
PÓLYA URNS AND OTHER REINFORCEMENT PROCESSES

CÉCILE MAILLER

What is a Pólya urn? A d-colour Pólya urn (for d ě 2) is a Markov process pUpnqqně0 whose
distribution depends on two parameters:

‚ the initial composition Up0q P Nd,
‚ the replacement matrix R “ pRijq1ďi,jďd, a d-dimensional matrix whose coefficients are

integer-valued.

The distribution of pUpnqqně0 is defined recursively as follows: For all n ě 0, let ξpn ` 1q be a
random variable in t1, . . . , du with distribution

Ppξpn` 1q “ i|Upnqq “
Uipnq

}Upnq}1
, p@1 ď i ď dq,

where}Upnq}1 “
řd
i“1 Uipnq. Set Upn` 1q “ Upnq`Rξpn`1q, where, for all 1 ď i ď d, Ri is the i-th

line of the matrix R.
The idea is that pUpnqqně0 represents the evolution of the contents of an urn that contains balls

of possible colours 1, 2, . . . , d. For all n ě 0 and 1 ď i ď d, Uipnq is the number of balls of colour i
in the urn at time n and, at each time step n, we pick a ball uniformly at random in the urn, let
ξpnq denote its colour, and replace it in the urn together with an additional Rξpnqj balls of colour j,
for all 1 ď j ď d.

A few comments on the initial composition and replacement matrix. We have asked
that the coefficients of Up0q and R are integers. This is not necessary for the mathematical
definition of the model (and for most of the results), although the interpretation in terms of “balls
in an urn” breaks down if these are not integers. That said, one can think of coloured dust in an
urn instead.

The coefficients of R can be negative, meaning that we remove balls from the urn instead of
adding balls to the urn. This is fine as long as the number of balls of each colour stays positive
at all times. If the number of balls of one colour becomes negative, we say that the urn becomes
extinct and the process stops. One can come up with conditions on Up0q and R that ensure that
the urn almost surely never comes extinct (see, e.g., [Mah08]): for example, one can ask that

(0.1)

#

Rii ě ´1 for all 1 ď i ď d, and

Rij ě 0 for all 1 ď i ‰ j ď d.

Indeed, Rii “ ´1 means that we remove from the urn the ball that we picked at random. An urn
that almost surely never becomes extinct is called “tenable”. One sufficient condition for tenability
is that, for all 1 ď i ď d, there exists κi such that Rii “ ´κi and, for all 1 ď j ď d, Rij ě 0 is
divisible by κi. For simplicity, in this course, we assume that this sufficient condition always holds.

What questions are we interested in? In this course, we ask what is the composition of the
urn as n goes to infinity, i.e. we aim at proving limiting theorems for Upnq as n Ò 8. Does Upnq{n
converge as n Ò 8? Does it converge in probability? almost surely? If it converges, what is its
limit? And what are the fluctuations around this limit? Naturally, the answers to these questions
depend on the parameters Up0q and R of the Pólya urn.

In this course, we will consider the following two cases:
1
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(1) The replacement matrix is R “ SId. We call this case “the identity case”.
(2) The replacement matrix is irreducible. We call this case “the irreducible case”.

We will see that these two cases lead to radically different behaviours: In the identity case, Upnq{n
converges almost surely to a random limit whose distribution depends on the initial composition
of the urn. In the irreducible case, Upnq{n converges almost surely to a limit that does not depend
on the initial composition of the urn. We will show these “law of large numbers” results and also
look at the fluctuations around these almost sure limits.

In the second part of the course, we will look at extending Pólya urns to the case when the set
of colours is infinite.

1. Finitely-many colour Pólya urns

1.1. The identity case. In this section, we consider the case when R “ SId. Without loss of
generality, we assume that, for all 1 ď i ď d, αi :“ Uip0q ě 1. We show convergence of the
composition of the urn when time goes to infinity, as well as convergence of the fluctuations of the
composition around its almost sure limit.

1.1.1. A law of large numbers. The following theorem dates back to Markov [Mar17] for S “ 1,
Eggenberger and Pólya [EP23] also for S “ 1.

Theorem 1.1. Assume that R “ SId and, for all 1 ď i ď d, αi :“ Uip0q ě 1. Then, almost surely
as nÑ `8,

Upnq

Sn
Ñ V “ pV1, . . . , Vdq,

where V is Dirichlet-distributed with parameter pα1{S, . . . , αd{Sq.

We recall that the density of the Dirichlet distribution of parameter pν1, . . . , νdq is given by

Γpν1 ` . . .` νdq

Γpν1q . . .Γpνdq

d
ź

i“1

xνi´1
i dΣpx1, . . . , xdq,

where dΣpx1, . . . , xdq is the Lebesgue measure on the simplex

Σ “
!

px1, . . . , xdq P r0, 1s
d :

d
ÿ

i“1

xi “ 1
)

.

In particular, the Dirichlet distribution of parameter p1, . . . , 1q is the uniform distribution on Σ.
Two well-known particular cases of Theorem 1.1 are the following:

Corollary 1.2. Assume that d “ 2 and R “ Id.

(i) If α1 “ α2 “ 1, then

Upnq

n
Ñ pX, 1´Xq,

almost surely as n Ò 8, where X „ Unifp0, 1q.
(ii) If α1, α2 ě 1, then

Upnq

n
Ñ pB, 1´Bq,

almost surely as n Ò 8, where B is a Beta random variable of parameter pα1, α2q.
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Proof of Theorem 1.1. For all n ě 0,

ErUpn` 1q|Upnqs “ ErUpnq ` Seξpn`1qs,

where pe1, . . . , edq is the canonical basis of Rd (i.e., for all 1 ď i ď d, all coordinates of ei are null
except the i-th one, which equals 1), and ξpn ` 1q is the colour of the ball drawn at time n ` 1.
We thus get

ErUpn` 1q|Upnqs “ Upnq ` SEreξpn`1qs “ Upnq ` S
d
ÿ

i“1

Uipnq

}Upnq}1
ei “

´

1`
S

}Upnq}1

¯

Upnq.

Thus, pMn “ Upnq{}Upnq}1qně0 is a martingale for its natural filtration. Because it is non-
negative, by the martingale convergence theorem, it converges almost surely to an almost finite
random variable V . By definition, }Upnq}1 “ }Up0q}1 ` nS for all n ě 0. Thus, almost surely as
n Ò 8,

Upnq

Sn
“

Upnq

}Upnq}1
¨
}Upnq}1
Sn

Ñ V.

To prove that V is Dirichlet distributed with parameter pα1{S, . . . , αd{Sq, one can calculate moments
of Mn and show that they converge to the moments of the Dirichlet distribution. This is done
in [CMP15, Section 6].

In this course, we only prove that the distribution of X in Corollary 1.2(i) is indeed uniform on
r0, 1s. In fact, we prove that, for all n ě 1, 1 ď k ď n` 1,

(1.1) PpU1pnq “ kq “
1

n` 1
.

In other words, the distribution of U1pnq is uniform on t1, . . . , n ` 1u for all n ě 1, which indeed
implies that X is uniform on r0, 1s, as claimed. One can easily prove (1.1) by induction. Instead,
we discuss here how one could have guessed this formula from scratch: to have k balls of colour 1
in the urn at time n, one needs to have picked pk ´ 1q times a ball of colour 1 and pn ´ k ` 1q
times a ball of colour 2. The probability that we draw a ball of colour 1 at times 1, . . . , k ´ 1 and
a ball of colour 2 at times k, . . . , n´ 1 is given by

1

2
¨

2

3
¨ ¨ ¨

k ´ 1

k ` 1
¨

1

k ` 2
¨

2

k ` 3
¨ ¨ ¨

n´ k ` 1

n` 1
“
pk ´ 1q!pn´ kq!

pn` 1q!
.

Now note that, if the draws happened in a different order, “only the order of the numerators
change”, which means that the probability above is the same, independently of the order in which
the k´ 1 balls of colour 1 and n´ k balls of colour 2 have been drawn. Since there are

`

n
k´1

˘

such
orders, we get

PpU1pnq “ kq “

ˆ

n

k ´ 1

˙

pk ´ 1q!pn´ k ` 1q!

pn` 1q!
“

1

n` 1
,

as claimed in (1.1). This concludes the proof in the case of Corollary 1.2(i). The proof in the case
of Corollary 1.2(ii) is similar, only more technical. �

The following result is useful when trying to simulate a Pólya urn easily in the identity case. In
the case of Corollary 1.2(i), it is an exercise in the book of Williams [Wil91]:

Theorem 1.3. Fix α1, . . . , αd ě 1 and S ě 1. Define the d-dimensional process pZpnqqně0 as
follows: let V be a Dirichlet random variable of parameter pα1{S, . . . , αd{Sq and let pXmqmě1 be a
sequence of random variables such that, for all k ě 1, for all 1 ď i ď d,

PpXk “ ei|V q “ Vi.
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Let Zip0q “ αi ě 1 for all 1 ď i ď d and, for all n ě 1,

Zpnq “ Zp0q ` S
n
ÿ

k“1

Xk.

Then, pZpnqqně0 is a Pólya urn of initial composition pα1, . . . , αdq and replacement matrix SId.

NB: By the law of large numbers, it is clear that, conditionally on V , Zpnq{pnSq Ñ V almost
surely as n Ò 8, i.e.

P
´Zpnq

nS
Ñ V

ˇ

ˇV
¯

“ 1.

By the tower rule, this implies that Zpnq{pnSq Ñ V almost surely as n Ò 8, which confirms the
law of large numbers stated in Theorem 1.1.

