Non-Elementary Compression of First-Order Proofs in Deep Inference Using Epsilon-Terms

Cameron Allett

PhD Student at the University of Bath Supervisor: Willem Heijltjes

The Oxford Advanced Seminar on Informatic Structures
31 May 2024

Introduction

- Aim to better understand the normalisation theory of first-order proofs, in particular Herbrand's Theorem and cut elimination

Introduction

- Aim to better understand the normalisation theory of first-order proofs, in particular Herbrand's Theorem and cut elimination
- Recent interest in developing first-order proof systems which admit non-elementarily smaller cut-free proofs than traditional Gentzen systems

Introduction

- Aim to better understand the normalisation theory of first-order proofs, in particular Herbrand's Theorem and cut elimination
- Recent interest in developing first-order proof systems which admit non-elementarily smaller cut-free proofs than traditional Gentzen systems
- In today's talk:
- overview deep inference and speedups over traditional proof systems
- overview Herbrand's Theorem and cut elimination
- how the epsilon-calculus can help us to understand the non-elementary compression of cut-free proofs and yield new normalisation results

Deep Inference

- More flexible composition mechanism than traditional Gentzen systems using the open deduction formalism [Guglielmi, Gundersen, Parigot, 2010]

$$
\begin{aligned}
& \begin{array}{c}
A \\
\phi\|\wedge \psi\| \\
B
\end{array} \underset{D}{C} \underset{\phi \wedge \psi \|}{A \wedge D} \\
& \begin{array}{cc}
A \\
\phi \| \vee \psi \\
B & C \\
D & A \vee C \\
\phi \vee \psi \| \\
B \vee D
\end{array}
\end{aligned}
$$

Deep Inference

- More flexible composition mechanism than traditional Gentzen systems using the open deduction formalism [Guglielmi, Gundersen, Parigot, 2010]

$$
\begin{array}{cccc}
A & C & A \wedge C & \\
\phi\|\wedge \psi\| & \equiv \phi \wedge \psi \| & A \\
B & B \wedge D & \phi \| & A \\
A & C & A \vee C & \overparen{B} \equiv \phi ; \psi \| \\
\phi\|\vee \psi\| & \equiv \\
B \vee \psi \| & \psi \| & C \\
B & B \vee D & C &
\end{array}
$$

Deep Inference

- More flexible composition mechanism than traditional Gentzen systems using the open deduction formalism [Guglielmi, Gundersen, Parigot, 2010]

Deep Inference

- More flexible composition mechanism than traditional Gentzen systems using the open deduction formalism [Guglielmi, Gundersen, Parigot, 2010]
- Applying inference rules at arbitrary depth inside formulae yields improved normalisation properties

$$
K\left\{\rho \frac{A}{B}\right\}
$$

Deep Inference

- Can freely permute inference rules around a derivation due to the more flexible composition mechanism

Deep Inference

- Can freely permute inference rules around a derivation due to the more flexible composition mechanism
- Can permute inference rules to stratify derivations, revealing decomposition theorems for many logics not observed in Gentzen systems

Deep Inference

- Can freely permute inference rules around a derivation due to the more flexible composition mechanism
- Can permute inference rules to stratify derivations, revealing decomposition theorems for many logics not observed in Gentzen systems

- useful design principle for proof systems, including combinatorial proofs [Hughes, 2006]

Deep Inference

- Finer granularity of inference rules: rules may be decomposed into derivations of smaller rules to obtain atomicity

Deep Inference

- Finer granularity of inference rules: rules may be decomposed into derivations of smaller rules to obtain atomicity

$$
c \downarrow \frac{\forall x(a(x) \wedge b(x)) \vee \forall x(a(x) \wedge b(x))}{\forall x(a(x) \wedge b(x))}
$$

Deep Inference

- Finer granularity of inference rules: rules may be decomposed into derivations of smaller rules to obtain atomicity

$\underline{\forall x(a(x) \wedge b(x)) \vee \forall x(a(x) \wedge b(x))}$		
$\forall x(a(x) \wedge b(x))$		
\downarrow		
$\forall x(a(x) \wedge b(x)) \vee \forall x(a(x) \wedge b(x))$		
	$\forall \frac{\forall y(a(y) \wedge b(y))}{a(x) \wedge b(x)}$	$\vee \checkmark \forall \frac{\forall y(a(y) \wedge b(y))}{a(x) \wedge b(x)}$
	$a \subset \downarrow \frac{a(x) \vee a(x)}{a(x)}$	$\wedge a \times \frac{b(x) \vee b(x)}{b(x)}$

Deep Inference

- Finer granularity of inference rules: rules may be decomposed into derivations of smaller rules to obtain atomicity

