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Abstract

Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile

behaviour. The trajectories obtained contain much information relating to the complex patterns of

bacterial motility, however methods for the quantitative analysis of such data are limited. Most swimming

bacteria move in approximately straight lines, interspersed with random reorientation phases. It is

therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful

statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods

comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by

analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains

that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution.

Using simulated tracks with varying levels of added noise, we validate our methods and compare them

with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of

analysis methods in this field. The new methods are substantially more robust to noise and introduce less

systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial

species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides

exhibits persistence over the course of a tumbling event, which is a novel result with important implications

in the study of this and similar species.
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Author Summary

Many species of planktonic bacteria are able to propel themselves through a liquid medium by the use of

one or more helical flagella. Commonly, the observed motile behaviour consists of a series of approximately

straight-line movements, interspersed with random, approximately stationary, reorientation events. This

phenomenon is of current interest as it is known to be linked to important bacterial processes such as

pathogenicity and biofilm formation. An accepted experimental approach for studying bacterial motility

in approximately indigenous conditions is the tracking of cells using a microscope. However, there are

currently no validated methods for the analysis of such tracking data. In particular, the identification

of reorientation phases, which is complicated by various sources of noise in the data, remains an open

challenge. In this paper we present novel methods for analysing large bacterial tracking datasets. We

assess the performance of our new methods using computational simulations, and show that they are

more reliable than a previously published method. We proceed to analyse previously unpublished tracks

from the bacterial species Rhodobacter sphaeroides, an emerging model organism in the field of bacterial

motility, and Escherichia coli, a well-studied model bacterium. The analysis demonstrates the novel

result that R. sphaeroides exhibits directional persistence over the course of a reorientation event.

Introduction

The motile behaviour of bacteria underlies many important aspects of their actions, including pathogenic-

ity, foraging efficiency, and ability to form biofilms. The study of this phenomenon is therefore of biomed-

ical and industrial importance, with implications in the control of disease [1] and biofouling [2]. Owing to

their small size, bacteria inhabit a world of low Reynold’s number, in which viscous forces dominate over

inertia [3]. Rotational Brownian motion prevents them from swimming continuously in a straight line,

hence many motile species such as the multiflagellate Escherichia coli move in a series of approximately

straight ‘runs’, interspersed by reorientating ‘tumbles’ in a process known as taxis [4]. During a run, the

flagellar motors in E. coli turn counter-clockwise, causing the helical flagella to form a rotating bundle

that propels the cell forward. Tumbles are caused when one or more motors reverse their rotation, which

disrupts the flagellar bundle and causes the cell to reorient randomly [4]. A related motile mechanism ex-

ists in the uniflagellate bacterium Rhodobacter sphaeroides, in which reorientations are, instead, effected

by stopping the flagellar motor [5]. Upon ceasing to rotate, the single sub-polar flagellum [6] undergoes
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a change of conformation, leading to reorientation by a mechanism that is not yet well understood [7].

The biochemical pathways responsible for chemotaxis in R. sphaeroides are less well studied than those

in E. coli, and are known to be more complex [8].

The tracking of bacterial cells, as imaged under a microscope, is a well-established experimental tech-

nique for investigating bacterial motility. Such studies have been used to gain biological insight in the

case of E. coli [4, 9], Pseudomonas putida [10], Rhizobium meliloti [11], Vibrio alginolyticus [12] and R.

sphaeroides [13]. A limitation of cell tracking is that a large number of tracks are required in order

to ensure that any inferences drawn from observations are statistically representative of the population.

Tracking experiments are therefore often laborious [14]. Earlier experiments involved tracking a single

bacterium at a time, either in a fixed field of view [13], or by mechanically shifting the microscope stage

to keep the cell in focus [4]. This approach suffers from subjective bias as the experimentalist is required

to select which cells to track [14]. More recently, simultaneous multiple target tracking has enabled the

measurement of tracks from all bacteria visible in the field of view at any given time [15]. This improves

the efficiency of the experimental technique, allowing larger datasets to be obtained. It also reduces

sampling bias, as all cells in the field of view are tracked. An experimental method related to tracking is

differential dynamic microscopy (DDM), which enables the measurement of the distribution of swimming

speeds and the fraction of motile cells in the observed population [16]. DDM records these statistics

across very many bacteria, however it is an ensemble method and does not permit the measurement of

the motile properties of individual bacteria.

Having acquired experimental tracking data, these must be analysed in order to extract quantities of

interest. These include the distribution of swimming speeds [9,13,16–18], various measures of trajectory

curvature [19,20], turning angles [4,10], the frequency of reorientations [18,21,22] and the extent of accu-

mulation near a surface [23]. The ability to obtain such statistics permits quantitative investigations into

the response of bacterial populations to environmental stimuli, in addition to cross-species comparisons

and the true variability across a population. The analysis method used to extract statistics of motion

from the raw data must be robust to errors in the tracking protocol, for example when cell trajectories

intersect and the wrong paths are joined [4], and experimental noise such as errors in finding the centre

of a cell. In order to identify reorientation events in bacterial tracks, both manual analysis [9, 22, 24]
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and heuristic arguments [4,10,18,21,25,26] have been used. The former is prohibitively time-consuming

when dealing with large datasets and is subjective. Automated heuristic methods may be effective in

some cases, however it is important to validate such methods, and to avoid the introduction of systematic

bias. To our knowledge, all existing heuristic methods require one or more threshold parameters to be

specified. The process of selecting optimal threshold parameters may be automatable, as is the case with

the method we use for comparison in our study, however this is not a straightforward task and in most

cases no guidelines are given as to how to select optimal values for threshold quantities. For example, the

method used by Amsler [21] requires the user to specify a threshold inter-frame angular velocity, above

which the bacterium is said to be in a reorientation phase. Furthermore, of all the cited studies, only that

of Alon et al. [18] includes an analysis of the sensitivity of the results to the various threshold parameters.

Here, we present novel methods for the automated, non-parametric analysis of large bacterial track-

ing datasets, based on a two-state model of the observed motion, which is compatible with any form of

motile behaviour that is well-approximated by the run-and-stop or run-and-tumble models of motion.

The data considered in this study are two-dimensional tracks, but the extension of the methods to three

dimensions is straightforward. Our methods take advantage of the availability of non-chemotactic and

non-motile mutants to gain empirical knowledge of the appearance of running and stopping phases in

the observed motion. The methods are based on a modification to the hidden Markov model (HMM),

and are applicable to any bacterial species where such mutants exist and sufficiently long reorientation

events are discernible using video microscopy. In addition, we suggest a straightforward method that is

applicable in the absence of a non-motile mutant. We use a simulation study to assess the performance

of the new methods, and compare them with a heuristic approach. To our knowledge such a systematic

comparison of methods has not previously been attempted in this field. In order to demonstrate the wide

application of our methods, we apply them to analyse novel R. sphaeroides and E. coli datasets, acquired

using a recently developed tracking protocol [27]. We show how our new methods enable us to determine

the previously unreported distribution of angle changes during a reorientation in R. sphaeroides, amongst

other characteristics of the observed motion.
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Results

Bacterial tracks of R. sphaeroides and E. coli were acquired as detailed in Materials and Methods. Figure

1 shows a cartoon illustration of a single track. A bacterium swims in an approximately straight line,

enters an approximately stationary stopped phase for some time, then swims off in a new direction. The

crosses indicate observations made of the cell centroid at regular intervals, ∆t = 0.02 s (videos are typi-

cally captured at 50 frames per second). The primary focus of this study is the identification of stops as

illustrated in Figure 1. This task is complicated by various sources of noise in the data. These include:

(i) uncertainty in the position of the centroid of a cell in each image that may cause a track to appear

jagged, for example when the cell body rotates whilst swimming; (ii) Brownian buffeting that may also

cause departures from straight-line swimming, and lead to stops that are not perfectly stationary; (iii)

tracking errors caused by incorrectly linking cells between consecutive frames, or by the disappearance of

a cell for one or more frames, that may affect the appearance of a track. The identification of stopping

phases in tracks is therefore a challenging process.

Each track generated by the tracking procedure is represented in the form (r0, . . . , rT ), where rt

designates a two-dimensional position vector at time t, and the number of frames in the track is given

by T + 1. Note that t is considered a discrete quantity throughout, as time is measured in numbers of

frames. In characterising running and stopping phases, we are concerned not with the positions of cells in

each frame, but with the motion of cells between consecutive frames. The information of interest is thus

the transitions between consecutive position vectors within a track. These form a list of displacement

vectors, (d0, . . . ,dT−1) with dt = rt+1 − rt. The framewise speed is defined as the observed speed of

travel between two consecutive frames, st = ∥dt∥/∆t, where ∥·∥ denotes the Euclidean norm. The angle

changes θt between consecutive vectors, henceforth called framewise angle changes, are defined so that

θt ∈ [−π, π] gives the difference in polar angle between dt and dt−1.

