POLYA URNS AND OTHER REINFORCEMENT PROCESSES

CECILE MAILLER

What is a Pélya urn? A d-colour Pélya urn (for d > 2) is a Markov process (U(n)),>o whose
distribution depends on two parameters:
e the initial composition U(0) € N¢,
e the replacement matrix R = (R;j)1<ij<d, @ d-dimensional matrix whose coefficients are
integer-valued.

The distribution of (U(n)),>o is defined recursively as follows: For all n > 0, let £&(n + 1) be a
random variable in {1, ..., d} with distribution

o . Uz(n) i<
where|U(n)|, = 3%, Ui(n). Set U(n+1) = U(n) + Re(nt1), where, for all 1 <@ < d, R; is the i-th
line of the matrix R.

The idea is that (U(n)),=o represents the evolution of the contents of an urn that contains balls
of possible colours 1,2,...,d. For alln >0 and 1 < i < d, U;(n) is the number of balls of colour i
in the urn at time n and, at each time step n, we pick a ball uniformly at random in the urn, let
&(n) denote its colour, and replace it in the urn together with an additional Re(,); balls of colour j,
forall 1 <j <d.

A few comments on the initial composition and replacement matrix. We have asked
that the coefficients of U(0) and R are integers. This is not necessary for the mathematical
definition of the model (and for most of the results), although the interpretation in terms of “balls
in an urn” breaks down if these are not integers. That said, one can think of coloured dust in an
urn instead.

The coefficients of R can be negative, meaning that we remove balls from the urn instead of
adding balls to the urn. This is fine as long as the number of balls of each colour stays positive
at all times. If the number of balls of one colour becomes negative, we say that the urn becomes
extinct and the process stops. One can come up with conditions on U(0) and R that ensure that
the urn almost surely never comes extinct (see, e.g., [Mah08]): for example, one can ask that

(0.1)

Ri;>—-1 foralll<i<d, and
Ri; =0 forall 1 <i# 7 <d.

Indeed, R;; = —1 means that we remove from the urn the ball that we picked at random. An urn
that almost surely never becomes extinct is called “tenable”. One sufficient condition for tenability
is that, for all 1 < ¢ < d, there exists x; such that R; = —k; and, for all 1 < j < d, R;; = 0 is
divisible by x;. For simplicity, in this course, we assume that this sufficient condition always holds.

What questions are we interested in? In this course, we ask what is the composition of the
urn as n goes to infinity, i.e. we aim at proving limiting theorems for U(n) as n 1 c0. Does U(n)/n
converge as n 1 c0? Does it converge in probability? almost surely? If it converges, what is its
limit? And what are the fluctuations around this limit? Naturally, the answers to these questions
depend on the parameters U(0) and R of the Pélya urn.

In this course, we will consider the following two cases:
1
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(1) The replacement matrix is R = SId. We call this case “the identity case”.
(2) The replacement matrix is irreducible. We call this case “the irreducible case”.

We will see that these two cases lead to radically different behaviours: In the identity case, U(n)/n
converges almost surely to a random limit whose distribution depends on the initial composition
of the urn. In the irreducible case, U(n)/n converges almost surely to a limit that does not depend
on the initial composition of the urn. We will show these “law of large numbers” results and also
look at the fluctuations around these almost sure limits.

In the second part of the course, we will look at extending Pélya urns to the case when the set
of colours is infinite.

1. FINITELY-MANY COLOUR POLYA URNS

1.1. The identity case. In this section, we consider the case when R = SId. Without loss of
generality, we assume that, for all 1 < ¢ < d, a; := U;(0) = 1. We show convergence of the
composition of the urn when time goes to infinity, as well as convergence of the fluctuations of the
composition around its almost sure limit.

1.1.1. A law of large numbers. The following theorem dates back to Markov [Marl7] for S = 1,
Eggenberger and Pélya [EP23] also for S = 1.

Theorem 1.1. Assume that R = S1d and, for all 1 <i < d, o; :== U;(0) = 1. Then, almost surely
asn — +oo,

U(n)
Sn
where V' is Dirichlet-distributed with parameter («1/s, ... @d/s).

—>V=(‘/1,...,Vd),

We recall that the density of the Dirichlet distribution of parameter (v, ..., 1) is given by

T + . +u o
F((l Q) Hx S (21, ..., xq),

=

where d¥(x1, ..., z4) is the Lebesgue measure on the simplex

Y= {(ml,...,xd) e [0,1]%: ixi = 1}.

In particular, the Dirichlet distribution of parameter (1,...,1) is the uniform distribution on X.
Two well-known particular cases of Theorem 1.1 are the following:

Corollary 1.2. Assume that d = 2 and R = 1d.
(i) If g = ag = 1, then
U
un) | x1-x),
n
almost surely as n 1 o, where X ~ Unif(0,1).
(i) If ay, a9 = 1, then
U(n)
n

— (B,1 - B),

almost surely as n 1 oo, where B is a Beta random variable of parameter (aq, as).



POLYA URNS AND OTHER REINFORCEMENT PROCESSES 3

Proof of Theorem 1.1. For all n > 0,
E[U(n + 1)|U(n)] = E[U(n) + Se¢ms))

where (e, ..., e4) is the canonical basis of R? (i.e., for all 1 < i < d, all coordinates of e; are null
except the i-th one, which equals 1), and £(n + 1) is the colour of the ball drawn at time n + 1.
We thus get

E[U(n + 1)|U(n)] = Un) + SElegiuin)] = Uln) + 5 U"(g)l o= (14 = )U)

% U )]s

Thus, (M, = U(n)/|U(n)|1)nso0 is a martingale for its natural filtration. Because it is non-
negative, by the martingale convergence theorem, it converges almost surely to an almost finite
random variable V. By definition, |U(n)|; = |U(0)||y + nS for all n = 0. Thus, almost surely as
n T (D7
Un) U 10
Sn [U(n)|4 Sn

To prove that V' is Dirichlet distributed with parameter (@1/s, ... @d/s), one can calculate moments
of M, and show that they converge to the moments of the Dirichlet distribution. This is done
in [CMP15, Section 6].

In this course, we only prove that the distribution of X in Corollary 1.2(i) is indeed uniform on
[0,1]. In fact, we prove that, foralln > 1, 1 <k <n+1,

— V.

1
1.1 P =k)= .
(L) (Un() = #) = ——
In other words, the distribution of U;(n) is uniform on {1,...,n + 1} for all n > 1, which indeed

implies that X is uniform on [0, 1], as claimed. One can easily prove (1.1) by induction. Instead,
we discuss here how one could have guessed this formula from scratch: to have k balls of colour 1
in the urn at time n, one needs to have picked (k — 1) times a ball of colour 1 and (n — k + 1)
times a ball of colour 2. The probability that we draw a ball of colour 1 at times 1,...,k — 1 and

a ball of colour 2 at times k,...,n — 1 is given by
1 2 k-1 1 2 n—k+1 (k—1){(n—k)
2 3 k+1 k+2 k+3 n+1  (n+1)

Now note that, if the draws happened in a different order, “only the order of the numerators
change”, which means that the probability above is the same, independently of the order in which
the k — 1 balls of colour 1 and n — k balls of colour 2 have been drawn. Since there are (k:) such
orders, we get

P(Uy(n) = k) = (k” )(k—l)!(n—k:Jrl)! 1

—1 (n+1)! Cn+ 1
as claimed in (1.1). This concludes the proof in the case of Corollary 1.2(i). The proof in the case
of Corollary 1.2(ii) is similar, only more technical. O

The following result is useful when trying to simulate a Pélya urn easily in the identity case. In
the case of Corollary 1.2(i), it is an exercise in the book of Williams [Wil91]:

Theorem 1.3. Fiz ay,...,aq = 1 and S = 1. Define the d-dimensional process (Z(n))nso as
follows: let V' be a Dirichlet random variable of parameter (1/s, ... aa/s) and let (X,,)m=1 be a
sequence of random wvariables such that, for all k =1, for all 1 <i < d,

P(X; = e;|V) = V..
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Let Z;(0) = a; = 1 for all 1 <i < d and, for alln =1
Z(n) = Z(0)+ 8. Xy
k=1

Then, (Z(n))nso0 is a Pdlya wrn of initial composition (o, . .., aq) and replacement matriz SId.

