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ABSTRACT
I introduce the falsifier calculus, a new deep-inference proof system

for first-order predicate logic in the language of Hilbert’s epsilon-

calculus. It uses a new inference rule, the falsifier rule, to introduce

epsilon-terms into a proof, distinct from the critical axioms of the

traditional epsilon-calculus. The falsifier rule is a generalisation of

one of the quantifier-shifts, inference rules for shifting quantifiers

inside and outside of formulae. Like the epsilon-calculus and proof

systems which include quantifier-shifts, the falsifier calculus ad-

mits non-elementarily shorter cut-free proofs of certain first-order

theorems than the sequent calculus.

Analogous to the way in which Herbrand’s Theorem decom-

poses a proof into a first-order and a propositional part, connected

by a Herbrand disjunction as an intermediate formula, I prove a

decomposition theorem for the falsifier calculus which gives rise

to a new notion of intermediate formula in the epsilon-calculus,

falsifier disjunctions. I then prove that certain first-order theorems

admit non-elementarily smaller falsifier disjunctions than Herbrand

disjunctions.

CCS CONCEPTS
• Theory of computation→ Proof theory; Logic and verification;
Automated reasoning.

KEYWORDS
deep inference, epsilon-calculus, Herbrand’s Theorem, first-order

logic

ACM Reference Format:
CameronAllett. 2024. Non-Elementary Compression of First-Order Proofs in

Deep Inference Using Epsilon-Terms. In 39th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS ’24), July 8–11, 2024, Tallinn, Estonia.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3661814.3662101

1 INTRODUCTION
1.1 Non-Elementary Compression
A remarkable aspect of first-order proof theory is that some proof

systems admit cut-free proofs of certain theorems which are non-

elementarily shorter than in other systems [2, 7]. In this work, I

introduce the falsifier calculus, a new deep-inference proof system
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in the language of Hilbert’s epsilon-calculus [20] which admits this

non-elementary compression. This system uses a new inference

rule, called the falsifier rule, that introduces 𝜀-terms into a proof and

is distinct from the critical axioms used in the traditional epsilon-

calculus. I further prove a decomposition theorem for this system,

analogous to Herbrand’s Theorem, which gives rise to a new notion

that I call falsifier disjunctions. Falsifier disjunctions are analogues to
Herbrand disjunctions in the language of the epsilon-calculus such

that certain first-order theorems admit non-elementarily shorter

falsifier disjunctions than Herbrand disjunctions, providing a new

perspective on the structure of Herbrand disjunctions. The aim of

this work is to better understand the properties which make a first-

order proof system admit the non-elementary compression and to

provide a treatment of the epsilon-calculus from a modern perspec-

tive, where the primary concerns are complexity and normalisation

rather than completeness and consistency.

The falsifier calculus is defined using deep inference [16], a de-
sign methodology for proof systems which allows inference rules

to apply at arbitrary depth inside formulae, offering a more flexible

composition mechanism for composing derivations and more free-

dom in permuting inference rules around a proof. In recent years,

there has been interest in developing proof systems which include

the deep-inference rules known as quantifier-shifts, inference rules
for logical equivalences of the form

∃𝑥𝐴(𝑥) ∨ 𝐵 ≡ ∃𝑥 (𝐴(𝑥) ∨ 𝐵) ∃𝑥𝐴(𝑥) ∧ 𝐵 ≡ ∃𝑥 (𝐴(𝑥) ∧ 𝐵)
∀𝑥𝐴(𝑥) ∨ 𝐵 ≡ ∀𝑥 (𝐴(𝑥) ∨ 𝐵) ∀𝑥𝐴(𝑥) ∧ 𝐵 ≡ ∀𝑥 (𝐴(𝑥) ∧ 𝐵)

where 𝑥 does not occur free in 𝐵. In [2], Aguilera and Baaz demon-

strate that extending Gentzen’s LK [14] by quantifier-shifts results

in a system LK𝑠ℎ𝑖 𝑓 𝑡 for which there is no elementary function

bounding the length of the shortest cut-free LK proof of a formula

in terms of the length of its shortest cut-free LK𝑠ℎ𝑖 𝑓 𝑡 proof. Since

quantifier-shifts involve rewriting inside a formula, they are nat-

ural deep-inference rules and it follows that deep-inference proof

systems for first-order predicate logic admit the non-elementary

compression for cut-free proofs.

