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Introduction

» Aim to better understand the normalisation theory of
first-order proofs, in particular Herbrand's Theorem and cut
elimination

P> Recent interest in developing first-order proof systems which
admit non-elementarily smaller cut-free proofs than traditional
Gentzen systems

P In today’s talk:

> overview deep inference and speedups over traditional proof systems

» overview Herbrand's Theorem and cut elimination

» how the epsilon-calculus can help us to understand the
non-elementary compression of cut-free proofs and yield new
normalisation results



Deep Inference

> More flexible composition mechanism than traditional
Gentzen systems using the open deduction formalism
[Guglielmi, Gundersen, Parigot, 2010]
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Deep Inference

> More flexible composition mechanism than traditional
Gentzen systems using the open deduction formalism
[Guglielmi, Gundersen, Parigot, 2010]
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» Applying inference rules at arbitrary depth inside formulae
yields improved normalisation properties
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Deep Inference

» Can freely permute inference rules around a derivation due to
the more flexible composition mechanism

» Can permute inference rules to stratify derivations, revealing
decomposition theorems for many logics not observed in
Gentzen systems

H{Ph-~»7pi}
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A A//
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> useful design principle for proof systems, including combinatorial
proofs [Hughes, 2006]
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Deep Inference

» Normalisation results for propositional logic

> quasipolynomial-complexity cut elimination [Jefabek, 2008]

» normalisation procedures which are independent of connective
information using atomic flows [Gundersen, 2009; Guglielmi,
Gundersen, StraBburger, 2010]

> exponential speedups over cut-free sequent calculus [Bruscoli,
Guglielmi, 2009]

» Can express logics not expressible in the sequent calculus (e.g.
self-dual non-commutative binary connectives [Guglielmi,
2007])

» Deep inference systems do not admit the subformula property
and have a larger search space than Gentzen systems for proof
search
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Proof System

i t, wJ,i c¢AVA SAA(B\/C) , A(t)
AV A A A (AAB)V C IxA(x)
iTZAA whA g A m(A/\B)V(C/\D) vaA(x)
f t ANA (Av C)A(BV D) A(t)
0l Vx(A(x) V B) ol Vx(A(x) A B) a1 Ix(A(x) V B) " 3x(A(x) A B)
VxA(x) V B VxA(x) N B IxA(x) V B IxA(x) A B
at IxA(x) A B 2t IxA(x) V B at VxA(x) N B wt VxA(x) V B
Ix(A(x) A B) Ix(A(x) V B) Vx(A(x) A B) Vx(A(x) V B)
where x ¢ fv(B)

+ equality rules for connective commutativity and associativity, unit equations, quantifier ordering, vacuous
quantification and quantifier renaming

» Every inference rule p| has a corresponding dual inference
rule pt o
A

pié pt
B

| |l
=



Quantifier-Shifts
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Quantifier-Shifts
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" IxA(x) A B " IxA(x) vV B o VxA(x) A “ VxA(x) V B
Ix(A(x) A B) Ix(A(x) Vv B) Vx(A(x) A B) Vx(A(x) V B)

where x ¢ fv(B)

» Theorem [Aguilera, Baaz, 2019]: For a class of tautologies S
due to Statman (1979), there is no elementary function
bounding the length of the shortest cut-free LK proof of any
formula in S by its shortest cut-free LK + QS proof

» Corollary: First-order deep-inference systems admit
non-elementarily smaller cut-free proofs than LK
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Herbrand’s Theorem

P Existential contraction rules may be understood as case
analyses on the existential quantifiers in the premise

dxA V IxA VXA
qc} =————— qct ————
IxA VxA A VxA

» A semantically natural operation is thus to extract these case
analyses from a proof, deriving a disjunction of terms which
witness the existential quantifiers in the conclusion



Herbrand’s Theorem

» In a deep-inference setting, Briinnler (2001) has presented a
proof of the general version of Herbrand's Theorem in the
form of a decomposition theorem

v7 HPropositional rules

AI
HFirst—order rules — A”/;{H}
A || {r1),r20,r3,r4l}
A///
[ {acs)

