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Spatial random permutations: finite volume

X c R? locally finite set,
A C R? bounded domain,
XA =XNA.

Periodic boundary conditions.

Sp = set of permutations
T XA — XA.

Typical example for a measure
on Sy:

Fa((n) = 7y 0 (— a3 Inlo) — o).

Penalization parameter o determines expected jump length.
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Spatial random permutations: finite volume

X c R? locally finite set,
A C R? bounded domain,
XA =XNA.

Periodic boundary conditions.

Sp = set of permutations
T XA — XA.

Typical example for a measure
on Sy:

Pa({r}) = Z(lA) exp (—a Y e(m(z) ).

Penalization parameter o determines expected jump length.
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Spatial random permutations: finite volume

X c R4 locally finite set,

A € R? bounded domain,

XA =XNA.

Periodic boundary conditions.
Sp = set of permutations

T XA — XA.

Typical example for a measure
on Sy:

Pa({r}) = Z(IA) exp (—a Y e(m(z) ).

> Penalization parameter o determines expected jump length.
» Aim: Study the infinite volume limit at density p = 1:

N _
‘/,Ng)oo, v—].

V. Betz (Darmstadt) Spatial random permutations



v

Spatial random permutations: finite volume

X c R4 locally finite set,

A € R? bounded domain,

XA =XNA.

Periodic boundary conditions.
Sp = set of permutations

T XA — XA.

Typical example for a measure
on Sy:

Pa({r}) = Z(IA) exp (—a Y e(m(z) ).

> Penalization parameter o determines expected jump length.
» Aim: Study the infinite volume limit at density p = 1:

N _
‘/,Ng)oo, v—].

» First question: Existence of the infinite volume limit.

» Exciting questions: Existence and geometry of long cycles.
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Spatial random permutations are not Gibbs
measures

» Try to view SRP as a collection of X-valued spins
(m(2))wexy -
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Spatial random permutations are not Gibbs
measures

» Try to view SRP as a collection of X-valued spins

(m(2))zex -
» Product reference measure:
PAl{}) = gy o0 (— 0 L é(rla) — ).

zEA
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Spatial random permutations are not Gibbs
measures

» Try to view SRP as a collection of X-valued spins
(7(2))wexy -
» Product reference measure:

PAl{}) = gy o0 (— 0 L é(rla) — ).

zEA

» But to get to permutations, we need the infinite range, hard
core condition

w(x) #w(y) forallz#ye X,.
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Spatial random permutations are not Gibbs
measures

Try to view SRP as a collection of X j-valued spins

(m(2))zex,-
Product reference measure:
PAl{}) = gy o0 (— 0 L é(rla) — ).

zEA

But to get to permutations, we need the infinite range, hard
core condition

w(x) #w(y) forallz#ye X,.

None of the Gibbs measures techniques work!
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Infinite cycles: a phase transition

Pp(m) = Z(lA) exp ( -« Z () — x‘Q)

rEX)

» Fix a point x (e.g. the origin). Write C,.(7) for the cycle of 7
containing x.
» Question: How long is C; typically?
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Infinite cycles: a phase transition

Pp(m) = Z(lA) exp ( -« Z () — x‘Q)

rEX)

» Fix a point x (e.g. the origin). Write C,.(7) for the cycle of 7
containing x.

» Question: How long is C; typically?

» For « large enough, C, is short:

36 > 0 : limsupE (e’l“]) < 0o
[A| =00
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Infinite cycles: a phase transition

Pp(m) = Z(lA) exp ( -« Z () — x‘Q)

rEX)

Fix a point « (e.g. the origin). Write C,(7) for the cycle of 7
containing x.

» Question: How long is C; typically?
» For « large enough, C, is short:

36 > 0 : limsupE (e’l“]) < 0o
[A]—o0
For dimension d > 3, we expect a phase transition to a
regime of infinite cycles:
Jac >0: po:= lim IminfPy(|Cy| > K) >0 iff a < ac

K—o0 |[A|—o0

V. Betz (Darmstadt) Spatial random permutations



Infinite cycles: a phase transition

Pp(m) = Z(lA) exp ( -« Z () — m‘Q)

rEX)

Fix a point « (e.g. the origin). Write C,(7) for the cycle of 7
containing .