Proof. Let pUpnqqně0 be a Pólya urn of initial composition pα1, . . . , αdq and replacement matrix
SId. We aim to prove that, for all n ě 0, k1, . . . , kd ě 0,

(1.2) P
`

Zipnq “ αi ` Ski p@1 ď i ď dq
˘

“ P
`

Uipnq “ αi ` Ski p@1 ď i ď dq
˘

.

This indeed implies that pZpnqqně0 is distributed as pUpnqqně0, as claimed.
To prove (1.2), we give explicit formulae for the LHS and RHS and show that they are indeed

equal. For the RHS, we use a similar argument as in the proof of (1.1): for all n ě 0, k1, . . . , kd ě 0,

PpUipnq “ αi ` Skiq “
n!

k1! . . . kd!

śd
i“1 αipαi ` Sq ¨ ¨ ¨ pαi ` pki ´ 1qSq

śn´1
i“0 pᾱ ` iSq

1k1`¨¨¨`kd“n,

where we have set ᾱ “
řd
i“1 αi. Dividing both numerator and denominator by S gives

PpUipnq “ Uip0q ` Ski p@1 ď i ď dqq “
n!

k1! . . . kd!

śd
i“1p

αi{Sqpαi{S ` 1q ¨ ¨ ¨ pαi{S ` ki ´ 1q
śn´1

i“0 p
ᾱ{S ` iq

1k1`¨¨¨`kd“n

“
n!

k1! . . . kd!
¨

Γpᾱ{Sq

Γpᾱ{S ` nq
¨

śd
i“1 Γpαi{S ` kiq
śd

i“1 Γpαi{Sq
1k1`¨¨¨`kd“n.(1.3)

Now note that, for all n ě 0, k1, . . . , kd ě 0,

P
`

Zipnq “ αi ` Ski p@1 ď i ď dq
˘

“ E
“

P
`

Zipnq “ αi ` Ski p@1 ď i ď d
˘

|V q
‰

“ E
„

n!

k1! . . . kd!

d
ź

i“1

V ki
i 1k1`¨¨¨`kd“n



“
n!

k1! . . . kd!
E
„ d
ź

i“1

V ki
i



1k1`¨¨¨`kd“n.

It is known that, if V is Dirichlet-distributed with parameter pν1, . . . , νdq, then

E
„ d
ź

i“1

V ki
i



“
Γpν̄q

Γpν̄ ` |k|q

d
ź

i“1

Γpνi ` kiq

Γpνiq
,

where ν̄ “
řd
i“1 νi and |k| “

řd
i“1 ki. We thus get

P
`

Zipnq “ αi ` Ski p@1 ď i ď dq
˘

“
n!

k1! . . . kd!
¨

Γpᾱ{Sq

Γpᾱ{S ` nq
¨

śd
i“1 Γpαi{S ` kiq
śd

i“1 Γpαi{Sq
1k1`¨¨¨`kd“n.

Therefore, by (1.3), for all n ě 0, for all k1, . . . , kd ě 1,

P
`

Zipnq “ αi ` Ski p@1 ď i ď dq
˘

“ P
`

Uipnq “ αi ` Ski p@1 ď i ď dq
˘

,
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and thus, pZpnqqně0 is indeed distributed as the Pólya urn of initial composition pα1, . . . , αdq and
replacement matrix SId, as claimed. �

1.1.2. A central limit theorem. When we have a law of large numbers as in Theorem 1.1, it is
natural to try and prove a central limit theorem for the fluctuations of the random quantity
around its almost sure limit. In the identity case, these fluctuations are given by a Gaussian of
random variance, function of the almost sure limit V :

Theorem 1.4 (see, e.g. [Mül]). Assume that pUpnqqně0 is a Pólya urn of initial composition
pα1, . . . , αdq and replacement matrix R “ SId for some α1, . . . , αd, S ě 1. Then, in distribution as
n Ò 8,

(1.4)
Upnq ´ nSV

S
?
n

ñ N p0,Σ2
q,

where

(1.5) Σ2
“

¨

˚

˚

˝

V1p1´ V1q ´V1V2 . . . ´V1Vd
´V1V2 V2p1´ V2q ´V2Vd

...
. . .

...
´V1Vd ´V2Vd . . . Vdp1´ Vdq

˛

‹

‹

‚

.

NB: Equation (1.4) means that, for all Borel sets B Ă Rd,

P
ˆ

Upnq ´ nSV

S
?
n

P B

˙

Ñ E
„

1

p2πqd{2
a

detpΣq

ż

B

e´xΣ2xT {2dx



.

Proof. This is an easy consequence of Theorem 1.3: indeed, we have that, in distribution, Upnq “

Zpnq, where Zpnq is defined as in Lemma 1.3. Conditionally on V , Zpnq “ pα1, . . . , αdq`S
řd
k“1Xk,

where PpXk “ eiq “ Vi for all k ě 1 and 1 ď i ď d. By the central limit theorem, conditionally
on V ,

Zpnq ´ nSV

S
?
n

ñ N p0,Σ2
q,

where Σ2 “ CovpX|V q, where X is a copy of X1. Because ErXs “ V

CovpX|V q “ E
“

pX ´ V qT pX ´ V q|V
‰

“

d
ÿ

i“1

Vipei ´ V q
T
pei ´ V q

“

d
ÿ

i“1

Vipeie
T
i ´ e

T
i V ´ V

T ei ` V
TV q

“

d
ÿ

i“1

Vieie
T
i ´

ˆ d
ÿ

i“1

Vie
T
i

˙

V ´ V T
d
ÿ

i“1

Viei ` V
TV

d
ÿ

i“1

Vi

“

d
ÿ

i“1

Vieie
T
i ´ V

TV ´ V TV ` V TV “
d
ÿ

i“1

Vieie
T
i ´ V

TV,

and this can indeed be written as in (1.5). �
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1.2. The irreducible case. In this section, we look at the case when the replacement matrix R
is irreducible, i.e. for all 1 ď i, j ď d, there exists n “ npi, jq such that Rn

i,j ą 0. In other words, for
all 1 ď i, j ď d, if Up0q “ ei (where ei is the vector whose coordinates are all equal to 0 except the
i-th which equals 1), then there is a positive probability to see a ball of colour j at some (finite)
time in the urn.

First note that, because we have assumed that all non-diagonal coefficients of R are non-negative.
Thus, there exists κ ě 0 such that R ` κId has non-negative coefficients. It is also irreducible
(because pR ` κIdqn “

řn
i“1

`

n
i

˘

κn´iRi for all n ě 1). Thus, by Perron-Frobenius’s theorem, the
spectral radius ρ of R ` κId is larger than κ and a simple eigenvalue of R ` κId. Furthermore,
there exists v a left-eigenvector of R ` κId whose coefficients are all positive such that }v}1 “ 1.
From this, we deduce that λ “ ρ´κ ą 0 is the eigenvalue of R with largest real part and vR “ λv.
We call λ and v the dominant eigenvalue and dominant left-eigenvector of R, respectively.

1.2.1. A law of large numbers. The following “law of large numbers” is due to Athreya and Kar-
lin [AK68]:

Theorem 1.5. Fix d ě 2. Let pUpnqqně0 be the d-colour Pólya urn of initial composition

pα1, . . . , αdq and replacement matrix R. Assume that ᾱ :“
řd
i“1 αi ě 1 and R is irreducible.

Let λ ą 0 and v be, respectively, the dominant eigenvalue and dominant left-eigenvector of R.
Then, almost surely as n Ò 8,

Upnq

n
Ñ λv.

Before proving this result, we first make a few comments and in particular compare this behaviour
of “irreducible” urns with the behaviour of the identity urns of Section 1.1. We recall that, in the
identity case, Upnq also satisfies a law of large numbers: see Theorem 1.1.

The similarity between Theorems 1.1 and 1.5 is that, in both cases, Upnq{n converges almost
surely as n Ò 8, which is why we call both these results “law of large numbers”. However, these
two results are in fact drastically different. Indeed:

‚ The limit of Upnq{n is deterministic (λv) in the irreducible case and random in the identity
case (a random Dirichlet-distributed vector V ).

‚ This limit does not depend on the initial composition in the irreducible case, while the
distribution of V depends on the initial distribution in the identity case.

NB: Note that Theorem 1.5 implies that }Upnq}1{n Ñ λ almost surely as n Ò 8 because
}v}1 “ 1, by assumption. In other words, the total number of balls in the urn at time n grows as
λn as n Ò 8.

To prove Theorem 1.5, we embed the process into continuous time: the embedding is a multi-type
Galton-Watson process and martingale theory allows us to study this process precisely. Embedding
into continuous time has the advantage to give more independence, but the price to pay is that
some work needs to be done to translate the results back in discrete time.

1.2.2. Embedding of an urn into continuous time. Given a replacement matrix R and an ini-
tial composition α “ pα1, . . . , αdq, we define the continuous-time, multi-type branching process
pXptqqtě0 as follows: Xp0q “ α, meaning that, at time 0, there are αi particles of type i alive in
the system. Each particle reproduces (or “splits”) independently from the rest at rate 1, and at
a reproduction event triggered by a particle of type i, we add to the system Ri,j particles of type
j, for all 1 ď i, j ď d. We call X the continuous-time urn process of initial composition α and
replacement matrix R.

Proposition 1.6. Let α “ pα1, . . . , αdq and R be a dˆd replacement matrix. Let pUpnqqně0 be the
Pólya urn of replacement matrix R and initial composition α. Let pXptqqtě0 be the continuous-time
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urn process of replacement matrix R and initial composition α. Let τ0 “ 0 and, for all n ě 1, τn
be the time when the n-th split in the process pXptqqtě0. Then, in distribution,

pUpnqqně0 “ pXpτnqqně0.