A



Herbrand’s Theorem

» In a deep-inference setting, Briinnler (2001) has presented a
proof of the general version of Herbrand's Theorem in the
form of a decomposition theorem

v7 HPropositional rules

AI
HFirst—order rules — A”/;{H}
A || {r1),r20,r3,r4l}
A///
[ {acs)
A

> VXA is called a Herbrand disjunction for A



Herbrand’s Theorem

» In a deep-inference setting, Briinnler (2001) has presented a
proof of the general version of Herbrand's Theorem in the
form of a decomposition theorem

v7 HPropositional rules

AI
HFirst—order rules — A”/;{H}
A || {r1),r20,r3,r4l}
A///
[ {acs)
A

> VXA is called a Herbrand disjunction for A

» Reduction of undecidable first-order provability to decidable
propositional provability



Herbrand’s Theorem

» In a deep-inference setting, Briinnler (2001) has presented a
proof of the general version of Herbrand's Theorem in the
form of a decomposition theorem

v7 HPropositional rules

AI
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A///
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A

> VXA is called a Herbrand disjunction for A

» Reduction of undecidable first-order provability to decidable
propositional provability

» Non-elementary blowups in proof complexity
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Herbrand’s Theorem

V7 HPropositionaI rules

Al
HFirst-order rules - A||”{3}
A || {r14,r2],r3],r4)}
A
|| {qcl}
A

» The Herbrand disjunction VX A’ can be interpreted
algorithmically as a backtracking game [Coquand, 1995]

» Equivalence of deep-inference Herbrand proofs and expansion
proofs [Miller, 1987] demonstrated by Ralph (2010)



Example: The Drinker Paradox

_ t
_ t
VX1VX2 Wl,if V il t — V wl f
P(c) P(x1) V P(x1) P(x2)

L Va¥xe((P0a) v P(c)) v (POx) V P(x1)))
L ¥xa3yYo((P(a) V P(c)) V (Pe) V P(y2)))
I ¥xa3yxe((P(xt) V P(y1)) V (P(x2) V P(y2)))
[ {r1er3iy
. Fy1(Vx1 P(x1) V P(y1)) V Iya(Vxa P(x2) V P(y2))
Fy(YxP(x) vV P(y))

qc

Herbrand disjunction:

VX1VX2(P(X1) V ﬁ(C) \ P(XZ) \ ﬁ(Xl))
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Cut Elimination

» Elimination of cut rules from a proof
iTAAA
f

» In Gentzen systems, cut rules are permuted up the proof,
resulting in non-determinism from certain reduction steps

» Non-elementary blowups in proof complexity for first-order
proofs
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Cuts and Quantifier-Shifts

» Cuts on quantifiers are simulated by r11 quantifier-shifts and

Y rules
_ VxA(x) A IxA(x)
i VyA(y) A IxA(x)
i VxA(x) A IxA(x) VyA(y)| —
0 : - - v 200 A A(X)
it
f

f

» Cuts can be reduced to quantifier-shifts and atomic cuts in
deep inference
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» Cut rules may be decomposed to atomic form in deep

inference
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» In propositional deep inference, a semantically natural
cut-elimination procedure exists, called the experiments
method [Guglielmi, 2002; Ralph, 2019]
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Cut Elimination

» Cut rules may be decomposed to atomic form in deep

inference

ait

anNa

» In propositional deep inference, a semantically natural
cut-elimination procedure exists, called the experiments
method [Guglielmi, 2002; Ralph, 2019]

) HPropositional rules N
A

|

an---

A+

N a

an---Aa
o |
p

St = S[f/3]
S— = S[f/4]

» Can be extended to first-order logic by first translating to

Herbrand normal form
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Relationship Between First-Order Phenomena

» Traditionally, in the sequent calculus, Herbrand's Theorem is
proved as a corollary to cut elimination

» Briinnler's proof of Herbrand’s Theorem using deep inference
does not require cuts to be eliminated from the proof,
establishing a kind of independence between Herbrand's
Theorem and cut elimination

» Both cut elimination and Herbrand's Theorem eliminate
quantifier-shifts, resulting in non-elementary blowups. Can
quantifier-shifts help us to understand the relationship
between these theorems?



