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Introduction

I Aim to better understand the normalisation theory of
first-order proofs, in particular Herbrand’s Theorem and cut
elimination

I Recent interest in developing first-order proof systems which
admit non-elementarily smaller cut-free proofs than traditional
Gentzen systems

I In today’s talk:
I overview deep inference and speedups over traditional proof systems
I overview Herbrand’s Theorem and cut elimination
I how the epsilon-calculus can help us to understand the

non-elementary compression of cut-free proofs and yield new
normalisation results
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Deep Inference

I More flexible composition mechanism than traditional
Gentzen systems using the open deduction formalism
[Guglielmi, Gundersen, Parigot, 2010]
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Deep Inference

I Can freely permute inference rules around a derivation due to
the more flexible composition mechanism

I Can permute inference rules to stratify derivations, revealing
decomposition theorems for many logics not observed in
Gentzen systems
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I Normalisation results for propositional logic
I quasipolynomial-complexity cut elimination [Jěrábek, 2008]
I normalisation procedures which are independent of connective

information using atomic flows [Gundersen, 2009; Guglielmi,
Gundersen, Straßburger, 2010]

I exponential speedups over cut-free sequent calculus [Bruscoli,
Guglielmi, 2009]

I Can express logics not expressible in the sequent calculus (e.g.
self-dual non-commutative binary connectives [Guglielmi,
2007])

I Deep inference systems do not admit the subformula property
and have a larger search space than Gentzen systems for proof
search
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I Existential contraction rules may be understood as case
analyses on the existential quantifiers in the premise

∃xA ∨ ∃xA
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∀xA ∧ ∀xA

I A semantically natural operation is thus to extract these case
analyses from a proof, deriving a disjunction of terms which
witness the existential quantifiers in the conclusion
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Herbrand’s Theorem
I In a deep-inference setting, Brünnler (2001) has presented a

proof of the general version of Herbrand’s Theorem in the
form of a decomposition theorem
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I ∀−→x A′ is called a Herbrand disjunction for A

I Reduction of undecidable first-order provability to decidable
propositional provability

I Non-elementary blowups in proof complexity
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Example: The Drinker Paradox

t
=

∀x1∀x2

t
=

f
w↓

P(c)
∨

t
i↓
P(x1) ∨ P(x1)

∨ f
w↓

P(x2)

=
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∃
∃y1∀x1∃y2∀x2((P(x1) ∨ P(y1)) ∨ (P(x2) ∨ P(y2)))
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∃y1(∀x1P(x1) ∨ P(y1)) ∨ ∃y2(∀x2P(x2) ∨ P(y2))
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Cut Elimination

I Elimination of cut rules from a proof

A ∧ A
i↑

f

I In Gentzen systems, cut rules are permuted up the proof,
resulting in non-determinism from certain reduction steps

I Non-elementary blowups in proof complexity for first-order
proofs
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Cuts and Quantifier-Shifts

I Cuts on quantifiers are simulated by r1↑ quantifier-shifts and
∀ rules
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Cut Elimination

I Cut rules may be decomposed to atomic form in deep
inference

a ∧ a
ai↑

f

I In propositional deep inference, a semantically natural
cut-elimination procedure exists, called the experiments
method [Guglielmi, 2002; Ralph, 2019]

φ Propositional rules

A
→

a ∧ · · · ∧ a
φ+

A+

∨
a ∧ · · · ∧ a
φ−

A−

A

S+ = S [f/a]

S− = S [f/a]

I Can be extended to first-order logic by first translating to
Herbrand normal form
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Relationship Between First-Order Phenomena

I Traditionally, in the sequent calculus, Herbrand’s Theorem is
proved as a corollary to cut elimination

I Brünnler’s proof of Herbrand’s Theorem using deep inference
does not require cuts to be eliminated from the proof,
establishing a kind of independence between Herbrand’s
Theorem and cut elimination

I Both cut elimination and Herbrand’s Theorem eliminate
quantifier-shifts, resulting in non-elementary blowups. Can
quantifier-shifts help us to understand the relationship
between these theorems?
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Elimination of Quantifier-Shifts

I Most quantifier-shifts are derivable with other rules, with the
exceptions of r1↓ and r1↑

∀x(A(x) ∧ B)
r2↓
∀xA(x) ∧ B

→

∀x(A(x) ∧ B)
qc↑

∀x A(x) ∧ B
w↑

t
∧ ∀x A(x)

w↑
t
∧ B

=

∀xA(x) ∧ B

∃x(A(x) ∨ B)
r3↓
∃xA(x) ∨ B

→
∃x

A(x)
∃
∃yA(y)