NB: By the law of large numbers, it is clear that, conditionally on V| Z(n)/(nS) — V almost

surely as n 1 o0, i.e.
Z(n)
P(E2 > v[v) =1
nsS ’
By the tower rule, this implies that Z(n)/(nS) — V almost surely as n 1 oo, which confirms the

law of large numbers stated in Theorem 1.1.

Proof. Let (U(n))n=0 be a Pélya urn of initial composition (aq,...,aq) and replacement matrix
STd. We aim to prove that, for all n > 0, kl, oo kg =0,
(1.2) P(Zi(n) = a; + Sk; (V1 < i < d)) = P(Us(n) = oy + Sk; (V1 < i < d)).

This indeed implies that (Z(n)),so is distributed as (U(n))n0, as claimed.
To prove (1.2), we give explicit formulae for the LHS and RHS and show that they are indeed
equal. For the RHS, we use a similar argument as in the proof of (1.1): foralln > 0, ky, ..., kq = 0,

n! TIL, ai(a; +8) - (a; + (ks — 1)S)

P(Uz(n) = Q4 + Sk» =

k! k! [T (a+iS) Futeetha=m

where we have set & = 2?21 «;. Dividing both numerator and denominator by S gives

_ nl o TTO (fs)(@fs + 1) - - (@ifs + k; — 1)
]P)UZTLZUZO +Sk1V1<Z<d = i=1 11 =n

( ( ) ( ) ( )) kl'kd' H;Z:_(]l(o_‘/s—i-'l) k1+-+kq
n! D(&/s) [T, D(oy/s + ki)
(13) = | | . — . d ] ki+-+kg=n-
kil kgl T(8/s +n) [T, T(ei/s)

Now note that, for all n > 0, kq,..., kg =0,

E[hnv L . n]

=1

n!
:—]ﬁ!_“ d [nvk]1k1+ “tkg=n-

=1
It is known that, if V' is Dirichlet-distributed with parameter (v1,...,vy), then

v d v; + k;
[Hvk] “w el e
where 7 = 3% v; and k| = 3¢ | k;. We thus get
nl L(¥/s) T D(/s + k)
kil kg ' ['(d/s + n) ' Hle I(e/s)
Therefore, by (1.3), for all n > 0, for all ky, ..., kg =1,
P(Zi(n) = o; + Sk; (V1 < i < d)) =P(Ui(n) = o + Sk; (V1 < i < d)),

P(Zi(n) =a; + Sk; (V1 <i < d)) _

key+-etkg=n-
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and thus, (Z(n)),so is indeed distributed as the Pdlya urn of initial composition (aq, ..., «4) and
replacement matrix SId, as claimed. U

1.1.2. A central limit theorem. When we have a law of large numbers as in Theorem 1.1, it is
natural to try and prove a central limit theorem for the fluctuations of the random quantity
around its almost sure limit. In the identity case, these fluctuations are given by a Gaussian of
random variance, function of the almost sure limit V:

Theorem 1.4 (see, e.g. [Miil]). Assume that (U(n))y=o0 is a Pdlya urn of initial composition

(v, ..., aq) and replacement matriz R = S1d for some v, ..., aq,S = 1. Then, in distribution as
nt o,
(1.4) %\_/SSV = N(0,3?),
where
Vi(l-Vi) —WiV% ... WV
. R R e AL
WV, WV V1=V

NB: Equation (1.4) means that, for all Borel sets B < R,

P(UUU—nSV

svn 7 ) - E[(zﬂd/?\l/m ),

Proof. This is an easy consequence of Theorem 1.3: indeed, we have that, in distribution, U(n) =
Z(n), where Z(n) is defined as in Lemma 1.3. Conditionally on V, Z(n) = (o, ..., aq)+S Y0_, Xp,
where P(Xy = ¢;) = V; for all k > 1 and 1 < i < d. By the central limit theorem, conditionally
onV,

eszzTﬂdl’] '

Z(n) —nSV
S\/n
where X2 = Cov(X|V), where X is a copy of X;. Because E[X]| =V

= N(0,%7),

Cov(X|V) =E[(X - V)'(X =V)|V] = Zd: = V)

Vi(eiel —el'V —V%e, +VTV)

d d
(ZVe ) —VTZVZ-ei +VTVZ%

i=1 i=1

Il
.M&

-
I
—_

I
M&

~.
I
—_

d
Viewe! —VIV VIV 4 VIV = Viee] = V'V,

=1

[
.M&

S
Il
—

and this can indeed be written as in (1.5). O
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1.2. The irreducible case. In this section, we look at the case when the replacement matrix R
is irreducible, i.e. for all 1 < 7, j < d, there exists n = n(i, j) such that R}'; > 0. In other words, for
all 1 <4,5 <d,if U(0) = e; (where ¢; is the vector whose coordinates are all equal to 0 except the
i-th which equals 1), then there is a positive probability to see a ball of colour j at some (finite)
time in the urn.

First note that, because we have assumed that all non-diagonal coefficients of R are non-negative.
Thus, there exists k = 0 such that R + kId has non-negative coefficients. It is also irreducible
(because (R + xld)” = ", ()" 'R’ for all n > 1). Thus, by Perron-Frobenius’s theorem, the
spectral radius p of R + kId is larger than x and a simple eigenvalue of R + kId. Furthermore,
there exists v a left-eigenvector of R + kId whose coefficients are all positive such that |v|; = 1.
From this, we deduce that A = p—x > 0 is the eigenvalue of R with largest real part and vR = \v.
We call A and v the dominant eigenvalue and dominant left-eigenvector of R, respectively.

1.2.1. A law of large numbers. The following “law of large numbers” is due to Athreya and Kar-

lin [AKGS]:

Theorem 1.5. Fiz d > 2. Let (U(n)),=0 be the d-colour Pdlya wrn of initial composition
(a1, ...,0q) and replacement matriz R. Assume that a := 2?21 a; = 1 and R s irreducible.
Let A > 0 and v be, respectively, the dominant eigenvalue and dominant left-eigenvector of R.

Then, almost surely as n T o,
U(n)

— — .
n

Before proving this result, we first make a few comments and in particular compare this behaviour
of “irreducible” urns with the behaviour of the identity urns of Section 1.1. We recall that, in the
identity case, U(n) also satisfies a law of large numbers: see Theorem 1.1.

The similarity between Theorems 1.1 and 1.5 is that, in both cases, U(n)/n converges almost
surely as n 1 oo, which is why we call both these results “law of large numbers”. However, these
two results are in fact drastically different. Indeed:

e The limit of U(n)/n is deterministic (Av) in the irreducible case and random in the identity
case (a random Dirichlet-distributed vector V).

e This limit does not depend on the initial composition in the irreducible case, while the
distribution of V' depends on the initial distribution in the identity case.

NB: Note that Theorem 1.5 implies that |U(n)|;/n — X almost surely as n 1 oo because
[v]1 = 1, by assumption. In other words, the total number of balls in the urn at time n grows as
An asn | oo.

To prove Theorem 1.5, we embed the process into continuous time: the embedding is a multi-type
Galton-Watson process and martingale theory allows us to study this process precisely. Embedding
into continuous time has the advantage to give more independence, but the price to pay is that
some work needs to be done to translate the results back in discrete time.

1.2.2. Embedding of an wurn into continuous time. Given a replacement matrix R and an ini-
tial composition a = (aq,...,ay), we define the continuous-time, multi-type branching process
(X (t))i=0 as follows: X(0) = «, meaning that, at time 0, there are a; particles of type 7 alive in
the system. Each particle reproduces (or “splits”) independently from the rest at rate 1, and at
a reproduction event triggered by a particle of type ¢, we add to the system R; ; particles of type
j, forall 1 < 4,57 < d. We call X the continuous-time urn process of initial composition « and
replacement matrix R.