Elimination of Quantifier-Shifts

> Most quantifier-shifts are derivable with other rules, with the

exceptions of r1] and r11

Vx(A(x) A B)

qct

r2¢w — Vx| A(x) A WTE A VX[ | wt AL AN B
VxA(x) A B t t
B VxA(x) A B
. B, A(x)
a XA VE) - 33 SV E
IxA(x) Vv B B
. IKA(X)VB
XA 1 B) ENIE HA:‘X) AB
IxA(x) A B yAY)

IxA(x) A B
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Falsifiers

B(x)
JyB(y)

VxA(x) V JyB(y)

Vx| A(x) V|3

rl]

» No constructive witness for dy given in the derivation

. e if there exists some e € D s.t. A(e)
y = . .
a for some arbitrary a € D, otherwise

= [exA¥)p

» Quantifier-shifts conceal the epsilon-calculus!
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Epsilon-Calculus

» Expand the language of the predicate calculus by
epsilon-terms:

e if there exists some e € D s.t. A(e)

ﬂ@ﬂ@bz{

a for some arbitrary a € D, otherwise

» Introduced by Hilbert (1927) as a tool for developing
consistency proofs

> It is known that the traditional epsilon-calculus admits
non-elementarily smaller cut-free proofs than LK [Baaz, Loli¢,
2024] and may be used to obtain speedups in the computation
of Herbrand disjunctions over traditional methods [Baaz,
Leitsch, Loli¢, 2017]
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Epsilon-Calculus

» In the traditional epsilon-calculus, epsilon-terms are
introduced by critical axioms and quantifiers are encoded by
epsilon-terms:

A(t) IxA(x) = A(z—:xé(x))

CA—m-
A(exA(x)) VxA(x) = A(exA(x))

P Epsilon-terms are eliminated by “epsilon substitution”, similar
in spirit to Herbrand's Theorem

» From [Baaz, Leitsch, Loli¢, 2017]:

Despite the advantages, the e-calculus has never become popular in compu-
tational proof theory of first order logic. The main reasons are the untractabil-
ity of almost all nonclassical logics by any adaptation of the e-formalism and
the clumsiness of the e-formalism itself: consider the e-translation of Jzdy3z
Alz,y,2): Aley Az, ey Az, y, 6. Az, Y, 2)), €. A(z, ey Az, y, 6, Az, Y, 2)), 2)),
ey Aler A, ey Az, y, e, A(,y, 2)), e A(x, e A(x,y, 6. A(x,y, 2)), 2)), Y, €. Aex
A(z,ey Alz,y,e, Az,y,2)),e, Alz,ey Alz,y,e, Alz,y,2)),2)).9,2)), €2 A(ex
Az ey Az, y,e: Az, y, 2)), e:A(x, 6y Alm,y, 62 A(Z,9, 2)), 2)), yA(ea Az, €y
Az, y, e, Az, y, 2)),e; Az, ey Alx,y, 6. A(z,y,2)),2)), Yy, €. Ales Az, ey A,
Y, £2 Az, y, 2)), €2 Alx, ey Alz,y, 2 A2,y,2)),2)),1,2)),2)).
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Falsifier Rule

rl]

Vx(A(x) V B(x))

VXA(x) V B(e, A(y))

Vx| A(x) V

3

B(x)
JyB(y)

Vx(A(x) V B(x))

VxA(x) V Jy B(y)

_B(5/A))

xA(x
A JyB(y)

> Existential rules can be permuted down through
quantifier-shifts




Falsifier Rule

Vx(A(x) V B(x))
VXA(x) V B(e, A(y))