We assume a two-state model of cell motility, in which each displacement vector, dt, corresponds

to either a running or stopping state. The underlying state at time t is denoted St, where we use the

convention throughout that St = 1 corresponds to a stop and St = 2 corresponds to a run, hence for

each track a state vector S = (S0, . . . , ST−1) describes the sequence of states. We wish to assign to each
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displacement vector a probability of being in a running phase, Pt = P(St = 2 | dt). Note that, since we

assume a two-state model, we have P(St = 2 | dt) = 1− P(St = 1 | dt).

We use our methods to analyse tracking data from R. sphaeroides and E. coli. In each case, data

are obtained from three strains: a wildtype strain, which undergoes discrete running and reorientation

phases, a non-chemotactic strain, which is always in the running phase and exhibits no reorientation

events, and a non-motile strain, which is unable to propel itself.

Analysis methods

There is no well-established gold standard for identifying reorientation events in bacterial tracks; indeed

several tracking studies make no attempt to extract quantitative information about the reorientation

events in tracks [15, 28, 29], while others use ensemble measures such as angular velocity as a proxy for

the rate of reorientation [24, 30]. Various heuristic methods requiring the specification of one or more

threshold parameters have been used in tracking studies in bacteria (see the related discussion in Intro-

duction). In this study we compare our methods with that of Taboada et al. [25], which is sufficiently

versatile to apply to our current data with little modification. This is henceforth denoted the heuristic

method. The focus of the present work is the development and validation of our novel analysis methods,

however we note that several other heuristic methods mentioned above may be applicable providing it is

possible to automatically optimise the various threshold parameters involved. We do not consider these

further as a complete survey of methods is beyond the scope of this paper.

We now describe the heuristic method and the two novel analysis methods considered throughout the

rest of this work. In addition, we describe a ‘post-processing’ heuristic that can improve the performance

of all of the methods and is particularly effective when combined with the heuristic method.

Heuristic method

The intuitive approach used by Taboada et al. [25] is to define a cutoff speed parameter ρCS and denote

each transition as a run if the framewise speed is greater than ρCS, so that

Pt = H (st − ρCS) , (1)
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where H denotes the Heaviside function. The key assumption underlying the heuristic method is that

there is a substantial difference between the distribution of framewise speeds observed during runs and

stops. The value of ρCS should be selected to maximise the number of correctly inferred transitions.

We approach the problem of optimising ρCS by computing the observed framewise speeds for the non-

chemotactic and non-motile strains. We estimate the true probability density function (pdf) of framewise

speeds in each case using a kernel density estimate (KDE). We then take ρCS to be the point at which the

two pdfs intersect. Note that this method is not guaranteed to minimise the crossover region between the

two pdfs, but is a reasonable approximation. The implementation of the KDE by Botev et al. [31] used

in this study represents a non-parametric method for determining the kernel bandwidth, thus avoiding

the need to select an arbitrary histogram bin width.

A problem associated with the heuristic method lies in the choice of the parameter ρCS. If there is any

overlap between the framewise speed distribution for run phases and stop phases, due to the effects of

noise and/or population heterogeneity, then this approach will cause spurious inference in the crossover

region. Nevertheless, this approach is acceptable if the level of noise in the data is such that the distri-

butions are well separated.

Hidden Markov model (HMM) methods

Our novel approach to the analysis of bacterial tracks utilises a state space model with an empirical

prior to infer the state probabilities. We apply a HMM to the observed data. For brevity, we assume

familiarity with the basic HMM; a detailed tutorial is given by Rabiner [32]. Details of the numerical

implementation of the HMM are given by Press et al. [33]; the notation used here is the same as in this

reference. Methods based on the HMM have previously been successfully applied to data from DNA

looping and single particle tracking experiments [34,35]. The application of the HMM to the analysis of

bacterial tracks requires a modification to the standard HMM formulation, similar to those described by

Beausang and Nelson [34] in their study of DNA looping dynamics.

We assume that the observed motion between sampling points in each track arises from a hidden,

first-order, two-state Markov chain, where the states correspond to running and stopping phases. We
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denote the transition matrix by A, with entries Aij = P(St+1 = j | St = i), where i, j ∈ {1, 2} as

previously discussed. In the absence of any chemoattractant or chemorepellent concentration gradient,

we assume that the Markov chain is homogeneous, meaning that the probability of switching from a run

to a stop (or vice versa) is independent of time and space. The initial state probabilities are denoted by

πi = P(S0 = i). The continuous observation pdf is denoted by

bi(yt) = fYt|St
(yt | i) , (2)

which gives the pdf of observing the datum yt at time t, conditional on the system being in state i. The

observation pdf gives the prior probability density of observing a particular movement, conditional on the

cell’s state. It is obtained empirically from novel experimental data of non-motile and non-chemotactic

strains. Full details on the form of the observation pdf are given below.

Implementation of the HMM requires the computation of two quantities, the forward and backward

estimates. These are defined by

αt(i) = αt−1(1)A1ibi(yt) + αt−1(2)A2ibi(yt), (3)

and

βt(i) = βt+1(1)Ai1b1(yt+1) + βt+1(2)Ai2b2(yt+1), (4)

respectively for i ∈ {1, 2}. Note that α0(i) = bi(y0), and βT (i) = 1 by convention. These two quantities

may be used to define the probability of the state at time t being a run:

Pt =
αt(2)βt(2)

αt(1)βt(1) + αt(2)βt(2)
. (5)

We consider two variants of the HMM-based analysis approach, which differ in the way in which the ob-

served data yt are represented. We first describe the full HMM method, in which both framewise speeds

and angle changes are considered. We then describe a simplified variant, in which only speed data are used.

The full HMM approach uses both the framewise speed and the framewise angle as the observable
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data, yt = (st, θt). Since we determine the observation pdf empirically, the only free parameters in the

model are the state transition probabilities Aij . We assume that switching from state i to state j occurs

with a characteristic time τij . The transition matrix is therefore given by

A =


1− p12 p12

p21 1− p21

 , (6)

where p12 = ∆t/τ12 and p21 = ∆t/τ21, which are interpreted as the probability of stop-to-run and run-

to-stop transitions, respectively. In order to ensure that both of these quantities are in the range [0, 1],

the camera frame rate must be set sufficiently high, so that ∆t ≪ τij .

The observation pdf encodes our prior knowledge of the distribution of framewise speeds in the

running and stopping states. We assume that the non-chemotactic mutant swims in the same way as

a wildtype bacterium in a running phase, and that the motion of the non-motile mutant is similar to

that of a wildtype bacterium in a stopping phase. Experimental justification of this assumption is given

in Analysis of experimental data. The standard HMM formulation requires that the observation pdf is

independent of all previous states: the single subscript in the observation pdf, bi(·), refers to the current

state. In order to incorporate angular information in our analysis, we must relax this requirement, so that

the observation pdf may depend on both the current state and preceding states [34]. This modification

is necessary because tracking cell movements is less accurate when the cell is in a stopped phase than

when the cell is running, due to the smaller motions involved. As a result, the computed framewise angle

changes contain a significant source of error. During a stop-to-run transition, the framewise angle change

observed may differ a great deal from that predicted based on the previous, noisy observed direction

of motion during the stop. Use of the standard HMM formulation could then lead to the stop-to-run

transition being incorrectly classified as a stop-to-stop transition on the basis of an apparently large

framewise angle change. We therefore define a modified observation pdf to account for this source of

error, in which there is a dependence on the previous state, in addition to the current state, given by

bij(yt) = fYt|St−1,St
(yt | i, j) , (7)
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where i, j ∈ {1, 2}. The modified observation pdf bij does not break the Markov property of the process,

since the dependence is limited to the current and previous states. No modification is required to

the transition matrix as the process being modelled remains first order. Instead, using bij

allows us to take experimental technicalities into account. For a further example of such a modification,

see the study by Beausang and Nelson [34].

Including this modification in the conventional HMM formulation, equation (3) becomes

αt(i) = αt−1(1)A1ib1i(yt) + αt−1(2)A2ib2i(yt), (8)

and the analogous expression for equation (4) is given by

βt(i) = βt+1(1)Ai1bi1(yt+1) + βt+1(2)Ai2bi2(yt+1). (9)

We assume independence of speed and angular distributions so that bij(yt) is separable,

bij(yt) = fj(st)gij(θt). (10)

This simplifying assumption is necessary as we do not have sufficient data in the present study to es-

timate a joint distribution accurately. This may be possible in future studies; the modification of the

current methods to use such a distribution is straightforward. Plots showing the form of the noisy joint

distributions are provided in Figures S1-S4 for reference. In equation (10) the speed component, fj , is

independent of the previous state whereas the angular component, gij , is not. Estimates for these compo-

nents are obtained from experimental data acquired from mutant strains. The speed component is equal

to the KDE of observed framewise speeds in the non-motile mutant when j = 1 and the non-chemotactic

mutant when j = 2. The angular component is equal to the KDE of observed framewise angle changes

in the non-motile mutant when (i, j) = (1, 1), (1, 2), or (2, 1), and the non-chemotactic mutant when

(i, j) = (2, 2). Note that the modification is required to take into account the use of the non-motile

distribution for b12, as discussed above.

