using an appropriate approximation. This

simplification allows domain growth to be included in models describing the evolution of

spatial correlations between agents in a tractable manner.

1 Introduction

Many important biological processes during development involve the movement and proliferation

of cell populations on growing domains [1]. For example, cranial neural crest stem cells, a subset
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of a migratory cell population that give rise to a diverse lineage, have been shown to migrate

along the developing cranofacial region in embryonic chickens [2–4]. Similarly melanoblasts,

neural crest precursors to melanocytes, have been shown to migrate through the developing

dorsal lateral epithelium in the embryonic mouse [5–7].

In both of the aforementioned examples, individual-based models (IBMs) have played an im-

portant role in research into these cell migratory processes [3, 4]. Studies involving IBMs have

shown, in the case of melanoblasts, that the distribution of the migrating cells is thought to

determine fur patterning and pigmentation defects such as piebaldism [8]. In the case of cranial

neural crest stem cells, IBMs have helped to elucidate the mechanisms by which a cell becomes

a ‘leader’ or a ‘follower’ in the collective cell migration process [2–4]. IBMs allow an intuitive

representation of cells (referred to as ‘agents’ in the IBM), and allow for complex behaviours,

such as cell-cell interactions and volume exclusion, to be easily assigned to agents in the model

[9–12]. Importantly, IBMs can capture the effects of spatial correlations and heterogeneity in

agent populations, and the ramifications spatial correlations can have on density-dependent

processes such as cell migration and proliferation [13–23].

IBMs are also often amenable to approximation by population-level continuum models. Ac-

curate continuum approximations of IBMs are important tools for understanding biological

systems as, in contrast to IBMs, they generally allow for more mathematical analysis. This

analysis can be crucial to form a mechanistic understanding of biological systems, which is

not always apparent (or feasible) from simply studying the averaged results of a large number

of repeats of an IBM. For example, using an IBM to conduct an exhaustive exploration of a

large parameter space in order to examine a model’s behaviour is often not possible. Analyti-

cal techniques can often be employed for this purpose. However, in certain scenarios standard

mean-field partial differential equation (PDE) descriptions of IBMs, such as those describing

the expected evolution of the population density, suffer from the limitation that they neglect

to incorporate the impact of spatial correlations and clustering. Therefore, in order to derive

accurate continuum approximations of IBMs it is often necessary to include the effects of spatial

correlations in continuum models [14–22, 24–29]. Furthermore, having the mathematical tools
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to directly compute spatial correlations allows them to be analysed, which can give important

insights into the biological process being studied. For instance, spatial correlations indicative

of different types of cell-cell interactions can be observed in cell populations [13, 30, 31], and

spatial correlations between cells are thought to play an important role in tumour growth [32].

In this work we examine how domain growth affects the evolution of individual and pair den-

sity functions for agents in an IBM. A large body of literature already exists concerning the

evolution of individual and pair density functions on static domains [14–23], the most striking

examples of which show that standard mean-field PDE descriptions can be wholly insufficient

approximations of the evolution of the agent density in IBMs in certain scenarios [14, 17]. We

therefore also display how to integrate the results presented here into pre-existing models. In

doing so we simplify the implementation of the methods we present so that they can be more

easily applied to the study of complex systems.

The outline of this work is as follows: to begin we introduce our one-dimensional IBM and

domain growth mechanism in Section 2.1. We then define the individual and pair density func-

tions, and derive a system of ordinary differential equations (ODEs) describing the evolution of

the individual and pair density functions with respect to time on a growing domain in Section

2.2. To test the accuracy of this system of ODEs we compare its numerical solution with en-

semble averages of the individual and pair agent densities from the IBM for a range of initial

conditions and parameter values in Section 3. In Section 4 we integrate domain growth into

existing models for calculating the evolution of pairwise spatial correlations. These models are

typically used to correct mean-field approximations for the evolution of the agent density in an

IBM by taking spatial correlations into account. In Section 5 we conclude with a discussion of

the results presented.

2 Model

In this section we first introduce the IBM and the domain growth mechanism we employ through-

out this work. We then introduce the individual and pair density functions and derive a system

of ODEs describing the evolution of these functions in the IBM.
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2.1 One-dimensional IBM and the domain growth mechanism

We use an agent-based, discrete random-walk model on a one-dimensional regular lattice with

lattice spacing ∆ [33] and length L(t), where L(t) is an integer describing the number of lattice

sites. Throughout this work the lattice site spacing, ∆, is always equal to one1. All simulations

are performed with periodic boundary conditions. Each agent is assigned to a lattice site, from

which it can move or proliferate into an adjacent site. If an agent attempts to move into a site

that is already occupied, the movement event is aborted. Similarly, if an agent attempts to

proliferate into a site that is already occupied, the proliferation event is aborted. This process,

whereby only one agent is allowed per site, is referred to as an exclusion process [33]. Time

is evolved continuously, in accordance with the Gillespie algorithm [34], such that movement,

proliferation and growth events are modelled as exponentially distributed ‘reaction events’ in a

Markov chain. Attempted agent movement or proliferation events occur with rates Pm or Pp per

unit time, respectively. That is, Pmδt is the probability of an agent attempting to move in the

next infinitesimally small time interval δt. Throughout this work the initial agent distribution

for all simulations is achieved by populating lattice sites uniformly at random until the required

initial density is achieved2.

