| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions<br>000 |
|---------------------|-----------------------|------------------|------------------------|--------------------|
|                     |                       |                  |                        |                    |

A comparison of stochastic and analytical models for cell migration during early embryo somitogenesis

### Christian A. Yates

Centre for Mathematical Biology University of Oxford

UK Systems Biology inter-DTC conference, University of Manchester Systems Biology DTC

June 18th, 2009

| Introduction<br>●○○ | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions |
|---------------------|-----------------------|------------------|------------------------|-------------|
| Outline             |                       |                  |                        |             |

- What is Somitogenesis?
- Why do we want to model it?
- Other application areas
- Modelling approaches for cell migration: stochastic vs continuum.
- Equivalence between the two approaches on the stationary domain: theory and simulation.
- Equivalence on the growing domain: simulation and theory.
- Where next?



| Introduction<br>○●○ | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions<br>000 |
|---------------------|-----------------------|------------------|------------------------|--------------------|
| What is S           | omitogenesis?         |                  |                        |                    |

- Sequential formation of somites!
- Segmented mesodermal tissue either side of the neural tube along the A-P (head-tail) axis.
- Precursors to dermis, skeletal muscles and axial skeleton.
- Form at anterior (head) end of PSM and proceed posteriorly (towards the tail).
- Common to all vertebrates



Chick embryo displaying somites after 40-45 hours of incubation.

Christian A. Yates (Oxford)

Cell Migration Modelling

| Why do w            | e want to mod         | lel cell migrati | on?                    |                    |
|---------------------|-----------------------|------------------|------------------------|--------------------|
| Introduction<br>○○● | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions<br>000 |

### Cell migration is involved in many biological processes

- Diseases caused by erroneous cell migration in somitogenesis: Jarcho-Levin syndrome and congenital scoliosis.
- Cell migration also contributes to tumour invasion and metastasis.
- In later life cell migration is responsible, in part, for:
  - Wound healing
  - Tissue repair
  - Some immune responses





Given initial cell density across the domain and boundary conditions how do we find cell density at later times?



Christian A. Yates (Oxford)



- Assume  $k \ge 1$  (chemical) species  $\{N_1 \dots N_k\}$ .
- Classify a set of  $M \ge 1$  reactions (chemical or otherwise)  $\{R_1 \dots R_M\}$ .
- Associate with each reaction,  $R_i$  a 'propensity function'  $a_i(\mathbf{N})$ , which describes the probability one  $R_i$  reaction will happen in the next time interval [t + dt].

$$x = 0$$

$$x = 1/k$$

$$x = 1$$

our model.

- k is the number of boxes we split the domain into.
- $\{N_1 \dots N_k\}$  represents the number of cells in each box.
- $\{R_1 \dots R_M\}$  are the reactions of a cell moving left or right out of the box.
- Hence M = 2k.
- The propensity of each reaction is proportional to the number of cells in the corresponding box.

Christian A. Yates (Oxford)

| Introduction | Modelling Approcaches | Model Comparison | Domain Growth | Conclusions |
|--------------|-----------------------|------------------|---------------|-------------|
| 000          | ○○●○                  |                  | 00000         | 000         |
| Aside - Wł   | nat is a Gillespie    | Algorithm? -     | The Algorith  | m           |

## The Algorithm

- Initialize (i.e., set initial numbers of species, set t=0).
- **2** Calculate the propensity functions,  $a_j$ , for  $j = 1 \dots M$ .
- Generate a uniform random number, r<sub>1</sub>, and choose a time τ for the next reaction (using formula τ = 1/Σ<sup>N</sup><sub>i=1</sub> a<sub>i</sub> log(1/r<sub>1</sub>)).
- Generate a second uniform random number (r<sub>2</sub>) and choose which of the reactions will happen (with probability proportional to their propensity functions). i.e. find i s.t. ∑<sub>i=1</sub><sup>i-1</sup> a<sub>j</sub> ≤ r<sub>2</sub> ≤ ∑<sub>i=1</sub><sup>i</sup> a<sub>j</sub>.
- Change the number of species to reflect execution of the chosen reaction.
- update  $t \leftarrow t + \tau$ .
- Go to step 2.