In order to implement the algorithm described above, one final detail is required. There is no guar-
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antee that the empirical estimate for the speed component of the observation pdf is non-zero for all

observed framewise speeds in the wildtype dataset, since those tracks are effectively hidden when we gen-

erate the empirical priors. It is important to avoid a situation in which the observation pdf is numerically

equivalent to zero, which occurs when f1 = f2 = 0, since this causes the algorithm to fail by declaring

that the track is in neither the running nor the stopping state, hence breaking the two-state assumption.

This could occur if tracks in the wildtype dataset contain some high framewise speeds, relative to the

non-chemotactic dataset. Such an eventuality is avoided by adding a small numerical constant to the

speed component to ensure it is non-zero for all permissible speeds (see Materials and Methods for an

explanation of why there is an upper bound to the permissible framewise speeds).

In the speed-only model, we consider only the framewise speed as the observable data. This is achieved

by a straightforward modification to the full model, in which we impose the circular uniform distribution

on the angular component of the observation pdf, gij(θt) = 1/2π.

The two components describing the HMM are the observation pdf, bij(·), and the transition proba-

bilities, Aij . The observation pdf is independently determined from observations of non-chemotactic and

non-motile strains, and A is specified by the two parameters in equation (6), namely p12 and p21. It is

possible to obtain a maximum likelihood estimate (MLE) [33] of these free parameters by maximising

the likelihood of the data given the model, defined by

L = αT (1) + αT (2). (11)

We may use the MLE to estimate the dwell times, τij , providing that the limitation ∆t ≪ τij is respected.

Das et al. use a Markov chain Monte Carlo scheme to find the MLE of their rate parameters in a similar

application to that described here [35]. In our case, the negative log-likelihood surface is always found to

be smooth, with a unique minimum (data not shown), so that a deterministic optimisation routine is more

computationally efficient. We use a MATLAB implementation of the trust-region-reflective algorithm to

carry out a constrained numerical optimisation of the negative log-likelihood [36]. The function to be

minimised is defined by

h = −
N∑
i=1

logL(i), (12)
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where L(i) denotes the likelihood of the data from the ith track, and N is the total number of tracks in

the dataset. As the likelihood is a function of p12 and p21, the minimisation is carried out over a two-

dimensional vector space. We estimate 95% two-tailed confidence intervals for our MLE of p12 and p21

using the basic bootstrap method [37], with 103 bootstrap iterations. The summation in equation (12)

pools the results from all of the tracks in the censored dataset, so that the MLE is an ensemble quantity.

It is possible, in principle, to maximise the likelihood over each individual track, however the performance

of this approach is poor when dealing with short tracks (data not shown). The optimised parameters are

subsequently used to compute the run probabilities using equations (3)-(5). We summarise the analysis

pipeline in Figure 2.

Post-processing

Each of the analysis methods returns a vector for each track, containing the probability of a run between

each observation point, (P0, . . . , PT−1). In the case of the heuristic method, every value is equal to 1

or 0, whereas the HMM methods return values in [0, 1]. In the latter case, we round all values to the

nearest integer (0 or 1). The resulting vector can be considered to represent the run status (as opposed

to run probability). This transformation is always carried out on the run probabilities computed using

the HMM-based methods. In the case of the heuristic method, there is no distinction between the two

properties. The difference between run probability and run status is illustrated in Figure 3.

An additional heuristic step may be applied to the run status vector of each track, which smooths

the inferred state path between the running and stopped phases. We define a run persistence parameter,

τ2,min, and a stop persistence parameter, τ1,min, which correspond to the minimum permissible duration

of running and stopped phases, respectively. Running phases that have durations shorter than τ2,min are

relabelled, and likewise for stopped phases shorter than τ1,min, so that the whole track has a valid run

status. Details of the implementation are given in Materials and Methods. These minimum permissible

duration parameters should be selected appropriately for the system being studied and the parameters of

the experimental protocol. For example, if the sampling rate is very rapid relative to the mean stopping

duration, this would suggest that a large value of τ1,min may be appropriate. We do not consider the

process of selecting these parameters further as they are an optional addition to our analysis method; the
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main purpose of their inclusion in this study is to show how they may improve the output of the heuristic

approach (see the following simulation study).

Simulation study of analysis methods

Prior to applying the heuristic method and our two novel methods to experimental data, we must eval-

uate and compare their ability to correctly infer stop phases in tracks affected by various levels of noise.

A traditional means of evaluating this performance is to compare with the results of manual assignment

of stopped phases in real tracks. This approach suffers from several key drawbacks, however. Manual

tracking is a time-consuming and often difficult process; the stopped phases in microscope videos are by

no means easy to discern unambiguously by eye. In addition, manual assessment of tracks is unavoidably

subjective.

Here we use an alternative approach to manual analysis: a simulation study. This is a common means

of assessing the performance of automated analysis methods [34,35,38]. We assume that experimentally-

obtained wildtype tracks are the result of a run and stop velocity jump process [39]. Cells in the running

phase travel in straight lines with a constant speed drawn from a Weibull distribution that closely ap-

proximates the observed non-chemotactic running speed distribution (see Figure 6). After a random,

exponentially distributed time interval with mean τ21, cells enter a stopping phase and their speed is set

to zero. Cells stop for a random period of time, exponentially distributed with mean τ12, after which

they switch to the running phase again with a new, Weibull distributed run speed. A new direction

of travel is drawn at each reorientation event from the circular uniform distribution. We also simulate

tracks describing the non-chemotactic mutant, in which no reorientation events occur, and the non-motile

mutant, which is always in the stopped state. We define the sampling interval to be ∆t = 0.02 s to match

the frame capture rate of the microscope used to obtain experimental movies. We simulate 500 tracks

for 250 frames each using the parameter values τ21 = 1 s and τ12 = 0.1 s. These mean duration values are

in close agreement with previous studies of E. coli [4], while the remaining simulation parameters have

been chosen to match the experimental protocol used to acquire tracks in this study (see Materials and

Methods).

We include a simplified model of the noise in the system by adding a normally distributed perturba-



14

tion to each coordinate of every recorded position in a track, with zero mean and variance equal to 2D∆t,

where D is varied to modulate the level of noise applied to the system. A random selection of simulated

tracks with varying levels of noise are shown in Figure S5. We note that the use of uncorrelated Gaussian

noise to simulate the type of noise exhibited in real experimental data may be an oversimplification,

however the nature of the noise present in such cases is unknown and beyond the scope of this study.

The true underlying state sequence in the simulations, which is continuous in time, is recorded for later

comparison with the state inferred by the analysis methods. In carrying out the steps required to analyse

the simulated datasets and compare their performance, we attempt to mimic as closely as possible the

process that we use when analysing real data (see Figure 2). We infer the values of all model parameters

based on the three simulated datasets; none of the parameters of the true underlying processes are known

to the analysis methods.

Before commencing the simulation study, we verify that the methods do not produce spurious results

when applied to tracks generated from an incompatible underlying model of motion. This test is carried

out by analysing tracks from a non-chemotactic simulated dataset. Such tracks contain no stops; the aim

of this initial test is to ensure that the analysis methods do not infer stopping phases falsely. In practice,

we find that the optimisation routine fails to find a MLE for the transition rate parameters because the

negative log-likelihood is independent of the parameter p12 (see Figure S7 and Text S1 for details). This

indicates that the HMM-based methods cannot be applied blindly to tracks that contain no stops.

Figure 4 illustrates the MLE values and 95% two-tailed confidence intervals of the mean running and

stopping durations, τ21 and τ12, respectively, for a range of values of the noise level, D. When the level

of added noise is low, the two parameters are estimated correctly by both methods. The MLE value of

τ21 is overestimated by around 20% by both methods in the absence of noise. In the case of the full

HMM method, the MLE value decreases with increasing noise level, which initially causes the estimate to

become more accurate. At the highest noise level considered here, the MLE τ21 is around 60% of the true

value. In contrast, the speed-only method MLE τ21 increases with noise level. At the highest noise level,

the MLE is around double the true value. The full method estimates the value of τ12 accurately through-

out the range of noise levels considered, whereas the speed-only method increasingly overestimates the

same parameter as the noise level increases. At the highest noise level, the speed-only MLE τ12 is around
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threefold greater than the true value. Since the noise model incorporated in our simulations may differ

from the sources of noise in the experimental tracks, the precise quantification of the error in the MLE is

not of real interest here. However, this result suggests that parameters estimated from highly noisy data

may be unreliable, and that the full HMM method generally provides better estimates.