" Vx(A(x) V B)
VxA(x)V B

» Equivalent to rl| when x does not occur free in B



Falsifier Rule

Vx(A(x) V B(x))
VXA(x) V B(e, A(y))

B
(A(t1) V-V A(tn)) A {1}
A(tr) V-V A(tn) BA---AB
||{EI,ch,} ANB
IxA(x) - o)
it <(AC) A B) (A(t1)) AB)V ---V (A(ta) A B)
[KEESS:

Ix(A(x) A B)

» r11 rules may be eliminated using falsifiers — 3xA(x) may be
assigned an explicit disjunction of witnesses A(t1)V ---V A(tp)



Falsifier Rule

Vx(A(x) v B(x))

VxA(x) V B(g, A(y))

» Provides a new perspective on quantifier-shifts and
non-elementary proof compression

» The epsilon-calculus provides a syntax for expressing
non-constructive witnesses to existential quantifiers generated
in proofs

» Does not use the cumbersome encodings of quantifiers by
epsilon-terms
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Extraction of Case Analyses

» A semantically natural operation to perform on a first-order
proof is to extract the case analyses

acl dxA V IxA act VXA
IxA VxA A VXA

» Herbrand’s Theorem also eliminates quantifier-shifts by
making the proof constructive, resulting in non-elementary
blowups — can falsifiers prevent this?

» Simple case analysis extraction by permuting quantifier
contraction rules
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qct
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—
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VXA A Vx 3,8V 3,8
(VXA A VxA) V | acl ————

JyB
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—
ot —2A |\ 3,8 %
VxA N VXA

0 3yB Vv 3yB
JyB

(VXA A VxA) V | ac

» Superfluous qc| rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

Vx(A vV TyB)
qct
Vx(A vV 3yB Vx(AV 3yB Vx(A Vv JyB)
" x( yB) 1 ( ) Al
VxA Vv 3yB VxA VvV 3yB
—
act —AVXA ~|v3s %
VXA A\ Vx EVEY
(VXA A VxA) V | acd —————
JyB
VyB
(3xA V IxA) A | aet ———
VyB N VyB
JxA Vv IxA
qcl ———— [A VyB 2
IxA —
dxA A VyB 3IxA N VyB
nt " — 2 | ar = 4
3x(A A VyB) Ax(A A VyB) Ix(A A VyB)

qcl

Ix(A A VyB)

» Superfluous qc| rules are introduced, despite the witnesses to
the existential quantifiers being equal



Non-Termination of Case Analysis Extraction

il

Vx(A Vv 3yB)

qct

VxA

—— | Vv dyB
VXA N VXA

qcd

JxA Vv IxA

A VyB
IxA

Ix(A A VyB)

» Superfluous qcl rules are introduced, despite the witnesses to

qct

2s

2s

qcl

the existential quantifiers being equal

Vx(A vV TyB)
Vx(AV 3yB) Vx(A v 3yB)
1l A rl
VxA Vv 3yB VxA VvV 3yB
Vx(A Vv 3yB)
rl]
3yB v 3yB
(VXA A VxA) vV qciu ot XA v 3yB ne
JyB VXA A VXA
S
(VxA A VxA) V (3yB A C)
VyB VxA Vv 3yB
(3xA V 3xA) A | et ——— 21— |A (VXA V ()
VyB A YyB Jy(VxA V B)
rit
3y((VxA V B) A (VXA V C))
dxA A VyB 3IxA N VyB
1t v |t
Ix(A A VyB) Ix(A A VyB)
3x(A A VyB)



Non-Termination of Case Analysis Extraction

il

Vx(A Vv 3yB)

qc

P —_
VXA N VXA

VxA v 3B

qcd

JxA Vv IxA

A VyB

IxA

Ix(A A VyB)