In a deep-inference setting, most quantifier-shifts are trivial,

in that they are derivable using other inference rules with lin-

ear complexity (Proposition 3.6), with the exceptions of the rule

∀𝑥 (𝐴(𝑥) ∨ 𝐵)
r1↓

∀𝑥𝐴(𝑥) ∨ 𝐵
and its dual

∃𝑥𝐴(𝑥) ∧ 𝐵
r1↑

∃𝑥 (𝐴(𝑥) ∧ 𝐵)
. To understand why

this is the case, consider the following derivation including r1↓:

∀𝑥 𝐴(𝑥) ∨
𝐵(𝑥)

∃
∃𝑦𝐵(𝑦)

r1↓
∀𝑥𝐴(𝑥) ∨ ∃𝑦𝐵(𝑦)
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When the existential quantifier ∃𝑦 is instantiated, it is witnessed

by the variable 𝑥 , which is bound by a universal quantifier ∀𝑥 . The
existential quantifier ∃𝑦 in the conclusion however is not in the

scope of ∀𝑥 and hence is not witnessed by 𝑥 – the r1↓ rule alters the
witness to the existential quantifier. To assign an explicit witness

to such existential quantifiers, I introduce the falsifier rule

∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))
𝜀

∀𝑥𝐴(𝑥) ∨ 𝐵(𝜀𝑦𝐴(𝑦))
in the language of Hilbert’s epsilon-calculus, where for a semantics

with domain D, 𝜀𝑦𝐴(𝑦) takes the value of 𝑒 if there exists some

𝑒 ∈ D such that 𝐴(𝑒) and takes an arbitrary value otherwise. The

falsifier rule is sound since if ∀𝑥𝐴(𝑥) is false, there must exist some

element 𝑒 of the domain such that 𝐴(𝑒). Since ∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥)) by
the premise of the rule, it follows that 𝐵(𝑒). By replacing the r1↓
quantifier-shift with a falsifier rule 𝜀, we can permute the existential

quantifier down through the quantifier-shift and obtain an explicit

witness for the existential quantifier ∃𝑦 in the conclusion, like so

∀𝑥 𝐴(𝑥) ∨
𝐵(𝑥)

∃
∃𝑦𝐵(𝑦)

r1↓
∀𝑥𝐴(𝑥) ∨ ∃𝑦𝐵(𝑦)

→

∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))
𝜀

∀𝑥𝐴(𝑥) ∨
𝐵(𝜀𝑦𝐴(𝑦))

∃
∃𝑦𝐵(𝑦)

I shall demonstrate that in a deep-inference setting, the falsifier

rule alone is enough to yield the non-elementary compression for

cut-free proofs, without the presence of quantifier-shifts.

The epsilon-calculus extends the language of first-order predi-

cate logic by 𝜀-terms 𝜀𝑥𝐴 for all variables 𝑥 and formulae 𝐴. For a

given semantics ⟦−⟧D with domain D, each 𝜀-term is assigned a

witness in D by

⟦𝜀𝑥𝐴(𝑥)⟧D =

{
𝑒 if there exists some 𝑒 ∈ D such that ⟦𝐴(𝑒)⟧D
𝑎 for some arbitrary 𝑎 ∈ D, otherwise

where 𝑒 is chosen by a choice function on P(D) and 𝑎 is fixed. In
the traditional epsilon-calculus, 𝜀-terms are introduced into a proof

by critical axioms (inferences of the form𝐴(𝑡) → 𝐴(𝜀𝑥𝐴(𝑥)) for all
terms 𝑡 ) and quantifiers are encoded by 𝜀-terms using the logical

equivalences ∃𝑥𝐴(𝑥) ≡ 𝐴(𝜀𝑥𝐴(𝑥)) and ∀𝑥𝐴(𝑥) ≡ 𝐴(𝜀𝑥𝐴(𝑥)). It
is also known that the traditional epsilon-calculus admits non-

elementarily shorter cut-free proofs than LK for certain theorems

[7]. In this work, I propose a new approach to the epsilon-calculus

using falsifiers, guided by these complexity considerations. My

system and results also do not use the encodings of quantifiers by 𝜀-

terms described above, circumventing some of the cumbersomeness

of notation associated with the traditional epsilon-calculus.