э

Image: A match a ma

| Introduction Modelling Approcaches M<br>000 000 000            | Iodel Comparison         Domain Growth         Conclusions           00000         00000         000 |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Advantages and Disadvanta                                      | ges                                                                                                  |
|                                                                |                                                                                                      |
| Stochastic/Discrete Approach                                   | Deterministic/Continuum Approach                                                                     |
| <ul> <li>Statistically accurate with low</li> </ul>            | • Fast.                                                                                              |
| numbers of cells.                                              | • Consistent results.                                                                                |
| <ul> <li>Allows for the incorporation of<br/>noise.</li> </ul> | <ul> <li>Good results with large cell<br/>numbers.</li> </ul>                                        |
| BUT                                                            | BUT                                                                                                  |
| • Slow.                                                        | <ul> <li>Statistically innaccurate for<br/>low cell numbers.</li> </ul>                              |
| • Different results each time.                                 | • Unrealistic as no noise effects.                                                                   |
|                                                                |                                                                                                      |

Christian A. Yates (Oxford)

8 / 22 June 18th, 2009



Define creation and annihilation operators  $A_i^c$  and  $A_i^a$ :  $\mathbb{R}^k \to \mathbb{R}^k$  and projection operators  $B_i : \mathbb{R}^k \to \mathbb{R}$ , i = 1, 2, ..., k $A_i^c : [n_1, ..., n_i, ..., n_k] \to [n_1, ..., n_i + 1, ..., n_k],$  $A_i^a : [n_1, ..., n_i, ..., n_k] \to [n_1, ..., n_i - 1, ..., n_k],$  $B_i : [n_1, ..., n_i, ..., n_k] \to n_i.$ 

Christian A. Yates (Oxford)



### Master Equation

$$P(\mathbf{n}, \mathbf{s}, t + \delta t) = \sum_{i=1}^{k-1} d\left\{ [B_i A_{i+1}^a A_i^c \mathbf{n}] P(A_{i+1}^a A_i^c \mathbf{n}, \mathbf{s}, t) \right\} \delta t$$
  
+ 
$$\sum_{i=2}^k d\left\{ [B_i A_{i-1}^a A_i^c \mathbf{n}] P(A_{i-1}^a A_i^c \mathbf{n}, \mathbf{s}, t) \right\} \delta t$$
  
+ 
$$P(\mathbf{n}, \mathbf{s}, t) - \sum_{i=1}^{k-1} \{ [B_i \mathbf{n}] P(\mathbf{n}, \mathbf{s}, t) \} \delta t$$
  
- 
$$\sum_{i=2}^k \{ [B_i \mathbf{n}] P(\mathbf{n}, \mathbf{s}, t) \} \delta t$$

Christian A. Yates (Oxford)

Image: Image:

э

| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions |
|---------------------|-----------------------|------------------|------------------------|-------------|
| Το σ                | ontinuous popula      | ation model      |                        |             |

Define 
$$\langle \mathbf{n} \rangle = [\langle n_1 \rangle, \dots, \langle n_k \rangle] = \sum_{\mathbf{n}} \mathbf{n} P(\mathbf{n}, \mathbf{s}, t)$$
 to be the vector of stochastic means. Then we can show

$$\begin{array}{lcl} \frac{\partial \langle n_1 \rangle}{\partial t} &=& d \langle n_2 \rangle - d \langle n_1 \rangle, \\ \frac{\partial \langle n_i \rangle}{\partial t} &=& d \langle n_{i-1} \rangle - 2d \langle n_i \rangle + d \langle n_{i+1} \rangle, \quad i = 2 \dots k - 1 \\ \frac{\partial \langle n_k \rangle}{\partial t} &=& d \langle n_{k-1} \rangle - d \langle n_k \rangle. \end{array}$$

This is clearly a discretisation of  $\frac{\partial \langle \mathbf{n} \rangle}{\partial t} = D \frac{\partial^2 \langle \mathbf{n} \rangle}{\partial x^2}, \ D = d(\Delta x)^2$ 

Christian A. Yates (Oxford)

3

IntroductionModelling ApprocachesModel ComparisonDomain GrowthConclusionsA numerical comparison of the two models of basicdiffusion

(Loading movie...)

Histogram represents the average over 20 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

| Introduction | Modelling Approcaches | Model Comparison | Domain Growth | Conclusions |
|--------------|-----------------------|------------------|---------------|-------------|
|              |                       | 000000           |               |             |
|              |                       |                  |               |             |

# Different sorts of signal sensing

- Introduce a signal molecule concentration across the domain (i.e. s(x)=exp(-x)).
- Local constrain cells to sense the strength of the signalling chemical only at their current site,

 $T^-=T^+=f(s_i).$ 

- Non-local cells sense the strength of the signalling profile over a wider region, but must disregard information at the current site, *i*, T<sup>±</sup> = f(s<sub>i±1</sub>).
- Average cells use information from the current position and adjacent positions,

$$T^{\pm}=f'(s_i)+f^n(s_{i\pm 1}).$$



Local sensing Christian A. Yates (Oxford)

Non-local sensing



Average sensing

June 18th, 2009

13 / 22

 Introduction
 Modelling Approcaches
 Model Comparison
 Domain Growth
 Conclusions

 A numerical comparison of the two models of local signal sensing

(Loading movie...)

