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The Enduring Appeal of the Probabilist’s Urn

CÉCILE MAILLER

Pólya urns are classic objects in probability theory and have been extensively studied for more than 100 years
due to their wide range of applications. We present classic results on these processes, their applications to
large networks, and recent theoretical developments.

“Is it a contractual obligation for all probabilists
to have a drawing of an urn of coloured balls on
their blackboards?”. This was the question of a
non-mathematician friend of mine when they entered
my o�ce a few years ago. Drawing balls from urns
appears in many classic exercises in a �rst course in
probability (e.g. an urn contains two black balls and
one red ball, I pick a ball uniformly at random from
the urn, what is the probability that it is black?). The
aim of this article is to explain why balls-in-urns is
still an object of interest for probabilists (and hence
why they may end up on their blackboards!) and what
questions on this object remain open.

A Pólya urn is a stochastic process that depends on
two parameters: the initial composition of the urn
(how many balls of which colours there are in the
urn at time zero), and a replacement rule, which is
encoded by a d ×d matrix R = (Ri ,j )1≤i ,j ≤d , where d
is the number of di�erent colours a ball can be. At
every integer time step, a ball is picked uniformly at
random from the urn and, if it is of colour i , it is put
back in the urn together with Ri ,j additional balls of
colour j , for all 1 ≤ j ≤ d .

This article focuses on the following question:
“What is the composition of the urn in the limit
when time goes to in�nity?”. The di�culty in
answering this question comes from the fact that the
simple drawing-and-replacing procedure is repeated
in�nitely many times (at every integer time step).
A classic example illustrating how complicated
phenomena can arise from repeating a simple
procedure in�nitely many times is the Brownian
motion, which can be de�ned through an in�nite
sequence of coin �ips.

There exist two canonical cases from which the
behaviour of most Pólya urns can be inferred: (a) the
case when the replacement matrix is the identity,
which was �rst studied by Markov in 1906, and
(b) the case when it is “irreducible”, for which
landmark results were proved by Athreya and Karlin
in 1968. These two cases lead to very di�erent

outcomes. This can be seen in the simulations of
Figure 1: although in both cases, the composition
of the urn seems to converge to a limiting value,
this value seems to be random in the case of an
identity replacement matrix, and deterministic in the
irreducible case.

Figure 1. Ten realisations of a 2-colour Pólya urn whose
initial composition is one ball of each colour, with identity
replacement matrix (top) and with replacement matrix(2 1
3 2

)
(bottom); the vertical axis is the proportion of balls

of the �rst colour in the urn (equal to 1/2 at time 0), the
horizontal axis is time

The reason why Pólya urns have been of interest
over the last century is because of their numerous
applications. In fact, I often joke that any probability
problem can be seen as an urn problem, which is, in
essence, what Pólya wrote in 1957:
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“Any problem of probability appears
comparable to a suitable problem about
bags containing balls and any random mass
phenomenon appears as similar in certain
essential respects to successive drawings of
balls from a system of suitably combined
bags.”

One of the reasons for the wide applicability Pólya
writes about is that Pólya urns are the simplest
model for reinforcement, i.e. for the rich-get-richer
phenomenon. Indeed, imagine a Pólya urn with black
and red balls, with replacement matrix the identity
(at every time step, we add one ball of the same
colour as the drawn ball). If we start with many red
balls and few black balls, then we are more likely to
add even more red balls to the urn, thus reinforcing
the higher proportion of red balls.

In this article, we focus on one of these many
applications of Pólya urn results: namely, their
application to the analysis of the degree distribution
of two models of random “trees” that were originally
introduced as models for large complex networks
(such as the internet, social networks, etc.).

This application to random trees highlights the need
for a generalisation of Pólya urns to in�nitely many
colours (i.e. d = ∞). The end of the article focuses on
this generalisation, which, in the “irreducible” case,
has only been achieved in the last decade, and for
which important questions still remain open.

The classic Pólya urn

We start by looking at the classic Pólya urn, i.e. the
urn with replacement matrix equal to the identity.
We show that, in this case, the composition of the
urn converges to a random variable (see the top of
Figure 1) whose distribution depends on the initial
composition of the urn. We start by looking at the
2-colour case with initial composition one ball of
each colour, before looking at (a) di�erent initial
compositions, and (b) the d -colour generalisation.

