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Outline

What is Somitogenesis?

Why do we want to model it?

Other application areas

Modelling approaches for cell migration:
stochastic vs continuum.

Equivalence between the two
approaches on the stationary domain:
theory and simulation.

Equivalence on the growing domain:
simulation and theory.

Where next?
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What is Somitogenesis?

Sequential formation of somites!
Segmented mesodermal tissue either side of the neural tube along the
A-P (head-tail) axis.
Precursors to dermis, skeletal muscles and axial skeleton.
Form at anterior (head) end of PSM and proceed posteriorly (towards
the tail).
Common to all vertebrates

Chick embryo displaying somites after 40-45 hours of incubation.
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Why do we want to model cell migration?

Cell migration is involved in many biological processes

Diseases caused by erroneous cell migration in somitogenesis:
Jarcho-Levin syndrome and congenital scoliosis.

Cell migration also contributes to tumour invasion and
metastasis.
In later life cell migration is responsible, in part, for:

Wound healing
Tissue repair
Some immune responses
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Two Contrasting Modelling Approaches

Given initial cell density across the domain and boundary conditions how
do we find cell density at later times?

Stochastic/Discrete Approach

Gillespie Algorithm

α0 =
k∑

i=1

α+
i +

k∑
i=1

α−i

τ = 1
α0

ln
(

1
rand1

)

Deterministic/Continuum Approach

Partial Differential Equations

∂u
∂t = D ∂2u

∂x2 ,

(x , t) ∈ [0, 1]× [0,∞)
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Aside - What is a Gillespie Algorithm? - Background

Assume k ≥ 1 (chemical) species {N1 . . .Nk}.
Classify a set of M ≥ 1 reactions (chemical or otherwise) {R1 . . .RM}.
Associate with each reaction, Rj a ‘propensity function’ aj(N), which
describes the probability one Rj reaction will happen in the next time
interval [t + dt].

In our model:

k is the number of boxes we split the domain into.
{N1 . . .Nk} represents the number of cells in each box.
{R1 . . .RM} are the reactions of a cell moving left or right out of the
box.
Hence M = 2k .
The propensity of each reaction is proportional to the number of cells
in the corresponding box.
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Aside - What is a Gillespie Algorithm? - The Algorithm

The Algorithm

1 Initialize (i.e., set initial numbers of species, set t=0).

2 Calculate the propensity functions, aj , for j = 1 . . .M.

3 Generate a uniform random number, r1, and choose a time τ for the
next reaction (using formula τ = 1PN

j=1 aj
log( 1

r1
)).

4 Generate a second uniform random number (r2) and choose which of
the reactions will happen (with probability proportional to their
propensity functions). i.e. find i s.t.

∑i−1
j=1 aj ≤ r2 ≤

∑i
j=1 aj .

5 Change the number of species to reflect execution of the chosen
reaction.

6 update t ← t + τ .

7 Go to step 2.
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Advantages and Disadvantages

Stochastic/Discrete Approach

Statistically accurate with low
numbers of cells.

Allows for the incorporation of
noise.

BUT

Slow.

Different results each time.

Deterministic/Continuum Approach

Fast.

Consistent results.

Good results with large cell
numbers.

BUT

Statistically innaccurate for
low cell numbers.

Unrealistic as no noise effects.
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Stationary domain - Stochastic Individual Model... (1)

N(t) = [N1(t),N2(t) . . .Ni (t) . . .Nk(t)].

P(n, t) = P(N = n, t).

Define creation and annihilation operators Ac
i and Aa

i : Rk → Rk and

projection operators Bi : Rk → R, i = 1, 2, . . . , k

Ac
i : [n1, . . . , ni , . . . , nk ]→ [n1, . . . , ni + 1, . . . , nk ],

Aa
i : [n1, . . . , ni , . . . , nk ]→ [n1, . . . , ni − 1, . . . , nk ],

Bi : [n1, . . . , ni , . . . , nk ]→ ni .
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Stationary domain - Stochastic Individual Model... (2)

Master Equation

P(n, s, t + δt) =
k−1∑
i=1

d
{

[BiA
a
i+1A

c
i n]P(Aa

i+1A
c
i n, s, t)