We employ a stochastic growth mechanism in one dimension in which the insertion of new

lattice sites into the domain occurs with rate PgL(t) per unit time. That is, each individual

lattice site undergoes a growth event with rate Pg > 0. When a growth event occurs a site on

the domain is selected uniformly at random and a new (empty) lattice site is inserted at the

selected site, as can be seen in Fig. 1. For notational convenience from this point on we write

L(t) as L.

Figure 1 also displays how the distance ‘r’ between two lattice sites on the domain is defined.

This distance r is measured between the centres of the lattice sites and in the clockwise direction.

This means that on a domain of length L there are L counts of each distance r ∈ [1, . . . , L− 1]

between lattice sites.

1Note, however, that ∆ does not have to be equal to one for the results presented here to hold.
2An alternative method to generate the same average initial density in the simulations would be to populate

each lattice site uniformly at random with the probability of the initial density required. This method was also
implemented and found to make no difference to the results (not shown).
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Figure 1: (Colour online). A one-dimensional domain with periodic boundary conditions can
be represented as a circle. A site marked by a black cross has been chosen to undergo a growth
event. Following this event the site marked by the black cross and its contents are moved one
lattice spacing in the clockwise direction on the circle and a new lattice site is inserted. The
new lattice site is empty. The distance between the lattice site marked by the red cross and that
marked by the blue cross is measured in the clockwise direction. In this example the distance
between the two sites initially, ro (r old), is two. Following the growth event the distance
between these lattice sites, rn (r new), is three.

2.2 System of ODEs

We begin by introducing the density functions. A density function, ρLn , is defined as the prob-

ability that n sites have given occupancies when there are L sites in the domain [14–19]. For

instance, a pairwise density function, ρL2 (Aj , Ak; t), is the probability that sites j and k are

both occupied by an agent ‘A’ at time t on a domain of length L (i.e. contains L sites)3. An

individual density function, ρL1 (Aj ; t), is the probability that site j is occupied by an agent ‘A’

at time t on a domain of length L.

In the course of this derivation the pairwise density functions will be rewritten in terms of

the distance between two sites, r. We can do this as we assume translational invariance of the

density functions throughout this work. We are able to assume translational invariance because

the initial condition used in our IBM simulations is achieved by populating sites uniformly

at random until we have achieved a required initial density. Two consequences of assuming

3In our notation we explicitly write the pairwise density function with ‘A’ to indicate the occupancy of a
lattice site by an agent. This is because when we introduce agent proliferation into the model terms such as
ρL2 (0j , Ak; t) will be present in the equations, where ρL2 (0j , Ak; t) is taken to mean that site j is unoccupied and
site k is occupied by an agent. This notation is also easily extendable to multispecies models [17].
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translational invariance are

ρL1 (Aj ; t) = ρL1 (Aj+`; t), ∀j, ` ∈ [1, . . . , L], (1)

and

ρL2 (Aj , Ak; t) = ρL2 (Aj+`, Ak+`; t), ∀j, k, ` ∈ [1, . . . , L]. (2)

Equation (1) simply means that the probability of a site being occupied is independent of its

location on the domain. Similarly, Eq. (2) means that the probability of two sites a distance

r apart being occupied is independent of the location of the two sites on the domain (i.e

j + r = k)4. Importantly, Eqs. (1) and (2) allow us to simplify the following derivation

greatly as ρL2 (Aj , Ak; t) can be written as a function of the distance between two sites, so that

ρL2 (Aj , Ak; t) = ρL2 (Aj , Aj+r; t) = ρL2 (r; t). (3)

This ‘abuse’ of notation, whereby ρL2 is rewritten as a function of the distance between two lat-

tice sites as opposed to the lattice sites themselves, will prove useful in the following derivation.