The 2-colour case starting with one ball of each
colour can be studied by explicit calculations: let
U1 (n) denote the number of red balls in the urn at
time n. If U1 (n) = k (1 ≤ k ≤ n + 1), then we have
drawn k − 1 times a red ball, and n − k + 1 times a
black ball from the urn. The probability that the �rst

k − 1 balls drawn from the urn are red and the next
n − k + 1 are black is

1
2
· 2
3
· · · k − 1

2 + k · 1
3 + k · 2

4 + k · · · n − k + 1
n + 1

=
(k − 1)!(n − k + 1)!

(n + 1)! .

The same formula gives the probability of drawing
the same number of red and black balls in any other
order. Since there are

( n
k−1

)
= n!

(k−1)!(n−k+1)! di�erent
orders, we get

ℙ(U1 (n) = k ) =
1

n + 1
.

Figure 2. Histogram of
the proportion of red
balls at time 500 in 1000
realisations of a classic
2-colour Pólya urn

In other words, for all
integer times n, U1 (n)
is uniformly distributed
among all its possible
values {1, . . . ,n+1}, and
thus,U1 (n)/n converges
in distribution to a
uniform random variable
on [0,1] when n tends
to in�nity; this can be
seen in the simulations
of Figure 2.

In fact, using “martingale theory”, one can
prove that the proportion of red balls converges
almost surely to this uniform limit, which is a
stronger statement than convergence in distribution.
Almost-sure convergence means that the probability
of convergence of the proportion of red balls
to a random uniformly-distributed value is equal
to one, while convergence in distribution means
that the distribution of the proportion of red
balls converges to the uniform distribution. The
almost-sure convergence of U1 (n)/n is the reason
why, on the top of Figure 1, each of the trajectories
converges.

We now look at di�erent initial compositions: let
U1 (0) and U2 (0) be the number of red and black
balls in the urn at time 0. A similar calculation to
that above (using Stirling’s formula) implies that
the proportion of red balls converges to a Beta
distribution of parameter (U1 (0),U2 (0)). (A Beta
distribution is a two-parameter distribution on [0,1]:
Figure 3 shows how its density depends on the
values of the parameters. The Beta distribution of
parameter (1,1) is the uniform distribution on [0,1].)
Consequently, the long-term behaviour of the urn
depends on the initial composition of the urn.
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Figure 3. Di�erent Beta distribution densities

Similar results hold when there are d > 2 colours in
the urn. To study this case, we de�ne Z (n) as the
vector whose d coordinates are the proportions of
balls of each colour in the urn at time n, i.e.

Z (n) :=
(U1 (n)
n + d , . . . ,

Ud (n)
n + d

)
, (1)

whereUi (n) is the number of balls of colour i in the
urn at time n (note that n + d is the total number of
balls in the urn at time n since we start with d balls
and add one ball at each time step). Using similar
methods as in the 2-colour case, one can show that
Z (n) converges almost surely (i.e. with probability
one) to a limiting value Z∞, and this limiting value is
uniformly distributed on the simplex, i.e. on the set{

(x1, . . . ,xd ) ∈ [0,1]d :
d∑︁
i=1

xi = 1
}
,

where the vector Z (n) lives.

The uniform distribution on the simplex is called
a Dirichlet distribution of parameter (1, . . . ,1). If
we change the initial composition of the urn, then

the limiting distribution is a Dirichlet distribution of
parameter the initial composition vector:

Theorem 1. Let Ui (n) be the number of balls of
colour i in the urn at time n, in the case when the
replacement matrix equals the identity. Almost surely,

Z (n) → Dirichlet(U1 (0), . . . ,Ud (0)), as n → ∞.

The irreducible case

In this section, we look at the case of an irreducible
replacement matrix. In contrast to the identity case,
the composition of the urn in the irreducible case
has a deterministic limit (see the bottom of Figure 1),
which does not depend on the initial composition.

A d × d matrix R is irreducible if for all 1 ≤ i , j ≤ d ,
there exists n such that (Rn)i ,j ≠ 0; in particular, a
matrix with all entries positive is irreducible. In our
urn context, we also assume that all coe�cients of
the replacement matrix are non-negative (allowing
−1s on the diagonal, meaning that we discard the ball
that was drawn, is a straightforward generalisation).