All of the analysis methods output a run status vector for each track, which is discrete in time. The

true underlying state path is, by contrast, continuous in time. In order to facilitate a comparison be-

tween the inferred state sequence and the ground truth, we discretise the ground truth over intervals of

duration ∆t. Any such interval that contains part of a stop phase is designated a stop in the discretised

true state sequence. The inferred state sequence is a series of stopping phases and running phases, with

the convention that an inferred stop corresponds to a positive result. A false positive (FP) therefore

corresponds to an inferred stopping phase where none is present in the true underlying state sequence,

while a false negative (FN) corresponds to an inferred running phase where none is present in the true

underlying state sequence. Figure 3 illustrates this; compare the true, discretised run status with the

inferred run status. There are several discrepancies. A stop lasting two frames is inferred at the start

of the track, where none is present in the true state. This is a FP; there is another at around 0.3 s.

Conversely, at approximately 0.8 s a true stopping event is missed by the analysis method. This is a FN.

As noted previously, the application of the post-processing method with τ1,min and τ2,min both greater

than one corrects the second FP. For each level of added noise, we compute the mean rate of FPs and

FNs as the ratio of the total number of FPs and FNs to the total number of actual stop events in the

true underlying state. This is computed as the average over all tracks in the simulated dataset.

Figure 5(a) shows the mean FP and FN rates produced by the three analysis methods. In the case

of the heuristic method, we test the results with and without post-processing with τ1,min = τ2,min = 2.

The application of post-processing made no significant difference to the results from the HMM methods

(data not shown). A FP rate of one means that the average number of false stops equals the number of

true stops, while a FP rate of zero indicates that no FPs are observed. The heuristic method is highly

sensitive to low levels of noise, generating significantly higher FP rates than the methods based on the

HMM. The heuristic FP rate is reduced somewhat by the application of post-processing, however it still

remains significantly higher than either of the HMM methods. The full HMM method has a higher FP



16

rate than the speed-only method, though the discrepancy only becomes large when D > 0.6 µms−1. The

speed-only method has an approximately constant low FP rate throughout the full range of noise levels

considered here. In contrast, the speed-only method generates the largest FN rate, with the full HMM

and heuristic methods exhibiting a similar, lower FN rate. These results suggest that the full HMM

method is better able to identify stops, with the disadvantage that it is also more sensitive to noise and

more prone to false positives. On the other hand, the speed-only method detects fewer stops, but makes

fewer false declarations.

We further assess the accuracy of the HMM methods in Figure 5(b) by plotting the histogram of all

inferred angle changes over the course of a stopping phase (henceforth denoted stopwise angle changes),

overlaid with the histogram of stopwise angle changes due to FPs. We use a simulated dataset with an

intermediate level of additive noise (D = 0.43 µms−1) for this purpose, as this is similar to the value of

the translational diffusion coefficient estimated from the experimental data (approximately 0.3 µm2s−1;

see Figure S11 and Text S1). The result changes very little for noise levels up to D = 0.72 µm2s−1 (data

not shown). The true underlying distribution of stopwise angle changes is uniform. This figure shows

that FPs tend to produce small stopwise angle changes, which introduces some bias into the process.

However, the number of FPs is low and the bias is not significant over a range of intermediate noise

levels. As Figure 5(c) illustrates, the bias is significantly higher when the heuristic method is used. This

study indicates that the novel HMM methods developed here represent a demonstrable improvement over

the heuristic method for the identification of stopping phases in tracks. In particular, the level of FPs

and degree of systematic bias introduced by the heuristic method are unacceptable, as they would lead

us to draw erroneous conclusions from our data.

Analysis of experimental tracking data

In this section, we restrict our attention to the HMM-based methods, as the simulation study demon-

strated that the FP level is unacceptable using the heuristic method when even low levels of noise are

present. Our aim is to demonstrate the broad relevance of our methods to various species of motile bac-

teria. To this end, we consider two novel datasets, obtained for R. sphaeroides and E. coli as described

in Materials and Methods. Results from the analysis of R. sphaeroides are shown in full. Many previous
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studies have considered the motile behaviour of E. coli [4, 9, 40], therefore for reasons of space we only

present the main results from this dataset.

We use the non-chemotactic and non-motile datasets to form the empirical prior in the HMM-based

methods. This is achieved by computing the framewise speeds and angle changes in both cases and

applying the KDE to estimate the observation pdfs, as described previously. The emprirical prior for the

R. sphaeroides dataset is plotted in Figure 6.

The inferred maximum likelihood parameters are shown in Table 1 along with other values reported

in the literature. Our simulation study indicated that both HMM-based methods generated MLEs that

differed from the true values, with the speed-only method likely to overestimate both τ12 and τ21 and

the accuracy of the full method depending on the level of noise. This is borne out in our analysis, with

the speed-only method generating larger MLEs for both R. sphaeroides and E. coli. The discrepancy

between the two methods in the inferred transition rates is thus an indication that our estimates of the

transition rates should be treated with caution.

A wide range of transition rates have been recorded in the studies cited in Table 1, despite the superfi-

cially similar experimental protocols. A few of the many possible explanations include the use of different

wildtype strains, small differences in the composition of the motility buffer, and differences in the analysis

methods. Comparing with our results, we see that the inferred value of the mean stop duration in R.

sphaeroides is in reasonable agreement with the findings of Berry et al. [41]. The results suggest that

running phases occur for a shorter mean duration in our datasets than those of Brown [42] or Packer et

al. [43], as indicated by the smaller value of τ21. Results for E. coli are in reasonable agreement with those

of Berg and Brown [4]. The tethered cell and tracking protocols differ a great deal, as observed by Poole

and coworkers [13], who noted that the use of antibody to tether R. sphaeroides to a microscope slide

by their flagella substantially reduced their rotation speed and decreased the number of observed stops.

This is consistent with our findings, as we estimate a smaller value for τ21, corresponding to shorter runs

and an increased number of stopping phases.

Furthermore, we note that our MLEs are computed for pooled data, so that individual variations be-
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tween tracks are averaged over an entire dataset. There is considerable heterogeneity in switching rates

within a bacterial population [43]. However, considering each track separately would result in insufficient

data being available for shorter tracks, or those containing no run-stop-run transitions, so we do not

consider that problem here. It is for this reason that the estimate of the error in the MLEs is low in

comparison with the other results cited; this is because we use bootstrapping of our ensemble sample

to generate this estimate (see Materials and Methods for details). The error estimated in our study is

therefore a reflection of the nature of the negative log-likelihood surface close to the MLE, rather than

an estimate of the deviation between individual tracks. It may be possible to investigate population het-

erogeneity by applying the HMM-based methods to individual tracks obtained using single-cell tracking

methods, as these tracks are generally longer.

In contrast with our simulation study, we have no ground truth with which to compare the result of

the analysis of the experimental datasets. Nevertheless, a manual inspection of the inferred state sequence

of tracks readily identifies some tracks in which the analysis appears to be successful, in addition to some

tracks in which the inferred state sequence is unrealistic. A selection of wildtype R. sphaeroides tracks

in which the analysis has been manually identified as successful is shown in Figure 7 (left panel). Several

well-defined stopping regions within the tracks have been expanded for greater clarity. Note that, al-

though the speed-only HMM method was used to compute the run probabilities in this figure, the results

for these tracks are almost indistinguishable when the full HMM method is used. The track shown in

Figure 7 (right panel) arises from a bacterium swimming slowly in an exaggerated helical trajectory, and

appears to contain a single genuine stopping event. Both analysis methods incorrectly identify several

of the helical turns as stopping phases, leading to an unrealistically rapidly oscillating state sequence.

Application of post-processing to either HMM analysis method circumvents this issue. The presence of

such a track in the censored dataset motivated a manual examination of all tracks exhibiting either high

median curvature or containing a large number of inferred stopping phases. This indicated that, of the

2780 tracks included in the wildtype dataset, fewer than five are clearly identifiable as highly tortuous.

Any effects from this minority of tracks, after pooling all analysed data, will be insignificant. A similar

outcome is observed in E. coli, although the proportion of tortuous tracks appears to be higher (data not

shown). We provide the analogous plot to Figure 7 for E. coli in Figure S12.



19

In Figure 8(a) we provide a verification of our assumption that wildtype bacterial motility in R.

sphaeroides may be approximated as consisting of runs, which are equivalent to those of the non-

chemotactic strain, and stops, equivalent to the behaviour of the non-motile strain. This figure shows the

observed distribution of framewise speeds in the phases identified as running and stopping by the analysis

methods. These are qualitatively similar to those in Figure 6, suggesting that the form of our empirical

prior is appropriate. Furthermore, the similarity of the distributions estimated by the speed-only and

full methods indicate that the two methods are in close agreement.