1.2 Case Analysis Extraction
In the proof theory of first-order predicate logic, contractions on

existential formulae may be understood as case analyses on the

witnesses to the existential quantifiers in the premise. A natural

operation to perform on a first-order proof is thus to extract these

case analyses, deriving a disjunction of terms which witness the

existential quantifiers in the conclusion. This is an essential notion

of Herbrand’s Theorem [19], a fundamental theorem of classical

proof theory, and the propositional disjunction collecting the term

witnesses is called a Herbrand disjunction. In the sequent calculus,

Herbrand’s Theorem is traditionally proved as a corollary to cut

elimination, such as in a recent exposition of a proof of the theorem

due to Buss [11] (with a correction due to McKinley [25]). In a deep-

inference setting, Brünnler [9] has presented a proof of the general

version of Herbrand’s Theorem in the form of a decomposition

theorem, which does not require cuts to be eliminated from the

proof. Brünnler presents a procedure which transforms a first-order

proof into a factorised proof of the form

∀𝑥1 . . .∀𝑥𝑛 Propositional rules

𝐴′

{∃}

𝐴′′

{r1↓,r2↓,r3↓,r4↓}

𝐴′′′

{qc↓}

𝐴

(see Section 2 for inference rule names) where the formula

∀𝑥1 . . .∀𝑥𝑛𝐴′
is a Herbrand disjunction for 𝐴.

Statman [35] has shown that, in general, there is no elementary

bound on the size of the smallest Herbrand disjunction for a first-

order theorem in terms of the size of its smallest proof. A natural

question then is whether it is possible to extract the case analyses

contained in existential contraction rules from a proof without

producing the non-elementary blowups incurred by Herbrand’s

Theorem. As will be shown, this is possible in the falsifier calculus,

with the result being a falsifier disjunction which gives a disjunction

of witnesses for the existential quantifiers in the conclusion, of

elementary size with respect to the size of the proof.

In a deep-inference setting, to extract the case analyses contained

within existential contraction rules qc↓ from a proof, the rules may

be permuted down a proof by recursively permuting them down

through the rule immediately beneath them. However, as shown

in Figure 1, when a qc↓ rule is permuted down through an r1↑
quantifier-shift, a universal cocontraction rule qc↑, the dual of qc↓,
may be introduced. Dually, when a qc↑ is permuted up through an

r1↓ quantifier-shift, a qc↓ rule may be introduced. Consequently, a

procedure which successively permutes qc↓ rule instances down
and qc↑ rule instances up a proof is non-terminating in the standard

syntax of first-order predicate logic for certain proofs.

The falsifier calculus solves the problem of non-termination due

to the more expressive syntax of the epsilon-calculus. By permuting

existential rules down a proof, we obtain an explicit disjunction of

witnesses for each existential quantifier in the proof, with 𝜀-terms

generated as witnesses when permuting down through a falsifier

rule. Figure 2 then illustrates how the falsifier rule can be used to

avoid introducing qc↓ rules when permuting qc↑ rules up through

r1↓ rules, to give termination. In the construction, the r1↓ rule is
replaced with a falsifier rule and a regular contraction rule c↓ is

introduced in place of an existential contraction rule qc↓, since
the epsilon-calculus syntax can express that the witnesses to the

existential quantifiers in the premise of the qc↓ rule are equal.
The main result of this work, Theorem 3.3 the Falsifier Decompo-

sition Theorem, is proved in this way, using a terminating procedure

2



Non-Elementary Compression of First-Order Proofs in Deep Inference Using Epsilon-Terms LICS ’24, July 8–11, 2024, Tallinn, Estonia

∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓
∃𝑥𝐴

∧ ∀𝑦𝐵

r1↑
∃𝑥 (𝐴 ∧ ∀𝑦𝐵)

→

(∃𝑥𝐴 ∨ ∃𝑥𝐴) ∧
∀𝑦𝐵

qc↑
∀𝑦𝐵 ∧ ∀𝑦𝐵

2s

∃𝑥𝐴 ∧ ∀𝑦𝐵
r1↑

∃𝑥 (𝐴 ∧ ∀𝑦𝐵)
∨

∃𝑥𝐴 ∧ ∀𝑦𝐵
r1↑

∃𝑥 (𝐴 ∧ ∀𝑦𝐵)
qc↓

∃𝑥 (𝐴 ∧ ∀𝑦𝐵)

Figure 1: Reduction rule for permuting qc↓ down through r1↑

in the falsifier calculus which first permutes existential rules down

to the bottom of a proof and then permutes qc↑ rules up the proof

until they are eliminated. The resultant proof is in a normal form

which I call falsifier normal form, that gives rise to the notion of

falsifier disjunctions. The Falsifier Decomposition Theorem is anal-

ogous to Herbrand’s Theorem in that case analyses are extracted

from the proof but does not result in non-elementary blowups, since

r1↓ quantifier-shifts in the proof are left intact in the form of falsi-

fier rules which introduce 𝜀-terms. The non-elementary difference

in complexity between the two theorems may be seen as result-

ing from their difference in constructivity, since 𝜀-terms represent

elements which are drawn from the domain non-constructively.