Proposition 1.6. Let a = (ay,...,aq) and R be a d x d replacement matriz. Let (U(n)),=o be the
Pdlya urn of replacement matriz R and initial composition .. Let (X (t))i=o be the continuous-time
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urn process of replacement matriz R and initial composition . Let 1o = 0 and, for alln > 1, 7,
be the time when the n-th split in the process (X (t))i=o. Then, in distribution,

(U(n))nz0 = (X(Tn))nzo0-

1.2.3. A law of large numbers for the continuous-time urn process. To prove Theorem 1.5, we first
prove the following law of large numbers for the continuous-time process X defined in Section 1.2.2:

Theorem 1.7. Let X be the continuous-time urn process of initial composition a = (ayq, ..., qq)
and replacement matriz R. Under the assumptions of Theorem 1.5 on o and R, and using the
same notation for A and v, almost surely as t 1 oo,

e MX(t) — W,
where W is an almost surely finite random variable such that P(W = 0) < 1.

For the proof, we start with the following lemma:

Lemma 1.8. The continuous-time process (X (t)e %)= is a (vector-valued) martingale.

Proof. We first show that, for all £ > 0,
(1.6) E[X(t)] = X(0)e"".

Forall 1 <i < d, welet X® be the urn process of initial composition e; and replacement matrix R.
We start by calculatlng E[X®(t)], for all t = 0. We look at the time when the ball in the urn at
time zero splits (with probability e, the initial ball hasn’t split yet at time ¢): for all ¢ > 0,

d RZ]+§ZJ ‘|

E[XD ()] = eje J SdsElZ Z X0R (¢ — )

where, for all 1 < j < d, (XUR),-, is a sequence of i.i.d. copies of X, and the double-indexed
sequence (X)), =1 1s a sequence of independent processes. This gives

t d
E[XO ()] = JZ Ry 46, B[ XV (t—s)]e™*ds = eie ™" +e~ JZ Ry 46, E[ X7 (s)]e°ds.

So, if we let u;(t) := E[X@(t)] (a horizontal d-dimensional vector) and u(t) be the d x d matrix
whose lines are u;(t), ..., uq(t), we get
t

u(t)e' =1d + f u(s)e®(Id + A)ds,
"(t) + u(t))e! = u(t)e!(Id + A), i.e

¢4, because u(0) = Id. Now, for a

where we have set A = RT. Differentiating in ¢, we get (u
u'(t) = u(t)A for all t > 0, which implies u(t) = u(0)e!* =
general urn process X of replacement matrix R, for all ¢ > 0,

] = ZXi(O)ui(t) = X(0)u(t)" = X(0)e'",

which concludes the proof of (1.6).
For allt > 0, we let F; be the filtration generated by (X (s))se[o,- By definition of the continuous-
time process X, for all s,¢ > 0,

ko]
£
to

d
X(s+1) Z X(”

=1 j5=1
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Thus, for all s,t > 0,

Xi(s) Xi(s)

X6 (¢ ‘fs}zz E[X (1

i=1 j=1

E[X (s + t)| ] E[Zd]

1=1 j5=1

Xi(s)E[XD ()] = > Xi(s)ere'™ = X(s)e'™.

1 =1

I
M=

<.
I

This implies that, for all s, > 0,
E[X (s + t)e “HR|F] = X (s)e*F,
and concludes the proof that (X (t)e™*#),>( is a martingale. O

To prove Theorem 1.7, we follow the proof of Janson [Jan04, Section 9]; however, to keep things
simple, we assume that R is diagonalisable. In the general case, one needs to use the Jordan
decomposition of R, and treat projections on each (generalised) eigenspace separately; eigenspaces
of dimensions at least two are a bit trickier to handle, which is why we only look at eigenspaces
of dimension 1 here. Under the assumption that R is diagonalisable, in addition to v = vy, R

admits d — 1 left-eigenvectors vy, ..., v, associated to d — 1 eigenvalues Ao, ..., A\;. Because \ is
the dominating eigenvalue of R, Re()\ ) < A forall 2 <i<d Given z € R% we let m;(z) be the
i-th coordinate of x in the basis (vy,...,vy); in other words T = Zfl L i),

We will now prove that:

o If Re(\;) > Y2, then e 7, (X (¢)) converges almost surely and in L? to an almost surely
finite random variable. (See Lemma 1.9.)

o If Re(\;) < A2, then e /27 (X (¢)) converges in distribution to a Gaussian random variable
(with an additional polynomial normalisation factor if Re(\;) = %2).

We start with the “large” eigenvalues:
Lemma 1.9. If 1 <i < d is such that Re(\;) > \/2, then,
e Mm(X(t) > W, almost surely and in L*.
Furthermore, e i (X (t)) = E[W;|F:], almost surely for all t = 0.

Proof. By Doob’s L? martingale convergence theorem, it is enough to prove that (e_kitm(X (t))) =0

=

is bounded in L%. To do so, we let

Zi(t) = ) e my(Ry)|3,

T, oSt

and 75, be the time when the /-th split of a ball of colour £ occurs, forall 1 <k < dand ¢ > 1
With this notation, the quadratic variation of (m;(X (¢))e )50 is given by

[mi (X (t)e ™ 7 (X (t))e ), 2 > 0),

and, for all £ > 0,

E[|m(X ()e™ 2] = E[[m(X (£))e™", m(X (t))e™ L] + E[|m: (X (0)) 3]
Zi(t) + E[|m:(X(0))?].

I
M&

(1.7)

ey
I

1
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Because the second summand is constant, we focus on the first summand: For all 1 < k < d,

(%0 f@ RN%MM)M

is a martingale of mean zero, which implies, in particular,

f@ (R RELX () ]ds.

Now note that e *f'm;(R;) = e **7;(R},), which implies

EMNH—L€MWMMMM&$M&

By (1.6), E[X.(s)] = (X (0)e®), = O(e**). Thus, the integrand satisfies
e 2N i (Ry) [3E[ Xk ()] = O(e 2o,

and is integrable because we have assumed 2Re()\;) > A. This implies that sup,.,E[Z;(¢)] < oo,
and thus, by (1.7),

sup E[|m (X (1)e™"[3] < o0,
as desired. - OJ
We now prove that the limits in Lemma 1.9 are not almost surely zero:
Lemma 1.10. For all 1 <i < d such that 2Re()\;) > A\, P(W; = 0) < 1.

Proof. We reason by contradiction and assume that W; = 0 almost surely. Because, by Lemma 1.9,
E[W;|F] = m(X (t)e ') for all t > 0, we get that, for all ¢ > 0,

i (X(t)e_tR) =0 = m(X(®)=0,
where the implication follows from the fact that m; (X (t)e™) = e=7; (X (t)). Because this holds
almost surely, simultaneously for all £ € QQ, and using right-continuity, we get that, almost surely,
(mi(X(t)))e=0 is the constant, null function. This implies that m;(AX(¢)) = 0 for all ¢ > 0, and

thus m;(Rg) = 0 for all 1 < k < d. In other words, m; R = 0, which implies A\;m; = 0, and thus
A; = 0, which is impossible since, by assumption, 2Re(>\ )>A>0. O

Finally, we look at the “small” eigenvalues

Lemma 1.11. If 1 < i < d is such that Re(\;) < \/2, then m;(X(t)) = o(e*) almost surely as
t 1 co. Furthermore:

o [f1 <i<d issuch that Re(\;) < \/2, then, in distribution ast 1 oo,
e M2 (X (1)) = N(0,0)v;
o [f1 <i<d issuch that Re(\;) = \/2, then, in distribution ast 1 oo,
22 (X (1) = N(0, %),

This concludes the proof of Theorem 1.7. Indeed, we write
d

e MX(t) = ) e Mm(X (1))

i-1
for all 2 < i < d, by Lemmas 1.9 and 1.11, e m;(X(t)) = o(1), and thus
e MX(t) = e M (X(t)v +o(1) = Wu + o(1),

as desired.
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1.2.4. Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.7 through the connection made
in Proposition 1.6. First note that Theorem 1.7 implies that e ™| X (¢)||; — W almost surely,
because ||v]|; = 1. This implies that

X(t)
(1.8) — v almost surely as ¢ 1 .
X @)l
Thus, by Proposition 1.6, and because 7,, T o0 almost surely as n 1 oo,
U(n)
(1.9) — v almost surely as n 1 .
U )]
We now follow [AN72, V.7]. For all 1 <i < dand k > 1, let (5,(:) be the indicator that the k-th

split in X is from a particle of colour . For all £ = 1, let G, be the sub-o-algebra generated by
the process X until time 7. For all £ > 1,

P(s) = 1|Gy) = =2kl sy,
< ) | X (7 )
almost surely as k 1 o0, by (1.8). For all 1 <i < dand n = 0, we let N;(n) be the number of splits

triggered by a particle of colour ¢ among the n ﬁrst splits; for all n = 0,

=20 = Z = 11Gy) + E;(@(@)—P((sé)zugk»'

By a strong law of large numbers for martingales due to Lévy (see [AN72, V.7, Lemma 1]), the
second summand goes to zero as n T 0. By Cesaro’s lemma, the first term converges almost surely
to v;. We thus get that, for all 1 <7 < d,

Ni(n)

— v;  almost surely as n 1 o0.

