	Introduction 00000		Domain growth 00000000	Conclusions 0000
_				

A comparison of stochastic and analytical models for cell migration

Christian A. Yates

Centre for Mathematical Biology University of Oxford

October 26th, 2009

Christian A. Yates (Oxford)

Cell Migration Modelling

$\begin{array}{c} \mathbf{Introduction} \\ \circ \circ \circ \circ \circ \end{array}$	Modelling Approcaches	Model Comparison 0000000	Domain growth 00000000	Conclusions 0000
Introduc	tion			

Introduction

Christian A. Yates (Oxford)

Cell Migration Modelling

October 26th, 2009 2 / 33

æ

Introduction \bullet 0000	Modelling Approcaches	Model Comparison	Domain growth	Conclusions
	000	0000000	00000000	0000
Outline				

- \star What is cell migration?
- \star Why do we want to model it?
- \star Application areas.
- ★ Modelling approaches for cell migration: stochastic vs continuum.
- ★ Equivalence between the two approaches on the non-growing domain: theory and simulation.
- \star Equivalence on the growing domain: simulation and theory.
- \star Special types of domain growth.
- \star Where next?

Introduction $\circ \bullet \circ \circ \circ \circ$	Modelling Approcaches	Model Comparison 0000000	Domain growth 00000000	Conclusions 0000		
What is cell migration						
+ Tho d	irected movement o	f colls				

- A central process in the development and maintenance of
 - multicellular organisms.
- ★ Applications in many areas of development from conception to death:
 - \star Embryogenesis
 - $\star\,$ Nervous system formation and repair.
 - $\star\,$ Vasculature formation and repair.
 - $\star\,$ Limb formation.
 - $\star\,$ Repair (e.g wound healing).
 - \star Immune responses.

Wound healing, immune responses and limb (de)formation!

Introduction $\circ \circ \bullet \circ \circ \circ$	Modelling Approcaches 000	Model Comparison 0000000	Domain growth 00000000	Conclusions 0000		
What happens when cell migration goes wrong?						
Diseases caused by erroneous cell migration:						
★ Jarcho-Levin syndrome.						
\star Congenital scoliosis.						
★ Tume	our invasion and me	etastasis.				

 \star Rheumatoid arthritis.

Rheumatoid arthritis:

- \star Inflammatory cells migrate to joints.
- \star Joint tissue constantly destroyed.

Introduction 00000	Modelling Approcaches	Model Comparison	Domain growth	Conclusions
	000	0000000	00000000	0000
Neural c	rest cell migrati	ion		

- \star Neural crest located between neural tube and epidermis.
- ★ Neural crest cells migrate quickly to different locations giving rise to various adult tissues (nerve cells, chromaffin cells, melanocytes, Schwann cells).

The neural crest in an embryo cross-section.

Schematic of the various specialisations of neural crest cells.

- \star Migrational pathway determines specialisation.
- \star Contact inhibition of locomotion has been seen to be crucial to migration.

Christian A. Yates (Oxford)

Introduction
cocoModelling Approcaches
cocoModel Comparison
cococoDomain growth
cocococoConclusions
cocoNeural crest cell migration:Some example movies

(Loading movie...)

(Loading movie...)

Disperal of an initial cluster of neural crest cells expressing cytoplasmic GFP. Disperal of the same cluster of neural crest cells expressing nuclear RFP.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction 00000 Modelling Approcaches

Model Comparison 0000000 Domain growth 00000000 Conclusions 0000

Modelling Approaches

Modelling Approaches

Christian A. Yates (Oxford)

Cell Migration Modelling

October 26th, 2009 8 / 33

Given initial cell density across the domain and boundary conditions how do we find cell density at later times?