1.2.3. A law of large numbers for the continuous-time urn process. To prove Theorem 1.5, we first
prove the following law of large numbers for the continuous-time process X defined in Section 1.2.2:

Theorem 1.7. Let X be the continuous-time urn process of initial composition α “ pα1, . . . , αdq
and replacement matrix R. Under the assumptions of Theorem 1.5 on α and R, and using the
same notation for λ and v, almost surely as t Ò 8,

e´λtXptq Ñ Wv,

where W is an almost surely finite random variable such that PpW “ 0q ă 1.

For the proof, we start with the following lemma:

Lemma 1.8. The continuous-time process pXptqe´tRqtě0 is a (vector-valued) martingale.

Proof. We first show that, for all t ě 0,

(1.6) ErXptqs “ Xp0qetR.

For all 1 ď i ď d, we let Xpiq be the urn process of initial composition ei and replacement matrix R.
We start by calculating ErXpiqptqs, for all t ě 0. We look at the time when the ball in the urn at
time zero splits (with probability e´t, the initial ball hasn’t split yet at time t): for all t ě 0,

ErXpiq
ptqs “ eie

´t
`

ż t

0

e´sdsE
„ d
ÿ

j“1

Ri,j`δi,j
ÿ

k“1

Xpj,kq
pt´ sq



,

where, for all 1 ď j ď d, pXpj,kqqkě1 is a sequence of i.i.d. copies of Xpjq, and the double-indexed
sequence pXpj,kqqi,jě1 is a sequence of independent processes. This gives

E
“

Xpiq
ptq

‰

“ eie
´t
`

ż t

0

d
ÿ

j“1

pRi,j`δi,jqE
“

Xpjq
pt´sq

‰

e´sds “ eie
´t
`e´t

ż t

0

d
ÿ

j“1

pRi,j`δi,jqE
“

Xpjq
psq

‰

esds.

So, if we let uiptq :“ E
“

Xpiqptq
‰

(a horizontal d-dimensional vector) and uptq be the d ˆ d matrix
whose lines are u1ptq, . . . , udptq, we get

uptqet “ Id`

ż t

0

upsqespId` Aqds,

where we have set A “ RT . Differentiating in t, we get pu1ptq ` uptqqet “ uptqetpId ` Aq, i.e.
u1ptq “ uptqA for all t ě 0, which implies uptq “ up0qetA “ etA, because up0q “ Id. Now, for a
general urn process X of replacement matrix R, for all t ě 0,

ErXptqs “
d
ÿ

i“1

Xip0quiptq “ Xp0quptqT “ Xp0qetR,

which concludes the proof of (1.6).
For all t ě 0, we let Ft be the filtration generated by pXpsqqsPr0,ts. By definition of the continuous-

time process X, for all s, t ě 0,

Xps` tq “
d
ÿ

i“1

Xipsq
ÿ

j“1

Xpi,jq
ptq.
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Thus, for all s, t ě 0,

ErXps` tq|Fss “ E
„ d
ÿ

i“1

Xipsq
ÿ

j“1

Xpi,jq
ptq

ˇ

ˇ

ˇ

ˇ

Fs



“

d
ÿ

i“1

Xipsq
ÿ

j“1

E
“

Xpi,jq
ptq

‰

“

d
ÿ

i“1

XipsqE
“

Xpiq
ptq

‰

“

d
ÿ

i“1

Xipsqeie
tR
“ XpsqetR.

This implies that, for all s, t ě 0,

ErXps` tqe´ps`tqR|Fss “ Xpsqe´sR,

and concludes the proof that pXptqe´tRqtě0 is a martingale. �

To prove Theorem 1.7, we follow the proof of Janson [Jan04, Section 9]; however, to keep things
simple, we assume that R is diagonalisable. In the general case, one needs to use the Jordan
decomposition of R, and treat projections on each (generalised) eigenspace separately; eigenspaces
of dimensions at least two are a bit trickier to handle, which is why we only look at eigenspaces
of dimension 1 here. Under the assumption that R is diagonalisable, in addition to v “ v1, R
admits d ´ 1 left-eigenvectors v2, . . . , vd associated to d ´ 1 eigenvalues λ2, . . . , λd. Because λ is
the dominating eigenvalue of R, Repλiq ă λ for all 2 ď i ď d. Given x P Rd, we let πipxq be the

i-th coordinate of x in the basis pv1, . . . , vdq; in other words, x “
řd
i“1 πipxqvi.

We will now prove that:

‚ If Repλiq ą λ{2, then e´λitπipXptqq converges almost surely and in L2 to an almost surely
finite random variable. (See Lemma 1.9.)

‚ If Repλiq ď λ{2, then e´λt{2πipXptqq converges in distribution to a Gaussian random variable
(with an additional polynomial normalisation factor if Repλiq “ λ{2).

We start with the “large” eigenvalues:

Lemma 1.9. If 1 ď i ď d is such that Repλiq ą λ{2, then,

e´λitπipXptqq Ñ Wi almost surely and in L2.

Furthermore, e´λitπipXptqq “ ErWi|Fts, almost surely for all t ě 0.

Proof. By Doob’s L2 martingale convergence theorem, it is enough to prove that
`

e´λitπipXptqq
˘

tě0

is bounded in L2. To do so, we let

Zkptq “
ÿ

τk,`ďt

}e´τk,`Rπ`pRkq}
2
2,

and τk,` be the time when the `-th split of a ball of colour k occurs, for all 1 ď k ď d and ` ě 1.
With this notation, the quadratic variation of pπipXptqqe

´tRqtě0 is given by

rπipXptqqe
´tR, πipXptqqe

´tR
st “

d
ÿ

k“1

Zkptq p@t ě 0q,

and, for all t ě 0,

E
“

}πipXptqqe
´tR
}

2
2

‰

“ E
“

rπipXptqqe
´tR, πipXptqqe

´tR
st
‰

` E
“

}πipXp0qq}
2
2

‰

“

d
ÿ

k“1

Zkptq ` E
“

|πipXp0qq|
2
‰

.(1.7)
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Because the second summand is constant, we focus on the first summand: For all 1 ď k ď d,
ˆ

Zkptq ´

ż t

0

}e´sRπipRkq}
2
2Xkpsqds

˙

tě0

is a martingale of mean zero, which implies, in particular,

ErZkptqs “
ż t

0

}e´sRπipRkq}
2
2ErXkpsqsds.

Now note that e´sRπipRiq “ e´sλiπipRkq, which implies

ErZkptqs “
ż t

0

e´2sλi}πipRkq}
2
2ErXkpsqsds.

By (1.6), ErXkpsqs “ pXp0qe
Rsqk “ Opeλsq. Thus, the integrand satisfies

e´2sλi}πipRkq}
2
2ErXkpsqs “ Opepλ´2Repλiqqsq,

and is integrable because we have assumed 2Repλiq ą λ. This implies that suptě0 ErZkptqs ă 8,
and thus, by (1.7),

sup
tě0

E
“

}πipXptqqe
´tR
}

2
2

‰

ă 8,

as desired. �

We now prove that the limits in Lemma 1.9 are not almost surely zero:

Lemma 1.10. For all 1 ď i ď d such that 2Repλiq ą λ, PpWi “ 0q ă 1.

Proof. We reason by contradiction and assume that Wi “ 0 almost surely. Because, by Lemma 1.9,
ErWi|Fts “ πipXptqe

´tRq for all t ě 0, we get that, for all t ě 0,

πi
`

Xptqe´tR
˘

“ 0 ñ πipXptqq “ 0,

where the implication follows from the fact that πi
`

Xptqe´tR
˘

“ e´tλiπi
`

Xptq
˘

. Because this holds
almost surely, simultaneously for all t P Q, and using right-continuity, we get that, almost surely,
pπipXptqqqtě0 is the constant, null function. This implies that πip∆Xptqq “ 0 for all t ě 0, and
thus πipRkq “ 0 for all 1 ď k ď d. In other words, πiR “ 0, which implies λiπi “ 0, and thus
λi “ 0, which is impossible since, by assumption, 2Repλiq ą λ ą 0. �

Finally, we look at the “small” eigenvalues

Lemma 1.11. If 1 ď i ď d is such that Repλiq ă λ{2, then πipXptqq “ opeλtq almost surely as
t Ò 8. Furthermore:

‚ If 1 ď i ď d is such that Repλiq ă λ{2, then, in distribution as t Ò 8,

e´λt{2πipXptqq ñ N p0, σ2
qvi.

‚ If 1 ď i ď d is such that Repλiq “ λ{2, then, in distribution as t Ò 8,

t´
1{2e´λt{2πipXptqq ñ N p0, σ2

qvi.

This concludes the proof of Theorem 1.7. Indeed, we write

e´λtXptq “
d
ÿ

i“1

e´λtπipXptqqvi.

for all 2 ď i ď d, by Lemmas 1.9 and 1.11, e´λtπipXptqq “ op1q, and thus

e´λtXptq “ e´λtπ1pXptqqv ` op1q “ Wv ` op1q,

as desired.
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1.2.4. Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.7 through the connection made
in Proposition 1.6. First note that Theorem 1.7 implies that e´λt}Xptq}1 Ñ W almost surely,
because }v}1 “ 1. This implies that

(1.8)
Xptq

}Xptq}1
Ñ v almost surely as t Ò 8.

Thus, by Proposition 1.6, and because τn Ò 8 almost surely as n Ò 8,

(1.9)
Upnq

}Upnq}1
Ñ v almost surely as n Ò 8.