To begin with, we only model the effects of domain growth on the density functions (the effects

of agent motility and proliferation on the density functions are included later). On a growing

domain the individual probability density functions evolve according to

L∑
j=1

ρL1 (Aj ; t+ δt) = (1− δtPgL)
L∑

j=1

ρL1 (Aj ; t) + δtPg

L−1∑
j=1

(L− 1)ρL−11 (Aj ; t) +O(δt2). (4)

That is, the sum of individual probability density functions on a domain of length L at [t+ δt)

corresponds to the following terms on the right-hand-side (RHS) of Eq. (4): i) the sum of

individual probability density functions at time t multiplied by the probability that no growth

event occurs in [t, t+δt); and ii) the sum of individual probability density functions at time t on

a domain of length L− 1 multiplied by the probability that a growth event occurs. To simplify

4Translational invariance in the initial conditions also means ρL2 (Aj , Ak; t) is symmetric under permutation,
i.e. ρL2 (Aj , Ak; t) = ρL2 (Ak, Aj ; t). Equations (1) and (2) also mean j + ` mod L is the location of site j + `.
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Eq. (4) we rewrite ρL1 (Aj ; t) as cL(t) to obtain

cL(t+ δt) = (1− δtPgL)cL(t) + δtPg

(
L− 1

L

)
(L− 1)cL−1(t) +O(δt2). (5)

Finally, if we rearrange Eq. (5) and take the limit as δt→ 0 we arrive at

dcL(t)

dt
= −PgLc

L(t) + Pg

(
L− 1

L

)
(L− 1)cL−1(t). (6)

Equation (6) is a system of coupled ODEs for the evolution of the individual agent density for

each domain length L. That is, the probability of a site being occupied on a domain of length

L at time t. It is of interest to note that Eq. (6) is exactly solvable. A generating function

approach can be employed to rewrite Eq. (6) as a first-order linear PDE, which can then be

solved using the method of characteristics [35]. However, this approach is only valid for systems

without agent proliferation, and so is something we do not pursue further.

We now consider the evolution of the pairwise density functions. As previously discussed we

can rewrite the pairwise density functions ρL2 (Aj , Ak; t) as ρL2 (Aj , Aj+r; t) for r = 0, ..., L− 1 (if

j + r > L the pairwise density function is instead ρL2 (Aj , Aj+r−L; t) as the domain boundary is

periodic). The evolution of the pairwise density functions on a growing domain can be written

as

L∑
j=1

ρL2 (Aj , Aj+r; t+ δt) = (1− δtPgL)

L∑
j=1

ρL2 (Aj , Aj+r; t)

+ δtPg

L−1∑
j=1

(r − 1)ρL−12 (Aj , Aj+r−1; t)

+ δtPg

L−1∑
j=1

(L− 1− r)ρL−12 (Aj , Aj+r; t) +O(δt2). (7)

The left-hand-side (LHS) of Eq. (7) is the sum of pairwise density functions for lattice sites a

distance r apart on a domain of length L at [t + δt). The RHS of Eq. (7) corresponds to: (i)

the sum of pairwise density functions for lattice sites a distance r apart on a domain of length

L at time t multiplied by the probability that no growth event occurs in [t, t+ δt); (ii) the sum

of pairwise density functions for lattice sites a distance r− 1 apart on a domain of length L− 1
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multiplied by the probability that a domain growth event occurs in the interval between these

sites (i.e. in one of r − 1 sites), thereby moving two lattice sites to a distance r apart on a

domain of length L at time [t+ δt); (iii) the sum of pairwise density functions for lattice sites a

distance r apart on a domain of length L− 1 multiplied by the probability that a growth event

occurs in one of the L− 1− r sites in which the distance r between the two lattice sites is not

affected, therefore moving two lattice sites a distance r apart on a domain of length L− 1 into

a domain of length L at [t+ δt).

To simplify Eq. (7) we can rewrite ρL2 (Aj , Aj+r; t) as ρL2 (r; t) as in Eq. (3). If we substi-

tute ρL2 (r; t) into Eq. (7) we obtain

L∑
j=1

ρL2 (r; t+ δt) = (1− δtPgL)
L∑

j=1

ρL2 (r; t)

+ δtPg

L−1∑
j=1

(r − 1)ρL−12 (r − 1; t)

+ δtPg

L−1∑
j=1

(L− 1− r)ρL−12 (r; t) +O(δt2). (8)

Equation (8) can be simplified and rewritten as

LρL2 (r; t+ δt) = (1− δtPgL)LρL2 (r; t)

+ δtPg(L− 1)(r − 1)ρL−12 (r − 1; t)

+ δtPg(L− 1)(L− 1− r)ρL−12 (r; t) +O(δt2). (9)

Finally, if we rearrange Eq. (9) and take the limit as δt→ 0 we arrive at

dρL2 (r; t)

dt
= −PgLρ

L
2 (r; t)

+ Pg

(
L− 1

L

)
(r − 1)ρL−12 (r − 1; t)

+ Pg

(
L− 1

L

)
(L− 1− r)ρL−12 (r; t). (10)

Equation (10) describes the evolution of all pairwise density functions for distances r = 1, . . . , L−

1 on a growing domain. Similar to Eq. (6), Eq. (10) constitutes a system of coupled ODEs for
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the evolution of the pairwise density functions at a distance r for each domain length L.

