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1 Introduction

My thesis topic concerns cylindrical algebraic decomposition (CAD), which is a com-

putational technique in real algebraic or semi-algebraic geometry. In this report I

will give a short account of CAD and of the algorithms used for it. I will concentrate

on the relatively new RC-CAD, which is implemented but largely unexplored theo-

retically. I will explain roughly how it works and what the immediate problems are,

and outline the work that I intend to undertake. The idea is to explore RC-CAD in

more detail and to come to some understanding of the theoretical complexity and

is and what the worst cases are likely to be. Similar analyses have been carried out

for the much better studied PL-CAD algorithms. Beyond that lie further questions

such as whether modified versions of the algorithm might perform better in certain

cases, and how they compare with PL-CAD.

A cylindrical algebraic decomposition (abbreviated CAD) is a method in real semi-

algebraic geometry to decompose Rn into a finite number of connected semi-algebraic

subsets known as cells, each homeomorphic to Rk.

First arising in Collins’ paper as a sub-algorithm in his work on an effective method

for quantifier elimination in real closed fields [Col75], CAD has applications in alge-

braic simplification technology [BD02] and robot motion planning, one example of

which is the Piano Movers Problem [Dav86, WDEB13], defined in [SS83a] as:

“Given a body B, and a region bounded by a collection of “walls”, either find a

continuous motion connecting two given positions and orientations of B during which

B avoids collision with the walls, or else establish that no such motion exists.”

In [SS83a], the two-dimensional case is considered. Later, in [SS83b], this problem

is looked at in higher dimensions and a general method is detailed, solved using the

CAD algorithm. However, as shown in [Dav86], trying to actually do this even for

a simple example (the case of a ladder of length 3 moving through a right-angled

corridor of with 1) can be computationally expensive and impractical - projecting

this results in 250 distinct univariate polynomials of degree up to 26, and producing

the CAD was not possible.

Wilson [WDEB13] was able to produce a CAD for this with a new formulation of

the problem, but this still took around 5 hours using QEPCAD and produced a
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CAD with over 285,000 cells.

In fact, it is known that the worst-case complexity is double-exponential in the num-

ber of variables [DH88]. Nevertheless, the algorithms are practicable in important

cases, and small efficiency gains become important. For example, if the region to be

decomposed lies in a subvariety (equational constraint), then this can be exploited

but technical problems arise. In the recent thesis of Nair [Nai21], the author writes:

“McCallum attempted to tackle [this] first by switching from sign invariant CADs

to order invariant CADs and then by exploiting equational constraints in the input

formulae.”

The author then proceeds to tackle some of the difficulties that arise in that context.

There are even competing definitions of CAD and types of CAD, mentioned below.

1.1 Definitions

Let R[x] be the polynomial ring over R with ordered variables x = x1 < · · · < xn.

The following definitions are taken from the works of Arnon et. al [ACM84, ACM98]

and Jirstrand [Jir95].

Definition 1.1 (region, cylinder, section, sector). For n-dimensional real space Rn,

• A nonempty connected subset R of Rn is known as a region.

• For a region R, the cylinder over R, written Z(R), is the set R × R =

{(α, x) | α ∈ R, x ∈ R}.

• For f a continuous, real valued function of R, an f -section of Z(R) is the set

{α, f(α) | α ∈ R}

• For f1, f2 continuous, real valued functions of R, an (f1, f2)-sector of Z(R)

is the set {(α, β) | α ∈ R, f1(α) < β < f2(α)}. The functions f1 = −∞ and

f2 = +∞ are allowed.

Definition 1.2 (Decomposition, stack). For any subset X of Rn, a decomposition

of X is a finite collection of disjoint regions whose union is X.

Continuous, real-valued functions f1 < f2 < · · · < fk, k ≥ 0, defined on R, naturally

determine a decomposition of Z(R) consisting of the following regions:

(1) the (fi, fi+1)-sectors of Z(R) for 0 ≤ i ≤ k, where f0 = −∞ and fk+1 = +∞,

and

(2) the fi-sections of Z(R) for 1 ≤ i ≤ k.

We call such a decomposition a stack over R (determined by f1, . . . , fk).

Definition 1.3 (Cylindrical decomposition of Rn). A decomposition D of Rn is

cylindrical if either

(1) n = 1 and D is a stack over R0, or
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(2) n > 1, and there is a unique cylindrical decomposition D′ of Rn−1 such that

for each region R of D′, some subset of D is a stack over R.