We now follow [AN72, V.7]. For all 1 ď i ď d and k ě 1, let δ
piq
k be the indicator that the k-th

split in X is from a particle of colour i. For all k ě 1, let Gk be the sub-σ-algebra generated by
the process X until time τk. For all k ě 1,

P
`

δ
piq
k “ 1|Gk

˘

“
Xipτ

´
k q

}Xpτ´k q}1
Ñ vi,

almost surely as k Ò 8, by (1.8). For all 1 ď i ď d and n ě 0, we let Nipnq be the number of splits
triggered by a particle of colour i among the n first splits; for all n ě 0,

Nipnq

n
“

1

n

n
ÿ

k“1

δ
piq
k “

1

n

n
ÿ

k“1

P
`

δ
piq
k “ 1|Gk

˘

`
1

n

n
ÿ

k“1

`

δ
piq
k ´ P

`

δ
piq
k “ 1|Gk

˘˘

.

By a strong law of large numbers for martingales due to Lévy (see [AN72, V.7, Lemma 1]), the
second summand goes to zero as n Ò 8. By Cesáro’s lemma, the first term converges almost surely
to vi. We thus get that, for all 1 ď i ď d,

Nipnq

n
Ñ vi almost surely as n Ò 8.

Now, for all n ě 0,

}Xpτnq}1
n

“
1

n

d
ÿ

i“1

n
ÿ

j“1

δ
piq
j }Ri}1 “

d
ÿ

i“1

}Ri}1
Nipnq

n
Ñ

d
ÿ

i“1

vi}Ri}1,

almost surely as n Ò 8. Now note that

d
ÿ

i“1

vi}Ri}1 “

d
ÿ

i“1

vi

d
ÿ

j“1

Ri,j “

d
ÿ

j“1

d
ÿ

i“1

viRi,j “

d
ÿ

j“1

pvRqj “ }vR}1 “ }λv}1 “ λ.

Thus,

Upnq

n
“
}Xpτnq}1

n
Ñ λ almost surely as n Ò 8.

Together with (1.9), this concludes the proof of Theorem 1.5.

1.2.5. A central limit theorem. It is natural to ask for the fluctuations of Upnq{n around its al-
most sure limit λv. Interestingly (although this should now feel natural in view of the proof of
Theorem 1.5), the size and shape of these fluctuations depend on σ “ maxµtRepµq{λu where the
maximum is taken over all eigenvalues of R except λ.

Theorem 1.12. Under the assumptions of Theorem 1.5, let σ “ maxµtRepµq{λu where the maxi-
mum is taken over all eigenvalues of R except λ.
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(i) If σ ă 1{2, then, in distribution as n Ò 8,

Upnq ´ nλv
?
n

ñ N p0,Σ2
q,

where Σ2 is known and depends on R.
(ii) If σ “ 1{2, then let ν ` 1 denote the dimension of the largest generalised eigenspace of R

associated to an eigenvalue of real part σλ. With this notation, in distribution as n Ò 8,

Upnq ´ nλv
a

nplog nq2ν`1
ñ N p0,Σ2

q,

where Σ2 is known and depends on R.
(iii) If σ ą 1{2, then let ν ` 1 denote the dimension of the largest generalised eigenspace of R

associated to an eigenvalue of real part σλ. With this notation, almost surely as n Ò 8,

Upnq ´ nλv

nσplog nqν
is tight.

2. Infinitely-many colour Pólya urns

Infinitely-many-colour Pólya urns date back to Blackwell and McQueen [BM73] for the equivalent
of the “identity” case of Section 1. For the equivalent of the “irreducible” case of Section 1, they
are much more recent and only date back to Bandyopadhyay and Thacker [BT16] and Mailler and
Marckert [MM17], with a particular case dating back to 2013 (see [BT17]). In this course, we
call infinitely-many-colour Pólya urns “measure valued Pólya processes” (MVPPs), and give their
definition in general, before looking at results for the “identity” case on the one hand, and the
“irreducible” case on the other hand.

2.1. Definition of MVPPs.

Definition. Let E be a Polish space, m0 be a finite measure on E and let Rp1q “ pR
p1q
x qxPE be

a random kernel on E, i.e., for all x P E, R
p1q
x pEq is a finite measure on E. The measure-valued

Pólya process (MVPP) of initial composition m0 and replacement kernel Rp1q is defined recursively
as follows: for all n ě 0, given mn, let

mn`1 “ mn `R
pn`1q
Y pn`1q,

where Y pn` 1q is a random variable of distribution mn{mnpEq and, given Y pn` 1q, Rpn`1q is an

independent copy of R
p1q
Y pn`1q.

In the language of Pólya urns, E is the colour space; for all Borel sets B Ă E and integers n ě 0,
mnpBq is the mass of balls in the urn at time n whose colour belong to B; for all n ě 1, Y pnq is
the colour of the ball drawn at time n; note that balls are not necessarily of mass 1 anymore, and
they can in fact have infinitesimal mass.

Example: the finitely-many-colour case. Take E “ t1, . . . , du for some integer d ě 2.
Consider a matrix r “ pri,jq1ďi,jďd and a vector α “ pα1, . . . , αdq both integer-valued. Let pmnqně0

be the MVPP of initial composition m0 “
řd
i“1 αiδi (where δi is the Dirac measure at tiu), and

deterministic replacement kernel Ri “
řd
j“1 ri,jδj. Then, in distribution, pmn “

řd
i“1 Uipnqδiqně0

where pUpnqqně0 is the Pólya urn of initial composition α and replacement matrix r. In other
words, all finitely-many-colour Pólya urns are MVPPs.
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2.2. The “identity” case. In the following theorem, Blackwell and McQueen [BM73] show that,
in the “identity” case, which corresponds to Rx “ δx for all x P E, the composition measure mn

converge after renormalisation to a limiting random measure, whose distribution is the Ferguson
distribution, which we define now:

Definition. Let µ be a finite measure on a Polish space E. A random measure on E has
Ferguson distribution of parameter µ if for every Borel set partition B1, . . . , Bd of E (d ě 1),
pµ˚pB1q, . . . , µ

˚pBdqq is Dirichlet-distributed with parameter pµpB1q, . . . , µpBdqq.

Ferguson [Fer73] proved that a Ferguson-distributed random measure is almost surely discrete.

Theorem 2.1. Let µ be a finite measure on a Polish space E. Let pmnqně0 be the MVPP of initial
composition µ and deterministic replacement kernel Id “ pδxqxPE. Then, almost surely as n Ò 8,

m̂n :“
mn

mnpEq
Ñ µ˚,

where µ˚ is a Ferguson-distributed with parameter µ.

NB: In this section, we often state convergence of sequences of measures on a Polish space E.
The topology we use on the set of finite measures on E is the topology of weak convergence. I.e., we
say the a sequence pµnqně0 of finite measures on E converges to µ if, and only if, for all continuous
and bounded function f : E Ñ R,

ş

E
fdµn Ñ

ş

E
fdµ.

Proof. One can redefine the process pmnqně0 as follows: m0 “ µ and, for all n ě 0, given mn,
sample an integer in t0, 1, . . . , nu with probabilities

PpIpn` 1q “ 0q “
µpEq

µpEq ` n
and PpIpn` 1q “ iq “

1

µpEq ` n
p@1 ď i ď nq.

If Ipn ` 1q = 0, then sample Y pn ` 1q according to µ. If Ipnq “ i for some 1 ď i ď n, then set
Y pn` 1q “ Y piq. One can check that, indeed, pmnqně0 is the MVPP of initial composition µ and
replacement kernel Id.

We see the times n such that Ipnq “ 0 as times at which we sampled a “new” colour from µ,
while other times reinforced a colour that was already present in the urn. (Note that, if µ has
atoms, then a new colour might in fact be the same as an already-present colour. In that case,
we still distinguish the new colour from the existing colour, eg, by extending the set of colours
to E ˆ N and deciding that when colour x P E is picked for the second time, it is in fact colour
px, 2q while its first occurrence was px, 1q. However, to make things simpler, we assume that ν has
no atoms in the rest of the proof.) We let νi be the index of the i-th 0 in the sequence pipnqqně1

and set ξi “ Y pνiq, for all i ě 1. By definition, pξiqiě1 is a sequence of i.i.d. random variables of
distribution µ.

We start by looking at N1pnq “ |t1 ď i ď n : Y piq “ Y p1qu|. Note that pN1pnq, n ` µpEq ´
N1pnqqně1 is a Pólya urn of initial composition p1, µpEqq and replacement matrix Id. (NB: µpEq
might not be an integer, but one can check that all the results from Section 1 still apply.) Thus,
by Corollary 1.2, almost surely as n Ò 8,

N1pnq

µpEq ` n
Ñ V1,

where V1 is a Beta-distributed random variable of parameter p1, µpEqq. This implies

N1pnq

n
Ñ V1

almost surely as n Ò 8. By Borel-Cantelli lemma,
ř

ně1 1Ipnq“0 “ 8 almost surely, implying in
particular that the time τ2 at which a second colour is introduced in the urn is almost surely finite.
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We let N2pnq “ |t1 ď i ď n : Y piq “ ξ2u|. Note that the processus pN2pnq, n ` µpEq ´ N1pnq ´
N2pnqqně0 reduced to its jump-times is also a Pólya urn, with initial composition p1, µpEqq and
replacement matrix Id. Therefore,

N2pnq

n` µpEq ´N1pnq
Ñ V2,

where V2 is a Beta-distributed random variable of parameter p1, µpEqq, independent of V1. Thus,

N2pnq

n
“

N2pnq

n` µpEq ´N1pnq

n` µpEq ´N1pnq

n
Ñ V2p1´ V1q.

Iterating this argument, we get that, for all k ě 1, almost surely as n Ò 8,

Nkpnq

n
Ñ Vk

k´1
ź

i“1

p1´ Viq “: Pk.