2.3 Motility

It has previously been shown how to include the effect of agent motility in Eq. (10), albeit

for the non-growing case. However, as the derivation is similar we refer the reader to the

Supplementary material for the derivation and simply state the result here [14]. In the case

that r = 1 the evolution of pairwise density functions for motile agents on a growing domain is

given by

dρL2 (1; t)

dt
= −PgLρ

L
2 (1; t) + Pg

(
L− 1

L

)
(L− 1− r)ρL−12 (1; t)

+ Pm[ρL2 (2; t)− ρL2 (1; t)], (11)

and for r > 1

dρL2 (r; t)

dt
= −PgLρ

L
2 (r; t) + Pg

(
L− 1

L

)
(r − 1)ρL−12 (r − 1; t)

+ Pg

(
L− 1

L

)
(L− 1− r)ρL−12 (r; t)

+ Pm[ρL2 (r + 1; t)− 2ρL2 (r; t) + ρL2 (r − 1; t)]. (12)

The addition of agent motility does not affect the evolution of individual density functions given

by Eq. (6) [14].

3 Results

We now present results for motile agents on a growing domain, in which domain growth is

exponential. The lattice state of site j in the ith realisation of the one-dimensional IBM is

described by variable σji (i.e. occupied by an agent or unoccupied). This means the normalised

average agent density for the ith realisation in the one-dimensional IBM is

dLi (t) =
1

L

L∑
j=1

1A{σji}. (13)
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Here 1A is the indicator function for the occupancy of a lattice site (i.e. 1 if an agent occupies

lattice site j, and 0 if it does not). If we take the ensemble average of Eq. (13) over many repeats

we obtain the average density. Given our initial conditions, the expected (average) probability

of two specified sites a distance r apart being occupied can be calculated exactly as

(
number of agents

2

)(
domain length

2

) , (14)

that is, the number of agents on the domain choose two, divided by the number of lattice sites

choose two. For an initial condition in which all lattice sites are occupied this is simply unity,

and for an initial condition containing only one agent it is undefined (because at least two agents

are required for a pair density). Therefore, Eq. (14) provides the means of calculating the initial

values for Eqs. (11) and (12). The initial condition for the individual density functions, Eq.

(6), is simply the initial density at the initial domain length L0, and zero for all other lengths

(i.e. for L > L0). That is

cL0(0) =
number of agents

L0
, (15)

and

cL(0) = 0, L > L0. (16)

We calculate the pairwise counts between agents from IBM simulations in the following way:

at each time-point every distance between an agent and all other agents is recorded. For a one-

dimensional domain with periodic boundaries there are two distances between a pair of agents,

of which we record the shorter distance. This count, defined as s(r, L, t), is then normalised so

that

p(r, L, t) =
s(r, L, t)

L
. (17)

To make comparisons between ensemble averages from our discrete model and numerical solu-

tions of the system of ODEs straightforward we only solve the system of ODEs given by Eqs.
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(11) and (12) for distance

r ≤
⌊L

2

⌋
, (18)

where b·c represents the floor function. Implementing Eq. (18) makes the results directly com-

parable to much of the previously published work on density functions, whereby the shortest

distance between two sites is taken as the distance between these two sites [13, 30, 31]. In cases

where ρL−12 (r; t) does not exist due to the condition imposed by Eq. (18), for instance when

the domain length is even, we set ρL−12 (r; t) to ρL−12 (r − 1; t). This is simply the anti-clockwise

distance between the same two sites. These two sites must have the same joint probability of

occupancy independent of the direction taken to measure the distance between them. In cases

where ρL2 (r+1; t) does not exist due to the condition imposed by Eq. (18), it is set to ρL2 (r−1; t)

if the domain length L is even (again, by considering the symmetry of the domain), and ρL2 (r; t)

if the domain length L is odd.

Finally, given we are modelling domain growth it is necessary to truncate our state space,

and so we truncate the derived ODE model at approximately three times the expected final

domain length. As the domain grows exponentially the expected final domain length is simply

L(tf ) = L0e
Pgtf , (19)

where tf is the end time-point of the simulation. The truncation length is represented by Ltrunc

in the figures. Small alterations to Ltrunc had no noticeable effect on the results presented here.

We solve Eqs. (6), (11) and (12) using MATLAB’s ode15s.

3.1 Motile agents on a growing domain

In Fig. 2 the evolution of the individual density functions can be seen for two different simu-

lations with different parameters. In Fig. 2 (a) results are shown for a domain with an initial

length of ten lattice sites and ten agents. In Fig. 2 (b) results are shown for a domain with an

initial length of thirty lattice sites and fifteen agents. We see an excellent agreement between

the numerical solution of Eq. (6) and the ensemble averages from the IBM, Eq. (13), for all
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domain lengths for both simulations. This is to be expected as Eqs. (6) and (11), (12) are all

exact. The probability of a site being occupied with the domain at a given length increases and

then decreases for all domain lengths (apart from the initial domain length L0). This is because

initially all domains are of length L0 (see Eq. (16)).