$\forall x(a(x) \wedge b(x)) \vee \forall x(a(x) \wedge b(x))$		
$\forall x(a(x) \wedge b(x))$		
\downarrow		
$\forall x(a(x) \wedge b(x)) \vee \forall x(a(x) \wedge b(x))$		
$\forall x$	$\forall \frac{\forall y(a(y) \wedge b(y))}{a(x) \wedge b(x)}$, $\forall \frac{\forall y(a(y) \wedge b(y))}{a(x) \wedge b(x)}$
	ac $\downarrow \frac{a(x) \vee a(x)}{a(x)}$	ac $\downarrow \frac{b(x) \vee b(x)}{b(x)}$

Deep Inference

- Normalisation results for propositional logic
- quasipolynomial-complexity cut elimination [Jeřábek, 2008]
- normalisation procedures which are independent of connective information using atomic flows [Gundersen, 2009; Guglielmi, Gundersen, Straßburger, 2010]
- exponential speedups over cut-free sequent calculus [Bruscoli, Guglielmi, 2009]

Deep Inference

- Normalisation results for propositional logic
- quasipolynomial-complexity cut elimination [Jeřábek, 2008]
- normalisation procedures which are independent of connective information using atomic flows [Gundersen, 2009; Guglielmi, Gundersen, Straßburger, 2010]
- exponential speedups over cut-free sequent calculus [Bruscoli, Guglielmi, 2009]
- Can express logics not expressible in the sequent calculus (e.g. self-dual non-commutative binary connectives [Guglielmi, 2007])

Deep Inference

- Normalisation results for propositional logic
- quasipolynomial-complexity cut elimination [Jeřábek, 2008]
- normalisation procedures which are independent of connective information using atomic flows [Gundersen, 2009; Guglielmi, Gundersen, Straßburger, 2010]
- exponential speedups over cut-free sequent calculus [Bruscoli, Guglielmi, 2009]
- Can express logics not expressible in the sequent calculus (e.g. self-dual non-commutative binary connectives [Guglielmi, 2007])
- Deep inference systems do not admit the subformula property and have a larger search space than Gentzen systems for proof search

Proof System

$$
\begin{array}{lcccc}
i \downarrow \frac{\mathbf{t}}{A \vee \bar{A}} \quad w \downarrow \frac{\mathbf{f}}{A} & c \downarrow \frac{A \vee A}{A} & \mathrm{~s} \frac{A \wedge(B \vee C)}{(A \wedge B) \vee C} & \exists \frac{A(t)}{\exists x A(x)} \\
\mathrm{i} \uparrow \frac{\bar{A} \wedge A}{\mathbf{f}} & \mathrm{w} \uparrow \frac{A}{\mathbf{t}} & \mathrm{c} \uparrow \frac{A}{A \wedge A} & \mathrm{~m} \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)} & \forall \frac{\forall \times A(x)}{A(t)}
\end{array}
$$

$$
\left.\begin{array}{r}
\mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \quad
\end{array} \quad \mathrm{r} 2 \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B} \quad \text { r3 } \downarrow \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} \quad r 4 \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B}\right)
$$

+ equality rules for connective commutativity and associativity, unit equations, quantifier ordering, vacuous quantification and quantifier renaming

Proof System

$$
\begin{array}{lccc}
i \downarrow \frac{\mathbf{t}}{A \vee \bar{A}} \quad w \downarrow \frac{\mathbf{f}}{A} & c \downarrow \frac{A \vee A}{A} & \mathrm{~s} \frac{A \wedge(B \vee C)}{(A \wedge B) \vee C} & \exists \frac{A(t)}{\exists x A(x)} \\
\mathrm{i} \uparrow \frac{\bar{A} \wedge A}{\mathbf{f}} & \mathrm{w} \uparrow \frac{A}{\mathbf{t}} & \mathrm{c} \uparrow \frac{A}{A \wedge A} & \mathrm{~m} \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}
\end{array} \quad \forall \frac{\forall \times A(x)}{A(t)}
$$

$$
\begin{array}{llll}
\mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} & \mathrm{r} 2 \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B} & \mathrm{r} 3 \downarrow \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} & \mathrm{r} 4 \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B} \\
\mathrm{r} 1 \uparrow \frac{\exists x A(x) \wedge B}{\exists x(A(x) \wedge B)} & \mathrm{r} 2 \uparrow \frac{\exists x A(x) \vee B}{\exists x(A(x) \vee B)} & \mathrm{r} 3 \uparrow \frac{\forall x A(x) \wedge B}{\forall x(A(x) \wedge B)} & \mathrm{r} 4 \uparrow \frac{\forall x A(x) \vee B}{\forall x(A(x) \vee B)}
\end{array}
$$

$$
\text { where } x \notin f v(B)
$$

+ equality rules for connective commutativity and associativity, unit equations, quantifier ordering, vacuous quantification and quantifier renaming
- Proofs are derivations with premise \mathbf{t} (true)