Now, for all n > 0,

d
e PILULTES Y ETEED R

i=1j=1 i=1
almost surely as n 7 co. Now note that

d

d d d d d
D v Rily = > v Z ZZ%‘RM = Y (vR); = [vR[y = |Av] = A
i=1 j=1 j=li=1 J=1

i=1

Thus,
Un) _ [X(m)l
n n
Together with (1.9), this concludes the proof of Theorem 1.5

— A almost surely as n 1 co.

1.2.5. A central limit theorem. It is natural to ask for the fluctuations of U(n)/n around its al-
most sure limit Av. Interestingly (although this should now feel natural in view of the proof of
Theorem 1.5), the size and shape of these fluctuations depend on ¢ = max,{Re(x)/A} where the
maximum is taken over all eigenvalues of R except .

Theorem 1.12. Under the assumptions of Theorem 1.5, let 0 = max,{Re(u)/\} where the mai-
mum 1is taken over all eigenvalues of R except A.
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(i) If o < Y2, then, in distribution as n 1 o0,
U(n) — nAv
vn

where Y2 is known and depends on R.
(i) If o = Y2, then let v + 1 denote the dimension of the largest generalised eigenspace of R
associated to an eigenvalue of real part o\. With this notation, in distribution as n T o0,

U(n) — nAv

n(log n>2u+1

= N(0,%7),

= N(0,%7),

where X2 is known and depends on R.
(i) If o > Y2, then let v + 1 denote the dimension of the largest generalised eigenspace of R
associated to an eigenvalue of real part oA. With this notation, almost surely asn 1 oo,

U(n) — niv

—————— 15 tight.
n?(logn)” o

2. INFINITELY-MANY COLOUR POLYA URNS

Infinitely-many-colour Pélya urns date back to Blackwell and McQueen [BM73] for the equivalent
of the “identity” case of Section 1. For the equivalent of the “irreducible” case of Section 1, they
are much more recent and only date back to Bandyopadhyay and Thacker [BT16] and Mailler and
Marckert [MM17], with a particular case dating back to 2013 (see [BT17]). In this course, we
call infinitely-many-colour Pélya urns “measure valued Pdlya processes” (MVPPs), and give their
definition in general, before looking at results for the “identity” case on the one hand, and the
“irreducible” case on the other hand.

2.1. Definition of MVPPs.

Definition. Let F be a Polish space, mgy be a finite measure on E and let RW = (Rg(cl))er be
a random kernel on F, i.e., for all z € F, Rg(cl)(E) is a finite measure on E. The measure-valued
Pélya process (MVPP) of initial composition mg and replacement kernel R is defined recursively
as follows: for all n > 0, given m,,, let

1
Mpt1 = My, + jo'l(;_;,_)l)a

where Y'(n + 1) is a random variable of distribution m,,/m,(E) and, given Y (n + 1), R™*Y is an

independent copy of Rg()n 1y

In the language of Pélya urns, E is the colour space; for all Borel sets B ¢ E and integers n = 0,
my(B) is the mass of balls in the urn at time n whose colour belong to B; for all n > 1, Y'(n) is
the colour of the ball drawn at time n; note that balls are not necessarily of mass 1 anymore, and
they can in fact have infinitesimal mass.

Example: the finitely-many-colour case. Take E = {1,...,d} for some integer d > 2.
Consider a matrix t = (v, j)1<ij<a and a vector & = (v, . .., o) both integer-valued. Let (m,,)n=0
be the MVPP of initial composition mg = 3% | ayd; (where §; is the Dirac measure at {i}), and
deterministic replacement kernel R; = Z?Zl t;;0;. Then, in distribution, (m,, = 2?21 Ui(n)d;)n=0
where (U(n)),=o is the Pdlya urn of initial composition « and replacement matrix t. In other
words, all finitely-many-colour Pélya urns are MVPPs.
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2.2. The “identity” case. In the following theorem, Blackwell and McQueen [BM73] show that,
in the “identity” case, which corresponds to R, = d, for all x € E, the composition measure m,,
converge after renormalisation to a limiting random measure, whose distribution is the Ferguson
distribution, which we define now:

Definition. Let p be a finite measure on a Polish space E. A random measure on E has
Ferguson distribution of parameter p if for every Borel set partition By,...,Bg of E (d > 1),
(u*(By), ..., 1u*(Bqg)) is Dirichlet-distributed with parameter (u(By),. .., 1(Ba)).

Ferguson [Fer73] proved that a Ferguson-distributed random measure is almost surely discrete.

Theorem 2.1. Let p1 be a finite measure on a Polish space E. Let (my,)n=o0 be the MVPP of initial
composition p and deterministic replacement kernel Id = (0,)zeg. Then, almost surely as n 1 oo,
my .

ngZW—’Ma

where p* 1s a Ferguson-distributed with parameter .

~

NB: In this section, we often state convergence of sequences of measures on a Polish space F.
The topology we use on the set of finite measures on E is the topology of weak convergence. I.e., we
say the a sequence (i, )n>0 of finite measures on E converges to p if, and only if, for all continuous
and bounded function f: E — R, §_ fdu, — §, fdu.

Proof. One can redefine the process (m,),>o as follows: my = p and, for all n > 0, given m,,,

sample an integer in {0, 1,...,n} with probabilities
p(E) : 1 :
P(I 1)=0) = ——— d P(I 1)=1) = ——— (VI <i<n).
(I +1) = 0) = —HE ad P +1) =) = (1 i <)

If I(n+ 1) = 0, then sample Y (n + 1) according to p. If I(n) = i for some 1 < i < n, then set
Y(n +1) = Y(i). One can check that, indeed, (m;),>0 is the MVPP of initial composition p and
replacement kernel Id.

We see the times n such that I(n) = 0 as times at which we sampled a “new” colour from g,
while other times reinforced a colour that was already present in the urn. (Note that, if x4 has
atoms, then a new colour might in fact be the same as an already-present colour. In that case,
we still distinguish the new colour from the existing colour, eg, by extending the set of colours
to E' x N and deciding that when colour = € F is picked for the second time, it is in fact colour
(x,2) while its first occurrence was (z,1). However, to make things simpler, we assume that v has
no atoms in the rest of the proof.) We let v; be the index of the i-th 0 in the sequence (i(n))n>1
and set & = Y (1), for all i > 1. By definition, (&;);>1 is a sequence of i.i.d. random variables of
distribution p.

We start by looking at Ny(n) = |{1 < i < n:Y(i) = Y(1)}|. Note that (Ny(n),n + u(E) —
Ni(n))n=1 is a Pélya urn of initial composition (1, u(F)) and replacement matrix Id. (NB: p(E)
might not be an integer, but one can check that all the results from Section 1 still apply.) Thus,
by Corollary 1.2, almost surely as n 1 oo,

Ni(n)

w(E)+n

where V7 is a Beta-distributed random variable of parameter (1, u(FE)). This implies
N1 (n)

n

— Vi,

-V

almost surely as n 1 co. By Borel-Cantelli lemma, »; _, 1;,)=0 = % almost surely, implying in
particular that the time 75 at which a second colour is introduced in the urn is almost surely finite.
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We let No(n) = {1 < i < n:Y(i) = &}, Note that the processus (Na(n),n + u(E) — Ni(n) —
N5(n))nso reduced to its jump-times is also a Pélya urn, with initial composition (1, u(E)) and
replacement matrix Id. Therefore,
Ny(n)
n+ u(E) — Ni(n)

where V5 is a Beta-distributed random variable of parameter (1, u(F)), independent of V. Thus,

— V3,

N. N. E)—N
2(n) _ 2(n) n+ p(E) 1(n) S V(1 -TA).
n n+ pu(E) — Ni(n) n
Iterating this argument, we get that, for all £ > 1, almost surely as n 1 oo,
— V] 1-V,) = P..
v [Ja-v) =R

i=1

Such a sequence (Py)r=1 can be interpreted as a partition of the unit interval and, in this context,
because (V;);>1 is a sequence of i.i.d. random variables of distribution Beta of parameter (1, u(E)),
the distribution (Py)g>1 is called GEM (for Griffiths, Engen and McCloskey) of parameter u(E).
Now note that, for all n > 1,

N+2Nk (Sgk,

k>1
where we set Ni(n) = 0 if |[{Y(1),...,Y(n)}| < k. Thus, for all continuous bounded function

f:E—->R,
N . 1 n Nk(n)
Jy 1 =y ] B

k=1

Fix € > 0 and then K large enough so that Zk 1 P = 1 — ¢ (this is possible because >, Pr = 1
almost surely). Then fix n. large enough so that, for all n = n.,

> (M )<

k=1

(2.1) <e.