∨ B

=

∃xA(x) ∨ B

∃x(A(x) ∧ B)
r4↓
∃xA(x) ∧ B

→
∃x

A(x)
∃
∃yA(y)

∧ B

=

∃xA(x) ∧ B

∀x(A(x) ∨ B)
r1↓
∀xA(x) ∨ B

l
∃xA(x) ∧ B

r1↑
∃x(A(x) ∧ B)



Falsifiers

∀x A(x) ∨
B(x)

∃
∃yB(y)

r1↓
∀xA(x) ∨ ∃yB(y)

I No constructive witness for ∃y given in the derivation

∃y =

{
e if there exists some e ∈ D s.t. A(e)

a for some arbitrary a ∈ D, otherwise

= JεxA(x)KD

I Quantifier-shifts conceal the epsilon-calculus!
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Epsilon-Calculus

I Expand the language of the predicate calculus by
epsilon-terms:

JεxA(x)KD =

{
e if there exists some e ∈ D s.t. A(e)

a for some arbitrary a ∈ D, otherwise

I Introduced by Hilbert (1927) as a tool for developing
consistency proofs

I It is known that the traditional epsilon-calculus admits
non-elementarily smaller cut-free proofs than LK [Baaz, Lolić,
2024] and may be used to obtain speedups in the computation
of Herbrand disjunctions over traditional methods [Baaz,
Leitsch, Lolić, 2017]
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2024] and may be used to obtain speedups in the computation
of Herbrand disjunctions over traditional methods [Baaz,
Leitsch, Lolić, 2017]



Epsilon-Calculus
I In the traditional epsilon-calculus, epsilon-terms are

introduced by critical axioms and quantifiers are encoded by
epsilon-terms:

A(t)
CA

A(εxA(x))

∃xA(x) ≡ A(εxA(x))

∀xA(x) ≡ A(εxA(x))

I Epsilon-terms are eliminated by “epsilon substitution”, similar
in spirit to Herbrand’s Theorem

I From [Baaz, Leitsch, Lolić, 2017]:
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Falsifier Rule

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))



Falsifier Rule

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))

∀x A(x) ∨
B(x)

∃
∃yB(y)

r1↓
∀xA(x) ∨ ∃yB(y)

→

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨
B(εyA(y))
∃
∃yB(y)

I Existential rules can be permuted down through
quantifier-shifts



Falsifier Rule

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))

∀x(A(x) ∨ B)
r1↓
∀xA(x) ∨ B

I Equivalent to r1↓ when x does not occur free in B



Falsifier Rule

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))

A(t1) ∨ · · · ∨ A(tn)

{∃,qc↓}

∃xA(x)
∧ B

r1↑
∃x(A(x) ∧ B)

→

(A(t1) ∨ · · · ∨ A(tn)) ∧
B

{c↑}

B ∧ · · · ∧ B

{s}

(A(t1) ∧ B) ∨ · · · ∨ (A(tn) ∧ B)

{∃,qc↓}

∃x(A(x) ∧ B)

I r1↑ rules may be eliminated using falsifiers – ∃xA(x) may be
assigned an explicit disjunction of witnesses A(t1)∨ · · · ∨A(tn)



Falsifier Rule

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))

I Provides a new perspective on quantifier-shifts and
non-elementary proof compression

I The epsilon-calculus provides a syntax for expressing
non-constructive witnesses to existential quantifiers generated
in proofs

I Does not use the cumbersome encodings of quantifiers by
epsilon-terms



Extraction of Case Analyses

I A semantically natural operation to perform on a first-order
proof is to extract the case analyses

∃xA ∨ ∃xA
qc↓

∃xA
∀xA

qc↑
∀xA ∧ ∀xA

I Herbrand’s Theorem also eliminates quantifier-shifts by
making the proof constructive, resulting in non-elementary
blowups – can falsifiers prevent this?

I Simple case analysis extraction by permuting quantifier
contraction rules
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Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

∧ C

s

(∀xA ∧ ∀xA) ∨ (∃yB ∧ C)
m

∀xA ∨ ∃yB
r2↑

∃y(∀xA ∨ B)
∧ (∀xA ∨ C)

r1↑
∃y((∀xA ∨ B) ∧ (∀xA ∨ C))

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

∧ C

s

(∀xA ∧ ∀xA) ∨ (∃yB ∧ C)
m

∀xA ∨ ∃yB
r2↑

∃y(∀xA ∨ B)
∧ (∀xA ∨ C)

r1↑
∃y((∀xA ∨ B) ∧ (∀xA ∨ C))

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

∧ C

s

(∀xA ∧ ∀xA) ∨ (∃yB ∧ C)
m

∀xA ∨ ∃yB
r2↑

∃y(∀xA ∨ B)
∧ (∀xA ∨ C)

r1↑
∃y((∀xA ∨ B) ∧ (∀xA ∨ C))