To state the main result of this section, we need a
linear algebra theorem, due to Perron and Frobenius:

Theorem 2. If R is an irreducible matrix with
non-negative coe�cients, then the spectral radius Λ
of R is also a simple eigenvalue of R. (That is, Λ is a
real eigenvalue of R , has multiplicity one, and all other
eigenvalues of R have absolute value less than Λ.)

Moreover, there is a unit left-eigenvector v associated
to eigenvalue Λ whose coe�cients are all non-negative.

Sampling a classic Pólya urn via biased coin �ips

A classic exercise in probability theory (see
Williams’s book Probability with Martingales,
Exercise E10.8) is to prove the following result:
Start with an urn containing one red and one
black ball, sample a uniform random variable Θ

on [0,1], and then, at every time step, add to
the urn either a red ball, with probability Θ, or a
black ball, with probability 1 − Θ.

Lemma 1. If Û1 (n) is the number of red balls in
this urn at time n, then the process (Û1 (n))n≥0 has
the same distribution as (U1 (n))n≥0 in the classic
Pólya urn case with initial composition (1,1).

Conditionally on the random variable Θ,
Û1 (n)/n → Θ almost surely when n tends to
in�nity. Therefore, we can rephrase Lemma 1
as follows: one way to sample a Pólya urn
with identity replacement matrix and initial
composition one ball of each colour is to �rst
sample its uniform limit Θ, and then perform coin
�ips with bias Θ to decide what ball to add to the
urn at every time step.
To prove this result, you need basic notions of
conditional expectation and martingale theory; if
you have this background, I strongly encourage
you to try!
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As in Equation (1), we let Z (n) denote the vector
whose coordinates are the proportions of balls of
each colour in the urn at time n, i.e.,

Z (n) =
( U1 (n)
‖U (n)‖1

, . . . ,
Ud (n)
‖U (n)‖1

)
,

where ‖U (n)‖1 = U1 (n) + · · · + Ud (n) is the total
number of balls in the urn at time n. The following
result is due to Athreya and Karlin in 1968:

Theorem 3. If the replacement matrix R is irreducible,
then, for all non-empty initial compositions, Z (n) → v
almost surely when n tends to in�nity, where v is
the unit left-eigenvector with non-negative coordinates
associated to the spectral radius of R.

Note that this behaviour is drastically di�erent
from the behaviour of the classic Pólya urn (see
Theorem 1) in the following two ways: (a) the limit
in the irreducible case is deterministic and not
random as in the identity case, and (b) the limit in
the irreducible case does not depend on the initial
composition of the urn, while it does in the identity
case. I personally �nd point (b) surprising: say you
have an urn with red and black balls, and replacement
matrix

(2 1
3 2

)
, the renormalised composition vector

converges to v =
(
1/2,

√
3/2

)
(see the right-hand side of

Figure 1: the proportion of red balls indeed converges
to 1/(

√
3 + 1) ≈ 0.37) whether we started with one

black and one red ball or with a million red balls and
one black ball!

Fluctuations

From Theorems 1 and 3, we know that the
renormalised composition vector converges
almost surely to a limit (both in the identity
and the irreducible cases). It is natural to ask
about its speed of convergence to this limit.
Theorems about these “�uctuations” can be
proved using martingale theory.

Interestingly, in the irreducible case the
outcome depends on the spectral gap of the
matrix R, i.e. the ratio 𝜎 between the largest
of all other real parts of the eigenvalues of R
and its spectral radius. If 𝜎 < 1/2, then the
�uctuations of U (n) around nv are Gaussian
and of order n1/2, while if 𝜎 > 1/2, they are
non-Gaussian and of order n𝜎 (see, e.g, [3]).

Application to the random recursive tree

As mentioned in the introduction, results on Pólya
urns can be applied to the study of more complicated
stochastic processes, and among them, several
models for complex networks. In this section, we
apply Theorem 3 to prove convergence of the “degree
distribution” of a model called the random recursive
tree (RRT).

Embedding into continuous time

To prove Theorem 3, Athreya and Karlin embed
the urn process into continuous time: a technique
that is now standard for the analysis of Pólya urns.
In particular, Janson uses it in [3] to generalise
Athreya and Karlin’s result to a much wider class
of Pólya urns: he allows balls of di�erent colours
to have di�erent weights, the replacement matrix
to be random, and relaxes the irreducibility
assumption.