We also assume that n. is large enough so that (§, fdu)/(n + u(E)) < e for all n = n.. Then, for
all n > n,,

[ sam— S sto] <=+ sl S (0 n s+ 1 (M) see

k=1 k=1 k=K

Ni(n Ni(n
cer YO plig e 3 P g,
n n
k=1 k=K

Ni(n
<t e+ 11 32y, S

k=K k=K

< (14 2| fllo)e + [ (1 _ Z Nkén)).

=1

Now,

i Nk,rgn) _ i (Nkén) _Pk> +ipk i’NkTEn Pk’ esq_9

1=1 i=1 i=1
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In total, we thus get that, for all n > n.,

JE fdit, = Y Pef (&)

k=1

< (L+4]flo e

Because € can be made arbitrarily small, this concludes the proof that

JE fdin, — 3 Puf (&),

k=1
almost surely as n 1 c0. We define
k=1
It only remains to prove that u* is a Ferguson-distributed with parameter p. This follows from

the finitely-many-colour case (see Theorem 1.1). Indeed, for any partition (By,..., By) of E, we
let, for all 4 > 1,

d
X (i) = Z erly(i)eB,
1

i.e. X(i) = ey (the k-th vector of the canonical basis of R?) if Y (i) € By. For all n > 0, we define

d n
U(n) = Z [L(Bk)ek + Z €X(i)-
k=1

i=1
Note that, for all n > 0,

Un+1)=U(n) + exmr1),
and

=FE

P(X(n+1) = k[U(n)) = P(Y(n + 1) € Bi|U(n)) = E[P(Y (n + 1) € By|U(n), m,)|U(n)]

A M(Blc) + 27;1 1Y(z’)eBk

— E[iita(By)|U(n)] = E i U
i (BT )] = B X e e g
1(Be) + 21 Iy (ijes, Un)| M
p(E) +n pE) +n
In other words, (U(n)),>o is the d-colour Pdlya urn with initial composition (u(Bi),. .., u(Ba))
and replacement matrix Id. By Theorem 1.1), the almost sure limit of U(n)/n, which we know is
(u*(By),...,u*(By)) is Dirichlet-distributed of parameter (u(By), ..., u(Bg)). This concludes the
proof that p* is indeed Ferguson-distributed with parameter pu. 0
However, Blackwell and McQueen [BM73] also prove that Theorem 1.3 still holds in this case:

Theorem 2.2. Let i be a finite measure on a Polish space E and let u* be a Ferguson(u)-distributed
random probability measure on E. Given p*, let (X (i))i=1 be a sequence of i.i.d. random variables
of distribution p*, and let, for alln = 0,

mpy = W + Z(;X(z)
i=1

Then, (my)nso is the MVPP of initial composition j and replacement kernel 1d.
Proof. This can be done using de Finetti’s theorem. 0

For the fluctuations of m, around its almost sure limit pu*, one can use Theorem 2.2. See
Borovkov [?] for a functional limit theorem for these fluctuations.
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2.3. The balanced “irreducible” case. In this section, which is based on Mailler and Marck-
ert [MM17], we assume that the MVPP is balanced, i.e. that there exists ¢ > 0 such that, for all
r € E, R,(F) = 1. Without loss of generality, we assume that ¢ = 1. In other words, for all x € F,
R, is a probability measure; we call R a “probability kernel”. The non-balanced case is treated in
Section 2.4.

2.3.1. Conwvergence in probability of “irreducible” MVPPs.

Definition. For any two F-valued sequences a = (a(n)),=0,b = (b(n)),=0, and any probability
distribution v on F, we say that probability kernel (R,).ep on E is “(a, b, v)-ergodic” if, for all
x € F, the Markov chain (W (n)),>o started at  and whose transition probabilities are given by
R (ie. W(n+ 1) ~ Ry, for all n > 0) satisfies

W) —a(n)

b(n) ’
in distribution as n 1 co.

NB: Note that we have not assumed that E is equipped with an addition and a multiplication
operation. If there is no addition on E, then the only possible value for (a(n)),=o is the constant
sequence equal to 0, and we interpret x — x + 0 as being the identity function on E. Similarly,
if there is no multiplication by a scalar on E, then the only possible value for (b(n)),=o is the
constant sequence equal to 1, and we interpret x — 1 x z as being the identity function on F.

Theorem 2.3. Let (my)ns0 be the MVPP of initial composition mq and balanced replacement
kernel (Ry)zer. We assume that there exist two sequences a = (a(n))p=0,b = (b(n))ns0, and a
probability measure v such that (Ry).er is (a,b,v)-ergodic and there exist f,g: E — R such that,
for all x € E, for any function (,)n=0 Satisfying e, = o(x/n) asn 1 o,

a(n + zy/n+¢,) —a(n) b(n + xzy/n + €p)

(22) - —f), L ola),
as n 1 oo. Recall that, for alln =0, m, = m,/m,(E). Then, in probability as n 1 o,
(2.3) mn(a(logn) + - blogn)) — L(f(€2) + g(Q)T),

where Q ~ N(0,1) and T' ~ v are independent, and, for any random variable X, L(X) denotes its
law.

NB: Equation (2.3) means that, for any continuous bounded function ¢ : £ — R,

x — a(logn) A ()
[ (™ Vi o) — E[o(7(9) + g(@0D)),

in probability as n 1 oo.

The proof of Theorem 2.3 can be summarised in one sentence: “The Pdlya urn of replace-
ment matriz R is the branching Markov chain of transition probabilities R indexed by the random
recursive tree.”

Before proving Theorem 2.3, we give some examples of applications.

2.3.2. Examples of application of Theorem 2.5. We give two examples of applications of Theo-
rem 2.3.

(1) Finitely-many colour Pélya urns: Let (U(n)),>0 be the d-colour Pélya urn of replacement ma-
trix t = (t;;)1<ij<q and initial composition o = (a, ..., ag). Recall that (m, = 3%, U(n)8;)ns0
is the MVPP of initial composition mg = Zle a;0; and replacement kernel (R; = ijl 05 )1<i<d-
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To apply Theorem 2.3, we need to assume that, for all 1 < i < d, ijl t;; = § for some s > 1;
this assumption is classical in the literature and is called the “balance” assumption. For all n > 0,
we let 1, = m,/s; (Nn)n=0 is a balanced MVPP of replacement kernel R/s and initial composition
a/s.

If, in addition, we assume that t is irreducible and aperiodic, then the Markov chain of transition
probabilities R/s is ergodic. Furthermore, its limiting probability distribution satisfies v(R/s) = v,
which is equivalent to vR = sv. Theorem 2.3 thus applies and gives implies that

U(n)
1U(0)]1 + ns
Because R is balanced and all its rows sum to s, s is its dominant eigenvalue, and thus v is its
dominant left-eigenvector. Thus, we recover a version of Theorem 1.5. This version however is

weaker, for three reasons: first, we assumed that the Pdlya urn is balanced; second, we assumes
that R is aperiodic, and third, we get convergence in probability instead of almost surely.

— v in probability as n 1 co.