» Superfluous qcl rules are introduced, despite the witnesses to

qct

2s

2s

qcl

the existential quantifiers being equal

Vx(A vV TyB)
Vx(AV 3yB) Vx(A v 3yB)
1l A rl
VxA Vv 3yB VxA VvV 3yB
Vx(A Vv 3yB)
rl]
3yB v 3yB
(VxA A VxA) V| qet 22 r— A |38 ne
JyB VXA A VXA
S
(VxA A VxA) V (3yB A C)
VyB VxA Vv 3yB
(3xA V IxA) A | act ———— 2t ————— | A (VXA V C)
VyB A YyB Jy(VxA V B)
rit
Jy((VxA V B) A (VA V C))
IxA A VyB 3IxA N VyB
1t v |t
Ix(A A VyB) Ix(A A VyB)
3x(A A VyB)



Non-Termination of Case Analysis Extraction

il

Vx(A Vv 3yB)

qc

P —_
VXA N VXA

VxA v 3B

qcd

JxA Vv IxA

A VyB

IxA

Ix(A A VyB)

» Superfluous qcl rules are introduced, despite the witnesses to

qct

2s

2s

qcl

the existential quantifiers being equal

Vx(A vV TyB)
Vx(AV 3yB) Vx(A v 3yB)
1l A rl
VxA Vv 3yB VxA VvV 3yB
Vx(A Vv 3yB)
1l
3yB v 3yB
(VxA A VxA) V| qet 22 r— A |38 ne
JyB VXA A VXA
S
(VxA A VxA) V (3yB A C)
VyB VxA Vv 3yB
(3xA V IxA) A | act ———— 2t ————— | A (VXA V C)
VyB A YyB Jy(VxA V B)
rit
Jy((VxA V B) A (VA V C))
IxA A VyB 3IxA N VyB
1t v |t
Ix(A A VyB) Ix(A A VyB)
3x(A A VyB)



Non-Termination of Case Analysis Extraction

il

Vx(A Vv 3yB)

qc

P —_
VXA N VXA

VxA v 3B

qcd

JxA Vv IxA

A VyB

IxA

Ix(A A VyB)

qct

2s

2s

qcl

Vx(A vV TyB)
Vx(AV 3yB) Vx(A v 3yB)
1l A rl
VxA Vv 3yB VxA VvV 3yB
Vx(A Vv 3yB)
1l
3yB v 3yB
(VxA A VxA) V| qet 22 r— A |38 ne
JyB VXA A VXA
S
(VxA A VxA) V (3yB A C)
VyB VxA Vv 3yB
(3xA V IxA) A | act ———— 2t ————— | A (VXA V C)
VyB A VyB Jy(VxA V B)
rlf
Jy((VxA V B) A (VA V C))
IxA A VyB 3IxA N VyB
1t v |t
Ix(A A VyB) Ix(A A VyB)
3x(A A VyB)

» Superfluous qc| rules are introduced, despite the witnesses to
the existential quantifiers being equal



Termination Using Falsifiers

rl]

Vx|

B/
AV ” {3,qcl}
JyB(y)

Vx(AV B)

qct

Vx(AV B')

Vx(AV B')

VxAV B'[e, A(y)/x]

N —
VxAV B'[e, A(y)/x]

2s

et — 22—
VXA A VXA

VxA
= v 3yB(y)

o B'[eyA(y)/x] V B'[eyAly) /]

B'[eyAly)/x]

(VXA AVXA) V

|| {3,qcd}
3yB(y)

where B’ = B(t1) V - -+ V B(t,)




Termination Using Falsifiers

rl)

Vx|

BI
AV ” {3,qcl}
JyB(y)

act — 22
VxA A VXA

VxA
= v 3yB(y)

qct

2s

Vx(AV B)

Vx(AV B) Vx(AV B)
/\ €

VxAV B'[e, A(y)/x]

VXAV B'[eyA(y)/x]

(VXA AVXA) V

o B'[eyA(y)/x] V B'[eyA(y) /]
B'[eyA(y)/x]

|| {3,qcd}
3yB(y)

where B’ = B(t1) V - -+ V B(t)