» Question: How long is C; typically?
» For « large enough, C, is short:

36 > 0 : limsupE (e’l“]) < 0o
[A]—o0
For dimension d > 3, we expect a phase transition to a
regime of infinite cycles:
Jac >0: po:= lim IminfPy(|Cy| > K) >0 iff a < ac

K—o0 |[A|—o0

» We do not even know monotonicity of p,.
> Only result so far: in d = 1 with convex potential, there is no

(nontrivial) phase transition. [Biskup, Richthammer 2014].
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SRP: what is known

PAm) = oy en (— o 2 (@) - )

zeEX )

[B. 14]: Existence of the infinite volume limit if X is a regular
lattice with periodic bc, and if for some § > 0:

reX

[B., Ueltschi 09]: Absence of infinite cycles for large a.
[Biskup, Richthammer 14]: Rather complete theory for d = 1
and convex &.

[B., U. 09-11]: Phase transition for the annealed model:

Pr n(m) = Z(Ll)N' /[L,L]dN exp ( aZf —;) ) del
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Phase transition for annealed SRP

]P’LN(W)—Z(;)N!/[LL exp(—aZf —xz)dez

Assume positivity of the Fourier transform of e~ .
Define < (k) through =) = / o2mikz (€@ g
R4

(Y) (1) = the length of the j-th longest cycle in 7.
1

-, ity . N
Critical density: p. /Rd = 1 dk < o0
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Phase transition for annealed SRP

i ]
e exp ( -« E(Xripy — i) ) dx;
Z(L)N! (—L,r]d Z H
Assume positivity of the Fourier transform of e~ .

Define < (k) through =) = / o2mikz (€@ g
Rd

]P)LJV(W) =

(Y) (1) = the length of the j-th longest cycle in 7.
1
... ity - <
Critical density: p. /Rd =0 1 dk < o0
Theorem: (B.-ueltschi 2011]
a) The expected fraction of points in infinite cycles is

) ) 1 ; Pe
1 1 E(— z(ﬂ) - (0 1 7)
Kgnoo V,N—)og,I]lV/V:p N Z VoA p
J>K
b) For v > 0, long cycles are Poisson-Dirichlet distributed:
y AR PDI(1 - distributi
yAm (m, N ) =PD(1) in distribution.
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2. From BEC to SRP
(and back ?)
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Bose-Einstein condensation

Very cold quantum gases (e.g. 22Na) behave radically different
from classical gases:

A finite fraction of particles will be in the quantum state with
momentum 0. (Bose-Einstein Kondensation)

Classical gases: Boltzmann-distribution.
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Many body quantum mechanics
at positive temperature

» Hamilton-Operator for N particles with pair potential U on
AN c RNV, periodic b.c.:

N
H:_ZAi_'_ Z U(xi—xj).
=1

1<i<j <N
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Many body quantum mechanics
at positive temperature

» Hamilton-Operator for N particles with pair potential U on
AN c RNV, periodic b.c.:

N
H:_ZAi+ Z U(l‘i—.ﬁj).
=1

1<i<j <N

» particles are indistinguishable Bosons, therefore:
H is defined on L2 (AY) (periodic b.c.).

symm
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Many body quantum mechanics
at positive temperature

» Hamilton-Operator for N particles with pair potential U on
AN c RNV, periodic b.c.:

N
H:_ZAi+ Z U(x¢—$j).
=1

1<i<j <N

» particles are indistinguishable Bosons, therefore:
H is defined on Lzymm(AN) (periodic b.c.).

» At positive temperature 1/3 the density matrix ¢~ #H
describes the system:
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Many body quantum mechanics
at positive temperature

» Hamilton-Operator for N particles with pair potential U on
AN c RN, periodic b.c.:

N
H:_ZAi+ Z U(a:i—mj).
=1

1<i<j <N

» particles are indistinguishable Bosons, therefore:

H is defined on Lzymm(AN) (periodic b.c.).