As D′ is unique, any cylindrical decomposition D of Rn will have unique induced

cylindrical decompositions of Rj for j = n−1, n−2, . . . , 1. Conversely, given a CAD

D′ of Rj , j < n, a CAD D of Rn is an extension of D′ if D induces D′.

Alternatively, a decomposition is cylindrical if for all 1 ≤ j < n, the projections on

the first j variables of any two cells are either equal or disjoint.

Definition 1.4 (Semi-algebraic set). A subset of Rn is semi-algebraic if it can be

constructed by finitely many applications of the union, intersection, and comple-

mentation operations on sets of the form

{x ∈ Rn | f(x) ≥ 0},

where f ∈ R[x].

Definition 1.5 (Cylindrical Algebraic Decomposition). A decomposition is alge-

braic if each of its regions is a semi-algebraic set. A cylindrical algebraic decomposi-

tion, or CAD, of Rn is a decomposition which is both cylindrical and semi-algebraic.

The components of a CAD are called cells, and for 0 ≤ j ≤ n, a j-cell in Rn is a

subset of Rn which is homeomorphic to Rj .

We often want the decomposition to respect some collection of polynomials:

Definition 1.6 (F-invariant).

Let F = {fi ∈ k [x1, . . . , xn] , 1 ≤ i ≤ r} be a set of polynomials in k [x1, . . . , xn] for

k = C or R and X ⊆ kn. We say X is F-invariant (and F is invariant on X) if

each fi(x) has constant sign for every x ∈ X, that is,

∀x ∈ X : fi(x) ⋄ 0,

where for k = R, ⋄ ∈ {>,=, <}, and for k = C, ⋄ ∈ {=, ̸=}. In other words, fi is

either identically zero or never zero; a polynomial fi(x) with constant sign in this

sense is called sign-invariant.

Figure 1: The graph of x2 + y2 − 1 and the {x2 + y2 − 1}-invariant CAD of R2
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2 Approaches and Implementations

There have been several implementations of Collins’ original projection and lifting

CAD algorithm (hereby referred to as PL-CAD) in various software, including [Bro,

Res, Red, YA07, Eng, Ton21], along with various improvements. Another algorithm,

based on triangular sets and regular chains (hereby referred to as RC-CAD), has been

implemented in Maple as part of the RegularChains package [CMM]. Despite this,

little appears to have been done in terms of complexity analysis of this algorithm.

2.1 PL-CAD

Projection and lifting algorithms work by defining a projection operator which takes

a set of polynomials and produces another set of polynomials in one fewer variables.

This projection typically involves coefficients, discriminants, resultants and subre-

sultants. This is applied recursively until one reaches a cylindrical decomposition of

R1, which is a decomposition into intervals. An appropriate lifting algorithm is used

to build the full CAD and return to the “top” dimension. See, for example [Nai21]

and the sources therein.

The algorithm takes a set F of polynomials in R[x1, . . . , xn] and outputs an F-

invariant CAD of Rn.

The PL-CAD algorithm can be split into three phases:

• A projection phase, which uses the projection operator Proj to take F = Fn

from a subset of R[x1 < · · · < xn] to a subset Fn−1 of R[x1 < · · · < xn−1]

recursively down to R1. The zero sets of the polynomials produced by each step

are the projections of “significant points” of the previous set of polynomials,

such as self-crossings, vertical tangent points, isolated points etc.

• A base phase consisting of real root isolation on R1 on this output, where these

roots and the open intervals between form an F1-invariant CAD of R1.

• A lifting phase which, for each cell C of the Fk−1-invariant CAD in Rk−1,

involves constructing a sample point s and isolating the real roots of the poly-

nomials of Fk at s. The sectors and sections of these polynomials form a stack,

and these stacks make the cells of the Fk-invariant CAD of Rk above C.

It is enough to determine the signs of F in these sample points as each cell is F-

invariant by construction.

Different CAD algorithms of this type may use different projections and different

lifting algorithms, depending on their characteristics. Examples are Collins’ original

algorithm [Col75] and variants due to McCallum, Lazard, Brown and Nair [McC84,

Laz94, Bro01, Nai21].

Typically these variants aim at producing better performance under certain circum-

stances, see [Nai21] for more details. Similar questions could arise in the future for

RC-CAD (see [CMM12]).
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2.2 RC-CAD

There has been much work by Chen and Moreno Maza on an incremental algorithm

for computing CADs using triangular systems and regular chains (RC-CAD), by

creating a complex cylindrical tree and refining it into a real cylindrical tree.