Proof System

$$
\begin{array}{lccc}
i \downarrow \frac{\mathbf{t}}{A \vee \bar{A}} \quad w \downarrow \frac{\mathbf{f}}{A} & c \downarrow \frac{A \vee A}{A} & \mathrm{~s} \frac{A \wedge(B \vee C)}{(A \wedge B) \vee C} & \exists \frac{A(t)}{\exists x A(x)} \\
\mathrm{i} \uparrow \frac{\bar{A} \wedge A}{\mathbf{f}} & \mathrm{w} \uparrow \frac{A}{\mathbf{t}} & \mathrm{c} \uparrow \frac{A}{A \wedge A} & \mathrm{~m} \frac{(A \wedge B) \vee(C \wedge D)}{(A \vee C) \wedge(B \vee D)}
\end{array} \quad \forall \frac{\forall \times A(x)}{A(t)}
$$

$$
\begin{gathered}
\mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \quad
\end{gathered} \quad \mathrm{r} 2 \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B} \quad \begin{aligned}
\mathrm{r} 3 \downarrow \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} & \mathrm{r} 4 \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B} \\
\mathrm{r} 1 \uparrow \frac{\exists x A(x) \wedge B}{\exists x(A(x) \wedge B)} & \mathrm{r} 2 \uparrow \frac{\exists x A(x) \vee B}{\exists x(A(x) \vee B)}
\end{aligned} \quad \mathrm{r} 3 \uparrow \frac{\forall x A(x) \wedge B}{\forall x(A(x) \wedge B)} \quad r 4 \uparrow \frac{\forall x A(x) \vee B}{\forall x(A(x) \vee B)}
$$

+ equality rules for connective commutativity and associativity, unit equations, quantifier ordering, vacuous quantification and quantifier renaming
- Every inference rule $\rho \downarrow$ has a corresponding dual inference rule $\rho \uparrow$

$$
\rho \downarrow \frac{A}{B} \quad \rho \uparrow \frac{\bar{B}}{\bar{A}}
$$

Quantifier-Shifts

$$
\left.\begin{array}{c}
\mathrm{r} \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \quad
\end{array} \quad \begin{array}{c}
\mathrm{r} 2 \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B}
\end{array} \quad \mathrm{r} 3 \downarrow \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} \quad r \quad r \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B}\right)
$$

Quantifier-Shifts

$$
\begin{aligned}
& \mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \quad \mathrm{r} 2 \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B} \quad \mathrm{r} 3 \downarrow \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} \quad \mathrm{r} \downarrow \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B} \\
& \mathrm{r} 1 \uparrow \frac{\exists x A(x) \wedge B}{\exists x(A(x) \wedge B)} \quad \mathrm{r} 2 \uparrow \frac{\exists x A(x) \vee B}{\exists x(A(x) \vee B)} \quad \mathrm{r} 3 \uparrow \frac{\forall x A(x) \wedge B}{\forall x(A(x) \wedge B)} \quad \mathrm{r} 4 \uparrow \frac{\forall x A(x) \vee B}{\forall x(A(x) \vee B)} \\
& \text { where } x \notin f v(B)
\end{aligned}
$$

- Theorem [Aguilera, Baaz, 2019]: For a class of tautologies S due to Statman (1979), there is no elementary function bounding the length of the shortest cut-free LK proof of any formula in S by its shortest cut-free $\mathbf{L K}+Q S$ proof

Quantifier-Shifts

$$
\begin{aligned}
& \mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \quad \mathrm{r} 2 \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B} \quad \mathrm{r} 3 \downarrow \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} \quad \mathrm{r} \downarrow \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B} \\
& \begin{array}{r}
\mathrm{r} 1 \uparrow \frac{\exists x A(x) \wedge B}{\exists x(A(x) \wedge B)} \quad \mathrm{r} 2 \uparrow \frac{\exists x A(x) \vee B}{\exists x(A(x) \vee B)} \quad \stackrel{\mathrm{r} 3 \uparrow}{\forall x(A} \frac{\forall x A}{\forall x)} \\
\text { where } x \notin f v(B)
\end{array}
\end{aligned}
$$

- Theorem [Aguilera, Baaz, 2019]: For a class of tautologies S due to Statman (1979), there is no elementary function bounding the length of the shortest cut-free LK proof of any formula in S by its shortest cut-free $\mathbf{L K}+Q S$ proof
- Corollary: First-order deep-inference systems admit non-elementarily smaller cut-free proofs than LK

Herbrand's Theorem

- Existential contraction rules may be understood as case analyses on the existential quantifiers in the premise

$$
\text { qс } \downarrow \frac{\exists x A \vee \exists x A}{\exists x A}
$$

$$
\mathrm{qc} \mathrm{\uparrow} \frac{\forall x A}{\forall x A \wedge \forall x A}
$$

Herbrand's Theorem

- Existential contraction rules may be understood as case analyses on the existential quantifiers in the premise

$$
\text { qс } \downarrow \frac{\exists x A \vee \exists x A}{\exists x A}
$$

$$
\mathrm{qc} \mathrm{\uparrow} \frac{\forall x A}{\forall x A \wedge \forall x A}
$$

- A semantically natural operation is thus to extract these case analyses from a proof, deriving a disjunction of terms which witness the existential quantifiers in the conclusion

Herbrand's Theorem

- In a deep-inference setting, Brünnler (2001) has presented a proof of the general version of Herbrand's Theorem in the form of a decomposition theorem

