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When the offspring distribution of the tree has a subexponential
tail, that is          , for some c>0 then 

This means that the only interesting case is when the
offspring distribution has an exponential tail

Huang (2019)     
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Noting that        implies that we can
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The main idea is to treat the root as a star
which maintains an infection for a long time S

The root passes this infection down to another
star distance r away

This star can then pass the infection back to
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It can be shown that strong survival occurs if 
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Using this method, we have been able to show that if              
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We have a similar bound for       which holds if  
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