» The more expressive syntax of the epsilon-calculus can express
that the terms are equal — there is no need for a case analysis
and so no superfluous qc| rules are introduced




Extraction of Case Analyses

» Extract case analyses from a first-order proof in three phases:

» Phase 1: Permute existential contraction rules qc| down to the
bottom of the proof

» Phase 2: Permute existential instantiation rules 3 down to the
bottom of the proof

» Phase 3: Permute universal cocontraction rules qcf up the
proof until they are eliminated



Extraction of Case Analyses

» Extract case analyses from a first-order proof in three phases:

» Phase 1: Permute existential contraction rules qc| down to the
bottom of the proof

» Phase 2: Permute existential instantiation rules 3 down to the
bottom of the proof

» Phase 3: Permute universal cocontraction rules qcf up the
proof until they are eliminated

» To begin, eliminate quantifier-shifts as shown

" Vx(A(x) V B) . 6VX(A(X) V B)
VxA(x) VvV B VxA(x)V B



Phase 1: Permute qc| rules down

» Duplicate rules inside the context of qcJ rules:

IxK{A} V IxK{A}
qc¢) —m88 —— —

IxK {

P

]

qcl

dxK {

p—

}v aXK{

IxK{B}




Phase 1: Permute qc| rules down

» Duplicate rules inside the context of qcJ rules:

IXK{A} v IxK{A}
ac HxK{pé} v HxK{ﬂA}

%
IxK < | p A
B qcd

» Permutation for r11 rules:

IxK{B}

(3XA(x) v 3AG) 7| <t f =
o) AR VIAX) | o T (3AK) Y GrA) AB) A B
AxA(x) — s
14 " IxA(x) A B " IxA(x) A B
I(AG) A B) A0~ B) | " A A B)

qcl

Ix(A(x) A B)



Phase 2: Permute 3 rules down

» Rules inside the context of 3 rules are altered by a

substitution:
K{A}[t/x]
? K{ pg }[t/x]

_>
HXK{ pé }
B I
IxK{B}




Phase 2: Permute 3 rules down

» Rules inside the context of 3 rules are altered by a
substitution:

__ K{A}lt/A]

HXK{ pé}
B

» Permutations for € rules:

€

Vy | B K{|3 Ale)
7 v IxA(x)

VyB(y) V K{3xA}[ezB(2)/]

Vy | K| 2 Al) B
Y IxA(x) VB

i

[t/x]

IxK{B}

Vy(B(y)

v K{A(1)})

VyB(y) vV K { 3

} [e2B(2)/y]

Vy(K

{A()} v B(y))

VyK{3xA(x)} V B(ez(K{3xA(x)}[z/y]))

Alt)
K { ? IxA(x)

} Vv B(ez(K{A(t)}z/¥1)




Phase 3: Permute qc? rules up

» Duplicate rules inside the context of qc? rules:

‘v’xK{ pE}
A

qct —
VxK{A} A VXK{A}

qct

VxK{B}

VxK {

b

VxK {




Phase 3: Permute qc? rules up
» Duplicate rules inside the context of qc? rules:

VxK{B}

qct
‘v’xK{ p%}
—
VxK{ pE} A VXK{ pg}

qct —
VxK{A} A VXK{A}

> When permuting qct up through ¢ rules, we employ the
following construction, which is invariant under the

permutation:

. Vx(A(x) V B(x)) NRE Vx(A(x) V B(x))
VxA(x) V B(e, A(y)) VxA(x) V B(g, A(y))

{s}

B(eyA(y)) V -+ V B(gyAly))
(VXA(x) A - ANVXA(X)) V ” {ct}
B(eyAly))




The Falsifier Decomposition Theorem

¢’ HPropositionaI rules + {e,V} (SKSge) |, _¥X(AX) Vv B(x)
1) HFirst—order rules - Al VxA(x) V B(eyA(y))
A [KEXS: )
A A(t)