Histogram represents the average over 20 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

14 / 22

| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth | Conclusions<br>000 |
|---------------------|-----------------------|------------------|---------------|--------------------|
|                     |                       | . 1              |               |                    |

# Incorporating Domain Growth

In reality, during embryogenesis and somitogeneis cell migration occurs on a growing domain.



We need to incorporate domain growth into out model of cell migration in both the analytical and stochastic models.

Christian A. Yates (Oxford)

Cell Migration Modelling

June 18th, 2009 15 / 22

| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>○●○○○ | Conclusions<br>000 |
|---------------------|-----------------------|------------------|------------------------|--------------------|
| Analytical          | derivation of [       | Domain growt     | h PDE                  |                    |

#### How to solve a PDE on a growing domain

- Apply Reynold's transport theorem:  $rac{\partial u}{\partial t} + 
  abla \cdot (\mathbf{a}u) = D 
  abla^2 u + R(u), \ \mathbf{x} \in \Omega(t), \quad t \in [0,\infty), \ ext{where} \ \Omega(t) \ ext{is}$ the now time-dependent growing domain.
- Determine the flow, a:

 $a = \frac{dx}{dt} = s(u)x,$ where s is the (possibly density dependent) strain.

- Convert to Lagrangian (normalised) coordinates to solve the PDE.
- Transform the solution back to the growing domain.

Introduction<br/>ocoModelling Approcaches<br/>ocoModel Comparison<br/>ococoDomain Growth<br/>ococoConclusions<br/>ocoA numerical comparison of the two models of non-local<br/>sensing on an exponentially growing domainImage: Conclusion of the two models of non-local

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

17 / 22

| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>○○○●○ | Conclusions |
|---------------------|-----------------------|------------------|------------------------|-------------|
| Other ty            | ones of domain g      | rowth            |                        |             |

o

### Other more complicated types of growth

- Density-dependent domain growth:
  - Linear dependence  $s(u) = r \times u$ .
  - Quadratic dependence

$$s(u) = r \times u^2$$

• Inverse dependence

$$s(u) = \frac{r}{r+u}$$

- Many more to explore s(u) =???
- Linear domain growth
- Logistic domain growth

Introduction<br/>occoModelling Approcaches<br/>occoModel Comparison<br/>occoDomain Growth<br/>occoConclusions<br/>occComparison of the two models of average sensing on a<br/>domain with (linearly) density dependent growth

(Loading movie...)

Histogram represents the average over 40 stochastic simulations and the red curve represents the solution of the corresponding PDE.

Christian A. Yates (Oxford)

Cell Migration Modelling

| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions<br>●○○ |
|---------------------|-----------------------|------------------|------------------------|--------------------|
| Summary             |                       |                  |                        |                    |

- Introduction to stochastic models for cell migration.
- Equivalence of stochastic and continuum models on a stationary domain.
- Different types of signal sensing.
- Equivalence of the two model types on growing domians.
- Different types domain growth.



| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions<br>000 |
|---------------------|-----------------------|------------------|------------------------|--------------------|
| Further W           | /ork                  |                  |                        |                    |

### Where Next

- Acceleration of stochastic algorithms.
- Different boundary conditions i.e. non-zero flux.
- Cell death/birth\*.
- Alternate signalling gradients\*.
- Density dependent cell movement\*.
- Extension to 2 and 3 dimensions.
- Different application areas e.g. brain/wound healing.

\*These extensions have been implemented in R. E. Baker, C. A. Yates, and R. Erban. From microscopic to macroscopic descriptions of cell migration on growing domains. *Bull Math Biol*, Submitted.

| Introduction<br>000 | Modelling Approcaches | Model Comparison | Domain Growth<br>00000 | Conclusions<br>○○● |  |  |  |
|---------------------|-----------------------|------------------|------------------------|--------------------|--|--|--|
| Acknowledgements    |                       |                  |                        |                    |  |  |  |

- Dr Ruth Baker
- Dr Radek Erban
- Professor Philip Maini
- The Doctoral Training Centre (Oxford)
- EPSRC/BBSRC



God as a kid tries to make a chicken in his room.

• And Gary Larson for these.