Much has been learnt about PL-CAD over the last forty years, with many enhance-

ments made along the way. Although there has been a lot of work implementing

RC-CAD into Maple via the RegularChains package, little analysis has been done.

Therefore we are interested in trying to understand how the algorithm works in

sufficient detail to give estimates and boundaries for its complexity, and in learning

when and where the algorithm is more, or less, efficient.

In [CMMXY09] the authors presented an alternative way to compute CADs using

triangular sets, by constructing a cylindrical decomposition of the complex space,

or CCD, from which one can easily produce a CAD. This had the advantage that

other PL-CAD methods did not have, which is that it did not have problems with

curtains [Nai21], that is, regions where a polynomial nullifies over a set.

Despite these advantages, the authors later mention in [CMM12], it involved “many

black boxes, which hide many unneccesary or redundant computations”. This gave

a much higher computation time in tests than PL-CAD, despite usually computing

fewer cells.

In [CMM12], the authors instead computed CCDs in an incremental way to avoid

redundant computations, which we will now describe in more detail.

The CCD construction in RC-CAD can be seen as an enhanced projection phase of

PL-CAD [CMM12], with the benefit that its “case discussion” scheme avoids unnec-

essary computations that the projection operator performs on unrelated branches,

and avoids curtains.

The incremental algorithm of [CMM12] involves refining the branches of a tree via

GCD computation. The CCD algorithm produces a decomposition into triangular

sets, say D such that the zero sets of the output regular chains are disjoint. Such a

tree is encoded by a tree data structure, and the decomposition computed is both

disjoint and cylindrically arranged.

The complexity of this algorithm can also not be better than doubly exponential in

the number of variables [BD02], but the benchmarking of [CMM12] shows PL-CAD

outperforming Qepcad and Mathematica for several well-known examples. Despite

this, no theoretical complexity analysis seems to have been done, despite both these

results and the availability of the algorithm in the RegularChains Maple package.

3 Description of RC-CAD

In [CMMXY09, CMM12] the following are defined over a field k of characteristic

zero and K its algebraic closure, but for simplicity we will restrict ourselves to R
and C respectively.
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Let p ∈ R[x] be a non-constant polynomial and x ∈ x be a variable.

1. We denote by deg(p, x) and lc(p, x) the degree and the leading coefficient of p

w.r.t. x.

2. The greatest variable appearing in p is called the main variable, denoted by

mvar(p).

3. The separant sep(p) of p is ∂p/∂mvar(p).

4. The leading coefficient, the degree, and the reductum (p minus its leading

term) of p regarded as a univariate polynomial in mvar(p) are called the initial,

the main degree, the tail of p; they are denoted by init(p),mdeg(p), tail(p)

respectively.

5. The integer k such that xk = mvar(p) is called the level of the polynomial p.

3.1 Triangular Sets and Regular Chains

Definition 3.1 (Triangular set). Let T ⊂ R[x] be a triangular set, that is, a set

of nonconstant polynomials with pairwise distinct main variables, that is, for all

t, t′ ∈ T ,mvar(t) ̸= mvar(t′).

We denote by mvar(T ) the set of the main variables of the polynomials in T .

A variable in x is called algebraic w.r.t. T if it belongs to mvar(T ), otherwise it is

said free w.r.t. T .

For v ∈ x, we denote by T<v the set of the polynomials t ∈ T such that mvar(t) < v

holds.

Let h ∈ R[x]. The iterated resultant of h w.r.t. T , denoted by ires(h, T ), is defined

as follows:

(1) if h ∈ R or all variables in h are free w.r.t. T , then ires(h, T ) = h;

(2) Otherwise, if v is the largest variable of h which is algebraic w.r.t. T , then

ires(h, T ) = ires(r, T<v) where r is the resultant w.r.t. v of h and the polyno-

mial in T whose main variable is v.

Definition 3.2 (Regular chain, regular system). Let hT be the product of the

initials of the polynomials in T . A triangular set T is called a regular chain if either

T = ∅ or ires(hT , T ) ̸= 0. The pair [T , h] is called a regular system if T is a regular

chain, and ires(h, T ) ̸= 0.

Definition 3.3 (Squarefree). Denote by sep(T ) the product of all sep(p), for p ∈ T .