(2) The “random walk increment” replacement kernel. Let (m,)n,>o be the MVPP of initial
composition mg and replacement kernel (R,).er, where, for all x € R? R, is the probability
distribution of x + A with A a random variable on R¢ such that y = EA and ¢? = Var(A) < oo.
Then, the Markov chain of probability transitions (R,),cga is the simple random walk of increment
A. Le, foralln >0, W,, = Wo+ >, | A;, where (A;);>1 is a sequence of i.i.d. copies of A. By the
central limit theorem, (W,,)n>0 is (a, b, v)-ergodic with a(n) = mn, b(n) = y/n and v = N(0,0?).
Note that a and b satisfy (2.2) with g(z) = 1 and f(z) = mz. Theorem 2.3 thus implies that, in
probability as n 1 oo,

(B — L(mQ +T),

where Q ~ A(0,1) and T' ~ AV/(0,0?) are independent. In other words, in probability as n 1 oo,

My 2 2
m—)/\/<0,m +o0 )

2.3.3. MVPPs are branching Markov chains. This section is a preliminary to the proof of Theo-
rem 2.3, we start by giving the following, equivalent, definition of an MVPP: given a replacement
kernel R and an initial composition mg, we define the sequence (m,,),>o as follows: first sample a
sequence (I(n)),>1 of independent random variables such that, for all n > 1,

mo(E) +n—1 and - P(I(n) =) = mo(E) +n—1

Then, for all n > 0, given Y(1),...,Y(n) (recall that Y (i) is the colour of the ball drawn at
time ), if I(n + 1) = i for some 1 < i < n, then sample Y (n + 1) according to the probability
distribution Ry (;), otherwise (if I(n + 1) = 0), sample Y (n + 1) according to mg. Finally, set
m, = mo + >,y Ryq) for all n = 0. One can check that, indeed, (m,)y=o is the MVPP of
replacement kernel R and an initial composition my.

The advantage of this definition is that the sequence (I(n)),>1 records the branching structure of
the MVPP: indeed, we can interpret I(n) as the parent of n, for all n = 1. With this definitions, all
positive integers have a parent, and the genealogical structure of this population can be interpreted
as a tree. To do so, we just interpret each integer as a node, and add an edge between every node
and its parent (because one’s parent is a smaller integer, there are indeed no cycles in this graph).
The only node that has no parent is 0, and we call this node the root of the tree. The tree T
associated to (I(n)),=o is infinite; for all n = 1, we call T,, the tree associated to the finite sequence
(I(1),...,1(n)). Because (I(n)),=o is a random sequence, (T},),>0 is a sequence of random trees.

P(I(n) = 0) =

(1<i<n-1).
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If mo(E) =1 (and, for simplicity, we now assume that this is the case), then (T},),>0 is known
in the literature as the random recursive tree (RRT). Now, the sequence (Y(7));>1 of the colours
drawn at successive times in the MVPP can be interpreted, not as a sequence indexed by N, but
as a sequence indexed by the RRT T,. From now on, we call Y (i) the “label” of node i. The
sequence of labels taken along each branch of the tree is distributed as a Markov chain of initial
distribution mg and transition probabilities R. And once they have branched, the labels along two
distinct branches are two independent Markov chains of transition probabilities R. In other words,
(Y(7))i=0 seen as a sequence indexed by T, is a branching Markov chain.

The advantage of this description if the following result:

Lemma 2.4. Let R be a replacement kernel on a Polish space E and mqg a finite measure on E.
We assume that R,(F) = 1 for all x € E. Let Ty, be the random recursive tree whose nodes are
{0,1,2,...}, and for all n = 0, let T,, be the restriction of T, to {0,...,n}. Let (Y (i))i=1 be the
branching Markov chain of initial distribution mg and transition probabilities R indexed by Ty,.
Then, for alln =0, given T,, and (Y (i))1<i<n, Mn = my/m,(E) is the distribution of Y (n + 1).

Thanks to this coupling, we are now ready to prove Theorem 2.3.

2.3.4. Proof of Theorem 2.5. For this proof, we “forget” about this MVPP and now focus on the
branching Markov chain on the random recursive tree. First note that, in distribution, Y (n+1) =
Win+1|, where |n + 1| denotes the height of node n 4 1 in T, and W is the Markov chain of initial
distribution mg and replacement probabilities R. Our assumptions give us good control of W,
under the assumption that |n + 1| tends to infinity. The following result gives us good control of
In + 1| as n tends to infinity; in fact, instead of looking at node n + 1, we look at its (random)
parent £(n + 1). Note that £(n + 1) is uniformly distributed in {0, ..., n}.

Lemma 2.5 (Dobrow [Dob96]). Let Ty, be therandom recursive tree. Let £(n+ 1) be a node taken
uniformly at random among {0,1,...,n+1}. Then, the height of £(n+1), which |{(n+1)| denotes,
satisfies, in distribution as n 1 oo,

|E(n +1)| — logn
v9ogn

Recall that, by assumption, (W,, — a(n))/b(n) = v. By Kolmogorov’s representation theorem,
there exists a probability space, which we call “Kolmogorov’s space” in the following, in which
this convergence and the convergence of (2.4) hold simultaneously almost surely: (for simplicity,
we keep the same notation, although we are in fact working with different objects, on a different
probability space)

(2.4)

= N(0,1).

&E(n+ 1)| —logn W, —a(n)
(e ™) — e

almost surely as n 1 oo, where Q ~ N(0,1) and I' ~ v are independent. Now,

Winga) —alogn) — Wigmsnior —a(i€n + DI +1) b(|€(n+1)[+1)  a(|§(n+1)|+1) —a(logn)

b(logn) b(|€(n+ 1)+ 1) b(logn) b(log n)
(2.5) — I'g(Q) + f(Q),
almost surely as n 1 c0. The almost sure convergence is only true on Kolmogorov’s probability

space; however, this implies convergence in distribution on the original probability space. We thus
have shown that

Win+1) — a(logn)

(26) b(log n)

= L(Tg(Q) + f()),
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in distribution as n 1 c0. Equivalently, for any bounded continuous function ¢ : £ — R,

| (T SEE ) | Bparg(e) + )

Unfortunately, even if (W),11|—a(logn))/b(log n) is a random variable of distribution 7, (a(logn)+
- b(logn)), this is not enough to prove convergence of 7, (a(logn) + - b(logn)) to L(T'g(Q) + f(QQ))
in probability as n 1 co. Indeed, to do so, we need more, as stated in the following result (which
is folklore, and proved in [MM17]):

Lemma 2.6. Let (py)n=0 be a sequence of random probability distributions on a Polish space E.
Let 1 be a (deterministic) probability distribution on E. For all n = 0, given m,, let A, and
B, be two independent random variables of distribution p,. If (A, B,) = (A, B) in distribution
as n 1 o, where A and B are two independent random variables of distribution u, then p, — u
in probability for the weak topology. ILe., for any bounded continuous function ¢ : E — R, in

probability as n T oo,
f @ dpn HJ pdp.
E E

Proof. By Markov’s inequality, because p is deterministic, it is enough to prove that, for any
bounded continuous function ¢ : F+— R, as n 1 o0,

o o [oan] [ oan wa vl [ oan) o

First, because, by definition of A, {, ¢ du, = E[¢(A4,)|un],
J pdu,
E

since A, = A in distribution as n 1 co. Also, because E[A,|u,] = E[B,|un] = §, ¢ djin, we have

(28) E| [ pdin| = BIBL(4,)l1]] = Elp(4,)] — Blo(4)]

E( Lsodunﬂ — B[E[Aulon BB ] = E[E[A,Blps])

because, given m,,, A, and B, are independent. Thus,

El(j gpdunﬂ — E[A,B,] — E[AB] = E[A|E[B] = (L gpdp)2.

E
Together with (2.8), this implies (2.7) and thus concludes the proof. O

Thus, to prove Theorem 2.3, it is enough to prove the following:

Proposition 2.7. Let R be a balanced replacement kernel on a Polish space E and mqg be a
probability measure on E. Let T,, be the random recursive tree and let (Y (i));=1 be the branching
Markov chain of initial distribution mqy and transition probabilities R indezed by Ty,. Given T, and
(Y(9))1<i<n, let Yi(n+ 1) and Yo(n + 1) two independent copies of Y (n+1). Then, in distribution
as n 1 o,

Yi(n +1) —a(logn) Ys(n +1) —a(logn) N
( b(log n) ’ b(log n) ) (f() + g(Q)Ty, f(Q2) + g(2)T2),

where Q1,Q ~ N(0,1) and T'y, Ty ~ v are all independent.