Herbrand's Theorem

- In a deep-inference setting, Brünnler (2001) has presented a proof of the general version of Herbrand's Theorem in the form of a decomposition theorem

- $\forall \vec{x} A^{\prime}$ is called a Herbrand disjunction for A

Herbrand's Theorem

- In a deep-inference setting, Brünnler (2001) has presented a proof of the general version of Herbrand's Theorem in the form of a decomposition theorem

$-\forall \vec{x} A^{\prime}$ is called a Herbrand disjunction for A
- Reduction of undecidable first-order provability to decidable propositional provability

Herbrand's Theorem

- In a deep-inference setting, Brünnler (2001) has presented a proof of the general version of Herbrand's Theorem in the form of a decomposition theorem

$-\forall \vec{x} A^{\prime}$ is called a Herbrand disjunction for A
- Reduction of undecidable first-order provability to decidable propositional provability
- Non-elementary blowups in proof complexity

Herbrand's Theorem

- The Herbrand disjunction $\forall \vec{x} A^{\prime}$ can be interpreted algorithmically as a backtracking game [Coquand, 1995]

Herbrand's Theorem

- The Herbrand disjunction $\forall \vec{x} A^{\prime}$ can be interpreted algorithmically as a backtracking game [Coquand, 1995]
- Equivalence of deep-inference Herbrand proofs and expansion proofs [Miller, 1987] demonstrated by Ralph (2010)

Example: The Drinker Paradox

Herbrand disjunction:
$\forall x_{1} \forall x_{2}\left(P\left(x_{1}\right) \vee \bar{P}(c) \vee P\left(x_{2}\right) \vee \bar{P}\left(x_{1}\right)\right)$

Cut Elimination

- Elimination of cut rules from a proof

$$
i \uparrow \frac{A \wedge \bar{A}}{\mathrm{f}}
$$

Cut Elimination

- Elimination of cut rules from a proof

$$
i \uparrow \frac{A \wedge \bar{A}}{\mathrm{f}}
$$

- In Gentzen systems, cut rules are permuted up the proof, resulting in non-determinism from certain reduction steps

Cut Elimination

- Elimination of cut rules from a proof

$$
i \uparrow \frac{A \wedge \bar{A}}{\mathrm{f}}
$$

- In Gentzen systems, cut rules are permuted up the proof, resulting in non-determinism from certain reduction steps
- Non-elementary blowups in proof complexity for first-order proofs

Cuts and Quantifier-Shifts

- Cuts on quantifiers are simulated by $\mathrm{r} 1 \uparrow$ quantifier-shifts and \forall rules

Cuts and Quantifier-Shifts

- Cuts on quantifiers are simulated by $\mathrm{r} 1 \uparrow$ quantifier-shifts and \forall rules
- Cuts can be reduced to quantifier-shifts and atomic cuts in deep inference

Cut Elimination

- Cut rules may be decomposed to atomic form in deep inference

$$
a i \uparrow \frac{a \wedge \bar{a}}{f}
$$

Cut Elimination

- Cut rules may be decomposed to atomic form in deep inference

$$
\mathrm{ai} \mathrm{\uparrow} \frac{a \wedge \bar{a}}{f}
$$

- In propositional deep inference, a semantically natural cut-elimination procedure exists, called the experiments method [Guglielmi, 2002; Ralph, 2019]

Cut Elimination

- Cut rules may be decomposed to atomic form in deep inference

$$
\mathrm{ai} \mathrm{\uparrow} \frac{a \wedge \bar{a}}{f}
$$

- In propositional deep inference, a semantically natural cut-elimination procedure exists, called the experiments method [Guglielmi, 2002; Ralph, 2019]

- Can be extended to first-order logic by first translating to Herbrand normal form

Relationship Between First-Order Phenomena

- Traditionally, in the sequent calculus, Herbrand's Theorem is proved as a corollary to cut elimination

Relationship Between First-Order Phenomena

- Traditionally, in the sequent calculus, Herbrand's Theorem is proved as a corollary to cut elimination
- Brünnler's proof of Herbrand's Theorem using deep inference does not require cuts to be eliminated from the proof, establishing a kind of independence between Herbrand's Theorem and cut elimination

Relationship Between First-Order Phenomena

- Traditionally, in the sequent calculus, Herbrand's Theorem is proved as a corollary to cut elimination
- Brünnler's proof of Herbrand's Theorem using deep inference does not require cuts to be eliminated from the proof, establishing a kind of independence between Herbrand's Theorem and cut elimination
- Both cut elimination and Herbrand's Theorem eliminate quantifier-shifts, resulting in non-elementary blowups. Can quantifier-shifts help us to understand the relationship between these theorems?