» | call A’ a falsifier disjunction for A
» | call SKSge the falsifier calculus



The Falsifier Decomposition Theorem

¢’ HPropositionaI rules + {e,V} (SKSge)
¢ HFirst—order rules - A
A (X!
A

» | call A’ a falsifier disjunction for A
» | call SKSge the falsifier calculus
» The following bounds hold:

¢/ = exp®(O(|¢[* In |¢]))
|A'| = exp(O(|8]? In|¢]))
6’| = exp™?(O(|9I* In|¢]))
Al = exp™®(O(|[* In[0]))

VxA(x) V B(eyA(y))
v VxA(x)
A(t)




The Falsifier Decomposition Theorem

¢’ HPropositionaI rules + {e,V} (SKSge)
¢ HFirst—order rules - A
A (X!
A

» | call A’ a falsifier disjunction for A
» | call SKSge the falsifier calculus
» The following bounds hold:

|¢/| € ELEMENTARY
|A'| € ELEMENTARY
|¢/|. € ELEMENTARY
|A'|. € ELEMENTARY

. Vx(A(x) V B(x))

v VxA(x)
A(t)

» Non-elementarily smaller than Herbrand disjunctions and

Herbrand proofs




The Falsifier Decomposition Theorem

¢’ HPropositionaI rules + {e,V} (SKSge)
b HFirst—order rules — A
A [REE
A

. Vx(A(x) V B(x))

VxA(x) V B(g,A(y))

v VxA(x)
At)

» Unlike Herbrand’'s Theorem, we have extracted the case
analyses from the proof but left the quantifier-shifts intact, in
the form of falsifier rules which introduce epsilon-terms

» Epsilon-terms represent elements which are drawn from the

domain non-constructively in the proof

» Does not use the cumbersome encodings of quantifiers by

epsilon-terms




Example: The Drinker Paradox

t

Vx1Vxp wl f il; wi f

P(o) P(x1) vV P(x1) P(x2)

<

Vo Vo ((P(x1) V P(c)) V (P(x2) V P(x1)))
Vx13y2Vxo((P(x1) V P(c)) V (P(x2) V P(y2)))
I Vxi 3y ((P(x1) V P(n)) V (P(x2) V P(x2)))
| {1,531}
wl 3y1(VxiP(x1) V P(y1)) V 3y (V2 P(x2) V P(y2))

3y(YxP(x) V P(y))

Herbrand disjunction:

VxiVxa(P(x1) V P(c) V P(x2) V P(x1))

Vx| b ————

€

2 VxP(x) vV 5(syﬁ(y))

Iy (vxP(x) V P(y))

Falsifier disjunction:

VxP(x) V ﬁ(syﬁ(y))



Example: The Drinker Paradox

t
P(exP(x)) V P(exP(x)) t

il

P(exP(x)) V P(e,(P(exP(x)) V P(y))) | 1t ————
P(x) V P(x)

CA

; VxP(x) V ﬁ(syﬁ(y))
Jy(VxP(x) V P(y))

A(t) IxA(x)
A(exA(x)) VxA(x)

A(exA(x))
A(exA(x))




Ongoing Work: Falsifiers as an Intermediate Between
Herbrand's Theorem and Cut Elimination

First-order proof

Falsifier Decomposition
Theorem

| Falsifier normal form |
Epsilon-extended Epsilon
experiments method? substitution?

Cut Elimination Herbrand’s Theorem
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» A new approach to the epsilon-calculus, guided by
considerations of complexity and normalisation
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Conclusion and e-agitprop

» A new approach to the epsilon-calculus, guided by
considerations of complexity and normalisation

» A new decomposition theorem for first-order proofs, which
does not fully separate the first-order and propositional parts

» Expanding the language of the predicate calculus by
epsilon-terms yields:

>

>
>
>

improved normalisation properties of quantifier-shifts
termination of case analysis extraction

better understanding of the speedups yielded by quantifier-shifts
syntax for expressing non-constructive behaviour of existential
witnesses



