Topics in Cylindrical Algebraic Decomposition

Corin Lee

Department of Mathematical Sciences University of Bath

17th Conference on Intelligent Computer Mathematics Montréal, Québec, Canada August 6, 2024

Overview

- An introduction to Cylindrical Algebraic Decomposition:
 - Definitions, applications and construction algorithms.
- Highlight of current work enhancing CAD in computer algebra systems:
 - Comparing and analysing construction methods, and tailoring algorithms for specific cases.
 - Implementations and tools to spread and enhance understanding.

First presented in [Col75] as an algorithm to tackle real QE problems (taking a formula with quantifiers \forall , \exists and obtaining an equivalent one without quantifiers).

Applications in various fields: robotics [Man+12], economics [MDE18] and biology [RS21].

First presented in [Col75] as an algorithm to tackle real QE problems (taking a formula with quantifiers \forall , \exists and obtaining an equivalent one without quantifiers).

Applications in various fields: robotics [Man+12], economics [MDE18] and biology [RS21].

Input: Set of polynomials $\mathcal{F}_n = \{f_1, \dots, f_r\}$ in variables x_1, \dots, x_n .

First presented in [Col75] as an algorithm to tackle real QE problems (taking a formula with quantifiers \forall , \exists and obtaining an equivalent one without quantifiers).

Applications in various fields: robotics [Man+12], economics [MDE18] and biology [RS21].

Input: Set of polynomials $\mathcal{F}_n = \{f_1, \dots, f_r\}$ in variables x_1, \dots, x_n .

Output: CAD(\mathcal{F}_n), a decomposition of \mathbb{R}^n into *cells* which have some sort of invariance with respect to \mathcal{F}_n , are described by polynomial constraints and are cylindrically arranged.

First presented in [Col75] as an algorithm to tackle real QE problems (taking a formula with quantifiers \forall , \exists and obtaining an equivalent one without quantifiers).

Applications in various fields: robotics [Man+12], economics [MDE18] and biology [RS21].

Input: Set of polynomials $\mathcal{F}_n = \{f_1, \dots, f_r\}$ in variables x_1, \dots, x_n .

Output: CAD(\mathcal{F}_n), a decomposition of \mathbb{R}^n into *cells* which have some sort of invariance with respect to \mathcal{F}_n , are described by polynomial constraints and are cylindrically arranged.

Examples of invariance include:

- sign-invariant: input polynomials have constant sign in each cell i.e. +, or 0,
- truth-invariant: sign-invariant cells are marked true/false according to Tarski formula \mathcal{T}_n : boolean combinations of these f_i with sign conditions (<,>,=) and quantifiers (\forall,\exists) , e.g. $\exists x \ (f_1>0) \land (f_2>0)$.

• **Decomposition** of \mathbb{R}^n into finitely many *cells* C_i where $\bigcup C_i = \mathbb{R}^n, C_i \cap C_j = \emptyset$ if $i \neq j$,

Figure: The graph of $f = x^2 + y^2 - 1$ and an associated sign-invariant CAD of \mathbb{R}^2 .

Corin Lee (University of Bath)

- **Decomposition** of \mathbb{R}^n into finitely many *cells* C_i where $\bigcup C_i = \mathbb{R}^n, C_i \cap C_j = \emptyset$ if $i \neq j$,
 - and for $0 \le j \le n$, a *j-cell* in \mathbb{R}^n is a subset of \mathbb{R}^n that is homeomorphic to \mathbb{R}^j .

Figure: This CAD is made up of 13 cells: five 2-cells, six 1-cells and two 0-cells. The black crosses represent the sample points for each cell.

- **Decomposition** of \mathbb{R}^n into finitely many *cells* C_i where $\bigcup C_i = \mathbb{R}^n, C_i \cap C_j = \emptyset$ if $i \neq j$,
 - and for $0 \le j \le n$, a *j-cell* in \mathbb{R}^n is a subset of \mathbb{R}^n that is homeomorphic to \mathbb{R}^j .
- **Cylindrical:** The *projections* of any two cells into lower-dimensional space are either equal or disjoint (they 'stack up' over lower-dimensional cells).

Figure: These cells stack in *cylinders* over the 5 cells of the CAD of \mathbb{R}^1 (the two points at the bottom and the regions between them).

- **Decomposition** of \mathbb{R}^n into finitely many *cells* C_i where $\bigcup C_i = \mathbb{R}^n, C_i \cap C_j = \emptyset$ if $i \neq j$,
 - and for $0 \le j \le n$, a *j-cell* in \mathbb{R}^n is a subset of \mathbb{R}^n that is homeomorphic to \mathbb{R}^j .
- **Cylindrical:** The *projections* of any two cells into lower-dimensional space are either equal or disjoint (they 'stack up' over lower-dimensional cells).
- Algebraic: Each cell can be described by a finite set of polynomial equations and inequalities.

Figure: Each cell is described by constraints on x and y.

Corin Lee (University of Bath)

Projection and Lifting

Projection Phase: Apply a *projection operator* Proj to \mathcal{F}_n to obtain a new set \mathcal{F}_{n-1} in n-1 variables. Repeat this until one obtains \mathcal{F}_1 .

$$\mathcal{F}_n$$
 \downarrow Proj
 \mathcal{F}_{n-1}
 \downarrow Proj
 \vdots
 \downarrow Proj
 \mathcal{F}_2
 \downarrow Proj
 \mathcal{F}_1

Projection and Lifting

Projection Phase: Apply a *projection operator* Proj to \mathcal{F}_n to obtain a new set \mathcal{F}_{n-1} in n-1 variables. Repeat this until one obtains \mathcal{F}_1 .