Christian A. Yates (Oxford)

Cell Migration Modelling

- ★ Assume $k \ge 1$ (chemical) species $\{N_1 \dots N_k\}$.
- ★ Classify a set of $M \ge 1$ reactions (chemical or otherwise) $\{R_1 \dots R_M\}.$
- * Associate with each reaction, R_j , a 'propensity function', $\alpha_j(\mathbf{N})$, which describes the probability one R_j reaction will happen in the next small time interval dt.

$$x = 0$$

$$x = 1/k$$

$$x = 1$$

$$x = 1$$
In our model:
$$x = 1$$

$$n_{i-1}$$

$$n_i$$

$$n_{i+1}$$

$$n_{k-1}$$

$$n_k$$

- $\star~k$ is the number of boxes we split the domain into.
- ★ $\{N_1 \dots N_k\}$ represents the number of cells in each box.
- ★ $\{R_1 ... R_M\}$ are the reactions of a cell moving left or right out of the box.
- ★ Hence M = 2k.
- ★ The propensity of each reaction is proportional to the number of cells in the corresponding box.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions
00000		0000000	00000000	0000
Aside - V	What is a Gilles	nie Algorithn	$n^{?}$ - The Al	gorithm

The Algorithm

- **1** Initialize (i.e., set initial numbers of species, set t=0).
- **2** Calculate the propensity functions, α_j , for $j = 1 \dots M$.
- **3** Generate a uniform random number, r_1 , and choose a time τ for the next reaction (using formula $\tau = \frac{1}{\sum_{i=1}^{N} \alpha_i} \log(\frac{1}{r_1})$).
- Generate a second uniform random number, r_2 , and choose which of the reactions will happen (with probability proportional to their propensity functions). i.e. find i s.t. $\sum_{j=1}^{i-1} \alpha_j \leq r_2 \leq \sum_{j=1}^{i} \alpha_j$.
- Output the number of species to reflect execution of the chosen reaction.
- $o update t \leftarrow t + \tau.$
- Go to step 2.

റ

Introduction 00000 Modelling Approcaches 000 Model Comparison

Domain growth 0000000 Conclusions 0000

Model Comparison

Model Comparison

Christian A. Yates (Oxford)

Cell Migration Modelling

October 26th, 2009

Introduction 00000 Modelling Approcaches 000 Model Comparison

Domain growth 00000000 Conclusions 0000

Advantages and Disadvantages

Stochastic/Discrete Approach

- ★ Statistically accurate with low numbers of cells.
- \star Allows for the incorporation of noise.

BUT

 \star Slow.

 \star Different results each time.

Deterministic/Continuum Approach

- \star Fast.
- \star Consistent results.
- ★ Good results with large cell numbers.

BUT

- ★ Statistically innaccurate for low cell numbers.
- \star Unrealistic as no noise effects.

Christian A. Yates (Oxford)

Cell Migration Modelling

13 / 33

$$J_i^+ : [n_1, \dots, n_i, \dots, n_k] \to [n_1, \dots, n_{i-2}, n_{i-1}, n_i + 1, n_{i+1} - 1, n_{i+2} \dots,]$$

$$J_i^- : [n_1, \dots, n_i, \dots, n_k] \to [n_1, \dots, n_{i-2}, n_{i-1} - 1, n_i + 1, n_{i+1}, n_{i+2} \dots,]$$

 J_i^+ moves a cell from interval i + 1 to interval i and J_i^- moves a cell from interval i - 1 to interval i.

Christian A. Yates (Oxford)

Master Equation

$$P(\mathbf{n}, t + \delta t) = \sum_{i=1}^{k-1} T_i^+(n_i + 1) P(J_i^+ \mathbf{n}, t) \delta t + \sum_{i=2}^k T_i^-(n_i + 1) P(J_i^- \mathbf{n}, t) \delta t + P(\mathbf{n}, t) \left(1 - \sum_{i=1}^{k-1} T_i^+ n_i \delta t - \sum_{i=2}^k T_i^- n_i \delta t \right).$$

Christian A. Yates (Oxford)

æ

1

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions
00000	000		00000000	0000
To coi	ntinuous popula	ation model		