1.3 Related Work
Since the formalisation of first-order predicate logic by Frege [13],

a range of systems and techniques have been developed to in-

vestigate the shape and structure of first-order proofs, such as

Gentzen’s sequent calculus and natural deduction [14], Hilbert’s

epsilon-calculus [20] and Herbrand’s Theorem [19]. More recent

systems and approaches include Miller’s expansion proofs [27], Co-
quand’s semantics of evidence [12], Brünnler, Guglielmi and Ralph’s

work on first-order deep inference [8–10, 31–33], Heijltjes’ proof
forests [18], McKinley’s Herbrand nets [26], Hughes’ first-order com-
binatorial proofs [21, 22] and a game-semantic approach due to

Alcolei, Clairambault, Hyland and Winskel [3].

The epsilon-calculus was initially introduced as part of Hilbert’s

program, with the goal of establishing a consistency proof for

arithmetic, but has also seen a renewal of interest in recent years

[4, 6, 7, 28–30].

Following Statman’s original proof [35], the non-elementary

compression of cut-free proofs and Herbrand disjunctions has also

been studied by Aguilera, Baaz, Leitsch, Lolić and others [2, 5].

2 PRELIMINARIES
I begin by recalling some standard definitions for first-order logic

and the epsilon-calculus.

Definition 2.1. Fix three disjoint countably infinite sets of sym-

bols {𝑥,𝑦, 𝑧, . . . }, {𝑓 , 𝑔, ℎ, . . . }, {𝑃,𝑄, 𝑅, . . . }, whose respective ele-
ments are variable symbols, function symbols and predicate symbols,
where every function symbol and predicate symbol has an associ-

ated non-negative integer arity and every predicate symbol 𝑃 has a

corresponding dual predicate symbol 𝑃 of the same arity such that

𝑃 = 𝑃 and 𝑃 ≠ 𝑃 .

I define terms 𝑡 and formulae 𝐴 by the following grammars:

𝑡 ::= 𝑥 | 𝑓 (𝑡, . . . , 𝑡) | 𝜀𝑥𝐴
𝐴 ::= t | f | 𝑃 (𝑡, . . . , 𝑡) | 𝐴 ∨𝐴 | 𝐴 ∧𝐴 | ∃𝑥𝐴 | ∀𝑥𝐴

where 𝑥 is a variable symbol, called a variable, 𝑓 is a function symbol

of arity 𝑛, each 𝑓 (𝑡1, . . . , 𝑡𝑛) is called a function term, function terms

of arity 0 are called constant terms, 𝜀𝑥𝐴 is called an 𝜀-term, t (true)
and f (false) are called units, 𝑃 is a predicate and each 𝑃 (𝑡1, . . . , 𝑡𝑛)
is called an atomic formula.

The duals of formulae are defined using standard De Morgan

duals.

Definition 2.2. The dual 𝐴 of formulae 𝐴 are defined recur-

sively as follows. For all formulae 𝐴 and 𝐵, all atomic formulae

𝑃 (𝑡1, . . . , 𝑡𝑛) and all variables 𝑥 : t ≡ f, f ≡ t, 𝑃 (𝑡1, . . . , 𝑡𝑛) ≡
𝑃 (𝑡1, . . . , 𝑡𝑛), 𝑃 (𝑡1, . . . , 𝑡𝑛) ≡ 𝑃 (𝑡1, . . . , 𝑡𝑛), 𝐴 ∨ 𝐵 ≡ 𝐴 ∧ 𝐵, 𝐴 ∧ 𝐵 ≡
𝐴 ∨ 𝐵, ∃𝑥𝐴 ≡ ∀𝑥𝐴 and ∀𝑥𝐴 ≡ ∃𝑥𝐴.

In this work, I give a primarily syntactic treatment of first-order

proofs and the epsilon-calculus. For the purposes of this work, either

the extensional or intensional semantics for the epsilon-calculus

presented in [36] may be used.

I introduce the following definitions to distinguish formulae in

which quantifiers occur inside, but not outside, the scope of 𝜀-terms.