To prove this proposition, we neet to improve Dobrow’s lemma (Lemma 2.5) as follows:
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Lemma 2.8. Let T, be the random recursive tree. Let ((n + 1) and {(n + 1) be two nodes taken
independently uniformly at random in {0,1,...,n}. Let |((n + 1)|, |£(n + 1)| be their respective
heights in Ty, and let K,, be the height of their last common ancestor in T.,. Then, in distribution
as n 1 o0,

(2.9)

IC(n+1)|—logn [£(n+ 1) —logn
vlogn ’ Viogn
where Q1 and Qy are two independent standard Gaussian random variables, and K an almost surely
finite random variable.

7Kn) = (Qlu QQ: K)7

This lemma is stated in [MM17] but with a different proof. There is also a version of this result
in [MB19] but with a proof that is different from that of [MM17] and different from the one that
follows; the proof of [MB19] is an extension of Dobrow’s proof of Lemma 2.5.

Proof. Our proof relies on a coupling that couples all the triples (7,,,&(n + 1),{(n + 1)) forn =0
in such a way that, for all n > 1,

e ((n + 1) is either equal to {(n) or a child of {(n), and
e {(n + 1) is either equal to £(n + 1), or equal to £(n), or a child of £(n).

The coupling goes as follows: first let (1) = ((1) = 0. Then sample two independent sequences
of independent random variables (B;);>1 and (B});>1 such that, for all i > 1,

1 1
P(B;=1)=P(B/=1)=- and P(Bi=0)=PB =0)=1—-.
(3

1

Also sample a sequence (U(n)),>1 of independent random variables such that, for all n > 1,
U(n) is uniform on {0,...,n — 1}. Then, assuming that (7,,_1,((n),&(n)) is defined, we define
(T, ¢(n+1),&(n + 1)) as follows:

o If B, = B/, =0, then set {((n + 1) = ((n), {(n+ 1) = &(n), and T, is the tree obtained
after adding node n in 7;,_ as a child of node U(n).

o If B, =B/ =1, thenset ((n+1) =&n+1)=n+1, and let T,, be the tree obtained after
adding node n to T,,_; as a child of node ((n).

o If B, =1and B/, =0, thenset ((n+ 1) =n+ 1, £&(n+ 1) = £(n), and let T}, be the tree
obtained after adding node n to T,,_; as a child of node {(n).

o If B, =0 and B], =1, then set {((n+ 1) = {(n), &(n + 1) = n+ 1, and let T}, be the tree
obtained after adding node n to T,,_; as a child of node £(n).

One can check that, indeed, (T},),0 is distributed as the random recursive tree, and for all n > 0,
((n+ 1) and {(n + 1) are two nodes taken uniformly at random among {0,...,n}. With this
definition, we have the following identities: for all n > 0,

B, K, ZB,, and [{(n+1)|=K,+ > B

i=1 i=In+1
where I, = max{l < i < n: B; = B, = 1}. First note that, by Borel-Cantelli’s lemma, because
P(B; = B = 1) = Y2, I = limyel, = >,5; BiB] < o almost surely. This implies that,
K = limy K, < 00 almost surely. Furthermore, by the central limit theorem, because

M:

[Cn+ 1) =

n

u 1
YEB; =)~ =logn+ O(1),
. 1

and
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as n 1 oo, we get that

> Bi—logn ' Bi—logn
Viogn ’ Vlogn
where €2 and {25 are two independent standard Gaussian random variables. Now,
E(n+1)| —logn 3, B{+ 3" (B; — B) —logn
vlogn B vl1ogn

This concludes the proof. O

) = (€21, (),

== QQ.

We are now ready to prove Proposition 2.7 and thus Theorem 2.3:

Proof of Proposition 2.7. The idea of the proof is that Y;(n + 1) is the label of the first child in
T, of a node ((n + 1) taken uniformly at random among {0, ...,n}, and Y2(n + 1) is the label of
the second (in case {(n + 1) = ((n + 1)) child in T,, of a node &(n + 1) taken uniformly at random
among {0,...,n}, independently from ((n + 1). We let K,, be the height of the last common
ancestor of ((n + 1) and {(n + 1). In distribution,

e

|§(n+1)\+1—Kn>7

(Yi(n + 1), Ya(n + 1)) = (W)

[C(n+1)|+1-Kyp?

where WM and W® are two independent Markov chains of transition probabilities R started at
the same value Wy, . By Assumption on W, we thus have that, conditionally on K,, and Wk, ,

Wél)—a(n) W — a(n)
(e ) = @

in distribution as n 1 oo, where I';, 'y ~ v are independent. Because the distribution of the limit
does not depend on K,, and Wk, , this implies that (without conditioning)

Wil — a(n) W — a(n)
(2.10) < O > = (I'1,T).

Furthermore, Lemma 2.8,

(|C(n+ )| —logn |£(n+ 1) —logn
Vlogn ’ Viogn

7Kn) = (917927K)'

This implies

(2.11) <KW+1H+1—Kﬁ—b@lKW+1H+1—Kﬁ—byz

0, ).
\/@ ) ﬁlogn ):>< 1 2)

Because the random recursive tree is independent from W1 and W Equations (2.10) and (2.11)
hold jointly with (I';, T's) independent of (€21, €2;). By Kolmogorov’s representation theorem, there
exists a probability space (which we call Kolmogorov’s space in what follows) on which both (2.10)
and (2.11) hold almost surely. The same calculation as in (2.5) gives

<Y1(n + 1) — a(logn) Ya(n +1) —a(logn)
b(log n) ’ b(log n)

) - (f(Ql) + ()T, f(Q) + 9(92)F2),

almost surely as n 1 o0 on Kolmogorov’s probability space, and thus in distribution on the original
probability space, as desired. O
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2.4. The non-balanced “irreducible” case. This section is based on Mailler and Villemon-
ais [MV20]. In this paper, the authors proved almost sure convergence of a large class of MVPPs;
their result, however is neither stronger nor weaker than those of [MM17] discussed in Section 2.3.
Indeed, an improvement with respect to [MM17] is that [MV20] allows the MVPP to be un-
balanced. Also, [MV20] gets almost sure convergence of the MVPP, as opposed to convergence
in probability in [MM17]. However, [MV20] only allows the Markov chain of transition probabili-
ties R to be (0, 1, v)-ergodic (see Definition 2.3.1), so many MVPPs that fall into the framework
of [MM17] are not covered by [MV20].

Also, the main difference between [MV20] and [MM17] is their methods of proof: [MM17] used
what could be called a many-to-two method from the theory of branching random walks, while
[MV20] uses stochastic approximation methods. To get rid of the balance assumption, [MV20]
relies on the theory of quasi-stationarity for killed Markov chains.

Before stating and proving the results of [MV20], we show that finitely-many-colour Pélya urns
are stochastic approximations and give yet another proof of 1.5 using results from the literature
on stochastic approximations.

2.4.1. Pdlya urns are stochastic approximations.

Definition. A stochastic approximation on subset S of R? is a sequence (X,,),>o of S-valued
random variables such that, for some filtration (F,),>0, for all n > 0, almost surely,

Xn+1 =X, + Tn (F(Xn) + AMnJrl + 5n+1)7

where (7, )n>0 1S a sequence satisfying

Z%ZOO and Z'yfb<oo,

n=0 n=0

F' is a function from § into itself, (AM,),=0 is an (F,),=0-adapted sequence of martingale incre-
ments, and (£,,)n>0 s an (F,),>o-adapted sequence of random variables satisfying lim, o, €, = 0
almost surely.

In the literature, one can find many different definition for stochastic approximations, and
also, many different theorems that give almost sure convergence of a stochastic approximation,
under different sets of assumptions. Classical references on stochastic references include the book
of [Duf97], the lecture notes of Benaim [Ben99], and the survey paper of Pemantle [Pem07]. The
heuristic general idea is that, if Fis regular enough, then (X,,),¢ follows the flow of the differential
equation y = F(y) (this is made rigorous by the concept of “pseudo-asymptotic trajectories” of
Benaim [Ben99]), and this implies that (X,,),>0 converges almost surely to the set of “stable” zeros
of F.