Elimination of Quantifier－Shifts

－Most quantifier－shifts are derivable with other rules，with the exceptions of $\mathrm{r} 1 \downarrow$ and $\mathrm{r} 1 \uparrow$

$$
\begin{aligned}
& \mathrm{r} \downarrow \downarrow \frac{\forall x(A(x) \wedge B)}{\forall x A(x) \wedge B} \quad \rightarrow \\
& \text { r3 } \frac{\exists x(A(x) \vee B)}{\exists x A(x) \vee B} \rightarrow=\frac{\exists x \nexists \frac{A(x)}{\exists y A(y)} \vee B}{\exists x A(x) \vee B} \\
& \begin{array}{r}
\mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \\
\mathrm{r} 1 \uparrow \frac{\exists x A(x) \wedge B}{\exists x(A(x) \wedge B)}
\end{array} \\
& r 4 \downarrow \frac{\exists x(A(x) \wedge B)}{\exists x A(x) \wedge B} \rightarrow \frac{\exists x \text { ヨ青 } \exists \frac{\square(x)}{\exists y(y)} \wedge B}{\exists x A(x) \wedge B}
\end{aligned}
$$

Falsifiers

$$
\mathrm{r} 1 \downarrow \frac{\forall x \sqrt{A(x) \vee \sqrt{\exists \frac{B(x)}{\exists y B(y)}}}}{\forall x A(x) \vee \exists y B(y)}
$$

- No constructive witness for $\exists y$ given in the derivation

Falsifiers

$$
\mathrm{r} \downarrow \frac{\forall x \sqrt{A(x) \vee \sqrt{\exists \frac{B(x)}{\exists y B(y)}}}}{\forall x A(x) \vee \exists y B(y)}
$$

- No constructive witness for $\exists y$ given in the derivation

$$
\exists y= \begin{cases}e & \text { if there exists some } e \in \mathbb{D} \text { s.t. } \bar{A}(e) \\ a & \text { for some arbitrary } a \in \mathbb{D}, \text { otherwise }\end{cases}
$$

Falsifiers

$$
\mathrm{r} \downarrow \downarrow \frac{\forall x \sqrt{A(x) \vee \sqrt{\exists \frac{B(x)}{\exists y B(y)}}}}{\forall x A(x) \vee \exists y B(y)}
$$

- No constructive witness for $\exists y$ given in the derivation

$$
\begin{aligned}
\exists y & = \begin{cases}e & \text { if there exists some } e \in \mathbb{D} \text { s.t. } \bar{A}(e) \\
a & \text { for some arbitrary } a \in \mathbb{D} \text {, otherwise }\end{cases} \\
& =\llbracket \varepsilon_{x} \bar{A}(x) \rrbracket_{\mathbb{D}}
\end{aligned}
$$

- Quantifier-shifts conceal the epsilon-calculus!

Epsilon-Calculus

- Expand the language of the predicate calculus by epsilon-terms:

$$
\llbracket \varepsilon_{x} A(x) \rrbracket \mathbb{D}= \begin{cases}e & \text { if there exists some } e \in \mathbb{D} \text { s.t. } A(e) \\ a & \text { for some arbitrary } a \in \mathbb{D} \text {, otherwise }\end{cases}
$$

Epsilon-Calculus

- Expand the language of the predicate calculus by epsilon-terms:

$$
\llbracket \varepsilon_{x} A(x) \rrbracket_{\mathbb{D}}= \begin{cases}e & \text { if there exists some } e \in \mathbb{D} \text { s.t. } A(e) \\ a & \text { for some arbitrary } a \in \mathbb{D}, \text { otherwise }\end{cases}
$$

- Introduced by Hilbert (1927) as a tool for developing consistency proofs

Epsilon-Calculus

- Expand the language of the predicate calculus by epsilon-terms:

$$
\llbracket \varepsilon_{x} A(x) \rrbracket_{\mathbb{D}}= \begin{cases}e & \text { if there exists some } e \in \mathbb{D} \text { s.t. } A(e) \\ a & \text { for some arbitrary } a \in \mathbb{D}, \text { otherwise }\end{cases}
$$

- Introduced by Hilbert (1927) as a tool for developing consistency proofs
- It is known that the traditional epsilon-calculus admits non-elementarily smaller cut-free proofs than LK [Baaz, Lolić, 2024] and may be used to obtain speedups in the computation of Herbrand disjunctions over traditional methods [Baaz, Leitsch, Lolić, 2017]

Epsilon-Calculus

- In the traditional epsilon-calculus, epsilon-terms are introduced by critical axioms and quantifiers are encoded by epsilon-terms:

$$
C A \frac{A(t)}{A\left(\varepsilon_{x} A(x)\right)}
$$

$$
\begin{aligned}
& \exists x A(x) \equiv A\left(\varepsilon_{x} A(x)\right) \\
& \forall x A(x) \equiv A\left(\varepsilon_{x} \bar{A}(x)\right)
\end{aligned}
$$

Epsilon-Calculus

- In the traditional epsilon-calculus, epsilon-terms are introduced by critical axioms and quantifiers are encoded by epsilon-terms:

$$
\begin{aligned}
C A \frac{A(t)}{A\left(\varepsilon_{x} A(x)\right)} & \exists x A(x) \equiv A\left(\varepsilon_{x} A(x)\right) \\
& \forall x A(x) \equiv A\left(\varepsilon_{x} \bar{A}(x)\right)
\end{aligned}
$$