Definition 2.3. A formula is said to be weakly quantifier-free if it
is generated by the grammar

𝐴 ::= t | f | 𝑃 (𝑡1, . . . , 𝑡𝑛) | 𝐴 ∨𝐴 | 𝐴 ∧𝐴
and is said to be weakly existential-free if it is generated by the

grammar

𝐴 ::= t | f | 𝑃 (𝑡1, . . . , 𝑡𝑛) | 𝐴 ∨𝐴 | 𝐴 ∧𝐴 | ∀𝑥𝐴
where 𝑃 (𝑡1, . . . , 𝑡𝑛) is an atomic formula and 𝑥 is a variable.

The following definitions will be used when reasoning about

terms inside of formulae.

Definition 2.4. A term 𝑡 is said to occur in a term or formula as

follows:

• 𝑡 occurs in itself.

• If 𝑡 occurs in a term 𝑠 , then 𝑡 occurs in all function terms

of the form 𝑓 (𝑡1, ..., 𝑠, ..., 𝑡𝑛) and all atomic formulae of the

form 𝑃 (𝑡1, ..., 𝑠, ..., 𝑡𝑛).
• If 𝑡 occurs in a formula𝐴, then 𝑡 occurs in the formulae𝐴∨𝐵,
𝐵 ∨𝐴, 𝐴 ∧ 𝐵, 𝐵 ∧𝐴, ∀𝑥𝐴 and ∃𝑥𝐴 and the term 𝜀𝑥𝐴 for all

formulae 𝐵 and all variable 𝑥 .
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∀𝑥 𝐴 ∨
𝐵′

{∃,qc↓}

∃𝑦𝐵(𝑦)

r1↓

∀𝑥𝐴qc↑
∀𝑥𝐴 ∧ ∀𝑥𝐴

∨ ∃𝑦𝐵(𝑦)

→

∀𝑥 (𝐴 ∨ 𝐵′)
qc↑

∀𝑥 (𝐴 ∨ 𝐵′)
𝜀

∀𝑥𝐴 ∨ 𝐵′[𝜀𝑦𝐴(𝑦)/𝑥]
∧

∀𝑥 (𝐴 ∨ 𝐵′)
𝜀

∀𝑥𝐴 ∨ 𝐵′[𝜀𝑦𝐴(𝑦)/𝑥]
2s

(∀𝑥𝐴 ∧ ∀𝑥𝐴) ∨

𝐵′[𝜀𝑦𝐴(𝑦)/𝑥] ∨ 𝐵′[𝜀𝑦𝐴(𝑦)/𝑥]
c↓

𝐵′[𝜀𝑦𝐴(𝑦)/𝑥]

{∃,qc↓}

∃𝑦𝐵(𝑦)

where 𝐵′ is the formula 𝐵(𝑡1) ∨ · · · ∨ 𝐵(𝑡𝑛) for some terms 𝑡1, . . . , 𝑡𝑛 .

Figure 2: Reduction rule for permuting qc↑ up through r1↓ in the presence of falsifiers

Definition 2.5. An occurrence of a variable 𝑥 in a term or formula

is said to be a free occurrence if it does not occur inside the scope of
any ∃𝑥 , ∀𝑥 or 𝜀𝑥 symbols.

If there is a free occurrence of a variable 𝑥 in a term or formula,

𝑥 is said to occur free in that term or formula.

If a formula is denoted 𝐴(𝑥1, . . . , 𝑥𝑛) for variables 𝑥1, . . . , 𝑥𝑛 , I
denote by𝐴(𝑡1, . . . , 𝑡𝑛) the formula obtained by replacing every free

occurrence of 𝑥𝑖 in 𝐴(𝑥1, . . . , 𝑥𝑛) by the term 𝑡𝑖 , for 𝑖 ∈ {1, . . . , 𝑛}.
Likewise, if a term is denoted 𝑡 (𝑥1, . . . , 𝑥𝑛), I denote by 𝑡 (𝑠1, . . . , 𝑠𝑛)
the term obtained by replacing every free occurrence of 𝑥𝑖 in

𝑡 (𝑥1, . . . , 𝑥𝑛) by the term 𝑠𝑖 , for 𝑖 ∈ {1, . . . , 𝑛}.
Definition 2.6. A term 𝑡 is said to be free for a variable 𝑥 in

a formula 𝐴 if for all variables 𝑦 which occur free in 𝑡 , no free

occurrence of 𝑥 in 𝐴 occurs inside the scope of a ∃𝑦, ∀𝑦 or 𝜀𝑦
symbol.