Then T is said to be squarefree if ires(sep(T ), T ) ̸= 0. A regular system rs = [T, h]

is said to be squarefree if T is squarefree.

3.2 Complex Cylindrical Trees

Definition 3.4 (Separation). Let C be a subset of Cn−1 and P ⊂ R[x1, . . . , xn−1, xn]

be a finite set of level n polynomials. We say that P separates above C if for each
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α ∈ C:

• for each p ∈ P , the polynomial init(p) does not vanish at α,

• the polynomials p(α, xn) ∈ C[xn], for all p ∈ P , are squarefree and coprime.

Note that this definition allows C to be a semi-algebraic set, see [CMM12].

Effectively, this says that the main variable of p ∈ P is the same whether you look

everywhere or only above C, so C is in “general position” relative to P .

Definition 3.5 (Cylindrical decomposition of Cn and associated tree). By induction

on n, we define the notion of a cylindrical decomposition of Cn together with that

of the tree associated with a cylindrical decomposition of Cn.

For n = 1, a cylindrical decomposition of C is a finite collection of sets D =

{D1, . . . , Dr+1}, where either r = 0 and D1 = C, or r > 0 and there exists r non-

constant coprime squarefree polynomials p1, . . . , pr of R[x1] such that for 1 ≤ i ≤ r

we have

Di = {x1 ∈ C | pi(x1) = 0}, and Dr+1 = {x1 ∈ C | p1(x1) · · · pr(x1) ̸= 0}.

Note that the Di, for all 1 ≤ i ≤ r + 1, form a partition of C. The tree associated

with D is a rooted tree whose nodes, other than the root, are D1, . . . , Dr, Dr+1 which

all are leaves and children of the root.

Now let n > 1, and let D′ = {D1, . . . , Ds} be any cylindrical decomposition of Cn−1.

For each Di , let ri be a non-negative integer and let {pi,1, . . . , pi,ri} be a set of

polynomials which separates above Di. If ri = 0, set Di,1 = Di × C. If ri > 0, set

Di,j = {(α, xn) ∈ Cn | α ∈ Di and pi,j(α, xn) = 0},

for 1 ≤ j ≤ ri and set

Di,ri+1 = {(α, xn) ∈ Cn | α ∈ Di and

ri∏
j=1

pi,j(α, xn) ̸= 0}.

The collection D = {Di,j | 1 ≤ i ≤ s, 1 ≤ j ≤ ri + 1} is called a cylindrical

decomposition of Cn. The sets Di,j are called the cells of D.

If T ′ is the tree associated with D′ then the tree T associated with D is defined as

follows. For each 1 ≤ i ≤ s, the set Di is a leaf in T ′ which has all Di,j for children

in T ; thus the Di,j are the leaves of T .

Note that each node N of T is either associated with no constraints, or associated

with a polynomial constraint, which itself is either an equation or an inequation.

Note also that, if the level of the polynomial defining the constraint at N is ℓ, then

ℓ is the length of a path from N to the root.
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Moreover, the polynomial constraints along a path from the root to a leaf form a

polynomial system called a cylindrical system of R[x1, . . . , xn−1] induced by T . Let

S be such a cylindrical system. We denote by Z(S) the zero set of S. Therefore,

each cell of D is the zero set of a cylindrical system induced by T .

Let T̂ be a sub-tree of T such that the root of T̂ is that of T . Then, we call T̂ a

cylindrical tree of R[x1, . . . , xn−1] induced by T . This cylindrical tree T̂ is said to be

partial if it admits a non-leaf node N such that the zero set of the constraint of N

is not equal to the union of the zero sets of the constraints of the children of N . If

T̂ is not partial, then it is called complete.

Let F = {f1, . . . , fs} be a finite set of polynomials of R[x]. A cylindrical decom-

position D of Cn is called F-invariant if for any given cell D of D and any given

polynomial f ∈ F , either f vanishes at all points of D or f vanishes at no points of

D, and f is sign invariant if it is either identically zero or invertible. Note that this

is consistent with Definition 1.6 from earlier in this paper.

The definition of Z(S) can be extended by replacing S with a subtree T̂ as above:

Z(T̂ ) = {w ∈ Cn | f(w) = 0 ∀f labelling edges of T̂}

If p ∈ R[x], we denote by Vp the variety of p, and we say

1. p is invertible modulo T̂ if Vp ∩ Z(T̂ ) = ∅.