» At positive temperature 1/3 the density matrix ¢~ #H
describes the system: the expected value of an observable A

(self-adjoint operator) is given by

(A)s = Trsymm(Ae’BH) T (SAe=PH)
# T Trsymm(e PH) — Tr(Se AH)

(S is symmetrisation operator, A commutes with S.)
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From BEC to SRP: trace formula

We want an expression for Tr e #H# for all 3 > 0.

Trace formula:
e Py = /Kﬁ(a;,a:) dz

where Kp is the integral kernel of e AH .

_*BHf /Kﬁxy ) dy.
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From BEC to SRP: trace formula

We want an expression for Tr e #H# for all 3 > 0.

Trace formula:
e Py = /Kﬁ(a;,a:) dz
where Kp is the integral kernel of e AH .

(AY),
integral kernel Ks(x,y) of e PH & = (21,...,2y):

Symmetrisation: H on L?

symm

Tr symm(e PH) =Tr(Se™PH ) = N' Z K/g Tr,x)dx.
TESN

with x, = (:1:‘71.(1), ceey x,r(N)).
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From BEC to SRP: Feynman-Kac formula
For a Schrodinger operator H = —A + V with e.g. V € L™

_ 1 o s
€ ﬁH(xay):We o=yl /8[3/(3 JoP Viws)d W4ﬁ(dw)

where ny is Brownian bridge.
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From BEC to SRP: Feynman-Kac formula
For a Schrodinger operator H = —A + V with e.g. V € L™

- 1 —|z—yl|? — [PV (ws)ds YAy
e BH(SE,?J)Zi(&Tﬁ)WQe 2=yl /8ﬁ/e Jo" Viws)d Wﬁg(dw%

where W;lﬂy is Brownian bridge.

N
For H = — ZAi + Z U(x; —xj) on Lgym(AN) we get

i=1 1<i<j <N
N
—BH 1 — 55 Lt lwi—zri)|?  Hi(,m)
Tr(Se™ ™M) = G Y [ o % =m0l ofiem TTda,
resy VAN =1
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From BEC to SRP: Feynman-Kac formula
For a Schrodinger operator H = —A + V with e.g. V € L™

_ 1 o s
€ ﬁH(xay):We o=yl /8ﬁ/e JoP Viws)d W4ﬁ(dw)

where W;lﬂy is Brownian bridge.

N
For H = _ZAi + Z U(x; —xj) on Lgym(AN) we get

i=1 1<i<j <N
(Se BH) - N'(87r,3 NI(8xBR)AN/2 E / € 8*8 27 ! |$fo,r( )| HI m 7T deza
TESN =1

with A = [~L, L]¢ and

H/ W‘LBI } —21<i<i< N fo (wi(s)—w;(s))ds
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Connection to SRP

Pl L

¢

<. oy

1 _ 1NN 2
TrePH - = E da e 58 Zi=1 B2 " Hi(@m)
N!(873)3N/2 AN
TESN
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Connection to SRP

Pl L

¢

<. oy

1 _ 1NN 2
TrePH - = E da e 58 Zi=1 B2 " Hi(@m)
N!(873)3N/2 AN
TESN

This is the partition function of the annealed SRP measure

1 Y] r;—X ;
Py({7}) == Zn N /AN dx e 55 PORRREIET L i)
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Connection to SRP

Pl L

¢

<. oy

1 LN 2
Tr o—PH — Z da e~ 88 2i=1 [zi—2x()[* JHi(x,m)
N!(873)3N/2 AN
TESN

This is the partition function of the annealed SRP measure

1 — 33 N wi—z. (s
PMWD:ZMWAJMCQZMW~m2&mM,

C(7) := Length of the cycle containing 1. Feynmans claim:

BEC < Je > 0:liminf Py (Cy > eN) > 0.
N—o0

For U = 0 we can show this, what about U # 07
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Expected fraction of particles in (free) ground state

Number operator wrt. ¢ € L?(A):

N
[N¢¢}($17 o ,%N) = Z¢($j)<¢,¢(.’1}'17 R B ERER S B PR 7$N>
j=1

L2(A)

measures 'total overlap’ of particles in ¢ with ¢.

