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RANDOM = Usually uniformly sampled within an “interesting” class of planar maps.
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WHAT DOES A LARGE RANDOM PLANAR MAP LOOK LIKE?

RANDOM = Usually uniformly sampled within an “interesting” class of planar maps.

SIZE # faces # edges # vertices
LARGE = of size approaching infinity

cuadandetion—— simple boundary
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When do we consider two maps to be similar? When are they different?

We need to consider DISTANCES on sets of maps.
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A plane tree is. a b vertices
(rooted) map with 5 edges

only one face.
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LOCAL LIMITS

Fix a positive integer  and consider
the (rooted) map induced by vertices
within graph distance r from the

\= root vertex.

.
O,  Keep I fixed and sample maps
of increasing size.

Send n to infinity.

- o The UIPQ Q is an infinite
random quadrangulation such
that for each I we have

[Qoo] r~limy e [Qn] r
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» What doesthe UTHPQ look liKe? -

» How do distances to the root evolve along the (infinite) boundary?
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THE UIHPQ

» What does'the UTHPQ look like? -
» How do distances to the root evolve along the (infinite) boundary?

» Can we construct an analogue with a simple boundary?
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THE UIHPQ

» How do distances to the root evolve along the (infinite) boundary?
» Can we construct an analogue with a simple boundary?

» How would it relate to the UIPQ?
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THE UNIFORM INFINITE POSITIVE TREED BRIDGE

» The UIHPQ can be constructed as encoded by a random infinite treed bridge
B..,which comprises

» arandom bridge (representing distances from the root vertex as read
along the boundary of the UIHPQ)

» a sequence of random positive labelled trees (T(i)icpsw), where T(i) has root label

Xi, and the trees are conditionally independent given the bridge

» The two halves of the bridge and have the same law up to time-reversal,

i.e. that of a Markov chain issued from 0, with transition probabilities given by

P(n.n-1)= - Pn.n+1)= 1+
2(n+2) 2(n+2)

» The scaling limit of the process is a Bessel process of dimension 5 issued

from O.

(012 Xingher > (lher (Do (L4910 Bessel-5
Nn—> oo
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GEUDESIC RAYS
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The UIHPQ has a leftmost and a rightmost geodesic rays,
which induce a decomposition into 3 (random) submaps |,

and . and contain no geodesic rays except for their
“right” and “left” boundaries.

The three random variables , and are independent,
and each can be constructed as the image of a certain random
treed bridge via the BDFG bijection.
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The UIHPQ has a leftmost and a rightmost geodesic rays,
which induce a decomposition into 3 (random) submaps

and . and  contain no geodesic rays except for their
“right” and “left” boundaries.

The three random variables , and are independent,
and each can be constructed as the image of a certain random
treed bridge via the BDFG bijection.

The leftmost and rightmost geodesic rays (almost surely)
meet an infinite number of times.

> Do they also meet the boundary an infinite number of times,
or do they eventually leave it?
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