The idea is the following. Imagine that each ball in
the urn is equipped with a clock that rings after
a random time of exponential distribution with
parameter 1, independently from all other clocks.
When a clock rings, the corresponding ball, if it is

of colour i , splits into Ri ,j + 1i= j balls of colour j
(for all 1 ≤ j ≤ d ).
Now imagine that every time a clock rings, we
take a picture of the urn: using the standard
properties of the exponential distribution, one
can check that the ordered sequence of these
pictures (which is now a discrete time process)
is distributed like the Pólya urn of replacement
matrix R.
The advantage of the continuous time process
is that each ball is now independent from the
other balls; the drawback is that we added
some randomness by making the split times
random. The continuous time process we get by
embedding a Pólya urn into continuous time is
called a multi-type Galton–Watson process.
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The RRT is de�ned recursively as follows. At time
zero, the tree is two nodes linked by one edge, and
at every time step, we add a node to the tree and
create an edge between this new node and a node
chosen uniformly at random among the nodes that
are already in the tree.

This model was introduced as a model for networks
by Na and Rapaport in 1970. Two typical features
of real-life complex networks are the “small-world”
and the “scale-free” properties (see [2] where typical
properties of complex networks are discussed). It is
thus natural to ask whether the RRT has these two
properties.

A graph has the small-world property if the distance
between two nodes chosen uniformly at random
among all n nodes of the graph is of order at most
log n when n tends to in�nity; the RRT has the
small-world property (see, e.g., Dobrow 1996).

A graph is called scale-free if its degree distribution
is a power-law, i.e. if there exists 𝜏 > 0 such that the
proportion of nodes of degree i in the graph is of
order i−𝜏 when i → +∞. The degree of a node is the
number of other nodes it is linked to by edges (e.g.
in a friendship network, it is the number of friends of
a node). Most real-life networks are scale-free with
𝜏 usually between 2 and 3 (e.g. for the internet, it is
estimated that 𝜏 ≈ 2.5).

In the rest of this section, we prove that the RRT
is not scale-free; to do so, we use Theorem 3, as
originally done by Mahmoud and Smythe in 1992. For
all i ≥ 1, we let Ui (n) denote the number of nodes
of degree i in the n-node RRT.

The idea is to view the process U (n) =

(U1 (n),U2 (n), . . .) as a Pólya urn: the nodes of the
tree are the balls in the urn, and their colour is their
degree. At time zero, the urn contains two nodes
of colour 1 (because the tree contains two nodes of
degree 1), and at every time step, we pick a ball in
the urn, say of colour i , remove it from the urn and
add instead a ball of colour 1 and a ball of colour
i +1. In other words, the processU (n) is a Pólya urn
of initial composition (2, 0, 0, . . . ) and replacement
matrix

©­­­­«
0 1 0 0 · · · · · · · · ·
1 −1 1 0 0 · · · · · ·
1 0 −1 1 0 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .

ª®®®®¬
.

At this point, we could be worried for two reasons:
(a) the matrix has negative coe�cients and (b) it

is in�nite, i.e. there are in�nitely many colours! As
explained above, the −1s on the diagonal are not a
problem and Theorem 3 still holds if the matrix is
irreducible. But (b) is more worrying since Theorem 3
only holds for urns with �nitely-many colours.
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Figure 4. The degree distribution in the RRT seen as an
urn, and its truncated version at m = 4 (in the truncated
version, the node of degree 5 is considered as being of
the same colour as the node of degree 4)

Luckily, there exists a trick to reduce to a �nite
number of colours: we decide to consider all colours
above a threshold m ≥ 2 as one colour. Remarkably,
the m-colour process is also a Pólya urn process
(this is not true for all in�nitely-many-colour urns).
For example, take m = 4 (see Figure 4), and look at
the vector (U1 (n),U2 (n),U3 (n),

∑
i ≥4Ui (n)): it is a

Pólya urn with replacement matrix

©­­­«
0 1 0 0
1 −1 1 0
1 0 −1 1
1 0 0 0

ª®®®¬ .
This matrix is irreducible (its spectral radius is 1 and
left-eigenvector v = (1/2,1/4,1/8,1/8)); thus Theorem 3
applies and gives that, almost surely when n tends
to in�nity,

1
n
(U1 (n),U2 (n),U3 (n)) →

(1
2
,
1
4
,
1
8

)
.