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

→

∀x(A ∨ ∃yB)
qc↑

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
∧

∀x(A ∨ ∃yB)
r1↓

∀xA ∨ ∃yB
2s

(∀xA ∧ ∀xA) ∨
∃yB ∨ ∃yB

qc↓
∃yB

∃xA ∨ ∃xA
qc↓

∃xA
∧ ∀yB

r1↑
∃x(A ∧ ∀yB)

→

(∃xA ∨ ∃xA) ∧
∀yB

qc↑
∀yB ∧ ∀yB

2s

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)
∨

∃xA ∧ ∀yB
r1↑

∃x(A ∧ ∀yB)

qc↓
∃x(A ∧ ∀yB)

∀x(A ∨ ∃yB)
r1↓

∀xA
qc↑

∀xA ∧ ∀xA
∨ ∃yB

∧ C

s

(∀xA ∧ ∀xA) ∨ (∃yB ∧ C)
m

∀xA ∨ ∃yB
r2↑

∃y(∀xA ∨ B)
∧ (∀xA ∨ C)

r1↑
∃y((∀xA ∨ B) ∧ (∀xA ∨ C))

I Superfluous qc↓ rules are introduced, despite the witnesses to
the existential quantifiers being equal



Termination Using Falsifiers

∀x A ∨
B′

{∃,qc↓}

∃yB(y)

r1↓

∀xA
qc↑
∀xA ∧ ∀xA

∨ ∃yB(y)

→

∀x(A ∨ B′)
qc↑

∀x(A ∨ B′)
ε

∀xA ∨ B′[εyA(y)/x]
∧

∀x(A ∨ B′)
ε

∀xA ∨ B′[εyA(y)/x]

2s

(∀xA ∧ ∀xA) ∨

B′[εyA(y)/x] ∨ B′[εyA(y)/x]
c↓

B′[εyA(y)/x]

{∃,qc↓}

∃yB(y)

where B ′ = B(t1) ∨ · · · ∨ B(tn)

I The more expressive syntax of the epsilon-calculus can express
that the terms are equal – there is no need for a case analysis
and so no superfluous qc↓ rules are introduced
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Extraction of Case Analyses

I Extract case analyses from a first-order proof in three phases:
I Phase 1: Permute existential contraction rules qc↓ down to the

bottom of the proof
I Phase 2: Permute existential instantiation rules ∃ down to the

bottom of the proof
I Phase 3: Permute universal cocontraction rules qc↑ up the

proof until they are eliminated

I To begin, eliminate quantifier-shifts as shown

∀x(A(x) ∨ B)
r1↓
∀xA(x) ∨ B

→
∀x(A(x) ∨ B)

ε

∀xA(x) ∨ B
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Phase 1: Permute qc↓ rules down

I Duplicate rules inside the context of qc↓ rules:

∃xK{A} ∨ ∃xK{A}
qc↓

∃xK
{

A
ρ

B

}
→

∃xK
{

A
ρ

B

}
∨ ∃xK

{
A

ρ

B

}
qc↓

∃xK{B}

I Permutation for r1↑ rules:

∃xA(x) ∨ ∃xA(x)
qc↓

∃xA(x)
∧ B

r1↑
∃x(A(x) ∧ B)

→

(∃xA(x) ∨ ∃xA(x)) ∧ B
c↑

B ∧ B

s

(∃xA(x) ∨ (∃xA(x) ∧ B)) ∧ B
s

∃xA(x) ∧ B
r1↑
∃x(A(x) ∧ B)

∨
∃xA(x) ∧ B

r1↑
∃x(A(x) ∧ B)

qc↓
∃x(A(x) ∧ B)
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s
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Phase 2: Permute ∃ rules down
I Rules inside the context of ∃ rules are altered by a

substitution:

K{A}[t/x]
∃

∃xK
{

A
ρ

B

}
→

K

{
A

ρ

B

}
[t/x]

∃
∃xK{B}

I Permutations for ε rules:

∀y

B(y) ∨ K


A(t)

∃
∃xA(x)




ε

∀yB(y) ∨ K{∃xA}[εzB(z)/y ]

→

∀y(B(y) ∨ K{A(t)})
ε

∀yB(y) ∨ K


A(t)

∃
∃xA(x)

 [εzB(z)/y ]

∀y

K


A(t)

∃
∃xA(x)

 ∨ B(y)


ε

∀yK{∃xA(x)} ∨ B(εz (K{∃xA(x)}[z/y ]))

→

∀y(K{A(t)} ∨ B(y))
ε

∀yK


A(t)