- Epsilon-terms are eliminated by "epsilon substitution", similar in spirit to Herbrand's Theorem

Epsilon-Calculus

- In the traditional epsilon-calculus, epsilon-terms are introduced by critical axioms and quantifiers are encoded by epsilon-terms:

$$
\begin{aligned}
& \exists x A(x) \equiv A\left(\varepsilon_{x} A(x)\right) \\
& \forall x A(x) \equiv A\left(\varepsilon_{x} \bar{A}(x)\right)
\end{aligned}
$$

- Epsilon-terms are eliminated by "epsilon substitution", similar in spirit to Herbrand's Theorem
- From [Baaz, Leitsch, Lolić, 2017]:

Despite the advantages, the ε-calculus has never become popular in computational proof theory of first order logic. The main reasons are the untractability of almost all nonclassical logics by any adaptation of the ε-formalism and the clumsiness of the ε-formalism itself: consider the ε-translation of $\exists x \exists y \exists z$ $A(x, y, z): A\left(\varepsilon_{x} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), \varepsilon_{z} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), z\right)\right)\right.$, $\varepsilon_{y} A\left(\varepsilon_{x} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), \varepsilon_{z} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), z\right)\right), y, \varepsilon_{z} A\left(\varepsilon_{x}\right.\right.$ $\left.\left.A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), \varepsilon_{z} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), z\right)\right), y, z\right)\right), \varepsilon_{z} A\left(\varepsilon_{x}\right.$ $A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), \varepsilon_{z} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), z\right)\right), \varepsilon_{y} A\left(\varepsilon_{x} A\left(x, \varepsilon_{y}\right.\right.$ $\left.A\left(x, y, \varepsilon_{z} A(x, y, z)\right), \varepsilon_{z} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), z\right)\right), y, \varepsilon_{z} A\left(\varepsilon_{x} A\left(x, \varepsilon_{y} A(x\right.\right.$, $\left.\left.\left.\left.\left.\left.y, \varepsilon_{z} A(x, y, z)\right), \varepsilon_{z} A\left(x, \varepsilon_{y} A\left(x, y, \varepsilon_{z} A(x, y, z)\right), z\right)\right), y, z\right)\right), z\right)\right)$.

Falsifier Rule

$$
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)}
$$

Falsifier Rule

$$
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)}
$$

- Existential rules can be permuted down through quantifier-shifts

Falsifier Rule

$$
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)}
$$

$$
\mathrm{r} 1 \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B}
$$

- Equivalent to $\mathrm{r} 1 \downarrow$ when x does not occur free in B

Falsifier Rule

$$
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)}
$$

- $\mathrm{r} 1 \uparrow$ rules may be eliminated using falsifiers $-\exists x A(x)$ may be assigned an explicit disjunction of witnesses $A\left(t_{1}\right) \vee \cdots \vee A\left(t_{n}\right)$

Falsifier Rule

$$
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)}
$$

- Provides a new perspective on quantifier-shifts and non-elementary proof compression
- The epsilon-calculus provides a syntax for expressing non-constructive witnesses to existential quantifiers generated in proofs
- Does not use the cumbersome encodings of quantifiers by epsilon-terms

Extraction of Case Analyses

- A semantically natural operation to perform on a first-order proof is to extract the case analyses

$$
\mathrm{q} \downarrow \downarrow \frac{\exists x A \vee \exists x A}{\exists x A}
$$

$$
\mathrm{qc} \mathrm{\uparrow} \frac{\forall x A}{\forall x A \wedge \forall x A}
$$

Extraction of Case Analyses

- A semantically natural operation to perform on a first-order proof is to extract the case analyses

$$
\text { qс } \downarrow \frac{\exists x A \vee \exists x A}{\exists x A}
$$

$$
\mathrm{qc} \mathrm{\uparrow} \frac{\forall x A}{\forall x A \wedge \forall x A}
$$

- Herbrand's Theorem also eliminates quantifier-shifts by making the proof constructive, resulting in non-elementary blowups - can falsifiers prevent this?

Extraction of Case Analyses

- A semantically natural operation to perform on a first-order proof is to extract the case analyses

$$
\mathrm{q} \downarrow \frac{\exists x A \vee \exists x A}{\exists x A} \quad \quad \mathrm{q} \subset \uparrow \frac{\forall x A}{\forall x A \wedge \forall x A}
$$

- Herbrand's Theorem also eliminates quantifier-shifts by making the proof constructive, resulting in non-elementary blowups - can falsifiers prevent this?
- Simple case analysis extraction by permuting quantifier contraction rules

Non-Termination of Case Analysis Extraction

Non-Termination of Case Analysis Extraction

- Superfluous qc \downarrow rules are introduced, despite the witnesses to the existential quantifiers being equal