Such a sequence pPkqkě1 can be interpreted as a partition of the unit interval and, in this context,
because pViqiě1 is a sequence of i.i.d. random variables of distribution Beta of parameter p1, µpEqq,
the distribution pPkqkě1 is called GEM (for Griffiths, Engen and McCloskey) of parameter µpEq.
Now note that, for all n ě 1,

mn “ µ`
ÿ

kě1

Nkpnqδξk ,

where we set Nkpnq “ 0 if |tY p1q, . . . , Y pnqu| ă k. Thus, for all continuous bounded function
f : E Ñ R,

ż

E

fdm̂n “
1

n` µpEq

ż

E

fdµ`
n

n` µpEq

ÿ

kě1

Nkpnq

n
fpξkq.

Fix ε ą 0 and then K large enough so that
řK
k“1 Pk ě 1´ ε (this is possible because

ř

kě1 Pk “ 1
almost surely). Then fix nε large enough so that, for all n ě nε,

(2.1)

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

´Nkpnq

n
´ Pk

¯

ˇ

ˇ

ˇ

ˇ

ď ε.

We also assume that nε is large enough so that p
ş

E
fdµq{pn` µpEqq ă ε for all n ě nε. Then, for

all n ě nε,
ˇ

ˇ

ˇ

ˇ

ż

E

fdm̂n ´
ÿ

kě1

Pkfpξkq

ˇ

ˇ

ˇ

ˇ

ď ε`
n

n` µpEq

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

´Nkpnq

n
´ Pk

¯

fpξkq `
ÿ

kěK

´Nkpnq

n
´ Pk

¯

fpξkq

ˇ

ˇ

ˇ

ˇ

ď ε`
K
ÿ

k“1

ˇ

ˇ

ˇ

Nkpnq

n
´ Pk

ˇ

ˇ

ˇ
}f}8 `

ÿ

kěK

ˇ

ˇ

ˇ

Nkpnq

n
´ Pk

ˇ

ˇ

ˇ
}f}8

ď p1` }f}8qε` }f}8
ÿ

kěK

Nkpnq

n
` }f}8

ÿ

kěK

Pk

ď p1` 2}f}8qε` }f}8

ˆ

1´
K
ÿ

i“1

Nkpnq

n

˙

.

Now,
K
ÿ

i“1

Nkpnq

n
“

K
ÿ

i“1

´Nkpnq

n
´ Pk

¯

`

K
ÿ

i“1

Pk ě ´
K
ÿ

i“1

ˇ

ˇ

ˇ

Nkpnq

n
´ Pk

ˇ

ˇ

ˇ
` 1´ ε ě 1´ 2ε.



PÓLYA URNS AND OTHER REINFORCEMENT PROCESSES 14

In total, we thus get that, for all n ě nε,
ˇ

ˇ

ˇ

ˇ

ż

E

fdm̂n ´
ÿ

kě1

Pkfpξkq

ˇ

ˇ

ˇ

ˇ

ď p1` 4}f}8qε.

Because ε can be made arbitrarily small, this concludes the proof that
ż

E

fdm̂n Ñ
ÿ

kě1

Pkfpξkq,

almost surely as n Ò 8. We define

µ˚ “
ÿ

kě1

Pkδξk .

It only remains to prove that µ˚ is a Ferguson-distributed with parameter µ. This follows from
the finitely-many-colour case (see Theorem 1.1). Indeed, for any partition pB1, . . . , Bdq of E, we
let, for all i ě 1,

Xpiq “
d
ÿ

k“1

ek1Y piqPBk
,

i.e. Xpiq “ ek (the k-th vector of the canonical basis of Rd) if Y piq P Bk. For all n ě 0, we define

Upnq “
d
ÿ

k“1

µpBkqek `
n
ÿ

i“1

eXpiq.

Note that, for all n ě 0,

Upn` 1q “ Upnq ` eXpn`1q,

and

PpXpn` 1q “ k|Upnqq “ PpY pn` 1q P Bk|Upnqq “ ErPpY pn` 1q P Bk|Upnq,mnq|Upnqs

“ Erm̂npBkq|Upnqs “ E
„

µpBkq `
řn
i“1 1Y piqPBk

µpEq ` n

ˇ

ˇ

ˇ

ˇ

Upnq



“ E
„

µpBkq `
řn
i“1 1Y piqPBk

µpEq ` n

ˇ

ˇ

ˇ

ˇ

Upnq



“
Ukpnq

µpEq ` n
.

In other words, pUpnqqně0 is the d-colour Pólya urn with initial composition pµpB1q, . . . , µpBdqq

and replacement matrix Id. By Theorem 1.1), the almost sure limit of Upnq{n, which we know is
pµ˚pB1q, . . . , µ

˚pBnqq is Dirichlet-distributed of parameter pµpB1q, . . . , µpBdqq. This concludes the
proof that µ˚ is indeed Ferguson-distributed with parameter µ. �

However, Blackwell and McQueen [BM73] also prove that Theorem 1.3 still holds in this case:

Theorem 2.2. Let µ be a finite measure on a Polish space E and let µ˚ be a Fergusonpµq-distributed
random probability measure on E. Given µ˚, let pXpiqqiě1 be a sequence of i.i.d. random variables
of distribution µ˚, and let, for all n ě 0,

mn “ µ`
n
ÿ

i“1

δXpiq.

Then, pmnqně0 is the MVPP of initial composition µ and replacement kernel Id.

Proof. This can be done using de Finetti’s theorem. �

For the fluctuations of m̂n around its almost sure limit µ˚, one can use Theorem 2.2. See
Borovkov [?] for a functional limit theorem for these fluctuations.
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2.3. The balanced “irreducible” case. In this section, which is based on Mailler and Marck-
ert [MM17], we assume that the MVPP is balanced, i.e. that there exists c ą 0 such that, for all
x P E, RxpEq “ 1. Without loss of generality, we assume that c “ 1. In other words, for all x P E,
Rx is a probability measure; we call R a “probability kernel”. The non-balanced case is treated in
Section 2.4.

2.3.1. Convergence in probability of “irreducible” MVPPs.

Definition. For any two E-valued sequences a “ papnqqně0, b “ pbpnqqně0, and any probability
distribution ν on E, we say that probability kernel pRxqxPE on E is “pa, b, νq-ergodic” if, for all
x P E, the Markov chain pW pnqqně0 started at x and whose transition probabilities are given by
R (i.e. W pn` 1q „ RW pnq, for all n ě 0) satisfies

W pnq ´ apnq

bpnq
ñ ν,

in distribution as n Ò 8.

NB: Note that we have not assumed that E is equipped with an addition and a multiplication
operation. If there is no addition on E, then the only possible value for papnqqně0 is the constant
sequence equal to 0, and we interpret x ÞÑ x ` 0 as being the identity function on E. Similarly,
if there is no multiplication by a scalar on E, then the only possible value for pbpnqqně0 is the
constant sequence equal to 1, and we interpret x ÞÑ 1ˆ x as being the identity function on E.

Theorem 2.3. Let pmnqně0 be the MVPP of initial composition m0 and balanced replacement
kernel pRxqxPE. We assume that there exist two sequences a “ papnqqně0, b “ pbpnqqně0, and a
probability measure ν such that pRxqxPE is pa, b, νq-ergodic and there exist f, g : E Ñ R such that,
for all x P E, for any function pεnqně0 satisfying εn “ op

?
nq as n Ò 8,

(2.2)
apn` x

?
n` εnq ´ apnq

bpnq
Ñ fpxq, and

bpn` x
?
n` εnq

bpnq
Ñ gpxq,

as n Ò 8. Recall that, for all n ě 0, m̂n “ mn{mnpEq. Then, in probability as n Ò 8,

(2.3) m̂npaplog nq ` ¨ bplog nqq Ñ LpfpΩq ` gpΩqΓq,
where Ω „ N p0, 1q and Γ „ ν are independent, and, for any random variable X, LpXq denotes its
law.

NB: Equation (2.3) means that, for any continuous bounded function ϕ : E Ñ R,
ż

E

ϕ

ˆ

x´ aplog nq

bplog nq

˙

dm̂npxq Ñ E
“

ϕpfpΩq ` gpΩqΓq
‰

,

in probability as n Ò 8.
The proof of Theorem 2.3 can be summarised in one sentence: “The Pólya urn of replace-

ment matrix R is the branching Markov chain of transition probabilities R indexed by the random
recursive tree.”

Before proving Theorem 2.3, we give some examples of applications.

2.3.2. Examples of application of Theorem 2.3. We give two examples of applications of Theo-
rem 2.3.

(1) Finitely-many colour Pólya urns: Let pUpnqqně0 be the d-colour Pólya urn of replacement ma-

trix r “ pri,jq1ďi,jďd and initial composition α “ pα1, . . . , αdq. Recall that pmn “
řd
i“1 Upnqδiqně0

is the MVPP of initial composition m0 “
řd
i“1 αiδi and replacement kernel pRi “

řd
j“1 ri,jδjq1ďiďd.
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To apply Theorem 2.3, we need to assume that, for all 1 ď i ď d,
řd
j“1 ri,j “ s for some s ě 1;

this assumption is classical in the literature and is called the “balance” assumption. For all n ě 0,
we let ηn “ mn{s; pηnqně0 is a balanced MVPP of replacement kernel R{s and initial composition
α{s.

If, in addition, we assume that r is irreducible and aperiodic, then the Markov chain of transition
probabilities R{s is ergodic. Furthermore, its limiting probability distribution satisfies vpR{sq “ v,
which is equivalent to vR “ sv. Theorem 2.3 thus applies and gives implies that

Upnq

}Up0q}1 ` ns
Ñ v in probability as n Ò 8.