Define
$$\langle \boldsymbol{n} \rangle = [\langle n_1 \rangle, \dots, \langle n_k \rangle] = \sum_{\boldsymbol{n}} \boldsymbol{n} P(\boldsymbol{n}, t)$$
 to be the vector of stochastic means. Then we can show

$$\begin{aligned} \frac{\partial \langle n_1 \rangle}{\partial t} &= d \langle n_2 \rangle - d \langle n_1 \rangle, \\ \frac{\partial \langle n_i \rangle}{\partial t} &= d \langle n_{i-1} \rangle - 2d \langle n_i \rangle + d \langle n_{i+1} \rangle, \quad i = 2 \dots k - 1 \\ \frac{\partial \langle n_k \rangle}{\partial t} &= d \langle n_{k-1} \rangle - d \langle n_k \rangle. \end{aligned}$$

This is clearly a discretisation of $\frac{\partial \langle \mathbf{n} \rangle}{\partial t} = D \frac{\partial^2 \langle \mathbf{n} \rangle}{\partial x^2}$, $D = d(\Delta x)^2$

< 三→

æ

Introduction
cooperationModelling Approcaches
cooperationModel Comparison
cooperationDomain growth
cooperationConclusions
cooperationA numerical comparisonof the two models of diffusion

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions
00000		○○○○○●○	00000000	0000
Different	corta of gignal	concinc		

Different sorts of signal sensing

- ★ Introduce a signal molecule concentration across the domain (i.e. s(x)=exp(-x).
- * Local constrain cells to sense the strength of the signalling chemical only at their current site, T^{-} , T^{+} , $f(\cdot)$

$$T^- = T^+ = f(s_i).$$

- ★ Non-local cells sense the strength of the signalling profile over a wider region, but must disregard information at the current site, i, $T^{\pm} = f(s_{i\pm 1})$.
- \star Average cells use information from the current position and adjacent positions,

$$T^{\pm} = f^l(s_i) + f^n(s_{i\pm 1}).$$

Introduction
coocoModelling Approcaches
coocoModel Comparison
coococoDomain growth
coococoConclusions
coococoA numerical comparison
signal sensingof the two models of local
signal sensingof the two models of local

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction	Modelling Approcaches	Model Comparison	$\begin{array}{c} \text{Domain growth} \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$	Conclusions
00000	000	0000000		0000
Domain	Growth			

Domain Growth

Christian A. Yates (Oxford)

Cell Migration Modelling

October 26th, 2009

20 / 33

æ

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions
00000		0000000	•0000000	0000
Incorpora	ating domain gi	rowth		

In reality, during embryogenesis cell migration occurs on a growing domain.

We need to incorporate domain growth into out model of cell migration in both the analytical and stochastic models.

Christian A. Yates (Oxford)

Cell Migration Modelling

October 26th, 2009

How to solve a PDE on a growing domain

- ★ Apply Reynolds transport theorem: $\frac{\partial u}{\partial t} + \nabla \cdot (\boldsymbol{v}u) = D\nabla^2 u + R(u), \ \boldsymbol{x} \in \Omega(t), \quad t \in [0, \infty), \text{ where } \Omega(t)$ is the now time-dependent growing domain.
- ★ In one dimension determine the flow, v: $v = \frac{dx}{dt} = S(u)x$, where S is the (possibly density dependent) strain.
- $\star\,$ Convert to Lagrangian (normalised) coordinates to solve the PDE.
- \star Transform the solution back to the growing domain.

Stochastic interval splitting mechanism

- $\star~j^{th}$ interval (green) splits.
- * Cells are redistributed into the two new intervals using a symmetric probability distribution, π .
- ★ New intervals are renumbered j and j + 1.
- \star Subsequent intervals have their index increased by 1.