Figures 8(b) and 8(c) show the estimated distribution of absolute stopwise angle changes in R.

sphaeroides and E. coli, respectively, as computed using the speed-only and full HMM methods without

post-processing. Plotting angles rather than absolute angles does not affect the results, as the distri-

bution is symmetric (data not shown). We consider this novel result an important demonstration of

the application of our analysis protocol; such a distribution has not been recorded previously for R.

sphaeroides. Again, the methodological variants are all in close agreement. The distribution is unimodal,

containing a single peak at the origin. We carried out a two-sided Kuiper test [44] on the R. sphaeroides

dataset to compare the simulated distribution of inferred stopwise angles (shown in Figure 5(b)) with

the experimentally-observed distribution. If these two distributions are similar, we are unable to deter-

mine whether the observed experimental distribution is significant, or whether it arises as a result of the

bias inherent in our analysis method. Analysis of the experimental R. sphaeroides data indicates that

D ≈ 0.3 µm2s−1 (see Figure S10 and Text S1); we use the conservative value D = 0.43 µm2s−1 in our

simulations. A two-sided Kuiper test reveals that the two distributions differ significantly (p < 10−3, see

Text S1 for details of the calculation). The result in Figure 8(b) is therefore more significant than the

small bias introduced by the analysis methods, indicating that R. sphaeroides exhibit persistence over

reorientation phases.

Discussion

In this work we have demonstrated the effective application of novel analysis methods based on a modified

HMM to tracking data acquired using a simple and relatively inexpensive experimental protocol. The
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result is a high-throughput method to characterise bacterial motion. We applied our methods to two

species of bacteria that exhibit quite different motile behaviour and showed that we are able to estimate

certain key distributions, such as the pdf of stopwise angle changes, plotted in Figures 8(b) and 8(c). This

result has not been measured before in R. sphaeroides, and provides significant evidence that this bac-

terium exhibits persistence over reorientation events, which has important consequences for the modelling

of their motion, and that of related flagellate bacteria. We note that persistence is a consequence of any

reorientation process that occurs over a stochastic duration if some reorientation phases are sufficiently

brief that the direction has not been fully randomised. Therefore, we propose that shorter reorientation

events in the two species considered here lead to a greater degree of persistence. Testing this hypothesis

is the topic of ongoing work.

The stopwise angle change distribution in E. coli (Figure 8(c)) has been measured previously by Berg

and Brown [4] (see Figure 3 in that reference for comparison). In contrast with the bimodal distribution

centred at approximately ±π/4 found in Berg and Brown’s study, we find that the distributions in both

E. coli and R. sphaeroides is unimodal and peaked about the origin. In addition, there is no significant

difference between the distribution for these two species. For further comparison, Xie et al. measured

the distribution of stopwise angle changes in V. alginolyticus, a bacterium that undergoes reversal events,

and showed that the distribution is bimodal, with peaks at around 90 and 180 degrees [12]. The difference

between the analysis methods used to extract stopping events in our study and that of Berg and Brown

may provide an explanation for the discrepancy in our results. In the earlier study, a heuristic method

is applied in which the framewise angle change must exceed 35 degrees for more than one frame to be

labelled as a stop [4]. This may bias the analysis towards detecting stopping events with larger angle

changes. On the other hand, in our study of E. coli we find evidence of some highly tortuous

tracks in which multiple stopping events may be incorrectly labelled (see Figure S12). The

proportion of tortuous tracks in the E. coli dataset appears to be greater than that in the

R. sphaeroides dataset, which may bias our results towards small stopwise angles, though

a manual assessment suggests that such tracks constitute a minority. One possible source

of such tortuous tracks is cells that swim with a highly pronounced body wobble. This

phenomenon has been observed in various experimental studies [45] and a recent modelling

study suggests that multiple flagella may lead to enhanced cell wobble compared with a
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single flagellum [46].

A further explanation for the discrepancy between this study and that of Berg and Brown may be the

substantially different experimental protocols used in the two studies. Berg and Brown track individual

bacteria in three dimensions at a frame rate of 12.6 s−1, while we simultaneously track multiple bac-

teria in two dimensions at a frame rate of 50 s−1. As a result, our datasets contain significantly more

tracks: we analyse 1758 tracks in the E. coli wildtype dataset, compared with the 35 recorded by Berg

and Brown [4]. Duffy and Ford [10] more recently used the same tracking apparatus to study P. putida,

obtaining 80 tracks. However, the tracks we acquire have a lower mean duration: Berg and Brown [4]

present a wildtype track 29.5 seconds in duration; by comparison the mean duration of our tracks is 1.5

seconds in the R. sphaeroides dataset and 6 seconds in the E. coli dataset. This difference in mean track

duration is due to the lower magnification used in acquiring the E. coli dataset, in addition to the lower

swimming speed of this species.

The duration of tracks is limited by the size of the focal plane and the fact that bacteria may swim

out of focus, thus terminating the track. This reduction in track duration is a consequence of the high-

throughput, unsupervised protocol used in this study, and is a limitation generally present in many

recently-developed multiple cell tracking protocols [15, 29]. Whilst we obtain fewer measurements for

each individual, we are able to measure significantly more robust population-wide statistics. As each cell

is observed over a randomly-selected time interval in its lifetime, the shorter duration of the tracks has no

consequences for our population measurements. Further work is required to determine whether shorter

duration tracks reduce our ability to discern variations in the motile behaviour of an individual bacterium.

By way of preliminary comment, we note that the appearance of the tracks with the longest duration

(around 10 seconds) in the current dataset suggests that the motile behaviour observed in our tracks is

not significantly different over a single order of magnitude of timescales. Furthermore, our approach is

less subject to bias than a human-operated single-cell tracking protocol, as we image all cells within the

field of view and discard tracks using a small number of well-justified censoring parameters. In contrast,

any protocol in which the experimentalist may select which cells to track may be systematically biased

in favour of a certain, idealised, type of motile behaviour.
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A second novel contribution of the present work is the use of a systematic simulation study to validate

our analysis methods and compare them with an established method. To our knowledge, no studies have

previously compared analysis methods applicable to bacterial tracking data. The comparison indicates

that the methods based on the HMM are significantly more robust to noise than the established heuristic

method, generating significantly fewer FPs. Furthermore, the simulation study allowed us to determine

the extent to which the results are biased by FPs (see Figure 5(b)). We used the results from our sim-

ulation study to show that the distribution of stopwise angle changes obtained from experimental data

in R. sphaeroides (Figure 8(b)) differs from the distribution of FP stopwise angle changes obtained from

simulated tracks (Figure 5(b)) with very high statistical significance. A quantification of the inherent

bias in the analysis methodology has not been carried out in previous bacterial tracking studies [4, 47],

thus it is unclear to what extent the statistics may be biased. We believe that our simulation approach

therefore represents an important advance in the field of bacterial tracking.

An important caveat associated with the high-throughput tracking of many cells simultaneously is

the inevitable presence of many tracks that do not appear to conform to the well-studied run-and-tumble

model of motility. For example, a non-motile subpopulation has been observed in several similar stud-

ies [48–50]. Whilst these tracks may be of general interest, the present analysis methods are specifically

developed to extract information about bacteria undergoing run-and-tumble motion, hence it is neces-

sary to filter out incongruous tracks. In Materials and Methods, we have presented censoring approaches

that mitigate such issues. In particular, the minimum bounding diameter and tortuosity are very useful

characteristics for censoring tracks that might otherwise lead to spurious inferences. In particular, we

discard the top 5% of tracks, ordered by tortuosity. This approach allows us to apply the same censor-

ing method to multiple datasets without the need to specify multiple thresholds, and therefore permits

unbiased comparisons to be made.

Manual inspection of the segmented tracks revealed a selection of tracks in which the new analysis

methods appear to have performed well (see Figures 7 and S12). These tracks were manually selected

from the dataset because they appear easy to interpret, with clear running and stopping phases. In ad-

dition, an example of a helical R. sphaeroides track was shown, for which both analysis methods clearly

failed to infer the correct state sequence. The inclusion of post-processing helped to correct the inferred
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run probabilities.

The HMM approach takes advantage of the availability of non-motile and non-chemotactic mutant

strains to obtain empirical prior information on the motion of the bacteria. Such strains are available for

many bacterial species not considered in this study, for example Campylobacter jejuni [51], and Caulobac-

ter crescentus [52]. The protocol developed is theoretically applicable to any bacterium that undergoes

approximately discrete reorientation events of sufficient duration so as to be captured with a video micro-

scope. It is encouraging that our analysis methods have proved applicable to two very different species

of bacteria. There are substantial differences in the reorientation mechanisms of the two species: E. coli

undergoes rapid, active reorientation, achieved by the displacement of individual flagellar helices from a

peritrichous flagellar bundle, whereas R. sphaeroides reorientates more slowly, by halting the rotation of

its single flagellum [5]. The mean stop duration parameter, τ12, is larger in R. sphaeroides, as expected.

Further work is required to determine whether all such bacteria are amenable to analysis in this way,

however. For example, Bacillus subtilis is believed to accelerate into a running phase [53], which could

contravene our two-state model of motion if the acceleration stage is long relative to the timescale of the

microscopy.

A further possible application of the methods presented in this study is to the motion of certain

eukaryotic species, such as the alga Chlamydomonas, which is known to exhibit motion that is super-

ficially similar to the random swimming of bacteria [54]. However, this alga is approximately an order

of magnitude larger than bacteria, and therefore exhibits significantly different properties, such as iner-

tia and spatial sensing. Further work is needed to test whether our methods are applicable to such species.