In Fig. 3 the evolution of the pairwise densities, given by Eqs. (11) and (12), can be seen.

In the top row of Fig. 3 the evolution for distances r = 1, 6 and 10 is displayed (panels (a)-(c)

correspond to Fig. 2 (a)). We see an excellent agreement between the ensemble average of

the IBM and the numerical solution of Eqs. (11) and (12) for all values of r as both time and

domain length increases. In the bottom row of Fig. 3 the evolution for distances r = 1, 16

and 30 corresponding to Fig. 2 (b) is displayed. Again we see an excellent agreement for all

values of r. It is important to note that the ensemble averages become increasingly noisy for

larger values of r. This is because the number of samples in the ensemble average from the IBM

decreases for each count, Eq. (17), as the variance in the domain length increases.
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Figure 2: The evolution of the individual densities, cL(t), for two different sets of parameters
and initial conditions. L0 is the initial domain length, and IC is the initial density of agents.
Numerical solution of Eq. (6) (red) and the corresponding ensemble averages from the IBM
given by Eq. (13) (blue). It can be seen that the blue curves lie on top of the red curves, which
indicates an excellent agreement between the numerical solution of Eq. (6) and the ensemble
averages from the IBM. In (a) domain lengths L0, L0 + 1, . . . , Ltrunc are plotted, in (b) domain
lengths L0, L0 + 5, . . . , Ltrunc are plotted. Ensemble averages are taken from 10000 repeats.
Increasing domain length is down and to the right in all panels, as indicated by the arrows.
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3.2 Agent proliferation

We now add agent proliferation to Eqs. (11) and (12). The addition of agent proliferation will

include three-point density terms in Eqs. (11) and (12), that is, the probability of three sites

having a given occupancy. Similarly, an expression for three-point distribution terms would

include four-point distribution terms and so on. Therefore, it is necessary to close the system of

equations. To do so we employ the Kirkwood superposition approximation (KSA), which has

been used successfully in scenarios where the domain does not grow [14, 17, 18]. The details

of how to do this have been previously given and so we simply state the result, however, we

provide them again in the Supplementary material. If we include agent proliferation in Eq. (6)

we obtain

dcL(t)

dt
= −PgLc

L(t) + Pg

(
L− 1

L

)
(L− 1)cL−1(t) + Pp[c

L(t)− ρL2 (1; t)]. (20)

If we include agent proliferation in Eqs. (11) and (12), for the case where r = 1 we obtain

dρL2 (1; t)

dt
= −PgLρ

L
2 (1; t) + Pg

(
L− 1

L

)
(L− 2)ρL−12 (1; t)

+ Pm[ρL2 (2; t)− ρL2 (1; t)]

+
Pp

(cL(t))2(1− cL(t))

[
(cL(t)− ρL2 (1; t))2(ρL2 (2; t))

]
+ Pp[c

L(t)− ρL2 (1; t)], (21)

and for 1 < r < L we obtain

dρL2 (r; t)

dt
= −PgLρ

L
2 (r; t)

+ Pg

(
L− 1

L

)
(r − 1)ρL−12 (r − 1; t)

+ Pg

(
L− 1

L

)
(L− 1− r)ρL−12 (r; t)

+ Pm[ρL2 (r + 1; t)− 2ρL2 (r; t) + ρL2 (r − 1; t)]

+
Pp

(cL(t))2(1− cL(t))
[(cL(t)− ρL2 (1; t))(ρL2 (r + 1; t))(cL(t)− ρL2 (r; t))

+ (cL(t)− ρL2 (1; t))(ρL2 (r − 1; t))(cL(t)− ρL2 (r; t))]. (22)
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As can be seen from Eqs. (21) and (22) the inclusion of agent proliferation and associated

implementation of the KSA means that individual density functions are now present in the

equations for the evolution of the pairwise density functions, which is not the case without

agent proliferation (Eqs. (11) and (12)). Similarly, the inclusion of agent proliferation means

the evolution of the individual density functions now depends on the pairwise density functions,

as can be seen in Eq. (20). It is important to note that Eqs. (21) and (22) are not exact due

to the use of the KSA [14].

3.3 Motile, proliferative agents on a growing domain

We now present results for motile, proliferative agents on a growing domain. As before the initial

condition in the IBM is achieved by populating a certain number of sites uniformly at random.

We initialise the individual density functions corresponding to the initial domain length in the

same manner as Eq. (15). However, to avoid a singularity in Eqs. (21) and (22) we follow

Johnston et al. [19] and initialise all other individual densities with a small parameter ε = 10−20

[19]. That is,

cL(0) = ε, L > L0. (23)

This small parameter was selected by iteratively reducing its size until the error tolerance

threshold of the ODE numerical solver was compromised. This approach meant that the effect

of introducing the small parameter ε into the equations was minimised.