Here we chose m = 4 as a threshold, but one can
choose an arbitrarily large threshold m, which gives
the following result:

Theorem 4. Let Ui (n) be the number of nodes of
degree i in the n-node RRT. For all i ≥ 1, almost surely
when n tends to in�nity,Ui (n)/n → 2−i . Consequently,
the RRT is not scale-free.

Application to the preferential attachment tree

Although the RRT does not have the scale-free
property (and is therefore not a realistic model for
complex networks), the idea of Na and Rapaport
to de�ne a dynamical structure (i.e. nodes arriving
one by one in the tree) led to the de�nition of more
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realistic models for networks. One of these models
is the preferential attachment tree (PAT), which was
originally de�ned by Yule in 1923, and popularised by
Barabási and Albert in 1999. In this section, we show
how one can prove that the PAT is scale-free (see
Figure 5 where the typical shapes of the RRT and of
the PAT are compared).

1/4

3/81/8

1/8 1/8

The PAT is de�ned as follows.
Start with two nodes linked
by an edge, and at every time
step, add a node to the tree,
and link it to a node chosen
at random among existing
nodes with probability proportional to their degrees:
this is the “preferential attachment”. For example,
on the picture, the next node to enter the tree will
connect with one of the 5 existing nodes with the
probabilities displayed.

Theorem 5. Let Ui (n) denote the number of nodes
of degree i ≥ 1 in the n-node PAT. Almost surely when
n tends to in�nity,

Ui (n)
n

→ 2
i (i + 1) (i + 2) ,

and thus the PAT is scale-free with index 𝜏 = 3.

Figure 5. A realisation of the RRT (left) and the PAT (right)
at large time (courtesy of Igor Kortchemski); the
scale-free property of the PAT can be “seen” on this
simulation: heuristically speaking, the PAT has large hubs
while degrees in the RRT are much more homogeneous

This result was proved by Mahmoud, Smythe and
Szyma �nski in 1993; they use similar methods as for
the RRT. The only additional subtlety is that the
vector (U1 (n),U2 (n), . . .) is not a Pólya urn, one has
to consider the vector (U1 (n),2U2 (n),3U3 (n), . . .)
instead. As in the RRT case, one can truncate
the number of colours to �nitely-many, and apply
Theorem 3 to conclude the proof of Theorem 5.

In�nitely-many colours

The Pólya urns arising from the application to the
RRT and the PAT both have in�nitely many colours. In
these two examples, we considered all colours above
a threshold to be the same, and used the remarkable
fact that the �nitely-many-colour urn obtained after
this reduction was still a Pólya urn. However, this
property does not hold for all in�nitely-many-colour
Pólya urns and consequently, as Janson wrote in [3],

“These examples suggest the possibility of
(and desire for) an extension of the results in
this paper to in�nite sets of types.”

For the case when the replacement matrix equals the
identity, the generalisation to in�nitely many colours
dates back to Blackwell and McQueen in 1973. Its
equivalent for the irreducible case, however, only
dates back to 2017 (with a preliminary particular case
in a 2013 paper by Bandyopadhyay and Thacker) and
is still the object of some open problems.

The main idea is to look at the composition of the
urn, not as a vector as in the �nitely-many colour
case, but as a measure on a set C of colours. As in
the �nitely-many-colour case, we de�ne a discrete
time process that depends on two parameters: the
initial composition, which is now a �nite measure m0
on C, and the replacement kernel (Kx )x ∈C, which is
a set (indexed by C) of �nite measures on C.

For all integers n ≥ 0, we set

mn+1 = mn + K𝜉 (n+1) ,

where 𝜉 (n + 1) is a C-valued random variable of
distribution mn/mn (C) (the normalisation is so that
the total mass of mn/mn (C) equals 1). The random
variable 𝜉 (n + 1) can be interpreted as the colour of
the ball drawn in the urn at time n + 1.

The �nitely-many-colour case �ts in this framework:
it corresponds to C = {1, . . . ,d }, m0 =

∑d
i=1Ui (0)𝛿i

and, for all 1 ≤ i ≤ d , Ki =
∑d
j=1Ri ,j 𝛿 j , where 𝛿x is

the Dirac mass at x .