The methods presented here may also be applied in situations where no mutant strains are available.

The motion of non-motile bacteria may be reasonably approximated by a diffusive process, as is the case

for the non-motile R. sphaeroides and E. coli in the present study [55]. In the case of R. sphaeroides,

the flagellum ceases to rotate during a stopping phase [5, 7]. Since only translational dif-

fusion contributes to the observed motion of the cell body during a stopping phase, we

may reasonably neglect the presence of the flagellum, as its narrow profile means that it

does not contribute significantly to the total translational viscous drag coefficient of the
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bacterium [56]. Furthermore, it is possible to generate an estimate of the behaviour of bacteria in a

running phase by manually selecting running phases in a wildtype dataset, although this is a subjective

procedure that potentially biases the analysis. Whilst the present study concerns the analysis of a sin-

gle, identified species of bacteria at any one time, there is also a demand to analyse samples containing

multiple unknown bacterial species [57]. Further work is required to determine whether our analysis meth-

ods are applicable in these situations. For example, minor modifications should allow the HMM methods

to be used to determine the likelihood that a given observed track arises from a reference model of motion.

The current experimental approach produces two-dimensional position coordinates for the cell cen-

troids. We have therefore implicitly projected the true three-dimensional motion of the bacteria swimming

in the bulk onto the microscope’s image plane. Hill and Häder [58] analysed the effect of projection of

tracks onto a two-dimensional plane and concluded that, for their purposes, the error introduced in the

observed mean speed is small (< 10%). The authors assume an infinite focal depth for their calculation,

whereas the focal depth in our setup is small compared to the dimensions of the image plane. We there-

fore expect the errors caused by projection in our case to be substantially smaller. A further consequence

of performing tracking away from a surface within a single focal plane is that bacteria may freely swim

out of focus, causing the track to be terminated and leading to tracks of relatively short duration [17].

It is possible to track bacteria in three dimensions, and several groups have made use of various three-

dimensional tracking methods to investigate bacterial swimming [4, 10, 28, 29, 47, 59, 60]. The process for

obtaining three-dimensional tracks is, however, generally more complex than the method we use and in

many cases this leads to a reduced number of tracks available for analysis. Digital holographic microscopy

is a promising recent development that could potentially allow the tracking of multiple bacteria simulta-

neously in three dimensions in a fixed field of view [61]. The HMM-based approaches presented here can

be extended in a straightforward manner to deal with three-dimensional data.

Software implementing the methods described in this study is available from the authors upon request.

It is fully documented and written in Python to make it compatible with all major operating systems.

The applications of the analysis methods presented here are of potential benefit in a wide variety of

bacterial research, including studies of pathogenicity, biofilm formation, and the response of bacteria to

chemoattractants and changing environments. In particular, the field of microfluidics is a promising area
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for further development, as it allows the tracking of bacteria in a well-defined concentration gradient

of chemoattractant, as demonstrated by Ahmed and Stocker [17]. In this case, a modification would

be required to incorporate the spatial variation of the transition matrix A, reflecting the heterogeneous

chemoattractant concentration. The ability to quickly assess and compare the motility of a variety of

related bacterial strains, or different species, is a powerful addition to the methodological toolbox of the

bacteriologist.

Materials and Methods

Acquisition of bacterial tracks

Imaging and tracking was performed on three different strains of R. sphaeroides: wildtype (WS8N), a

non-motile mutant (JPA467) and a non-chemotactic mutant that is incapable of stopping (JPA1353).

Details of the experimental protocol used to create the mutant strains, and the growth conditions, are

given in [5]. Some typical raw footage of R. sphaeroides is provided in Video S1. Three strains of E.

coli were also used: wildtype (RP437), non-motile (CheY∗∗), and non-chemotactic (∆CheY). Bacteria

were imaged in a homogeneous solution of motility buffer using a tunnel slide. Imaging was performed

at 50 frames per second using a Nikon phase contrast microscope with a 40× magnification objective

lens in the case of R. sphaeroides and a 20× objective in the case of E. coli. The images are captured in

256 level greyscale, 640 pixels (px) wide and 480 px in height, equivalent to 76.8µm wide and 57.6µm

high in the case of R. sphaeroides and twice those dimensions for E. coli. For comparison, a typical

R. sphaeroides cell is approximately ellipsoidal, with axial and equatorial diameters of around 2µm and

1µm, respectively. Imaging was performed with the microscope focused approximately 100µm below the

top coverslip, and at least this distance from the bottom surface of the microscope slide. This is suffi-

ciently far from either surface that we may neglect surface effects, which are known to cause bacteria to

swim in arcing trajectories [47] The observed cells are swimming freely in the medium and may stray out

of the focal plane. Typically between 10 and 20 minutes of footage are acquired for each strain, from each

of which we obtain between 3000 and 7000 tracks. The tracking procedure is able to cope with a large

variation in the density of cells within the field of view, and this value changes depending on the level of

magnification used. We typically aimed for around 20-40 cells visible within the field of view in the case

of 40× magnification, and 50-80 cells in the case of 20× magnification. Both magnification levels used
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provided sufficient spatial resolution to find centroids with acceptable accuracy. Further work is necessary

to determine whether even lower levels of magnification would allow us to increase the throughput of the

experiment without compromising on accuracy. The frame rate of the camera should be sufficiently rapid

that reorientation events can be imaged, and preferably so that most events last for greater than a single

frame.

We performed cell tracking in two stages. First, in the object detection stage, each frame in a video was

processed to establish the centroids of each visible cell. Second, in the data association stage, centroids

in each frame were connected to form tracks. The object detection stage is carried out in several steps:

1. compute the background value of each pixel as its mean intensity over all frames;

2. subtract the background intensity from all frames;

3. find pixels in each frame with intensities after background subtraction above the threshold value

ρI+ and below the threshold value ρI-;

4. cluster groups of pixels that are 4-connected, meaning that every pixel in a cluster has another

pixel in the same cluster in one of the four neighbouring sites around it;

5. discard any clusters containing fewer than a defined number of pixels, ρP;

6. find the centroid (centre of mass) of each of the remaining clusters.

The centroids computed using this method represent the targets present in each frame. The initial

background subtraction ensures that any static image artefacts, such as dust on the microscope lens or

impurities stuck to the coverslip, are removed from the video. The parameters ρI+ and ρI- were selected

separately for each video based on manual verification that the process correctly segmented cells in the

images. The values of these parameters were chosen to minimise the number of missed detections, at the

expense of producing additional FPs, as the data association routine is robust to high levels of FPs [27].

The minimum cluster size constraint was applied to the region data to remove spurious targets, which

are too small to be cells. The minimum cluster size was fixed at ρP = 5 px, which is substantially

below the mean cross-sectional area of a cell. This resulted in the removal of a significant number of

FPs whilst having no effect on true positives. Some errors arise in the process of computing the cell cen-

troid, due to the relatively low contrast of the microscope images. We estimate that such errors should
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be no greater than half the diameter of a cell body. In order to manually confirm that cell centroid

calculation is sufficiently robust for our purposes, tracks from non-chemotactic cells were examined to

ensure that they mainly showed smooth swimming, with no overly jagged sections. A further conse-

quence of the low contrast images is that it is not possible to determine cell orientation on this scale; this

parameter must therefore be inferred from the angle change between each triplet of consecutive centroids.

The data association method used in this study is a multitarget tracking scheme based on the prob-

ability hypothesis density filter. We use an implementation described in [27], which has been applied to

microscope videos similar to those used in this study. Video S2 shows the raw microscopy footage of R.

sphaeroides overlaid with tracks. As described in Analysis methods, the tracker performs less well when

cells are in a stopped phase, as the errors in centroid detection are more significant. Manual inspection

of tracks shows well-defined stopping phases in the wildtype strains, however the apparent trajectory

during a stop is not accurate. This provides the basis for the modification to the HMM, discussed in the

section Hidden Markov model methods.

Simulation study

The parameters for the Weibull distribution used to simulate bacterial swimming speeds

were computed by fitting a Weibull distribution to the observed framewise speeds in the

non-chemotactic R. sphaeroides mutant (shown in Figure 6). We find that a reasonable

fit is achieved with the Weibull shape parameter equal to 3.97 and the scale parameter

equal to 39.1 (data not shown). The remaining simulation parameters are described in

Simulation study of analysis methods. In order to compare the simulated and experimental

distributions of framewise speeds and angle changes, we plot the analogous data to Figure 6

in Figure S6. The simulated framewise speeds appear qualitatively similar to those observed

experimentally, however there is some discrepancy between the simulated and experimental

framewise angle changes. The simulated framewsie angle changes occurring during stopping

phases are skewed towards high values, whereas they are centred around the origin for the

experimental data. This difference is due to the simple noise model used in our simulation

study, as discussed in Simulation study of analysis methods. We consider this difference
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acceptable for the purposes of our simulation study, which does not aim to fully reproduce

the complex sources of noise inherent in the experimental tracks.