2. p is zero modulo T̂ if Vp ∩ Z(T̂ ) = Z(T̂ ).

3. We say p is sign invariant above T̂ if it is either invertible or zero modulo T̂ .

Thus, if q ∈ R[x], then p = q mod T̂ if Vp ∩ Z(T̂ ) = Vq ∩ Z(T̂ ), that is, you cannot

distinguish them just by looking at T̂ .

In the special case where T̂ = S is a cylindrical system, we make the following

definition:

Definition 3.6 (GCD mod S). g ∈ R[x] is a GCD of p and f mod S if g(α) is a

GCD of p(α) and f(α) ∈ R[zn], for any α ∈ Z(S).

It seems likely that the bulk of the work in the algorithm involves computing the

GCDs.

Since we are working over an algebraically closed field, Definition 3.4 is introduced

for the following reason:

If p1 and p2 are univariate polynomials over an algebraically closed field, then they

are coprime if and only if they do not ever both vanish at the same place. This

explains the word “separates”: If we look at the fibre above α: It is a vertical line

with points marked on it, which are the zeroes of all the p ∈ P . We are requiring that

these finitely many points should all be different, i.e. the set of zeroes of p1(α, xn)

and p2(α, xn) are disjoint.

Now as α varies in Z(S), we look at the loci where pi(α, xn) are zero, then “separates

above” means informally that these loci do not run into one another.
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In the base case n = 1, each Di for 1 ≤ i ≤ r is the vanishing locus of pi and Dr+1

is everything else, and the pi are coprime and squarefree.

Thus, pi =
∏

wj∈Di
(z −wj), and these are squarefree by construction. The pi being

coprime means D1 through Dr are disjoint.

The main constraint is that the pi have to be real polynomials. In other words, the

symmetric polynomials in the elements wj of each Di have to be real. For example,

if D1 consists of one point it must be real: if it is two points, they have to be complex

conjugates so their sun and product are real.

For n > 1, inductively, we have a cylindrical decomposition of Cn−1. For each of

the Di we choose some polynomials that separate above D1. The line above α in Di

contains points where these polynomials vanish, because they have been chosen to

separate above D1, the polynomials are squarefree and coprime, and we repeat the

process on the fibre.

We continue making the tree in the same way, adding leaves D1,1 to D1,r1+1. Each

of these is associated with either a constraint (a polynomial pi or pi,j and so on) or

with no constraints. Each cell Di,1, . . . , Di,ℓ is the zero set of a cylindrical system

induced by T .

3.3 Construction of a cylindrical tree

A brief overview is shown in the meta-algorithm Algorithm 1.

The actual construction of a cylindrical tree, as outlined above, involves many al-

gorithms that call each other, as seen in [CMM12]. A brief overview is shown in

Algorithm 1.

Algorithm 1 CylindricalDecompose(F) Meta-algorithm

Input: F a set of non-constant polynomials in R[x]
Output: An F-invariant cylindrical decomposition of Cn

CylindricalDecompose(F)
Intersectn(p, T )

IntersectPathn(p,Γ, T )
IntersectMaink(p,Γk, Tk)

Squarefreek(p,Γk−1, Tk−1)
MakeLeadingCoefficientInvertiblek(p, p,Γk−1, Tk−1)

IntersectPathk−2(lc(p̄, xk−1),Γk−1, Tk−1)
. . .

Gcdk(f, sep(f), Ck−1, Tk−1)
Gcdk(f, sep(f), S, d, 0, Ck−1, Tk−1)

IntersectPathk−1(si, Ck−1, Tk−1)
. . .

Gcdk(sp, f, Ck−1, Tk−1)
Gcdk(sp, f, S, d, 0, Ck−1, Tk−1)

IntersectPathk−1(si, Ck−1, Tk−1)
Cofactor(sp, L.Gcd[sp, f ], f)

In Algorithm 1 we refer to:
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• F a set of non-constant polynomials in R[x]

• T a tree with level n

• p a non-constant polynomial in F with level k

• Γ a path of T with level n

• C a path derived from of Γ after spitting, with level n

• Tk,Γk and Ck truncations of T,Γ and C to level k (Tn = T,Γn = Γ, Cn = C)

• V a leaf (of Γ or C)

• sp, the squarefree part of p

• cp, gg, cf the outputs of CoFactor(p, g, f)

• L the parent of V

• S the subresultant chain of p and f

• d the GCD degree

• si the principal subresultant coefficient

(One could consider calling these inside-out instead of outside-in.)