In Fig. 4 the evolution of the individual density functions can be seen for two simulations

with different parameters. In Fig. 4 (a) we see the evolution of the individual densities for a

domain with an initial length of ten lattice sites and two agents. Unlike Eqs. (11) and (12),

Eqs. (21) and (22) are not exact due to the use of the KSA. Despite this, we see that a good

agreement is achieved between the numerical solution of Eq. (20) and the ensemble averages

from the IBM for a low rate of agent proliferation. However, as we increase agent proliferation,

relative to agent motility, the approximation by the numerical solution of Eq. (20) of the en-

semble averages from the IBM becomes less accurate, as can be in Fig. 4 (b). This is because as

agent proliferation is increased spatial correlations become more prevalent in the IBM [14, 17].
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The error associated with the KSA also grows monotonically as time evolves, as can be seen in

Fig. 4 (b) where the evolution of the individual density functions for a domain with an initial

length of thirty lattice sites and fifteen agents is displayed. This error is for two reasons: i) the

KSA introduces an error; and ii) the initialisation of the one-point distributions with a small

parameter ε to avoid a singularity introduces an error.

In Fig. 5 the evolution of the pairwise densities can be seen. In the top row of Fig. 5,

which corresponds to Fig. 4 (a), the evolution for distances r = 1, 6 and 10 is displayed. We

see a good agreement for r = 1, 6 and 10. In the bottom row of Fig. 5, which corresponds to

Fig. 4 (b), the evolution for distances r = 1, 16 and 30 is displayed. We initially see a good

agreement for r = 1 and 16. This agreement begins to break down as time evolves for the two

reasons discussed above.
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Figure 4: The evolution of the individual densities, cL(t), with agent proliferation for two
different sets of parameters and initial conditions. Numerical solution of Eq. (20) (red) and
the corresponding ensemble averages from the IBM given by Eq. (13) (blue). In (a) domain
lengths L0, L0+1, . . . , Ltrunc are plotted, in (b) domain lengths L0, L0+5, . . . , Ltrunc are plotted.
Ensemble averages are taken from 10000 repeats. Increasing domain length is down and to the
right in all panels as indicated by the arrows.
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4 Integrating domain growth into correlation functions

Our current framework, Eqs. (20)-(22), results in a system of individual density functions given

by Eq. (20) which, while mathematically sound, is not easy to relate to biological systems and

the experimental data associated with them, whereby the evolution of a macroscopic density

on a growing domain is generally only measured with respect to time [3, 4, 8, 36]. Therefore, to

mitigate these issues, we present a method to reduce the system of individual density functions

given by Eq. (20) into a single equation describing the evolution of the macroscopic density

on a growing domain. To do this we introduce ‘correlation functions’, and integrate the effect

of domain growth into the pre-existing work on the calculation of spatial correlations between

agents [14–19]. To derive this simplified model we will assume all domains are of length L,

where L is the mean of the stochastic model.

To reduce the distribution of individual density functions given by Eq. (20) into a single

equation describing the evolution of the macroscopic density on a growing domain we use the

following heuristic approximations

cL(t) ≈ (L− 1)

L
cL−1(t), (24)

for the individual density functions, and

ρL2 (r; t) ≈ (L− 1)

L
ρL−12 (r; t), (25)

for the pairwise density functions. This is a previously published approximation [37] and implies

that domain growth ‘dilutes’ both the agent density and the pairwise densities. To demonstrate

the validity of Eqs. (24) and (25) we measure the relative error

RE =
(L−1)

L cL−1(t)− cL(t)

cL(t)
, (26)

of approximations Eq. (24) and (25) and present the results in the Supplementary material.
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If we substitute approximation Eq. (25) into Eqs. (21) and (22) for r = 1 we obtain

dρ2(1; t)

dt
= −2Pgρ2(1; t)

+ Pm[ρ2(2; t)− ρ2(1; t)]

+
Pp

(c(t))2(1− c(t))
[
(c(t)− ρ2(1; t))2(ρ2(2; t))

]
+ Pp[c(t)− ρ2(1; t)], (27)

and for 1 < r < L

dρ2(r; t)

dt
= Pg(r − 1)ρ2(r − 1; t)− Pg(r + 1)ρ2(r; t)

+ Pm[ρ2(r + 1; t)− 2ρ2(r; t) + ρ2(r − 1; t)]

+
Pp

(c(t))2(1− c(t))
[(c(t)− ρ2(1; t))(ρ2(r + 1; t))(c(t)− ρ2(r; t))

+ (c(t)− ρ2(1; t))(ρ2(r − 1; t))(c(t)− ρ2(r; t))], (28)

whereby all pairwise density functions are now for the same domain length, L, and so the

superscript indicating domain length has been dropped. Similarly, when approximation Eq.