Bootstrapping method for estimation of transition probability confidence in-

tervals

When optimising the value of the transition parameters p12 and p21, we require an estimate of the

uncertainty in our final MLE. This is achieved using simple bootstrapping [37], in which we resample the

tracking dataset by drawing the same number of tracks randomly with replacement. The optimisation

procedure is then repeated on the new selected dataset, to achieve a new MLE. This process is repeated

for 1000 iterations, after which we sort the bootstrapped MLE transition parameters. We finally use

the 2.5th and 97.5th percentile values from the sorted list of p12 and p21 as estimates of the confidence

interval.

Censoring tracking datasets

Preliminary scrutinisation of our R. sphaeroides and E. coli tracking data reveals that a significant pro-

portion of tracks that do not appear to be well described by the run-and-tumble motility described in

previous studies [4, 62]. These tracks are either very jagged in their appearance, exhibit unrealistically

large movements between frames, or seem to arise from a diffusing object, rather than an actively swim-

ming cell. Possible causes of such tracks include errors in the tracking process, non-motile bacteria, and

bacteria with defective motility apparatus. First, the process used to extract tracks from microscope

videos may occasionally produce a failed track, for example by linking the trajectories of two different

cells, or incorporating a false detection into the trajectory. This is a particular concern if the failed

track displays behaviour that differs substantially from the true motion of the observed bacteria, since

even a small number of failed tracks may dramatically affect the inferences that are drawn. In order to

avoid this issue, tracks containing one or more framewise speeds greater than a threshold value, denoted

ρFS, are considered to be anomalous and discarded from the dataset. The value of ρFS is determined

by considering the observed distribution of framewise speeds in the non-chemotactic strain; this gives an

indication of the range of speeds exhibited. An upper threshold is then selected that causes outliers to be

discarded. In the case of R. sphaeroides, whose mean swimming speed is approximately 35 µms−1, we se-



29

lect ρFS = 90 µms−1. The mean swimming speed of E. coli is 13 µms−1 and we choose ρFS = 50 µms−1.

In both cases, ρFS is significantly greater than the mean swimming speed. We allow such a large margin

for variation in the framewise speed as small errors in consecutive frames can generate large fluctuations

in the apparent framewise speed. We do not wish to discard tracks containing a few instances of such

inaccuracies, since these quantities will not dominate the population average. This effect is expected to

be minor when all tracks in a dataset are considered, and we note that over- and underestimation of

the framewise speed are equally probable. Observed framewise speeds above the cutoff value of ρFS are

unlikely to arise from such a source of noise; these are instead treated as a tracking error and the whole

track is discarded.

In addition to tracker errors, a second consideration is the presence of a significant portion of non-

motile tracked cells, as is usually observed in experiments of this kind [48–50]. Reasons for a lack of

motility include cell death, a defective component in the cellular motility machinery, and cell damage

due to experimental handling. Figure 9 provides evidence for the presence of a non-motile subpopulation

in the non-chemotactic R. sphaeroides strain by comparison with the non-motile strain. As Figure 9(a)

demonstrates, the observed distribution of framewise speeds for the non-chemotactic strain is bimodal,

with a peak at low speeds that overlaps almost exactly with the non-motile distribution. This suggests

that the low speed subpopulation in the non-chemotactic strain is due to non-motile cells. Similarly,

in Figure 9(b), non-chemotactic R. sphaeroides bacteria exhibit a bimodal distribution of median cur-

vatures. The subpopulation with higher median curvatures corresponds very closely to the non-motile

population.

A third way in which the experimental data differ from the simulated data is the wide range of tortu-

osities exhibited by real tracks, due to variation within the populations of bacteria being studied. Several

tracks appear to be highly tortuous, possibly as a result of bacteria swimming in severely helical paths

or with substantial cell body motion. Possible causes for tortuous tracks include damaged or defective

flagella, and two bacterial cells swimming whilst stuck together, prior to cell division. None of the anal-

ysis methods discussed herein are able to cope with highly tortuous tracks, as these exhibit many large

framewise angle changes and low framewise speeds in the running phase. It is therefore challenging to

discern stopping phases in such tracks, either automatically or by manual inspection. Tortuous tracks
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are apparent in the non-chemotactic and wildtype datasets and it is necessary to remove them from the

dataset before performing any further analysis.

Our approach to censoring tracks is based on a two-variable representation of a track used by Miño et

al. [49]. Each track is summarised in terms of the mean absolute framewise angle change (MAC), and the

normalised effective mean speed (NEMS). The NEMS is defined as the ratio of the effective mean speed

(EMS) to the mean framewise speed. The EMS is in turn given by the diameter of the smallest circle that

encloses the entire track (denoted the minimum bounding diameter, MBD) divided by the total duration

of the track. Thus the NEMS takes values between zero and one, and quantifies how straight the track

is, with one interpreted as a line that doesn’t deviate from a straight path and smaller values indicating

increasingly undirected motion.

Miño et al. note that a population consisting of self-propelled particles (which is a good model for

motile bacteria) and non-motile diffusing particles exhibits a well-separated bimodal distribution in the

MAC-NEMS plot [49]. Figure 10(a) shows such a plot for the non-chemotactic strain of R. sphaeroides,

before any censoring. Two modes are clearly visible, one with high MAC and low NEMS corresponding

to non-motile cells, and one with low MAC and high NEMS corresponding to motile cells. We use this

representation of tracks to determine the effectiveness of our censoring approach.

We also require a measure of the tortuosity of a track, as this is a useful property for the purposes

of filtering the dataset. Several methods have been proposed for estimating tortuosity [63]; we employ a

method proposed by Lewiner et al., in which a three-point estimator of the curvature of a track is used

as a measure of the tortuosity [64]. The curvature is defined for a given position, ri, i ∈ {1, . . . , T − 1},

in a track by

κ(ri) =
θi

∥di−1∥+ ∥di∥
, (13)

where the notation is introduced in the Results section and illustrated in Figure 1. The curvature is

undefined for the first and last points in a track, as we require three adjacent points to estimate it. We

use the median value of the absolute curvature of a track as a summary statistic, as this has been used

previously to characterise trajectories [20].



31

The non-motile tracks are not censored beyond the application of the threshold ρFS, as any further

censoring would remove all of the remaining tracks. For the non-chemotactic and wildtpe strains we

censor tracks in two stages. We first filter out non-motile tracks by imposing a minimum value of 10µm

for the MBD, and discard tracks whose MBD is lower than this cutoff value. This ensures that tracks

that do not cover a sufficiently large region of the field of view are removed from the dataset; in practice,

tracks that do not meet this threshold are non-motile or of very short duration. Finally, the top five

percent of tracks, ordered by median curvature, are discarded, following Alon et al. [18]. This stage is

necessary to remove the remaining non-motile and anomalously tortuous tracks. Discarding an arbitrary

proportion of tracks may lead to anomalous tracks remaining in the dataset, or tracks of interest being

removed. Nonetheless, this approach has the advantage that the same parameters may be used to censor

a wide range of datasets. In this study, for example, we use the same censoring parameters to remove

defective tracks from both R. sphaeroides and E. coli tracking data.

Figure 10(b) shows the MAC-NEMS plot for the non-chemotactic R. sphaeroides strain following

censoring. The density at high MAC has been filtered out, leaving mainly tracks that lie in the cor-

rect region of the plot corresponsing to motile cells. Similar plots for wildtype R. sphaeroides and both

non-chemotactic and wildtype E. coli are shown in Figures S8-S10; in all cases, the censoring process

removes tracks that lie in the high MAC, low NEMS region.

The number of tracks in each of the datasets before and after the censoring stages is given in Table 2.

The censoring stage removes a large proportion of the initial tracks, with most failing on the minimum

MBD criterion. This is an important stage of the analysis process, as most of these tracks are due to

non-motile cells or very short duration tracks, neither of which are desirable in the final dataset. Figure

10(c) shows a representative sample of tracks before and after the censoring process. The dataset initially

contains a large proportion of tracks from non-motile or motility-defective bacteria. After censoring, these

tracks have been removed, whilst still retaining longer tracks that exhibit stops.
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Post-processing

Post-processing is implemented as follows:

1. find the duration of all inferred running phases;

2. convert all running phases with duration less than τ2,min to stops;

3. recalculate to find the duration of all stopping phases;

4. convert all stopping phases with duration less than τ1,min to runs.

The process is illustrated in Figure 3, in which the short stop inferred at around 0.3 s is removed

by the application of post-processing. The relabelling of short runs before short stops introduces a bias

towards stops when sustained rapid oscillations occur between the two states (the short run sections will

first be converted to stops, resulting in a larger stopped section). We choose to proceed in this fashion

as we place greater importance on identifying every stop, possibly at the expense of including some false

positives or inferring overly long stopping phases.
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Figure Legends

Figure 1. Data representation in a track. The thin black line represents the continuous trajectory
of a cell. Crosses and circles denote running and stopping phases, respectively, and represent locations
at which the position of the cell is recorded, separated by a constant time interval ∆t. Dashed black
lines and notation illustrate the mathematical representation of the track.