Introduction 00000	Modelling Approcaches	Model Comparison 0000000	Domain growth $000000000000000000000000000000000000$	Conclusions 0000
Domain	growth master	equation		

'Inverse growth' operators $G_i: \mathbb{R}^{k(t)} \to \mathbb{R}^{k(t)-1}$

$$G_i: [n_1, \ldots, n_{i-1}, n_i, n_{i+1}, \ldots, n_k] \to [n_1, \ldots, n_{i-1}, n_i + n_{i+1}, \ldots, n_k].$$

 G_i concatenates intervals *i* and *i*+1 adding their cell numbers together. *r* is the constant stochastic rate of box splitting.

Master Equation

$$P^{k(t)}(\boldsymbol{n}, t + \delta t) = r \sum_{i=1}^{k(t)-1} \pi(n_i, n_{i+1} | n_i + n_{i+1}) \times P^{k(t)-1}(G_i \boldsymbol{n}, t) \delta t$$

+ $P^{k(t)}(\boldsymbol{n}, t) - r \sum_{i=1}^{k(t)} P^{k(t)}(\boldsymbol{n}, t) \delta t.$

Christian A. Yates (Oxford)

Introduction
occoccModelling Approcaches
occoccModel Comparison
occoccDomain growth
coccoccConclusions
occoccA numerical comparison of the two models of average
sensing on a domain with exponential domain growth

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions		
00000		0000000	00000 00 0	0000		
Other types of domain growth						

Other more complicated types of growth

- \star Density-dependent domain growth:
 - $\star\,$ Linear dependence

$$S(u) = r \times u.$$

- * Quadratic dependence $S(u) = r \times u^2$
- \star Inverse dependence

$$S(u) = \frac{r}{r+u}$$

- * Many more to explore S(u) = ???
- \star Linear domain growth
- \star Logistic domain growth

IntroductionModelling ApprocachesModel ComparisonDomain growthConclusionsA numerical comparison of the two models of non-localsensing on a domain with linearly density dependentdomain growth

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction
occoccModelling Approcaches
occoccModel Comparison
occoccDomain growth
occoccoccConclusions
occoccA numerical comparison of the two models of diffusion
on a domain with logisitc domain growthon a domain growthConclusions
occocc

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions	
00000	000	0000000	00000000	0000	
Conclusions					

Conclusions

æ

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Modelling Approcaches	Model Comparison	Domain growth	Conclusions	
	000	0000000	00000000	••••	
Summary					

- \star Introduction to cell migration.
- $\star\,$ Comparison of stochastic and continuum models for cell migration.
- \star Equivalence of stochastic and continuum models on a non-growing domain.
- \star Different types of signal sensing.
- \star Equivalence of the two model types on growing domians.
- \star Different types domain growth.
- \star Lots of simulations.

Introduction
occoModelling Approaches
occoModel Comparison
occoccoDomain growth
coccoccoConclusions
coccoccoA numerical comparison of the two models of diffusion
on a domain with quadratically density dependent
domain growthdomain growth

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction	Modelling Approcaches	Model Comparison	Domain growth	Conclusions	
00000	000	0000000	00000000	$\circ\circ \bullet \circ$	
Further work					

Where Next

- \star Sort out quadratic density dependent domain growth.
- \star Acceleration of stochastic algorithms.
- \star Different boundary conditions i.e. non-zero flux.
- \star Cell death/birth*.
- \star Alternate signalling gradients^{*}.
- \star Density dependent cell movement*.
- \star Extension to 2 and 3 dimensions.
- ★ Model validation with experimental evidence e.g. Neural crest cell migration.

*These extensions have been implemented in R. E. Baker, C. A. Yates, and R. Erban. From microscopic to macroscopic descriptions of cell migration on growing domains. *Bull Math Biol*, Accepted.

Christian A. Yates (Oxford)

Cell Migration Modelling

Introduction 00000	Modelling Approcaches	Model Comparison 0000000	Domain growth 00000000	Conclusions 000Φ
Acknowle	edgements			
★ Dr Ru ★ Dr Ra	th Baker dek Erban			

- \star Professor Philip Maini
- ★ The Doctoral Training Centre (Oxford)
- ★ EPSRC/BBSRC

 \star And Gary Larson for these.