V. Betz (Darmstadt) Spatial random permutations



Expected fraction of particles in (free) ground state

Number operator wrt. ¢ € L?(A):

L2(A)

N
[N¢¢}($17 .. ,%N) = Z¢(xj)<¢vw(xl7"‘7xj—17'7xj+17"~ 7$N>
j=1

measures 'total overlap’ of particles in ¢ with ¢. Note that Ny
commutes with S; when ¢ = ﬁ is the ground state of a free gas

particle,
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Expected fraction of particles in (free) ground state

Number operator wrt. ¢ € L?(A):

L2(A)

N
[N(Zﬂ/}}(xla .. 7IN) = Z¢(xj)<¢v¢(xl7"‘7$j—17'7xj+17" . 7:1:N>
j=1

measures 'total overlap’ of particles in ¢ with ¢. Note that Ny

commutes with S; when ¢ = ﬁ is the ground state of a free gas
particle,
1 1
= i S <—N —8H S)
I, V~>ool,§\rfl/\/:p Tr(e*ﬁH S) g N ?°

is the expected fraction of particles overlapping with ¢, at
inverse temperature 5 and density p.
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Expected fraction of particles in (free) ground state

Number operator wrt. ¢ € L?(A):

N
[N(Zﬂ/}}(xla .. 7IN) = Z¢(xj)<¢v¢(xl7"‘7$j—17'7xj+17" . 7:1:N>
j=1

L2(A)

measures 'total overlap’ of particles in ¢ with ¢. Note that Ny

commutes with S; when ¢ = ﬁ is the ground state of a free gas
particle,
1 1
= i S <—N —8H S)
I, V~>ool,§\rfl/\/:p Tr(e*ﬁH S) g N ?°

is the expected fraction of particles overlapping with ¢, at
inverse temperature 8 and density p. By definition:

BEC & g,5#0.
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Permutations with open cycles

Daniel Ueltschi [PRL 97, 170601 (2006)] observed:

Tr (Nye PH S) = dady Yy, (3, N, V),

pV2 A2

where Y, (5, N, V) is the partition function of SRP with one
open cycle from z to y.
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Permutations with open cycles

Daniel Ueltschi [PRL 97, 170601 (2006)] observed:

Tr (Nye PH S) = dady Y, (8, N, V),

PV2 e
where Y, (5, N, V) is the partition function of SRP with one

open cycle from z to y.
We have

Yx—)y(/Bu N7 V)

1
— li S dxzd
K Nv=ppV2 i Y TY (BN, V)

V—00,N/V=p
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ODLRO, open cycles and infinite cycles

Yx—)y(/ga N7 V)

dxd
YTV (B, N, V)

= lim —
I8 = o NpV=p pV2 1o

If things are nice, we expect:
Yac—)y (57 N7 V)
Y(B,N,V)

(this is ODLRO in a different language)
< The large N asymptotics of the two partition functions

9o > 0= does not decay as |z — y| — oo

are comparable uniformly in |z — y|
< Cycles connecting x and y are not rare
even when not enforced, uniformly in |z — y.

< Annealed SRP has infinite cycles
There is no rigorous proof of these connections.
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Back to lattice SRP: lattice Bosons

Force the Bosons to live on a lattice Z N A:

N
H:—ZAZ—I- Z U(ﬂ?i—l‘j),
i=1

1<i<j <N

on L?(Z% N A), where now A; is the discrete Laplacian.
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Back to lattice SRP: lattice Bosons

Force the Bosons to live on a lattice Z N A:

N
H:_ZAZ—'_ Z U(ﬂ?i—l‘j),
i=1

1<i<j <N
on L?(Z% N A), where now A; is the discrete Laplacian.

Special case: Formally put U(z; — ;) = o0ly,,—, ). 'hard-core’
lattice gas.

Famous result by Dyson, Lieb, Simon: ODRLO holds for half-filling
in the grand canonical ensemble.
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Back to lattice SRP: lattice Bosons

Force the Bosons to live on a lattice Z N A:

N
H:*ZAiJr Z U(Ii*l‘j),
=1

1<i<j <N
on L?(Z% N A), where now A; is the discrete Laplacian.
Special case: Formally put U(z; — ;) = o0ly,,—, ). 'hard-core’
lattice gas.