The following definition will be useful when distinguishing 𝜀-

terms which occur in a formula and contain free variables that are

not bound by quantifiers or 𝜀 symbols in that formula.

Definition 2.7. If 𝑥 occurs free in a formula 𝐴(𝑥) and 𝑡 (𝑦) is a
term such that 𝑦 occurs free in 𝑡 (𝑦) and 𝑡 (𝑦) is free for 𝑥 in 𝐴(𝑥),
then 𝑡 (𝑦) is said to occur with 𝑦 free in 𝐴(𝑡 (𝑦)).

Example 2.8. Let 𝐴(𝑦), 𝐵(𝑦) and 𝐶 (𝑦) be formulae in which 𝑦

occurs free. Then 𝑦 occurs free in the 𝜀-term 𝜀𝑥𝐶 (𝑦) and 𝜀𝑥𝐶 (𝑦)
occurs in the formula 𝐷 (𝑦) given by 𝐴(𝑦) ∧ ∃𝑦𝐵(𝜀𝑥𝐶 (𝑦)), but does
not occur with 𝑦 free in 𝐷 (𝑦), since all occurrences of 𝑦 in 𝜀𝑥𝐶 (𝑦)
are bound by an existential quantifier in 𝐷 (𝑦). Conversely, 𝜀𝑥𝐶 (𝑦)
occurs with 𝑦 free in the formula 𝐷 (𝜀𝑥𝐶 (𝑦)) given by 𝐴(𝜀𝑥𝐶 (𝑦)) ∧
∃𝑦𝐵(𝜀𝑥𝐶 (𝑦)) since some occurrences of 𝑦 in 𝐴(𝜀𝑥𝐶 (𝑦)) occur free
in 𝐷 (𝜀𝑥𝐶 (𝑦)).

I define the size of terms and formulae in the usual way and

introduce the notion of 𝜀-size.

Definition 2.9. The size |𝑡 |, 𝜀-size |𝑡 |𝜀 of terms 𝑡 and size |𝐴| and
𝜀-size |𝐴|𝜀 of formulae 𝐴 are defined recursively as follows:

• For constant terms 𝑐 , |𝑐 | = |𝑐 |𝜀 = 1.

• For variables 𝑥 , |𝑥 | = |𝑥 |𝜀 = 1.

• For function terms 𝑓 (𝑡1, . . . , 𝑡𝑛), |𝑓 (𝑡1, . . . , 𝑡𝑛) | = 1+∑𝑛
𝑖=1 |𝑡𝑖 |

and |𝑓 (𝑡1, . . . , 𝑡𝑛) |𝜀 = 1 + ∑𝑛
𝑖=1 |𝑡𝑖 |𝜀 .

• For 𝜀-terms 𝜀𝑥𝐴, |𝜀𝑥𝐴| = 1 and |𝜀𝑥𝐴|𝜀 = |𝐴|𝜀 .
• For formulae 𝐴 and 𝐵, |𝐴 ∨ 𝐵 | = |𝐴 ∧ 𝐵 | = |𝐴| + |𝐵 | + 1 and

|𝐴 ∨ 𝐵 |𝜀 = |𝐴 ∧ 𝐵 |𝜀 = |𝐴|𝜀 + |𝐵 |𝜀 + 1.

• For formulae 𝐴 and variables 𝑥 , |∃𝑥𝐴| = |∀𝑥𝐴| = |𝐴| + 1 and

|∃𝑥𝐴|𝜀 = |∀𝑥𝐴|𝜀 = |𝐴|𝜀 + 1.

• For atomic formulae 𝑃 (𝑡1, . . . , 𝑡𝑛), |𝑃 (𝑡1, . . . , 𝑡𝑛) | = 1 + ∑𝑛
𝑖=1

|𝑡𝑖 | and |𝑃 (𝑡1, . . . , 𝑡𝑛) |𝜀 = 1 + ∑𝑛
𝑖=1 |𝑡𝑖 |𝜀 .

• |t| = |f| = |t|𝜀 = |f|𝜀 = 1.

Remark. In this work, complexity is of interest for the sake of

proving elementary bounds for the proof and formula size of vari-

ous constructions. I have thus chosen to measure the complexity of

𝜀-terms in the maximal reasonable way, by the size of the formula

bounded by the epsilon operator. Note that this differs from tradi-

tional complexity measures of 𝜀-terms, such as rank and degree (see
[30]).