We describe briefly each of these sub-algorithms.

• Top-level algorithm CylindricalDecompose(F) takes a set F of non-constant

polynomials in R[x] and outputs an F-invariant cylindrical decomposition of

Cn.

It first creates the tree T with only on vertex V0, the root r of T . It then

constructs, for 1 ≤ i ≤ n, the vertex Vi, with the attached formula “any

xi”, where Vi is the child of the vertex Vi−1. Then, for each p ∈ F , it calls

Intersectn(p, T ).

• Intersectn(p, T ) takes this polynomial p and tree T and outputs a refined

cylindrical decomposition such that p is sign-invariant above each path of T .

For each path Γ in T in some fixed traversal order, it then calls the algorithm

IntersectPathn(p,Γ, T ).

• IntersectPathn(p,Γ, T ) takes the cylindrical tree T, the path Γ of T and the

polynomial p and returns a refined cylindrical decomposition T such that p is

sign-invariant above each path derived from Γ. If p is constant, we are done. If

it is not, it checks the level k of p. If k = n, it calls IntersectMainn(p,Γ, T ),

otherwise it defines Tk and Γk as the “truncations” of T and Γ to level k,

(that is, nodes higher than level k are ignored and so the level k nodes are the

leaves), then calls IntersectMaink(p,Γk, Tk), updates the path and for each

leaf V of Γ and attaches needed information.

• IntersectMainn(p,Γ, T ) is the main algorithm, refining the cylindrical tree T

into a cylindrical decomposition such that p is sign-invariant above each path
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derived from Γ. It does this by first defining Tn−1 and Γn−1 as above, then

calls Squarefreen(p,Γn−1, Tn−1) and updates the path. For each C ∈ Γ, it

sets V as the leaf of C and Cn−1 as the truncation of C to level n− 1. It then

sets sp as the squarefree part of p on the leaf of Cn−1.

– If sp = 0 or sp = 1, it sets the sign of V to 0 or 1 accordingly (generally,

we say the sign of 0 in C is 0, and any other complex number is 1).

– If V is of the form “any xn” then it is split into two new vertices V1 and

V2, where V1 has formula “sp = 0” and V2 has formula “sp ̸= 0” and

everything else is unchanged. These two nodes are the leaves and are

children of Cn−1.

– If V is of the form f = 0 or f ̸= 0, Gcdn(sp, f, Cn−1, Tn−1) is called

and the path is updated. For each leaf V of C and its parent L, it calls

CoFactor(sp, L.Gcd[sp, f ], f) to obtain cp, g and cf .

(a) If V is of the form f = 0, then if g = 1, it sets V ’s sign over p as

1, if not, and if cf = 1, it is set as 0. Otherwise V is split into two

vertices V1 and V2, where V1’s formula is g = 0 and V2’s formula is

cf = 0, and these are now the children of L.

(b) If V is of the form f ̸= 0, then if cp = 1 its sign is set to 1, otherwise

V is split into V1 and V2, with V1 of the form cp = 0 with sign 0 at p

and V2 of the form (f ∗ cp) ̸= 0 and sign 1 at p, and both inheriting

everything else from V , and becoming children of L.

• Squarefreen(p,Γ, T ) returns p
∗ for the polynomial p of level n, with the prop-

erties that p = p∗ modulo C, if p∗ is level n then both init(p∗) and the de-

scriminant disc(p∗) are invertible mod C, and if it is of level less than n, it is

either 0 or 1.

If n = 1, then it is just the squarefree part of the root node. Otherwise, it calls

MakeLeadingCoefficientInvertiblen(p, p,Γ, T ) and for a path C, it sets p

with invertible leading coefficient as f , then if this has a level less than n or

has degree 1 in xn, the squarefree part of p is simply f .

Otherwise, it calls Gcdn(f, sep(f), C, T ) and for each leaf L of C sets this as

g. If g = 1 then the squarefree part of p is f , otherwise it is pquo(f, g).

• Gcdn(p, f,Γ, T ) takes T,Γ, p and f a polynomial of level n whose initial is

invertible modulo Γ, and sets up so that Gcd[p, f ] is a GCD of p and f modulo

C.

The algorithm does this by setting S as the subresultant chain of p and f

[Jir95], and if mdeg(p) ≥ mdeg(f), d = mdeg(f), otherwise it is mdeg(p) + 1.