Famous result by Dyson, Lieb, Simon: ODRLO holds for half-filling
in the grand canonical ensemble.

Feynman-Kac-representation:

N

1 H,
xeANNZNd i=1

pp(z,y) ist the transition kernel of continuous time RW.

Balint Toth (93): Representation of the hard core Bose-Gas via an
ensemble of self-avoiding random walks.
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A radical simp/iﬁcation
1

Zn NI Z Hpﬂ Ti, T ()

xeANNZNd =1

Py({r}) ==
with

Radical Simplification: Replace the term e/1(®7) by the condition
that the particles do not meet at the beginning and the end of the
run time (3 only (see also Feynman 1953!).
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A radical simp/ification

1 ,TT
N zeANNZNd =1

with

& = H / de“xw( i) 2 Si<j SN f02B U(wi(s)—wj(s))ds .

Radical Simplification: Replace the term e/1(®7) by the condition
that the particles do not meet at the beginning and the end of the
run time (3 only (see also Feynman 1953!).

Py ({r}): ZNN, > Hm Tis Tx(i))

QSEAN =1

Ay ={x e AN nZN 0y # i i £ §}.
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A radical simp/iﬁcation

1
NIGIPEL IS S | PR

reANNZNd =1

with
- 28 U (wi(s)—w; (s))ds
wﬂ’) H/ Q:r“xﬂ( 5 j| Zl<i<j<Nf0 U(wi(s)—w;(s))d )

Radical Simplification: Replace the term e/1(®7) by the condition
that the particles do not meet at the beginning and the end of the
run time (3 only (see also Feynman 1953!).

Py ({r}): ZNN, >, Hm Tis Tx(i))

Q?EAN =1

Ay ={x e AN nZN 0 # 2 if i £ §}.
Lattice SRP is this model at 'full filling’, i.e. exactly as many
particles as there are places.
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3. Lattice permutations:
numerics and some results.




SRP and Self-avoiding random walks
» Nearest neighbor SRP with forced long cycle, A = [~L, L]?

PA(rh) = o e (- I ) = 2?) )l < 1

with the condition that 77((L/2, 0,...,0)) =(0,...,0).
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SRP and Self-avoiding random walks
» Nearest neighbor SRP with forced long cycle, A = [~L, L]?
Ba({rh) = gy e (e 3 ) - ) = ) L in(ay ol < 11
with the condition that 7T((L/2, 0,...,0)) =(0,...,0).

» Self-avoiding walk from 0 to L = (L/2,0,...,0):
~ self-avoiding path of length || from 0 to L,

PL() = e
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SRP and Self-avoiding random walks
Nearest neighbor SRP with forced long cycle, A = [~ L, L]¢

PA(rh) = o e (- 03 Irtz) ) = 212) Lma) it < 13

with the condition that W((L/Q, 0,...,0)) =(0,...,0).
Self-avoiding walk from 0 to L = (L/2,0,...,0):
~ self-avoiding path of length || from 0 to L,

Pu(y) = Fy e

[Duminil-Copin, Kozma, Yadin '12]: v is 'weakly space filling’
as L — oo if e* < pu = connective constant of SARW.

[B., Taggi '16]: J g with e* < pu, such that Va > «p, there
are no infinite cycles in the standard nearest neighbor SRP.
[Kovchegov '02]: For e¢* > p, the SARW from 0 to L
converges to a Brownian Bridge in diffusive scaling.

[B., Taggi '16]: Nearest neighbor SRP with a forced cycle
does the same for large enough «.
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Geometry of SRP in two dimensions

A a finite box in Z2

Pa({7}) =

exp( a2|7r —x]2>.

TzEA



Geometry of SRP in two dimensions

A a finite box in Z?

Pa({r}) =

Z( exp( aZ]w —ac|2>.

TEA

» Numerical results [candolfo, Ruiz, Ueltschi 077 sShow: The origin (or any
point) is not in an infinite cycle with probability one.
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Geometry of SRP in two dimensions

A a finite box in Z?

PArh) = oy 0 (=0 3 @) —af).

TEA

» Numerical results [candolfo, Ruiz, Ueltschi 077 sShow: The origin (or any
point) is not in an infinite cycle with probability one.