I define the following sets of deep-inference inference rules from

Figure 3 which will be used to construct derivations and proofs.

For all of the symmetric relations = ∈ {=P,=∃,=∀} in Figure 3, the

corresponding inference rules are given by

𝐴
=

𝐵
if 𝐴 = 𝐵.

Definition 2.10. I define the following sets of inference rules:

SKSgP the set of inference rules given in the top row of Figure

3, with the restriction that the rules i↓, i↑,w↓,w↑, c↓ and c↑
may include only weakly quantifier-free formulae in the

premise and conclusion

SKSg1 the set of all inference rules given in Figure 3, without

any such restriction

where:

• Every inference rule

𝐴
𝜌
𝐵
has a corresponding dual inference

rule 𝜌 given by

𝐵
𝜌

𝐴
• The inference rules corresponding to 𝐴 = 𝑄𝑥𝐴 for 𝑄𝑥 ∈
{∃𝑥,∀𝑥} are called vacuous = rules

• For any instance

∀𝑥𝐴(𝑥)
∀

𝐴(𝑡)
of the ∀ rule, the term 𝑡 is said to

instantiate the instance of the ∀ rule and for all terms 𝑠 (𝑥)
which occur with 𝑥 free in 𝐴(𝑥), the term 𝑠 (𝑡) is said to be

constructed by the instance of the ∀ rule

4
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• For any instance

𝐴(𝑡)
∃
∃𝑥𝐴(𝑥)

of the ∃ rule, the term 𝑡 is said

to witness the instance of the ∃ rule

Note that SKSgP and SKSg1 are closed under dual rules.

For ease of expression, I will often denote instances of the =P,
=∃ and =∀ rules simply by = and sometimes omit instances of =

rules when displaying derivations.

A notable and useful characteristic of deep-inference proof sys-

tems is the ability to decompose inference rules into derivations of

smaller rules. I introduce a set SKS1 of decomposed inference rules,

shown later to be equivalent to SKSg1 (Propositions 3.5 and 3.6).

Definition 2.11. I define atomic variants ai↓, ai↑, ac↓, ac↑, aw↓,
aw↑ of the rules i↓, i↑, c↓, c↑,w↓,w↑, which are identical to the stan-

dard variants except that the formulae 𝐴 and 𝐴 in the premise and

conclusion of each rule as presented in Figure 3 must be atomic

formulae.

I further define the quantifier contraction rules qc↓ and qc↑ by
∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓

∃𝑥𝐴
∀𝑥𝐴qc↑

∀𝑥𝐴 ∧ ∀𝑥𝐴
I define the set of inference rules SKS1 = {ai↓, ai↑, ac↓, ac↑,

aw↓, aw↑, s, m, ∃,∀,=P,=∃,=∀, qc↓, qc↑, r1↓, r1↑} with the restric-

tion that SKS1 does not contain any = rules of the form

∃𝑥∃𝑦𝐴
=

∃𝑦∃𝑥𝐴
,

∀𝑥∀𝑦𝐴
=

∀𝑦∀𝑥𝐴
,

𝐴
=

∃𝑥𝐴
or

∀𝑥𝐴
=

𝐴
.

I define derivations in the open deduction formalism [17] as fol-

lows.

Definition 2.12. I define derivations 𝜙 with formula premises 𝐴

and conclusions 𝐵, denoted

𝐴

𝜙

𝐵

, their size |𝜙 |, 𝜀-size |𝜙 |𝜀 , their duals

𝐴

𝜙

𝐵

, their subderivations and the terms which occur (free) in them

inductively as follows:

• Every derivation is a subderivation of itself.

• Every formula 𝐴 is a derivation, with premise 𝐴, conclusion

𝐴, size |𝐴|, 𝜀-size |𝐴|𝜀 and dual 𝐴.