(24) is applied to Eq. (20) it becomes

dc(t)

dt
= −Pgc(t) + Pp[c(t)− ρ2(1; t)]. (29)

This is a single equation, albeit coupled, describing the evolution of the macroscopic density

on a growing domain that includes the effect of spatial correlations between agents created by

agent proliferation.
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4.1 Correlation function

We finally introduce correlation functions. The correlation function [27, 28] is defined as

F (r, t) :=
ρ2(r, t)

c(t)2
. (30)

The correlation function is a useful change of variables to improve the visualisation of results, as

F (r, t) ≡ 1 means that the occupancy of two lattice sites a given distance apart is independent.

It has therefore been used in the study of spatial correlations in models of cell motility and

proliferation [13–19].

Eq. (30) can now be substituted into Eqs. (27) and (28) to describe the evolution of spa-

tial correlations between agents on a growing domain. This results in Eq. (27) becoming

dF (1, t)

dt
= Pm[F (2, t)− F (1, t)]− 2PpF (1, t) [1− c(t)F (1, t)]

+
Pp

c(t)
[1− c(t)F (1, t)] +

Pp

1− c(t)
F (1, t)[1− c(t)F (1, t)]2

− 2PgF (1, t), (31)

and Eq. (28) becoming

dF (r, t)

dt
= Pm[F (r − 1, t)− 2F (r, t) + F (r + 1, t)]− 2PpF (r, t)[1− c(t)F (1, t)]

+
Pp

1− c(t)
[1− c(t)F (1, t)][1− c(t)F (r, t)][F (r − 1, t) + F (r + 1, t)]

− Pg(r + 1)F (r, t) + Pg(r − 1)F (r − 1, t). (32)

If we rewrite Eq. (29) in terms of Eq. (30) we obtain

dc(t)

dt
= −Pgc(t) + Ppc(t)[1− F (1, t)c(t)]. (33)

Eq. (33) is a hybrid (corrected) mean-field correlation ODE model (referred to from now on

as the corrected ODE model), whereby the effect of agent proliferation on spatial correlations

between agents is included in an equation describing the evolution of the agent density on a

growing domain.
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4.2 Results for correlation ODE model

We now compare simulations for motile, proliferative agents on a growing domain with the

numerical solution of Eq. (33). As before the initial condition in the IBM is achieved by

populating a certain number of sites uniformly at random. The initial length of the domain in

all simulations is one hundred lattice sites. We also compare ensemble averages from the IBM

with a (uncorrected) mean-field approximation (MFA)

dc(t)

dt
= Ppc(t)[1− c(t)]− Pgc(t), (34)

in which it has been assumed that F (1, t) = 1, i.e. the effect of spatial correlations is ignored.

This means we compare ensemble averages from the IBM with both the MFA (Eq. (34)) and

the corrected ODE model (Eq. (33)).

To solve Eqs. (32) and (31) numerically we use an implicit Euler scheme with the tridiagonal

matrix algorithm and Picard linearisation. For all numerical solutions presented here δt = 0.1

and δx = 0.1, and our correlation truncation value is r = 50. By this it is meant we set all

correlation functions at and beyond this distance equal to one. That is,

F (r, t) = 1, ∀ r ≥ 50. (35)

Similarly, our initial condition is that all distances are initially uncorrelated, that is

F (r, t) = 1, t = 0. (36)

In the Supplementary material we provide results from simulations that involve only domain

growth i.e. no agent proliferation or movement. However, we now turn our attention to sim-

ulations that include agent proliferation and motility. As we increase Pp relative to Pg the

approximation of the spatial correlations in the IBM by the corrected ODE model becomes less

accurate, as can be seen by comparing Fig. 6 (b) and (c), and Fig. 6 (e) and (f). This is due to

both the KSA approximation and the use of Eqs. (24) and (25), and leads to the approximation

of the evolution of the agent density in the IBM becoming less accurate as can be seen in Fig.
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6 (a) and (d). However, in both scenarios the corrected ODE model more accurately approx-

imates the evolution of the agent density in the IBM than the standard mean-field model Eq.

(34).