Because R is balanced and all its rows sum to s, s is its dominant eigenvalue, and thus v is its
dominant left-eigenvector. Thus, we recover a version of Theorem 1.5. This version however is
weaker, for three reasons: first, we assumed that the Pólya urn is balanced; second, we assumes
that R is aperiodic, and third, we get convergence in probability instead of almost surely.

(2) The “random walk increment” replacement kernel. Let pmnqně0 be the MVPP of initial
composition m0 and replacement kernel pRxqxPE, where, for all x P Rd, Rx is the probability
distribution of x `∆ with ∆ a random variable on Rd such that µ “ E∆ and σ2 “ Varp∆q ă 8.
Then, the Markov chain of probability transitions pRxqxPRd is the simple random walk of increment
∆. I.e., for all n ě 0, Wn “ W0`

řn
i“1 ∆i, where p∆iqiě1 is a sequence of i.i.d. copies of ∆. By the

central limit theorem, pWnqně0 is pa, b, νq-ergodic with apnq “ mn, bpnq “
?
n and ν “ N p0, σ2q.

Note that a and b satisfy (2.2) with gpxq “ 1 and fpxq “ mx. Theorem 2.3 thus implies that, in
probability as n Ò 8,

mn

mnpEq
Ñ LpmΩ` Γq,

where Ω „ N p0, 1q and Γ „ N p0, σ2q are independent. In other words, in probability as n Ò 8,

mn

mnpEq
Ñ N p0,m2

` σ2
q.

2.3.3. MVPPs are branching Markov chains. This section is a preliminary to the proof of Theo-
rem 2.3, we start by giving the following, equivalent, definition of an MVPP: given a replacement
kernel R and an initial composition m0, we define the sequence pmnqně0 as follows: first sample a
sequence pIpnqqně1 of independent random variables such that, for all n ě 1,

PpIpnq “ 0q “
m0pEq

m0pEq ` n´ 1
and PpIpnq “ iq “

1

m0pEq ` n´ 1
p1 ď i ď n´ 1q.

Then, for all n ě 0, given Y p1q, . . . , Y pnq (recall that Y piq is the colour of the ball drawn at
time i), if Ipn ` 1q “ i for some 1 ď i ď n, then sample Y pn ` 1q according to the probability
distribution RY piq, otherwise (if Ipn ` 1q “ 0), sample Y pn ` 1q according to m0. Finally, set
mn “ m0 `

řn
i“1RY piq for all n ě 0. One can check that, indeed, pmnqně0 is the MVPP of

replacement kernel R and an initial composition m0.
The advantage of this definition is that the sequence pIpnqqně1 records the branching structure of

the MVPP: indeed, we can interpret Ipnq as the parent of n, for all n ě 1. With this definitions, all
positive integers have a parent, and the genealogical structure of this population can be interpreted
as a tree. To do so, we just interpret each integer as a node, and add an edge between every node
and its parent (because one’s parent is a smaller integer, there are indeed no cycles in this graph).
The only node that has no parent is 0, and we call this node the root of the tree. The tree T8
associated to pIpnqqně0 is infinite; for all n ě 1, we call Tn the tree associated to the finite sequence
pIp1q, . . . , Ipnqq. Because pIpnqqně0 is a random sequence, pTnqně0 is a sequence of random trees.
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If m0pEq “ 1 (and, for simplicity, we now assume that this is the case), then pTnqně0 is known
in the literature as the random recursive tree (RRT). Now, the sequence pY piqqiě1 of the colours
drawn at successive times in the MVPP can be interpreted, not as a sequence indexed by N, but
as a sequence indexed by the RRT T8. From now on, we call Y piq the “label” of node i. The
sequence of labels taken along each branch of the tree is distributed as a Markov chain of initial
distribution m0 and transition probabilities R. And once they have branched, the labels along two
distinct branches are two independent Markov chains of transition probabilities R. In other words,
pY piqqiě0 seen as a sequence indexed by T8 is a branching Markov chain.

The advantage of this description if the following result:

Lemma 2.4. Let R be a replacement kernel on a Polish space E and m0 a finite measure on E.
We assume that RxpEq “ 1 for all x P E. Let T8 be the random recursive tree whose nodes are
t0, 1, 2, . . .u, and for all n ě 0, let Tn be the restriction of T8 to t0, . . . , nu. Let pY piqqiě1 be the
branching Markov chain of initial distribution m0 and transition probabilities R indexed by T8.
Then, for all n ě 0, given Tn and pY piqq1ďiďn, m̂n “ mn{mnpEq is the distribution of Y pn` 1q.

Thanks to this coupling, we are now ready to prove Theorem 2.3.

2.3.4. Proof of Theorem 2.3. For this proof, we “forget” about this MVPP and now focus on the
branching Markov chain on the random recursive tree. First note that, in distribution, Y pn`1q “
W|n`1|, where |n` 1| denotes the height of node n` 1 in T8 and W is the Markov chain of initial
distribution m0 and replacement probabilities R. Our assumptions give us good control of W|n`1|

under the assumption that |n ` 1| tends to infinity. The following result gives us good control of
|n ` 1| as n tends to infinity; in fact, instead of looking at node n ` 1, we look at its (random)
parent ξpn` 1q. Note that ξpn` 1q is uniformly distributed in t0, . . . , nu.

Lemma 2.5 (Dobrow [Dob96]). Let T8 be therandom recursive tree. Let ξpn` 1q be a node taken
uniformly at random among t0, 1, . . . , n`1u. Then, the height of ξpn`1q, which |ξpn`1q| denotes,
satisfies, in distribution as n Ò 8,

(2.4)
|ξpn` 1q| ´ log n

?
log n

ñ N p0, 1q.

Recall that, by assumption, pWn ´ apnqq{bpnq ñ ν. By Kolmogorov’s representation theorem,
there exists a probability space, which we call “Kolmogorov’s space” in the following, in which
this convergence and the convergence of (2.4) hold simultaneously almost surely: (for simplicity,
we keep the same notation, although we are in fact working with different objects, on a different
probability space)

ˆ

|ξpn` 1q| ´ log n
?

log n
,
Wn ´ apnq

bpnq

˙

Ñ pΩ,Γq,

almost surely as n Ò 8, where Ω „ N p0, 1q and Γ „ ν are independent. Now,

W|n`1| ´ aplog nq

bplog nq
“
W|ξpn`1q|`1 ´ ap|ξpn` 1q| ` 1q

bp|ξpn` 1q| ` 1q
¨
bp|ξpn` 1q| ` 1q

bplog nq
`
ap|ξpn` 1q| ` 1q ´ aplog nq

bplog nq

Ñ ΓgpΩq ` fpΩq,(2.5)

almost surely as n Ò 8. The almost sure convergence is only true on Kolmogorov’s probability
space; however, this implies convergence in distribution on the original probability space. We thus
have shown that

(2.6)
W|n`1| ´ aplog nq

bplog nq
ñ LpΓgpΩq ` fpΩqq,
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in distribution as n Ò 8. Equivalently, for any bounded continuous function ϕ : E ÞÑ R,

E
„

ϕ

ˆ

W|n`1| ´ aplog nq

bplog nq

˙

Ñ ErϕpΓgpΩq ` fpΩqqs.

Unfortunately, even if pW|n`1|´aplog nqq{bplog nq is a random variable of distribution m̂npaplog nq`
¨ bplog nqq, this is not enough to prove convergence of m̂npaplog nq` ¨ bplog nqq to LpΓgpΩq` fpΩqq
in probability as n Ò 8. Indeed, to do so, we need more, as stated in the following result (which
is folklore, and proved in [MM17]):

Lemma 2.6. Let pµnqně0 be a sequence of random probability distributions on a Polish space E.
Let µ be a (deterministic) probability distribution on E. For all n ě 0, given mn, let An and
Bn be two independent random variables of distribution µn. If pAn, Bnq ñ pA,Bq in distribution
as n Ò 8, where A and B are two independent random variables of distribution µ, then µn Ñ µ
in probability for the weak topology. I.e., for any bounded continuous function ϕ : E ÞÑ R, in
probability as n Ò 8,

ż

E

ϕ dµn Ñ

ż

E

ϕ dµ.

Proof. By Markov’s inequality, because µ is deterministic, it is enough to prove that, for any
bounded continuous function ϕ : E ÞÑ R, as n Ò 8,

(2.7) E
„
ż

E

ϕ dµn



Ñ

ż

E

ϕ dµ and Var

ˆ
ż

E

ϕ dµn

˙

Ñ 0.

First, because, by definition of An,
ş

E
ϕ dµn “ ErϕpAnq|µns,

(2.8) E
„
ż

E

ϕ dµn



“ ErErϕpAnq|µnss “ ErϕpAnqs Ñ ErϕpAqs “
ż

E

ϕ dµ,

since An ñ A in distribution as n Ò 8. Also, because ErAn|µns “ ErBn|µns “
ş

E
ϕ dµn, we have

E
„ˆ

ż

E

ϕ dµn

˙2

“ E
“

ErAn|µnsErBn|µns
‰

“ ErErAnBn|µnss,

because, given mn, An and Bn are independent. Thus,

E
„ˆ

ż

E

ϕ dµn

˙2

“ ErAnBns Ñ ErABs “ ErAsErBs “
ˆ
ż

E

ϕ dµ

˙2

.