Base Phase: Decompose \mathbb{R}^1 into the roots of each polynomial in \mathcal{F}_1 and the open intervals either side of them to obtain $CAD(\mathcal{F}_1)$.

```
Proj
Proj
   split into cells
```

Projection and Lifting

Projection Phase: Apply a *projection operator* Proj to \mathcal{F}_n to obtain a new set \mathcal{F}_{n-1} in n-1 variables. Repeat this until one obtains \mathcal{F}_1 .

Base Phase: Decompose \mathbb{R}^1 into the roots of each polynomial in \mathcal{F}_1 and the open intervals either side of them to obtain $CAD(\mathcal{F}_1)$.

Lifting Phase: For each cell C of CAD(\mathcal{F}_1), substitute a *sample point* into \mathcal{F}_2 to obtain a new set of univariate polynomials. Decompose these to obtain a set of cells that lie above C, and the full collection of these cells for every C forms CAD(\mathcal{F}_2). Repeat this process until one obtains CAD(\mathcal{F}_n).

Current work

- Tools and implementations:
 - Open CAD in Macaulay2
 - CAD graphing tool in Maple
- Focus on a specific type of input polynomials (multilinearity)
 - Definition
 - Customised construction algorithm
- Competing construction algorithms (PL-CAD vs RC-CAD)
 - Timings of implementations
 - Complexity analysis of RC-CAD

Corin Lee (University of Bath)

The CADecomposition Package for *Macaulay2*

- First implementation of CAD in M2.
- Produces tree of sample points in \mathbb{Q}^n representing the open cells of a CAD of \mathbb{R}^n for input polynomials in $\mathbb{Q}[x_1,\ldots,x_n]$.
- Able to: return full tree or branches, check these for points where all polynomials are positive, step through the algorithm.
- Improves/fixes RealRoots' real root isolation.

Output: S_n a tree of sample points in *n* variables which represent each *open cell* of CAD(\mathcal{F}_n).

CAD Graphing in Maple

- Production of commands that graph a CAD of \mathbb{R}^2 .
- Currently takes output of *QuantifierElimination*'s *CylindricalAlgebraicDecompose*, returning 2-cells as coloured regions, 1-cells as black lines and 0-cells as red points.
- Also returns sample points and 1d projection.
- Future aims are to produce a 1d/2d/3d projection of any higher-dimension CAD, take output from *RegularChains* package, and offer truth-invariant CAD colouring.

Multilinearity

- Property where for $\mathcal{F}_n = \{f_1, \dots, f_r\}$ in variables x_1, \dots, x_n , we have some $1 \le r \le n$ variables of maximum degree 1 in any f_i .
- Such variables will be simpler to project, not requiring certain parts of the projection operator and producing a smaller number of cells - so 'projecting away' these variables first should produce a 'nicer' CAD,
- Such polynomials often arise in practical applications, so optimising for these is worthwhile.

CAD Construction Algorithms

PL-CAD

RC-CAD

Projection: Apply a *projection operator* Proj to \mathcal{F}_n to obtain a new set \mathcal{F}_{n-1} in n-1 variables. Repeat this until one obtains \mathcal{F}_1 .

Construct CD \mathcal{D}_n : Decompose \mathbb{C}^1 into r+1 regions, the sets of roots of the r polynomials of \mathcal{F}_1 and the set of all other points. Substitute sample points of each region into \mathcal{F} to obtain a new set of univariate polynomials and decompose again. The full collection is \mathcal{D}_2 . Repeat to \mathcal{D}_n .

Construct CAD \mathcal{E}_n : Decompose \mathbb{R}^1 into the roots of each polynomial in \mathcal{D}_1 and the open intervals either side of them to obtain \mathcal{E}_1 . Substitute sample points of each cell of \mathcal{E}_1 into every region of \mathcal{D}_2 above it to obtain a new set of univ. polynomials, decompose again. Full collection is \mathcal{E}_2 . Repeat to \mathcal{E}_n .

PL-CAD vs RC-CAD

- RC-CAD has been implemented in *Maple* via the *RegularChains* package.
- Papers on RC-CAD are promising, showing RC-CAD often performing better than implementations of PL-CAD, and producing fewer cells.
- Despite this, it has not been extensively compared, or run against the newest implementation of RC-CAD in *Maple*.
- Preliminary timings have been run, but aim is to find a fair way to compare both
 algorithms and attempt to understand when one algorithm may work better than another.
- Future aim is also to perform complexity analysis on RC-CAD in order to identify conditions on which it will run faster.

Corin Lee (University of Bath)

References I

[Col75]	George E. Collins. "Quantifier elimination for real closed fields by cylindrical algebraic decomposition". In: Lecture Notes in Computer Science (1975).
[Man+12]	Montserrat Manubens et al. "Cusp Points in the Parameter Space of Degenerate 3-RPR Planar Parallel Manipulators". In: <i>Journal of Mechanisms and Robotics</i> 4.4 (2012).
[MDE18]	Casey B. Mulligan, James H. Davenport, and Matthew England. "TheoryGuru: A Mathematica Package to Apply Quantifier Elimination Technology to Economics". In: <i>Mathematical Software – ICMS 2018</i> . Ed. by James H. Davenport et al. Springer International Publishing, 2018.
[RS21]	Gergely Röst and AmirHosein Sadeghimanesh. "Exotic Bifurcations in Three Connected Populations with Allee Effect". In: <i>International Journal of Bifurcation and Chaos</i> 31.13 (2021).

The End

Figure: https://github.com/cel34-bath/CAD_M2_ICMS_2024