However, this new model of “measure-valued
Pólya processes” is much more general than the
�nitely-many colour case: the set of colours can be
any measurable set. From our applications to random
trees, it is natural to consider C to be ℕ or ℤ, but
we can take C to be ℝ or any other measurable set.
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In these continuous cases, for all Borel set B ⊆ C,
we interpret mn (B) as the mass of all balls in the
urn at time n whose colour belongs to B , and Kx (B)
as the mass of balls with colour in B that we add in
the urn when drawing a ball of colour x .

Figure 7. Composition
measure of an urn
with colour set ℝ

Note that mn (B) and
Kx (B) do not have to
be integer valued, and
in fact mn and Kx can
be absolutely continuous
measures, in which case
we should think of coloured
dust in an urn instead of
coloured balls (see Figure 7).

We have now de�ned a
model that allows for in�nitely many colours, but
can we prove anything about it? Yes: Blackwell and
McQueen in 1973 proved an analogue to Theorem 1
for the identity case (Kx = 𝛿x for all x ∈ C). In
the appropriate analogue of the irreducible case for
in�nitely many colours, Bandyopadhyay and Thacker,
and Mailler and Marckert, simultaneously in 2017,
proved an equivalent of Theorem 3.

More recent results on the in�nitely-many-colour
irreducible case induce a stronger statement than
Theorem 4 for the degree distribution of the RRT
(see Mailler and Villemonais 2020):

Theorem 6. Let Ui (n) be the number of nodes of
degree i in the n-node RRT. For all 𝜀 > 0, for all
functions f : ℕ → ℝ such that f (n) = o ((2 − 𝜀)n)
when n → ∞, we have, almost surely when n → ∞,

1
n

∑︁
i ≥1

f (i )Ui (n) →
∑︁
i ≥1

f (i )2−i .

The di�culty of the in�nitely-many-colour case
comes from two main factors: (a) the embedding into
continuous-time method, which was very successful
in the �nitely-many colour case seems not to be
applicable to the in�nitely-many-colour case and
(b) all the proofs that rely on linear algebra in
the �nitely-many colour case need to be adapted
to the in�nite-dimensional setting using operator
theory. For example, a question that remains open
at the time of writing this article, and on which I
am currently working, is to prove theorems for the
�uctuations of these processes around their limits.

Summary

In this article, we focused on the convergence of
the composition of Pólya urns in the case when
the replacement matrix is the identity or when it is
irreducible. We then looked at applications of these
results to the analysis of random tree models for
complex networks. Motivated by these applications,
we looked at the de�nition a new framework for
Pólya urns with in�nitely many colours, a topic which
is the object of ongoing research.

In the introduction, we stated a quote of Pólya
from 1957 highlighting the wide applicability of Pólya
urns and this wide applicability continues today.
Indeed, in parallel universes, articles with the same
title as this one could have told stories ending
with applications of Pólya urns to adaptive clinical
trials (e.g. Laruelle and Pagès 2013, Zhang 2016),
or tissue growth modelling (Borovkov 2019), or
Monte-Carlo approximation methods (Wang, Roberts
and Steinsaltz 2018, Mailler and Villemonais 2020), or
reinforcement learning (ants �nding shortest paths
in networks: Kious, Mailler and Schapira 2020), all of
which are still active areas of research at the time
of writing.

FURTHER READING

[1] K.B. Athreya, P.E. Ney. Branching Processes
(Chapter V). Springer Berlin, 1972.
[2] R. van der Hofstad. Random Graphs and
Complex Networks. Cambridge Series in Statistical
and Probabilistic Mathematics, 2017.
[3] S. Janson. Functional limit theorems for
multitype branching processes and generalized
Pólya urns. Stoch. Proc. App. 110(2) (2004) 177–245.
[4] N.L. Johnson, S. Kotz. Urn models and their
application; an approach to modern discrete
probability theory. Wiley, 1977.

Cécile Mailler

Cécile is a lecturer in
probability and an EPSRC
postdoctoral fellow at the
University of Bath. Her
main research interests are
on branching processes
and reinforcement. She
particularly enjoys working

on problems that arise from applications, and even
more so if the model is named after an animal (she
has so far managed to work on the “monkey walk”
and the “ant walk”!).