Figure 2. Flow diagram of the stages involved in analysing the experimental tracking
data. White boxes represent the raw datasets. The non-chemotactic and wildtype data are first
censored to remove spurious tracks, as described in Materials and Methods. The two mutant strains are
then used to generate an empirical prior, in the form of the observation functions. The empirical prior
is used when analysing the wildtype dataset, in order to find the MLE of the transition probabilities
and finally segment the track into discrete states by computing the state sequence, S.
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Figure 3. An illustration of the output of the analysis methods, post-processing and
comparison with the true underlying state for a simulated track. The upper panel shows the
simulated track; the black circle shows the start point, dashed lines indicate the true underlying motion,
and coloured lines indicate the observed motion after the addition of noise. Colours correspond to run
probabilities, as inferred by the full HMM method, with a colour map that varies between green,
denoting a run, and red, denoting a stop. The scale bar is 20µm in length. The lower plots show (from
bottom to top) the true underlying state, before and after discretisation, the run probabilities, and the
run status, before and after post-processing. Crosses indicate sample points.
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Figure 4. MLE mean durations and 95% confidence intervals, τ12 (black) and τ21 (red),
computed with simulated tracks by minimising the negative log-likelihood. (Top plot) HMM
full; (bottom plot) HMM speed-only. Dashed lines indicate the true values used in the simulation.
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Figure 5. Assessing the performance of the analysis methods using simulated data. (a)
Mean FP and FN rate per simulated track at different levels of additive noise. (♢) heuristic, no
post-processing; (�) heuristic with post-processing; (+) HMM speed-only, no post-processing; (×)
HMM full, no post-processing. (b) and (c) Histograms of the inferred stopwise angle changes computed
using the full HMM method (b) and the heuristic method (c) on the simulated dataset with
D = 0.43 µm2s−1. Black bars show data for all inferred stops, grey bars show which of these are due to
FPs. The results are similar when the speed-only method is used, or if post-processing is applied.
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Figure 6. Observed distributions extracted from the non-motile (white bars) and
non-chemotactic (black bars) R. sphaeroides mutants, after censoring. Grey bars denote
overlapping regions. (a) Framewise speeds. (b) Framewise angle changes.

Figure 7. Manual inspection of R. sphaeroides tracks to assess the performance of the
analysis methods. (Left) A selection of tracks that were manually verified to contain stopping phases
correctly identified by the speed-only HMM method. Green indicates a running phase, red indicates a
stopping phase, small circles indicate the starting position of the track, and pairs of arrows show the
direction of travel of the bacterium immediately prior to and after a stop. Larger circles indicate regions
of the track that have been expanded in the nearby inset plots. (Right) A track from a bacterium
swimming in a helical trajectory, as analysed by (i) full HMM, (ii) speed-only HMM, (iii) full HMM
with post-processing, and (iv) speed-only HMM with post-processing. The black bar is 10µm long,
otherwise the plot is interpreted as for the left-hand side.
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Figure 8. Characteristics of the motile behaviour of wildtype R. sphaeroides extracted
using the HMM-based analysis methods. (a) Observed distribution of framewise speeds in the
running (black bars) and stopping states (white bars), computed using the full HMM method without
post-processing. Application of post-processing and/or using the speed-only method makes no
significant difference to the results. (b) Observed distribution of absolute stopwise angle changes
computed using the full (black bars) and speed-only HMM method (white bars) without
post-processing. Application of post-processing makes no significant difference to the results. (c) As
(b), but for E. coli. In all plots, grey bars denote overlapping regions.
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Figure 9. Motile characteristics extracted from the non-motile and non-chemotactic R.
sphaeroides tracking datasets. (a) Histogram of framewise speeds for the non-chemotactic (black
bars) and non-motile (white bars) datasets. Overlapping regions are shown in grey. The distributions
have been scaled so their maxima coincide. (b) Histogram of median curvature (defined below in
equation (13)) computed for all tracks in the non-chemotactic (black bars) and non-motile (white bars)
datasets. Intersecting regions are shown in grey. Note that the y−axis is broken; the density at low
curvatures dominates the non-chemotactic histogram. The datasets have been censored to remove failed
tracks (see text for details).
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Figure 10. Results illustrating the censoring process in R. sphaeroides. (a) MAC-NEMS plot
for the non-chemotactic dataset, before censoring. (b) MAC-NEMS plot for the non-chemotactic
dataset, after censoring. (c) A random selection of 40 tracks from the wildtype dataset, with censored
tracks shown in grey and remaining tracks shown in black.
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Figure S1. Joint and marginal estimated observation pdfs for the non-chemotactic strain
of R. sphaeroides.

Figure S2. Joint and marginal estimated observation pdfs for the non-motile strain of R.
sphaeroides.
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Figure S3. Joint and marginal estimated observation pdfs for the non-chemotactic strain
of R. sphaeroides, rescaled to show noise.
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Figure S4. Joint and marginal estimated observation pdfs for the non-motile strain of R.
sphaeroides, rescaled to show noise.
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Figure S5. Plot showing simulated tracks with varying levels of added noise. (a)
D = 7.2× 10−2 µm2s−1, (b) D = 7.2× 10−1 µm2s−1, (c) D = 1.4 µm2s−1, (d) D = 2.8 µm2s−1.

Figure S6. Observed distributions extracted from simulated non-motile (white bars) and
non-chemotactic (black bars) tracks. Grey bars denote overlapping regions. Noise is applied with
D = 0.43 µm2s−1. (a) Framewise speeds. (b) Framewise angle changes.
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Figure S7. The negative log likelihood surface for a simulated non-chemotactic dataset.

Figure S8. MAC-NEMS plots for wildtype R. sphaeroides before (a) and after (b)
censoring.
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Figure S9. MAC-NEMS plots for non-chemotactic E. coli before (a) and after (b)
censoring.

Figure S10. MAC-NEMS plots for wildtype E. coli before before (a) and after (b)
censoring.



52

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

Time interval (s)

M
S

D
 (

µ
m

2
)

Figure S11. Estimation of the level of noise in the experimental data. Mean squared
displacement of the non-motile R. sphaeroides dataset (solid line), overlaid with a linear fit to the data
from time 0.2 s onwards (dashed line). The gradient of the dashed line is approximately 1.2 µm2s−1.
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Figure S12. Manual inspection of wildtype E. coli tracks, analysed with the speed-only
HMM method. Tracks appear similar when the full method is used (data not shown). Green
indicates a running phase, red indicates a stopping phase, small circles indicate the starting position of
the track, and pairs of arrows show the direction of travel of the bacterium immediately prior to and
after a stop. The top plot shows tracks where the methods appear to have performed well. The lower
plot shows tracks for which the state sequence shows very many transitions over the course of each
track; these appear to arise from highly tumbly swimmers, and are likely to be among the most
tortuous tracks remaining in the dataset following the censoring approach.. All tracks are plotted on
the same scale; the plot is approximately 60µm wide.
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Tables

Table 1. Mean duration of running and stopped states

Reference Species Method τ12 (s) τ21 (s)

[4] E. coli Single cell tracking 0.14± 0.19 0.86± 1.18
[41] R. sphaeroides Tethered cell 0.27 1.69
[42] R. sphaeroides Tethered cell 0.66± 1.01 3.23
[65] R. sphaeroides Tethered cell 1.04± 3.18 4.54

This study R. sphaeroides Tracking (full) 0.40± 0.02 1.16± 0.06
This study R. sphaeroides Tracking (speed-only) 0.50± 0.02 1.59± 0.08
This study E. coli Tracking (full) 0.19± 0.01 0.35± 0.01
This study E. coli Tracking (speed-only) 0.31± 0.01 0.53± 0.02

Summarised literature values of transition rates between the running and stopped states in R.
sphaeroides and E. coli. Standard deviations are given where they are available; note that standard
deviations provided for the analysis methods refer to the optimisation procedure rather than the
difference between individual tracks. The terms ‘full’ and ‘speed-only’ refer to the HMM method used
to analyse the data.

Table 2. Effect of censoring the datasets

Dataset Rs nm Rs nc Rs wt Ec nm Ec nc Ec wt

Initial number tracks 5627 3773 6832 3669 3562 5757
Number above ρFS 47 212 706 500 492 979

Number below minimum MBD – 1859 2928 – 1219 2811
5% removed by median curvature – 86 160 – 93 99

Number remaining 5580 1616 3038 3169 1758 1868

The number of tracks in each of the datasets considered, before and after censoring. Rs denotes R.
sphaeroides, Ec is E. coli, nm is non-motile, nc is non-chemotactic, wt is wildtype. Dashes indicate that
a stage of the censoring is not applicable.