Then Gcdn(p, f, S, d, 0,Γ, T ) is called.

• For Gcdn(p, f, S, d, i,Γ, T ), i is a non-negative integer such that 0 ≤ i ≤ d and

for all 0 ≤ j ≤ i, the principal subresultant coefficient sj [Jir95] is zero modulo
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Γ. This algorithm produces a refined cylindrical tree T such that above each

path C, Gcd[p, f ] is a GCD of p and f modulo C.

If i = d then Gcd[p, f ] in Γ is Si. Otherwise, call IntersectPathn−1(si,Γ, T ).

If the sign of si in C is 1, then if i = 0, the GCD of p and f is 1, if it isn’t, it

is Si. If the sign of si is 0, then call Gcdn(p, f, S, d, i+ 1, C, T )

• CoFactor(p,g,f) takes two level n polynomials p and f and a polynomial g

which is either level n or is 1 and returns cp, gg and cf :

– If g = 1, then cp = p, gg = 1, cf = f .

– If mdeg(g) = mdeg(f) = mdeg(p), then cp = 1, gg = f, cf = 1.

– If mdeg(g) = mdeg(f) ̸= mdeg(p), then cp = pquo(f, gg), gg = f, cf = 1.

– If mdeg(g) = mdeg(p) ̸= mdeg(f), then cp = 1, gg = p, cf = pquo(p, gg).

– Otherwise, cp = pquo(p, g), gg = g, cf = pquo(f, g).

• MakeLeadingCoefficientInvertiblen(p, p̄,Γ, T ) takes a tree T, a path Γ, a

polynomial p and a polynomial p̄ such that p = p̄ modulo Γ and outputs, above

each path C of T derived from Γ, a polynomial p∗ such that p = p∗ modulo Γ

and if p∗ is level n, then init(p∗) is invertible modulo C, and if a lower level,

p∗ is either 0 or 1.

It does this by calling IntersectPathn−1(lc(p̄, xn),Γ, T ), and for each C,

checks the sign of lc(p̄, xn): if it is 1 and the level of p̄ is less than n, then

p∗ = 1, if it is 1 and the level of p̄ is n, then p∗ = p̄. If the sign is 0 and the

level is less than n, then p∗ = 0. If the sign is 0 and the level is n, it calls

MakeLeadingCoefficientInvertiblen(p, tail(p̄), C, T )

3.4 Building a CAD from a Complex Cylindrical Tree

The final step is to compute a CAD of Rn from a cylindrical decomposition of Cn.

Suppose p ∈ R[x] and S is a connected semi-algebraic subset of Rn−1. We say that

p is delineable on S if the real zeros of p define continuous semi-algebraic functions

θ1, . . . , θs such that, for all α ∈ S we have θ1(α) < · · · < θs(α). In other words, p is

delineable on S if its real zeroes determine a stack over S.

Applying this inductively to our cylindrical tree yeilds an F-invariant CAD of Rn.

3.5 Complexity of RC-CAD

RC-CAD is a different algorithm to PL-CAD at a much earlier stage of development.

It has been implemented in Maple, but not a very great deal has been done on trying

to improve its performance. There are some experiments and timings conducted by

Chen and Moreno Maza, which suggest it is at least competitive with PL-CAD

sometimes. However, there are no theoretical complexity estimates have been done,

and as a consequence we have no idea of when it performs well or badly.
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For PL-CAD, on the other hand, there have been serious attempts to understand

the complexity in detail (for example [Nai21, Ton21, BDE+16] and the references

therein) and also to understand where the worst cases occur.

4 Current and Future Research

Using the meta-algorithm described above as the first step, I plan to carry out a

detailed complexity analysis of RC-CAD, and once I have complexity estimates,

refine them and see if I can determine cases where complexity is better or worse and

get some kind of heuristic for when it is better to use RC-CAD or PL-CAD. To help

with this I have also been looking at the Maple source.

I also intend to doing some experiments on some further test cases (such as the

Piano Mover’s Problem in [Dav86], where PL-CAD fails).

Given there are competing versions of CAD, various desirable properties that a CAD

might have such as being well-based [DLS19], we would like to know what kind of

CAD RC-CAD produces, and whether we can we “coerce” it to produce the types

of CAD we want.

Beyond that, there is another algorithm using Comprehensive Gröbner Systems

(CGS-CAD) that is not implemented as far as we know, so there are no timings and

very little knowledge of complexity. This is something we could also investigate in

the future.
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