Together with (2.8), this implies (2.7) and thus concludes the proof. �

Thus, to prove Theorem 2.3, it is enough to prove the following:

Proposition 2.7. Let R be a balanced replacement kernel on a Polish space E and m0 be a
probability measure on E. Let T8 be the random recursive tree and let pY piqqiě1 be the branching
Markov chain of initial distribution m0 and transition probabilities R indexed by T8. Given Tn and
pY piqq1ďiďn, let Y1pn` 1q and Y2pn` 1q two independent copies of Y pn` 1q. Then, in distribution
as n Ò 8,

ˆ

Y1pn` 1q ´ aplog nq

bplog nq
,
Y2pn` 1q ´ aplog nq

bplog nq

˙

ñ
`

fpΩ1q ` gpΩ1qΓ1, fpΩ2q ` gpΩ2qΓ2

˘

,

where Ω1,Ω2 „ N p0, 1q and Γ1,Γ2 „ ν are all independent.

To prove this proposition, we neet to improve Dobrow’s lemma (Lemma 2.5) as follows:
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Lemma 2.8. Let T8 be the random recursive tree. Let ζpn` 1q and ξpn` 1q be two nodes taken
independently uniformly at random in t0, 1, . . . , nu. Let |ζpn ` 1q|, |ξpn ` 1q| be their respective
heights in T8, and let Kn be the height of their last common ancestor in T8. Then, in distribution
as n Ò 8,

(2.9)

ˆ

|ζpn` 1q| ´ log n
?

log n
,
|ξpn` 1q| ´ log n

?
log n

,Kn

˙

ñ pΩ1,Ω2, Kq,

where Ω1 and Ω2 are two independent standard Gaussian random variables, and K an almost surely
finite random variable.

This lemma is stated in [MM17] but with a different proof. There is also a version of this result
in [MB19] but with a proof that is different from that of [MM17] and different from the one that
follows; the proof of [MB19] is an extension of Dobrow’s proof of Lemma 2.5.

Proof. Our proof relies on a coupling that couples all the triples pTn, ξpn` 1q, ζpn` 1qq for n ě 0
in such a way that, for all n ě 1,

‚ ζpn` 1q is either equal to ζpnq or a child of ζpnq, and
‚ ξpn` 1q is either equal to ξpn` 1q, or equal to ξpnq, or a child of ξpnq.

The coupling goes as follows: first let ξp1q “ ζp1q “ 0. Then sample two independent sequences
of independent random variables pBiqiě1 and pB1iqiě1 such that, for all i ě 1,

PpBi “ 1q “ PpB1i “ 1q “
1

i
and PpBi “ 0q “ PpB1i “ 0q “ 1´

1

i
.

Also sample a sequence pUpnqqně1 of independent random variables such that, for all n ě 1,
Upnq is uniform on t0, . . . , n ´ 1u. Then, assuming that pTn´1, ζpnq, ξpnqq is defined, we define
pTn, ζpn` 1q, ξpn` 1qq as follows:

‚ If Bn “ B1n “ 0, then set ζpn ` 1q “ ζpnq, ξpn ` 1q “ ξpnq, and Tn is the tree obtained
after adding node n in Tn´1 as a child of node Upnq.

‚ If Bn “ B1n “ 1, then set ζpn` 1q “ ξpn` 1q “ n` 1, and let Tn be the tree obtained after
adding node n to Tn´1 as a child of node ζpnq.

‚ If Bn “ 1 and B1n “ 0, then set ζpn ` 1q “ n ` 1, ξpn ` 1q “ ξpnq, and let Tn be the tree
obtained after adding node n to Tn´1 as a child of node ζpnq.

‚ If Bn “ 0 and B1n “ 1, then set ζpn ` 1q “ ζpnq, ξpn ` 1q “ n ` 1, and let Tn be the tree
obtained after adding node n to Tn´1 as a child of node ξpnq.

One can check that, indeed, pTnqně0 is distributed as the random recursive tree, and for all n ě 0,
ζpn ` 1q and ξpn ` 1q are two nodes taken uniformly at random among t0, . . . , nu. With this
definition, we have the following identities: for all n ě 0,

|ζpn` 1q| “
n
ÿ

i“1

Bi, Kn “

In
ÿ

i“1

Bi, and |ξpn` 1q| “ Kn `

n
ÿ

i“In`1

B1i,

where In “ maxt1 ď i ď n : Bi “ B1i “ 1u. First note that, by Borel-Cantelli’s lemma, because
PpBi “ B1i “ 1q “ 1{i2, I “ limnÒ8 In “

ř

iě1BiB
1
i ă 8 almost surely. This implies that,

K “ limnÒ8Kn ă 8 almost surely. Furthermore, by the central limit theorem, because
n
ÿ

i“1

EBi “

n
ÿ

i“1

1

i
“ log n`Op1q,

and
n
ÿ

i“1

VarpBiq “

n
ÿ

i“1

1

i

´

1´
1

i

¯

“ log n`Op1q
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as n Ò 8, we get that
ˆřn

i“1Bi ´ log n
?

log n
,

řn
i“1B

1
i ´ log n

?
log n

˙

ñ pΩ1,Ω2q,

where Ω1 and Ω2 are two independent standard Gaussian random variables. Now,

|ξpn` 1q| ´ log n
?

log n
“

řn
i“1B

1
i `

řIn
i“1pBi ´B

1
iq ´ log n

?
log n

ñ Ω2.

This concludes the proof. �

We are now ready to prove Proposition 2.7 and thus Theorem 2.3:

Proof of Proposition 2.7. The idea of the proof is that Y1pn ` 1q is the label of the first child in
T8 of a node ζpn` 1q taken uniformly at random among t0, . . . , nu, and Y2pn` 1q is the label of
the second (in case ξpn` 1q “ ζpn` 1q) child in T8 of a node ξpn` 1q taken uniformly at random
among t0, . . . , nu, independently from ζpn ` 1q. We let Kn be the height of the last common
ancestor of ζpn` 1q and ξpn` 1q. In distribution,

pY1pn` 1q, Y2pn` 1qq “ pW
p1q
|ζpn`1q|`1´Kn

,W
p2q
|ξpn`1q|`1´Kn

q,

where W p1q and W p2q are two independent Markov chains of transition probabilities R started at
the same value WKn . By Assumption on W , we thus have that, conditionally on Kn and WKn ,

ˆ

W
p1q
n ´ apnq

bpnq
,
W
p2q
n ´ apnq

bpnq

˙

ñ pΓ1,Γ2q,

in distribution as n Ò 8, where Γ1,Γ2 „ ν are independent. Because the distribution of the limit
does not depend on Kn and WKn , this implies that (without conditioning)

(2.10)

ˆ

W
p1q
n ´ apnq

bpnq
,
W
p2q
n ´ apnq

bpnq

˙

ñ pΓ1,Γ2q.

Furthermore, Lemma 2.8,
ˆ

|ζpn` 1q| ´ log n
?

log n
,
|ξpn` 1q| ´ log n

?
log n

,Kn

˙

ñ pΩ1,Ω2, Kq.

This implies

(2.11)

ˆ

|ζpn` 1q| ` 1´Kn ´ log n
?

log n
,
|ξpn` 1q| ` 1´Kn ´ log n

?
log n

˙

ñ pΩ1,Ω2q.

Because the random recursive tree is independent from W p1q and W p2q, Equations (2.10) and (2.11)
hold jointly with pΓ1,Γ2q independent of pΩ1,Ω2q. By Kolmogorov’s representation theorem, there
exists a probability space (which we call Kolmogorov’s space in what follows) on which both (2.10)
and (2.11) hold almost surely. The same calculation as in (2.5) gives

ˆ

Y1pn` 1q ´ aplog nq

bplog nq
,
Y2pn` 1q ´ aplog nq

bplog nq

˙

Ñ
`

fpΩ1q ` gpΩ1qΓ1, fpΩ2q ` gpΩ2qΓ2

˘

,

almost surely as n Ò 8 on Kolmogorov’s probability space, and thus in distribution on the original
probability space, as desired. �
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2.4. The non-balanced “irreducible” case. This section is based on Mailler and Villemon-
ais [MV20]. In this paper, the authors proved almost sure convergence of a large class of MVPPs;
their result, however is neither stronger nor weaker than those of [MM17] discussed in Section 2.3.
Indeed, an improvement with respect to [MM17] is that [MV20] allows the MVPP to be un-
balanced. Also, [MV20] gets almost sure convergence of the MVPP, as opposed to convergence
in probability in [MM17]. However, [MV20] only allows the Markov chain of transition probabili-
ties R to be p0, 1, νq-ergodic (see Definition 2.3.1), so many MVPPs that fall into the framework
of [MM17] are not covered by [MV20].

Also, the main difference between [MV20] and [MM17] is their methods of proof: [MM17] used
what could be called a many-to-two method from the theory of branching random walks, while
[MV20] uses stochastic approximation methods. To get rid of the balance assumption, [MV20]
relies on the theory of quasi-stationarity for killed Markov chains.

Before stating and proving the results of [MV20], we show that finitely-many-colour Pólya urns
are stochastic approximations and give yet another proof of 1.5 using results from the literature
on stochastic approximations.

2.4.1. Pólya urns are stochastic approximations.

Definition. A stochastic approximation on subset S of Rd is a sequence pXnqně0 of S-valued
random variables such that, for some filtration pFnqně0, for all n ě 0, almost surely,

Xn`1 “ Xn ` γn
`

F pXnq `∆Mn`1 ` εn`1

˘

,

where pγnqně0 is a sequence satisfying
ÿ

ně0

γn “ 8 and
ÿ

ně0

γ2
n ă 8,

F is a function from S into itself, p∆Mnqně0 is an pFnqně0-adapted sequence of martingale incre-
ments, and pεnqně0 is an pFnqně0-adapted sequence of random variables satisfying limnÒ8 εn “ 0
almost surely.