22



0
5

1
0

1
5

2
0

2
5

3
0

T
im

e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Density

P
m

 =
 1

, 
P

g
 =

 0
.1

, 
P

p
 =

 0
.1

, 
L

0
 =

 1
0
0
, 
IC

 =
 0

.5

IB
M

M
F

A

O
D

E

(a
)

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

f(r,t)

P
m

 =
 1

, 
P

g
 =

 0
.1

, 
P

p
 =

 0
.1

, 
L

0
 =

 1
0
0
, 
IC

 =
 0

.5

(b
)

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

F(r,t)

P
m

 =
 1

, 
P

g
 =

 0
.1

, 
P

p
 =

 0
.1

, 
L

0
 =

 1
0
0
, 
IC

 =
 0

.5

(c
)

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Density

P
m

 =
 1

, 
P

g
 =

 0
.1

, 
P

p
 =

 0
.3

, 
L

0
 =

 1
0
0
, 
IC

 =
 0

.5

(d
)

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e

1
.0

1
.5

2
.0

f(r,t)

P
m

 =
 1

, 
P

g
 =

 0
.1

, 
P

p
 =

 0
.3

, 
L

0
 =

 1
0
0
, 
IC

 =
 0

.5

(e
)

0
5

1
0

1
5

2
0

2
5

3
0

T
im

e

1
.0

1
.5

2
.0

F(r,t)

P
m

 =
 1

, 
P

g
 =

 0
.1

, 
P

p
 =

 0
.3

, 
L

0
 =

 1
0
0
, 
IC

 =
 0

.5

(f
)

F
ig

u
re

6:
(C

ol
ou

r
on

li
n

e)
:

P
a
n

el
s

(a
)

a
n

d
(d

)
d

em
on

st
ra

te
th

e
ev

ol
u

ti
on

of
th

e
m

ac
ro

sc
op

ic
ag

en
t

d
en

si
ty

w
it

h
ag

en
t

p
ro

li
fe

ra
ti

on
as

gi
ve

n
b
y

E
q
s.

(1
3)

,
(3

3)
a
n

d
(3

4)
.

P
an

el
s

(b
)

a
n

d
(e

)
d

em
on

st
ra

te
th

e
ev

ol
u

ti
on

of
th

e
p

ai
rw

is
e

co
rr

el
at

io
n

s
in

th
e

IB
M

.
T

h
e

co
rr

el
at

io
n

fu
n

ct
io

n
is

p
lo

tt
ed

fo
r

in
cr

ea
si

n
g

d
is

ta
n

ce
fr

o
m

∆
to

50
∆

in
st

ep
s

of
∆

in
th

e
d

ir
ec

ti
on

in
d

ic
at

ed
b
y

th
e

ar
ro

w
in

p
an

el
s

(b
),

(c
),

(e
)

an
d

(f
).

P
an

el
s

(c
)

a
n

d
(f

)
d

em
on

st
ra

te
th

e
p

a
ir

w
is

e
co

rr
el

at
io

n
s

at
d

iff
er

en
t

d
is

ta
n

ce
s

fr
om

th
e

n
u

m
er

ic
al

so
lu

ti
on

of
E

q
s.

(3
2)

an
d

(3
1)

.
T

h
e

d
is

ta
n

ce
,
r,

in
cr

ea
se

s
fr

om
∆

to
5
0∆

in
st

ep
s

of
∆

.
T

h
e

en
se

m
b

le
av

er
ag

es
ar

e
ta

k
en

fr
om

10
0

re
p

ea
ts

of
th

e
IB

M
.

23



5 Discussion

We have presented methods to include the effects of domain growth in the evolution of the

individual and pairwise agent density functions in a one-dimensional IBM. Spatial correlations

have been shown to play an important role in cell migration and tumour development, with

both of these processes associated with domain growth [2–4, 8, 32]. For systems without agent

proliferation comparisons between averaged discrete results and our corrected ODE model are

excellent, as can be seen in Figs. 2 and 3. These results show that uniform domain growth,

somewhat intuitively, reduces spatial correlations between agents. The introduction of agent

proliferation into the correlation ODE model leads to some inaccuracy. However, there is still

good agreement between the averaged discrete results and our corrected ODE model in parame-

ter regimes with low proliferation as can be seen in Figs. 4 and 5. This inaccuracy is largely due

to the use of the KSA approximation, and to a lesser extent the small parameter ε introduced

into the model [14, 19].

Following this we integrated our framework into the existing literature on calculating the evo-

lution of pairwise spatial correlations, namely, correcting mean-field approximations for the

evolution of the agent density in the IBM [14–19]. This required a heuristic approximation

[14], Eqs. (24) and (25), that allowed us to to derive a single equation describing the evolution

of the macroscopic density in the IBM on a growing domain. This meant we could place the

results naturally alongside the measurement of cell density on growing domains in experimental

data [2–4, 13, 30, 31, 36]. Approximations Eqs. (24) and (25) were also necessary so that the

effects of domain growth could be included in an ODE system describing the evolution of spatial

correlations in a model of cell migration and proliferation. We demonstrated the accuracy of

this ODE formulation in the Supplementary material.

The results presented here are extendable to non-periodic boundary conditions and systems

where we do not assume translational invariance. In addition, the framework presented could

also be extended to higher-dimensional models of cell motility and proliferation.
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