Non-Termination of Case Analysis Extraction

- Superfluous qc \downarrow rules are introduced, despite the witnesses to the existential quantifiers being equal

Non-Termination of Case Analysis Extraction

- Superfluous qc \downarrow rules are introduced, despite the witnesses to the existential quantifiers being equal

Non-Termination of Case Analysis Extraction

- Superfluous qc \downarrow rules are introduced, despite the witnesses to the existential quantifiers being equal

Non-Termination of Case Analysis Extraction

- Superfluous qc \downarrow rules are introduced, despite the witnesses to the existential quantifiers being equal

Non-Termination of Case Analysis Extraction

- Superfluous qc \downarrow rules are introduced, despite the witnesses to the existential quantifiers being equal

Termination Using Falsifiers

where $B^{\prime}=B\left(t_{1}\right) \vee \cdots \vee B\left(t_{n}\right)$

Termination Using Falsifiers

$$
\text { where } B^{\prime}=B\left(t_{1}\right) \vee \cdots \vee B\left(t_{n}\right)
$$

- The more expressive syntax of the epsilon-calculus can express that the terms are equal - there is no need for a case analysis and so no superfluous qc \downarrow rules are introduced

Extraction of Case Analyses

- Extract case analyses from a first-order proof in three phases:
- Phase 1: Permute existential contraction rules qc \downarrow down to the bottom of the proof
- Phase 2: Permute existential instantiation rules \exists down to the bottom of the proof
- Phase 3: Permute universal cocontraction rules qc \uparrow up the proof until they are eliminated

Extraction of Case Analyses

- Extract case analyses from a first-order proof in three phases:
- Phase 1: Permute existential contraction rules qc \downarrow down to the bottom of the proof
- Phase 2: Permute existential instantiation rules \exists down to the bottom of the proof
- Phase 3: Permute universal cocontraction rules qc \uparrow up the proof until they are eliminated
- To begin, eliminate quantifier-shifts as shown

$$
\mathrm{r} \downarrow \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B} \rightarrow \quad \varepsilon \frac{\forall x(A(x) \vee B)}{\forall x A(x) \vee B}
$$

Phase 1: Permute $\mathrm{qc} \downarrow$ rules down

- Duplicate rules inside the context of qc \downarrow rules:

$$
\mathrm{qc} \downarrow \frac{\exists x K\{A\} \vee \exists x K\{A\}}{\boxed{\exists x K}}
$$

Phase 1: Permute $\mathrm{qc} \downarrow$ rules down

- Duplicate rules inside the context of qc \downarrow rules:

$$
\mathrm{qc} \mathrm{\downarrow} \frac{\exists x K\{A\} \vee \exists x K\{A\}}{\boxed{\exists x K}\left\{\begin{array}{|c|}
\hline \frac{A}{B} \\
\hline
\end{array}\right\}} \rightarrow \frac{\exists x K\left\{\begin{array}{|c|}
\hline \frac{A}{B} \\
\hline
\end{array}\right\} \vee \exists x K\left\{\begin{array}{|c|}
\left.\hline \frac{A}{B}\right\} \\
\hline
\end{array}\right.}{\exists x K\{B\}}
$$

- Permutation for r1 \uparrow rules:

Phase 2: Permute \exists rules down

- Rules inside the context of \exists rules are altered by a substitution:

$$
\exists \frac{K\{A\}[t / x]}{\exists x K\left\{\left[\frac{A}{B}\right]\right\}} \rightarrow \frac{\left.K\left\{\rho \frac{A}{B}\right]\right\}[t / x]}{\exists x K\{B\}}
$$

Phase 2: Permute \exists rules down

- Rules inside the context of \exists rules are altered by a substitution:
- Permutations for ε rules:

$$
\varepsilon \frac{\left.\forall y\left(B(y) \vee K\left\{\exists \frac{A(t)}{\exists x A(x)}\right\}\right\}\right)}{\forall y B(y) \vee K\{\exists x A\}\left[\varepsilon_{z} \bar{B}(z) / y\right]} \rightarrow \frac{\forall y(B(y) \vee K\{A(t)\})}{\left.\forall y B(y) \vee K\left\{\exists \frac{A(t)}{\exists x A(x)}\right]\right\}\left[\varepsilon_{z} \bar{B}(z) / y\right]}
$$

Phase 3: Permute qc \uparrow rules up

- Duplicate rules inside the context of qc \uparrow rules:

Phase 3: Permute qc \uparrow rules up

- Duplicate rules inside the context of qc \uparrow rules:

$$
\mathrm{qc} \mathrm{\uparrow} \frac{\forall x K\left\{\begin{array}{|c}
\hline \frac{B}{A}
\end{array}\right\}}{\forall x K\{A\} \wedge \forall x K\{A\}}
$$

- When permuting $\mathrm{qc} \uparrow$ up through ε rules, we employ the following construction, which is invariant under the permutation:

The Falsifier Decomposition Theorem

ϕ
A

$$
\begin{gathered}
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)} \\
\forall \frac{\forall x A(x)}{A(t)}
\end{gathered}
$$