∃
∃xA(x)

 ∨ B(εz (K{A(t)}[z/y ]))
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∃
∃xA(x)
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K


A(t)

∃
∃xA(x)
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ε

∀yK{∃xA(x)} ∨ B(εz (K{∃xA(x)}[z/y ]))
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ε

∀yK


A(t)

∃
∃xA(x)

 ∨ B(εz (K{A(t)}[z/y ]))



Phase 3: Permute qc↑ rules up
I Duplicate rules inside the context of qc↑ rules:

∀xK
{

B
ρ

A

}
qc↑
∀xK{A} ∧ ∀xK{A}

→

∀xK{B}
qc↑

∀xK
{

B
ρ

A

}
∧ ∀xK

{
B

ρ

A

}

I When permuting qc↑ up through ε rules, we employ the
following construction, which is invariant under the
permutation:

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))
∧ · · · ∧

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))

{s}

(∀xA(x) ∧ · · · ∧ ∀xA(x)) ∨

B(εyA(y)) ∨ · · · ∨ B(εyA(y))

{c↓}

B(εyA(y))
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ε
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∧ · · · ∧

∀x(A(x) ∨ B(x))
ε
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The Falsifier Decomposition Theorem

φ First-order rules

A
→

φ′ Propositional rules + {ε, ∀} (SKSgε)

A′

{∃,qc↓}

A

∀x(A(x) ∨ B(x))
ε

∀xA(x) ∨ B(εyA(y))

l
∀xA(x)
∀

A(t)

I I call A′ a falsifier disjunction for A
I I call SKSgε the falsifier calculus

I The following bounds hold:

|φ′|
|A′|
|φ′|ε
|A′|ε

I Non-elementarily smaller than Herbrand disjunctions and
Herbrand proofs

I Unlike Herbrand’s Theorem, we have extracted the case
analyses from the proof but left the quantifier-shifts intact, in
the form of falsifier rules which introduce epsilon-terms

I Epsilon-terms represent elements which are drawn from the
domain non-constructively in the proof

I Does not use the cumbersome encodings of quantifiers by
epsilon-terms
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∀
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Example: The Drinker Paradox

t
=

∀x1∀x2

t
=

f
w↓

P(c)
∨

t
i↓

P(x1) ∨ P(x1)
∨

f
w↓

P(x2)

=

∀x1∀x2((P(x1) ∨ P(c)) ∨ (P(x2) ∨ P(x1)))
∃

∀x1∃y2∀x2((P(x1) ∨ P(c)) ∨ (P(x2) ∨ P(y2)))
∃

∃y1∀x1∃y2∀x2((P(x1) ∨ P(y1)) ∨ (P(x2) ∨ P(y2)))

{r1↓,r3↓}

∃y1(∀x1P(x1) ∨ P(y1)) ∨ ∃y2(∀x2P(x2) ∨ P(y2))
qc↓

∃y(∀xP(x) ∨ P(y))

t
=

∀x
t

i↓
P(x) ∨ P(x)

ε

∀xP(x) ∨ P(εyP(y))
∃

∃y(∀xP(x) ∨ P(y))

Herbrand disjunction:

∀x1∀x2(P(x1) ∨ P(c) ∨ P(x2) ∨ P(x1))

Falsifier disjunction:

∀xP(x) ∨ P(εyP(y))



Example: The Drinker Paradox

t
i↓
P(εxP(x)) ∨ P(εxP(x))

CA

P(εxP(x)) ∨ P(εy (P(εxP(x)) ∨ P(y)))

A(t)
CA

A(εxA(x))

∃xA(x) ≡ A(εxA(x))

∀xA(x) ≡ A(εxA(x))

t
=

∀x
t

i↓
P(x) ∨ P(x)

ε

∀xP(x) ∨ P(εyP(y))
∃
∃y(∀xP(x) ∨ P(y))



Ongoing Work: Falsifiers as an Intermediate Between
Herbrand’s Theorem and Cut Elimination

Falsifier normal form

First-order proof

Herbrand’s TheoremCut Elimination

Falsifier Decomposition
Theorem

Epsilon
substitution?

Epsilon-extended
experiments method?



Conclusion and ε-agitprop

I A new approach to the epsilon-calculus, guided by
considerations of complexity and normalisation

I A new decomposition theorem for first-order proofs, which
does not fully separate the first-order and propositional parts

I Expanding the language of the predicate calculus by
epsilon-terms yields:

I improved normalisation properties of quantifier-shifts
I termination of case analysis extraction
I better understanding of the speedups yielded by quantifier-shifts
I syntax for expressing non-constructive behaviour of existential

witnesses
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