}
δt

+
k∑

i=2

d
{

[BiA
a
i−1A

c
i n]P(Aa

i−1A
c
i n, s, t)

}
δt

+ P(n, s, t)−
k−1∑
i=1

{[Bin]P(n, s, t)} δt

−
k∑

i=2

{[Bin]P(n, s, t)} δt
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... To continuous population model

Define 〈n〉 = [〈n1〉, . . . , 〈nk〉] =
∑
n

nP(n, s, t) to be the vector of

stochastic means. Then we can show

∂〈n1〉
∂t

= d〈n2〉 − d〈n1〉,

∂〈ni 〉
∂t

= d〈ni−1〉 − 2d〈ni 〉+ d〈ni+1〉, i = 2 . . . k − 1

∂〈nk〉
∂t

= d〈nk−1〉 − d〈nk〉.

This is clearly a discretisation of ∂〈n〉
∂t = D ∂2〈n〉

∂x2 , D = d(∆x)2
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A numerical comparison of the two models of basic
diffusion

(Loading movie...)

Histogram represents the average over 20 stochastic simulations and the
red curve represnts the solution of the corresponding PDE.
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Different sorts of signal sensing
Introduce a signal molecule concentration across the domain (i.e.
s(x)=exp(-x)).
Local - constrain cells to sense the strength of the signalling chemical
only at their current site,
T− = T+ = f (si ).
Non-local - cells sense the strength of the signalling profile over a
wider region, but must disregard information at the current site, i ,
T± = f (si±1).
Average - cells use information from the current position and adjacent
positions,
T± = f l(si ) + f n(si±1).

Local sensing Non-local sensing Average sensing
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A numerical comparison of the two models of local signal
sensing

(Loading movie...)

Histogram represents the average over 20 stochastic simulations and the
red curve represnts the solution of the corresponding PDE.
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Incorporating Domain Growth

In reality, during embryogenesis and somitogeneis cell migration occurs on
a growing domain.

We need to incorporate domain growth into out model of cell migration in
both the analytical and stochastic models.
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Analytical derivation of Domain growth PDE

How to solve a PDE on a growing domain

Apply Reynold’s transport theorem:
∂u
∂t +∇ · (au) = D∇2u + R(u), x ∈ Ω(t), t ∈ [0,∞), where Ω(t) is
the now time-dependent growing domain.

Determine the flow, a:
a = dx

dt = s(u)x ,
where s is the (possibly density dependent) strain.

Convert to Lagrangian (normalised) coordinates to solve the PDE.

Transform the solution back to the growing domain.
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A numerical comparison of the two models of non-local
sensing on an exponentially growing domain

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the
red curve represnts the solution of the corresponding PDE.
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Other types of domain growth

Other more complicated types of growth

Density-dependent domain growth:

Linear dependence
s(u) = r × u.
Quadratic dependence
s(u) = r × u2

Inverse dependence
s(u) = r

r+u
Many more to explore
s(u) =???

Linear domain growth

Logistic domain growth
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Comparison of the two models of average sensing on a
domain with (linearly) density dependent growth

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the
red curve represnts the solution of the corresponding PDE.

Christian A. Yates (Oxford) Cell Migration Modelling June 18th, 2009 19 / 22


AVERAGEALLINFIRSTMOVIEDENSITYDEPENDENTDGLINEARDDDGCOMPRESSED.avi
Media File (video/avi)



Introduction Modelling Approcaches Model Comparison Domain Growth Conclusions

Summary

Introduction to stochastic models for cell migration.

Equivalence of stochastic and continuum models on a stationary
domain.

Different types of signal sensing.

Equivalence of the two model types on growing domians.

Different types domain growth.
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Further Work

Where Next

Acceleration of stochastic algorithms.

Different boundary conditions i.e. non-zero flux.

Cell death/birth*.

Alternate signalling gradients*.

Density dependent cell movement*.

Extension to 2 and 3 dimensions.

Different application areas e.g. brain/wound healing.

*These extensions have been implemented in R. E. Baker, C. A. Yates,
and R. Erban. From microscopic to macroscopic descriptions of cell
migration on growing domains.Bull Math Biol, Submitted.
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