Lemma 2.9. Let (U(n))n=o0 be the d-colour Pélya urn of initial composition o = (ay, ..., aq) and
replacement matriz v = (t;;)1<ij<da- For allm =0, set T(n) = |U(n)|y and U(n) = U(n)/T(n).
Then, for allmn >0,

A~ A~ A

Un+1)=Un)+v(FUMm))+AM,.1),

where v, = T(n;H) and F' is a function from S into itself where

d
S = {(x1,...,24) € [0,1]¢: sz =1},

and F(z) = Y (¢, — |vi|z) for allz € S.



POLYA URNS AND OTHER REINFORCEMENT PROCESSES 22

Proof. Let (Fp)n=0 be the natural filtration of (U(n)),>o. By definition, for all n > 0, U(n + 1) =
U(n) + ty(ns1), where, for all 1 <i<d

P(Y (n + 1) = i|F,) = Us(n).

Thus, for all n > 0,

~ U(n) + Ty (n+1) ~ T(n) Uy (n+1)
U(n+1) = — U(n)-
(n+ 1) = —7a ) ) o) T T+ 1)
. HtY(n-i-l)Hl Y (n+1) ~ Yy (n+1) — HtY(n+1)H10(n)
—U(n)- (1 - — 0 .
() Th+1)  Tmey  UWH T(n+1)
We set
AMrs1 = tymen) = [ty [1U () = Elty ey = [ty ey [1U () Fn].
Because
d
Elty(ms1) = [tymen LU ()| Fn] = Z Ui(n) (v — [ .U (n)),
i=1
we get
J(n+1) =0T ——(F(U AM,,
U(n+ 1) U(n)+T(n+1)( (U(n)) + AMy1),
where F': RY — R? is defined by F(z) = %, i(t; — [t;]12), as desired. O

Note that, if v is balanced, i.e. for all 1 <i < d, |v;|; = s for some s > 0, then T'(n) = |a|; + ns
for all n > 0, and F(z) = 2(R — sld). In that case, the following result applies:

Theorem 2.10 ([Duf97, Theorem 1.4.26]). Assume that (X,,)n=0 is a stochastic approzimation on
S < R? in the sense of Definition 2./.1. Assume that: there exists a function 0% : S — R such
that

(i) F is continuous,

(i) E[(AM 41 + €ns1)?|Fn] < 02(X,,) for alln =0,
(iii) there exists a constant K > 0 such that, for all z € R, |F(x)| + o*(z) < K(1 + ||z|?),
(iv) there exists x* € R such that F(x*) =0 and, for all x € S\{z*}, (F(z),r — z*) < 0.

Then, almost surely as n 1 oo, X,, — z*.

We now show how to apply Theorem 2.10 to re-prove Theorem 1.5 in the case of a balanced
Pélya urn of irreducible replacement matrix t. In that case, by Lemma 2.9 U(n) is a stochastic
approximation with v, = 1/(||a|, + ns), F': x — z(R — sId),

AMy1 = Yy (n+1) — E[tY(n+1)’Fn]7

and €,.; = 0. By the triangular inequality, |AM, 1]: < 2s; we thus let o%(z) = 25 for all 2 € R¢
so that Assumption (ii) of Theorem 2.10 holds. Now note that there exists K > 0 such that, for
all z € R |F(x)| = |z(R — s1d)|| < K||z| (indeed, one can take K to be equal to the spectral
radius of R — sId). Thus, Assumption (iii) of Theorem 2.10 also holds. Because F is linear, it is
also continuous. It only remains to check Assumption (iv): it holds because, by Perron-Frobenius
theorem, there exists a unique left eigenvector v € S associated to the eigenvalue s. Hence,
F(v) =0 and, for all z € S§\{v},

(F(x),x —v) ={x(R—sld),z —v) = {(z —v)(R —sld),z —v) < 0,

because all eigenvalues of R — sld except v have negative real parts. Thus, Theorem 2.10 applies
and gives Theorem 1.5, as expected.
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2.4.2. MVPPs are stochastic approzimations. First we show that (m, = m,/m,(E)),>o is a sto-
chastic approximation. Note that (1m,),>0 takes values in P(E), the set of probability measures
on E. Before seeing (M, )n=0, we need to explain some notation: Let v € P(E), f: E — R be a
continuous and bounded function, and R be a kernel on E. We let

l/-fszfdu and (VR)'fszRx~fdl/(a:).

For any random probability measure p, we let E[u] be the measure such that, for all continuous
and bounded functions f: F — R,

Elp- f1=E[u] - f.
Lemma 2.11. Let (m,),=0 be the stochastic approximation of initial composition mqy and (deter-

ministic) replacement kernel R = (Ry)zep. Recall that, for all i =1, Y (i) is the colour of the ball
picked at time i. For allm >0, set m,, = m,/m,(E). Then, for alln =0,

N
anrl(E)
where F' : P(E) — P(E) is defined as F(u) = uR — (uR)(E)p, and AM, 1 is a martingale

increment (meaning that, for all continuous functions f, AM,.1 - f is a martingale increment).

(F'(my,) + AM,41),

Mpt1 = My +

Proof. By definition, for all n > 0, my4+1 = m, + Ry (4+1). Thus,

" my + RY(n+1) (1 RY(n+1)(E)> A RY(n+1)
oy = et (g TV, o St
S () s (E) )
1
=M, + ————(Rym+1) — Ry Eym,,).
i +mn+1(E)( y(ne1) = By (e (E)iin)

Thus, if we let (F,,)n=0 be the natural filtration of (Y'(7));>1, because
IE[}%Y(n-&-l) - RY(n+1)(E)mn|~Fn] = myR — (mnR)(E)mm

we have )

7 n =n n —— (F'(n n AMn )

Mp+1 My + mn+1(E) ( (m ) + +1)
where F': P(E) — P(FE) is defined by F(u) = pR — (uR)(E)u, and where E[AM, 1| F,] = 0, as
claimed. 0

As in Section 2.4.1, the balanced case is easier, although one solution around that is to consider
Ny = %Z?:l dy(;) instead of 1,: it is also a stochastic approximation, and 7,(E) = 1 for all n > 1
(see [MV20]). For simplicity, we assume from now on that R is a probability kernel and thus that
(my,)nso is a balanced MVPP. In that case, we have

1

m(F(mn) + AM, 1),

mn-‘rl = mn +
where F(u) = p(R — 1d).
We assume for now that, indeed, (m,,),>¢ will eventually follow the flow of

(2.12) it = (R - 1d),

and try to understand this flow. We let (X;);>¢ is the jump Markov process that jumps at rate 1
and when it jumps, its new position is sampled according to the kernel R. If we let v, denote the
distribution of X; for all ¢ > 0, then (14);>¢ is the solution of (2.12) with initial value v4. Thus,
if we assume that (X;);>0 is ergodic, i.e. that there exists v such that, for all vy, v, —> v ast 1
(for the weak topology), then this implies that the flow defined by (2.12) has one attractive, stable
zero, which is v. And thus, one expects that m, — v almost surely as n 1 oo.
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2.4.3. Almost sure convergence of non-balanced MVPPs. Before stating the main result of this
section, we need the following definition:

Definition. Let (X;);>o be a jump Markov process on some space E U {0}, absorbed at 0. We say
that v € P(F) is a quasi-stationary distribution of X if, for some initial distribution 7 € P(F),

PW(Xt S ‘Xt 75 5) — U,
weakly as t 1 oo.

Theorem 2.12. Let (my,),=0 be the MVPP of initial composition mqy and replacement kernel R.
We assume that

(a) There exists ¢ > 0 such that, for allz e F, 0 < ¢ < R,(E) < 1.
(b) There exists a functionV : E'— [1,0) such that, for all L = 0, {x € E: V(z) < L} is relatively
compact, and, for all v € F,

R, -V <0V(z) + K,

for some 0 € (0,¢) and K > 0.
(c) The continuous-time jump process of sub-Markovian jump kernel R—I admits a quasi-stationary
distribution v.

[+ technical assumptions, see [MV20]] Then, m,, — v almost surely as n 1 0.
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