- I call A^{\prime} a falsifier disjunction for A
- I call $\operatorname{SKSg} \varepsilon$ the falsifier calculus

The Falsifier Decomposition Theorem

$\phi \prod_{A}$ First-order rules

$$
\begin{gathered}
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)} \\
\forall \frac{\forall x A(x)}{A(t)}
\end{gathered}
$$

- I call A^{\prime} a falsifier disjunction for A
- I call $\mathrm{SKSg} \varepsilon$ the falsifier calculus
- The following bounds hold:

$$
\begin{aligned}
\left|\phi^{\prime}\right| & =\exp ^{10}\left(O\left(|\phi|^{2} \ln |\phi|\right)\right) \\
\left|A^{\prime}\right| & =\exp ^{7}\left(O\left(|\phi|^{2} \ln |\phi|\right)\right) \\
\left|\phi^{\prime}\right|_{\varepsilon} & =\exp ^{12}\left(O\left(|\phi|^{2} \ln |\phi|\right)\right) \\
\left|A^{\prime}\right|_{\varepsilon} & =\exp ^{12}\left(O\left(|\phi|^{2} \ln |\phi|\right)\right)
\end{aligned}
$$

The Falsifier Decomposition Theorem

$$
\begin{gathered}
\varepsilon \frac{\forall x(A(x) \vee B(x))}{\forall x A(x) \vee B\left(\varepsilon_{y} \bar{A}(y)\right)} \\
\forall \frac{\forall x A(x)}{A(t)}
\end{gathered}
$$

- I call A^{\prime} a falsifier disjunction for A
- I call $\mathrm{SKSg} \varepsilon$ the falsifier calculus
- The following bounds hold:
$\left|\phi^{\prime}\right| \in$ ELEMENTARY
$\left|A^{\prime}\right| \in$ ELEMENTARY
$\left|\phi^{\prime}\right|_{\varepsilon} \in$ ELEMENTARY
$\left|A^{\prime}\right|_{\varepsilon} \in$ ELEMENTARY
- Non-elementarily smaller than Herbrand disjunctions and Herbrand proofs

The Falsifier Decomposition Theorem

- Unlike Herbrand's Theorem, we have extracted the case analyses from the proof but left the quantifier-shifts intact, in the form of falsifier rules which introduce epsilon-terms
- Epsilon-terms represent elements which are drawn from the domain non-constructively in the proof
- Does not use the cumbersome encodings of quantifiers by epsilon-terms

Example: The Drinker Paradox

Herbrand disjunction:
$\forall x_{1} \forall x_{2}\left(P\left(x_{1}\right) \vee \bar{P}(c) \vee P\left(x_{2}\right) \vee \bar{P}\left(x_{1}\right)\right)$

Falsifier disjunction:
$\forall x P(x) \vee \bar{P}\left(\varepsilon_{y} \bar{P}(y)\right)$

Example: The Drinker Paradox

$$
\begin{aligned}
& C A \frac{i \downarrow \frac{\mathbf{t}}{P\left(\varepsilon_{x} \bar{P}(x)\right) \vee \bar{P}\left(\varepsilon_{x} \bar{P}(x)\right)}}{P\left(\varepsilon_{x} \bar{P}(x)\right) \vee \bar{P}\left(\varepsilon_{y}\left(P\left(\varepsilon_{x} \bar{P}(x)\right) \vee \bar{P}(y)\right)\right)} \\
& C A \frac{A(t)}{A\left(\varepsilon_{x} A(x)\right)} \quad \begin{array}{l}
\exists x A(x) \equiv A\left(\varepsilon_{x} A(x)\right) \\
\forall x A(x) \equiv A\left(\varepsilon_{x} \bar{A}(x)\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathbf{t}}{\forall x \sqrt{i \downarrow \frac{\mathbf{t}}{P(x) \vee \bar{P}(x)}}} \\
& \varepsilon \frac{\forall x P(x) \vee \bar{P}\left(\varepsilon_{y} \bar{P}(y)\right)}{\exists y(\forall x P(x) \vee \bar{P}(y))}
\end{aligned}
$$

Ongoing Work: Falsifiers as an Intermediate Between Herbrand's Theorem and Cut Elimination

Conclusion and ε-agitprop

- A new approach to the epsilon-calculus, guided by considerations of complexity and normalisation

Conclusion and ε-agitprop

- A new approach to the epsilon-calculus, guided by considerations of complexity and normalisation
- A new decomposition theorem for first-order proofs, which does not fully separate the first-order and propositional parts

Conclusion and ε-agitprop

- A new approach to the epsilon-calculus, guided by considerations of complexity and normalisation
- A new decomposition theorem for first-order proofs, which does not fully separate the first-order and propositional parts
- Expanding the language of the predicate calculus by epsilon-terms yields:
- improved normalisation properties of quantifier-shifts
- termination of case analysis extraction
- better understanding of the speedups yielded by quantifier-shifts
- syntax for expressing non-constructive behaviour of existential witnesses