» But if we focus on the longest cycle or force cycles through
the system, interesting things happen!

» We show a snapshot of the equilibrated Metropolis dynamics
in a box of side length 1000.

» The 10 longest cycles are shown, color coded in (red, blue,
green, black, dark gray, not so dark gray, etc).
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SRP for parameter o = 1.1

i



SRP for parameter o = 1.0



SRP for parameter o = 0.9




= 0.8

SRP for parameter «




SRP for parameter o = 0.75
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SRP for parameter o = 0.5
T e T




SRP for parameter a =

T pad « e
i 3




=0.3

SRP for parameter «




Kosterlitz- Thouless transition

» The rate of decay of P(|C,;| > K') changes from exponential
to algebraic: P(|C,| > K) ~ K7,

» K — P(C, > K) is algebraic iff the two-point function
P(y € C,) decays algebraically in |z — y|.

» Kosterlitz-Thouless phase transition, known from 2d models
with a continuous symmetry.

~.

-30 4 6 8 10 12

Log-log-plot of K — P(|C| > K) for a = 0.5
and box side length 1000, 2000, 4000.
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Kosterlitz- Thouless transition: Numerics

In (.14 the decay behaviour of ¢(K) = P(|C,| > K) is investigated
systematically, in order to estimate the critical parameter ..
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Kosterlitz- Thouless transition: Numerics
In (6. 141 the decay behaviour of ¢(K) = P(|C;| > K) is investigated
systematically, in order to estimate the critical parameter ..
Amazing universality predictions by general (physics) KT-theory:
» For a < ., ¢(K) ~ K7 and p(a) is approximately linear

and limg,_q, p(a) = 0.25.
» For a > a., ¢(K) ~ e (@)K and there exist constants D,~

such that r(a) = Dexp(—m)-
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Kosterlitz- Thouless transition: Numerics

In (.14 the decay behaviour of ¢(K) = P(|C,| > K) is investigated
systematically, in order to estimate the critical parameter ..

Amazing universality predictions by general (physics) KT-theory:

» For a < ., ¢(K) ~ K7 and p(a) is approximately linear
and limg,_q, p(a) = 0.25.

» For a > a., ¢(K) ~ e (@)K and there exist constants D,~
such that (o) = D exp(—

L)
[o—ow| /2"

Here are the numerical results, predicting a. ~ 0.64:

(@)
pa)

12
035 A
s 10f
o030 .
= o8|
02 S
51 B
,-"/ 06
e
020F 8-
o4l
01sf - 02[
gaot P S . . . . L
i . . I . o 10 12 14 16 18 20

04 05 06 07 . .
Measured inverse correlation length (exp decay rate)

M d | ) A 0.019 + 0.415a.
easured power law p(c:) - e r(a) & 20.99 exp(—3.434/|a — ac|'/2).
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Fractal dimension

» Compute the box-counting dimension:

. In(# of e-boxes needed to cover longest cycle)
dpox = lim

e—0 1n(1/€)



Fractal dimension

» Compute the box-counting dimension:

. In(# of e-boxes needed to cover longest cycle)
dpox = lim
e—0 ln(l/s)

» Sample with 2000 x 2000 points in A = [0, 1]?, with
1/1000 < e < 1/10:

Loglog plot of the number of boxes needed
to cover the longest cycle vs the box side
length
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Fractal dimension

» Compute the box-counting dimension:

In(# of e-boxes needed to cover longest cycle)

dpox = lim
e—0

In(1/e)

» Sample with 2000 x 2000 points in A = [0, 1]?, with

1/1000 < e < 1/10:

v

»
Loglog plot of the number of boxes needed
to cover the longest cycle vs the box side
length

V. Betz (Darmstadt)

Linear fitting gives dpox(cr) ~ 2 — 5o for small o

Box counting dimension as function of the

temperature

Spatial random permutations
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» Good agreement for square and triangular lattice; domain
Markov property; symmetries;
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1.0 1 1 1

0.0 0.5 1.0 15

» Good agreement for square and triangular lattice; domain
Markov property; symmetries;

» Conjecture: two-dimensional SRP cycles are distributed like
SLE curves, at least for a < ag.
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