In the literature, one can find many different definition for stochastic approximations, and
also, many different theorems that give almost sure convergence of a stochastic approximation,
under different sets of assumptions. Classical references on stochastic references include the book
of [Duf97], the lecture notes of Benäım [Ben99], and the survey paper of Pemantle [Pem07]. The
heuristic general idea is that, if F is regular enough, then pXnqně0 follows the flow of the differential
equation 9y “ F pyq (this is made rigorous by the concept of “pseudo-asymptotic trajectories” of
Benäım [Ben99]), and this implies that pXnqně0 converges almost surely to the set of “stable” zeros
of F .

Lemma 2.9. Let pUpnqqně0 be the d-colour Pólya urn of initial composition α “ pα1, . . . , αdq and

replacement matrix r “ prijq1ďi,jďd. For all n ě 0, set T pnq “ }Upnq}1 and Ûpnq “ Upnq{T pnq.
Then, for all n ě 0,

Ûpn` 1q “ Ûpnq ` γnpF pÛpnqq `∆Mn`1q,

where γn “
1

T pn`1q
and F is a function from S into itself where

S “ tpx1, . . . , xdq P r0, 1s
d :

d
ÿ

i“1

xi “ 1u,

and F pxq “
řd
i“1 xipri ´ }ri}1xq for all x P S.
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Proof. Let pFnqně0 be the natural filtration of pUpnqqně0. By definition, for all n ě 0, Upn` 1q “
Upnq ` rY pn`1q, where, for all 1 ď i ď d

PpY pn` 1q “ i|Fnq “ Ûipnq.

Thus, for all n ě 0,

Ûpn` 1q “
Upnq ` rY pn`1q

T pn` 1q
“ Ûpnq ¨

T pnq

T pn` 1q
`

rY pn`1q

T pn` 1q

“ Ûpnq ¨
´

1´
}rY pn`1q}1

T pn` 1q
`

rY pn`1q

T pn` 1q
“ Ûpnq `

rY pn`1q ´ }rY pn`1q}1Ûpnq

T pn` 1q
.

We set

∆Mn`1 “ rY pn`1q ´ }rY pn`1q}1Ûpnq ´ ErrY pn`1q ´ }rY pn`1q}1Ûpnq|Fns.

Because

ErrY pn`1q ´ }rY pn`1q}1Ûpnq|Fns “

d
ÿ

i“1

Ûipnqpri ´ }ri}1Ûpnqq,

we get

Ûpn` 1q “ Ûpnq `
1

T pn` 1q

`

F pÛpnqq `∆Mn`1

˘

,

where F : Rd Ñ Rd is defined by F pxq “
řd
i“1 xipri ´ }ri}1xq, as desired. �

Note that, if r is balanced, i.e. for all 1 ď i ď d, }ri}1 “ s for some s ą 0, then T pnq “ }α}1`ns
for all n ě 0, and F pxq “ xpR ´ sIdq. In that case, the following result applies:

Theorem 2.10 ([Duf97, Theorem 1.4.26]). Assume that pXnqně0 is a stochastic approximation on
S Ă Rd in the sense of Definition 2.4.1. Assume that: there exists a function σ2 : S Ñ R such
that

(i) F is continuous,
(ii) Erp∆Mn`1 ` εn`1q

2|Fns ď σ2pXnq for all n ě 0,
(iii) there exists a constant K ą 0 such that, for all x P Rd, }F pxq} ` σ2pxq ď Kp1` }x}2q,
(iv) there exists x˚ P Rd such that F px˚q “ 0 and, for all x P Sztx˚u, xF pxq, x´ x˚y ă 0.

Then, almost surely as n Ò 8, Xn Ñ x˚.

We now show how to apply Theorem 2.10 to re-prove Theorem 1.5 in the case of a balanced
Pólya urn of irreducible replacement matrix r. In that case, by Lemma 2.9 Ûpnq is a stochastic
approximation with γn “ 1{p}α}1 ` nsq, F : x ÞÑ xpR ´ sIdq,

∆Mn`1 “ rY pn`1q ´ ErrY pn`1q|Fns,

and εn`1 “ 0. By the triangular inequality, }∆Mn`1}1 ď 2s; we thus let σ2pxq “ 2s for all x P Rd

so that Assumption (ii) of Theorem 2.10 holds. Now note that there exists K ą 0 such that, for
all x P Rd, }F pxq} “ }xpR ´ sIdq} ď K}x} (indeed, one can take K to be equal to the spectral
radius of R ´ sId). Thus, Assumption (iii) of Theorem 2.10 also holds. Because F is linear, it is
also continuous. It only remains to check Assumption (iv): it holds because, by Perron-Frobenius
theorem, there exists a unique left eigenvector v P S associated to the eigenvalue s. Hence,
F pvq “ 0 and, for all x P Sztvu,

xF pxq, x´ vy “ xxpR ´ sIdq, x´ vy “ xpx´ vqpR ´ sIdq, x´ vy ă 0,

because all eigenvalues of R ´ sId except v have negative real parts. Thus, Theorem 2.10 applies
and gives Theorem 1.5, as expected.
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2.4.2. MVPPs are stochastic approximations. First we show that pm̂n “ mn{mnpEqqně0 is a sto-
chastic approximation. Note that pm̂nqně0 takes values in PpEq, the set of probability measures
on E. Before seeing pm̂nqně0, we need to explain some notation: Let ν P PpEq, f : E Ñ R be a
continuous and bounded function, and R be a kernel on E. We let

ν ¨ f “

ż

E

f dν and pνRq ¨ f “

ż

E

Rx ¨ f dνpxq.

For any random probability measure µ, we let Erµs be the measure such that, for all continuous
and bounded functions f : E Ñ R,

Erµ ¨ f s “ Erµs ¨ f.

Lemma 2.11. Let pmnqně0 be the stochastic approximation of initial composition m0 and (deter-
ministic) replacement kernel R “ pRxqxPE. Recall that, for all i ě 1, Y piq is the colour of the ball
picked at time i. For all n ě 0, set m̂n “ mn{mnpEq. Then, for all n ě 0,

m̂n`1 “ m̂n `
1

mn`1pEq
pF pm̂nq `∆Mn`1q,

where F : PpEq Ñ PpEq is defined as F pµq “ µR ´ pµRqpEqµ, and ∆Mn`1 is a martingale
increment (meaning that, for all continuous functions f , ∆Mn`1 ¨ f is a martingale increment).

Proof. By definition, for all n ě 0, mn`1 “ mn `RY pn`1q. Thus,

m̂n`1 “
mn `RY pn`1q

mn`1pEq
“

´

1´
RY pn`1qpEq

mn`1pEq

¯

m̂n `
RY pn`1q

mn`1pEq

“ m̂n `
1

mn`1pEq

`

RY pn`1q ´RY pn`1qpEqm̂n

˘

.

Thus, if we let pFnqně0 be the natural filtration of pY piqqiě1, because

ErRY pn`1q ´RY pn`1qpEqm̂n|Fns “ m̂nR ´ pm̂nRqpEqm̂n,

we have

m̂n`1 “ m̂n `
1

mn`1pEq

`

F pm̂nq `∆Mn`1

˘

,

where F : PpEq Ñ PpEq is defined by F pµq “ µR ´ pµRqpEqµ, and where Er∆Mn`1|Fns “ 0, as
claimed. �

As in Section 2.4.1, the balanced case is easier, although one solution around that is to consider
ηn “

1
n

řn
i“1 δY piq instead of m̂n: it is also a stochastic approximation, and ηnpEq “ 1 for all n ě 1

(see [MV20]). For simplicity, we assume from now on that R is a probability kernel and thus that
pmnqně0 is a balanced MVPP. In that case, we have

m̂n`1 “ m̂n `
1

m0pEq ` n
pF pm̂nq `∆Mn`1q,

where F pµq “ µpR ´ Idq.
We assume for now that, indeed, pm̂nqně0 will eventually follow the flow of

(2.12) 9µ “ µpR ´ Idq,

and try to understand this flow. We let pXtqtě0 is the jump Markov process that jumps at rate 1
and when it jumps, its new position is sampled according to the kernel R. If we let νt denote the
distribution of Xt for all t ě 0, then pνtqtě0 is the solution of (2.12) with initial value ν0. Thus,
if we assume that pXtqtě0 is ergodic, i.e. that there exists ν such that, for all ν0, νt Ñ ν as t Ò 8
(for the weak topology), then this implies that the flow defined by (2.12) has one attractive, stable
zero, which is ν. And thus, one expects that m̂n Ñ ν almost surely as n Ò 8.
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2.4.3. Almost sure convergence of non-balanced MVPPs. Before stating the main result of this
section, we need the following definition:

Definition. Let pXtqtě0 be a jump Markov process on some space EYtBu, absorbed at B. We say
that ν P PpEq is a quasi-stationary distribution of X if, for some initial distribution π P PpEq,

PπpXt P ¨|Xt ‰ Bq Ñ ν,

weakly as t Ò 8.

Theorem 2.12. Let pmnqně0 be the MVPP of initial composition m0 and replacement kernel R.
We assume that

(a) There exists c ą 0 such that, for all x P E, 0 ă c ď RxpEq ď 1.
(b) There exists a function V : E Ñ r1,8q such that, for all L ě 0, tx P E : V pxq ď Lu is relatively

compact, and, for all x P E,

Rx ¨ V ď θV pxq `K,

for some θ P p0, cq and K ě 0.
(c) The continuous-time jump process of sub-Markovian jump kernel R´I admits a quasi-stationary

distribution ν.

[+ technical assumptions, see [MV20]] Then, m̂n Ñ ν almost surely as n Ò 8.
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