For all derivations

𝐴

𝜓

𝐴′
and

𝐵

𝜒

𝐵′
, we have the following:

• Composition by inference: if
𝐴′

𝜌
𝐵

is an instance of an infer-

ence rule 𝜌 ,

𝐴

𝜓 ;𝜌 𝜒

𝐵′
≡

𝐴

𝜓

𝐴′
𝜌

𝐵

𝜒

𝐵′

is a derivation with |𝜓 ;𝜌 𝜒 | = |𝜓 | + |𝜒 |, |𝜓 ;𝜌 𝜒 |𝜀 = |𝜓 |𝜀 +
|𝜒 |𝜀 and𝜓 ;𝜌 𝜒 ≡ 𝜒 ;𝜌 𝜓 . Every subderivation of𝜓 and every

subderivation of 𝜒 is a subderivation of 𝜓 ;𝜌 𝜒 . Every term

which occurs in𝜓 or 𝜒 also occurs in𝜓 ;𝜌 𝜒 and every free

occurrence of a term in 𝜓 or 𝜒 is also a free occurrence in

𝜓 ;𝜌 𝜒 .

• Composition by connective: for ★ ∈ {∨,∧},

𝐴★ 𝐵

𝜓★𝜒

𝐴′ ★ 𝐵′
≡

©­­«
𝐴

𝜓

𝐴′
★

𝐵

𝜒

𝐵′

ª®®¬
is a derivationwith |𝜓★𝜒 | = |𝜓 |+|𝜒 |+1 |𝜓★𝜒 |𝜀 = |𝜓 |𝜀+|𝜒 |𝜀+1
and𝜓 ★ 𝜒 ≡ 𝜓 ★ 𝜒 , where∨ = ∧ and∧ = ∨. Every subderiva-
tion of𝜓 and every subderivation of 𝜒 is a subderivation of

𝜓★𝜒 . Every term which occurs in𝜓 or 𝜒 also occurs in𝜓★𝜒

and every free occurrence of a term in𝜓 or 𝜒 is also a free

occurrence in𝜓 ★ 𝜒 .

• Composition by quantifier: for 𝑄𝑥 ∈ {∀𝑥, ∃𝑥}, where 𝑥 is

any variable,

𝑄𝑥𝐴

𝑄𝑥𝜓

𝑄𝑥𝐴′
≡ 𝑄𝑥 ©­«

𝐴

𝜓

𝐴′

ª®¬
is a derivation with |𝑄𝑥𝜓 | = |𝜓 | + 1, |𝑄𝑥𝜓 |𝜀 = |𝜓 |𝜀 + 1 and

𝑄𝑥𝜓 ≡ 𝑄𝑥 𝜓 , where ∃𝑥 = ∀𝑥 and ∀𝑥 = ∃𝑥 . Every subderiva-

tion of𝜓 is a subderivation of𝑄𝑥𝜓 . Every term which occurs

in𝜓 also occurs in 𝑄𝑥𝜓 and every free occurrence of a term

in 𝜓 is also a free occurrence in 𝑄𝑥𝜓 , unless the term is 𝑥 ,

which has no free occurrences in 𝑄𝑥𝜓 .

Composition by inference and composition by connective are

defined to be associative: for ★ ∈ {∨,∧}, all inference rules 𝜌1 and
𝜌2 and all derivations𝜓 , 𝜙 , 𝜒 , (𝜓 ★𝜙)★ 𝜒 ≡ 𝜓 ★ (𝜙 ★ 𝜒) ≡ 𝜓 ★𝜙 ★ 𝜒

and𝜓 ;𝜌1 (𝜙 ;𝜌2 𝜒) ≡ (𝜓 ;𝜌1 𝜙);𝜌2 𝜒 ≡ 𝜓 ;𝜌1 𝜙 ;𝜌2 𝜒 .

𝐴

𝜙 S

𝐵

denotes that every inference rule in the derivation 𝜙 is an element

of the set S.
If a derivation 𝜙 with conclusion 𝐴 has premise t, it is called a

proof, denoted 𝜙

𝐴

.

Remark. Observe that the definitions of size and 𝜀-size are such

that for any formula 𝐴, |𝐴|𝜀 ≤ |𝜀𝑥𝐵 |𝜀 |𝐴|, where 𝜀𝑥𝐵 is the largest

𝜀-term which occurs in𝐴 and, similarly, for any derivation 𝜙 , |𝜙 |𝜀 ≤
|𝜀𝑥𝐵 |𝜀 |𝜙 |, where 𝜀𝑥𝐵 is the largest 𝜀-term which occurs in 𝜙 .

Definition 2.13. A derivation 𝜙 is said to be epsilon-free if no
𝜀-terms occur in 𝜙 .

Soundness and completeness of the open deduction system with

rules SKSg1 follows by translating into the system SKSgq presented
in [8], since SKSg1 locally simulates every inference rule in SKSgq.

Theorem 2.14. Every valid epsilon-free formula has a proof in
SKSg1.

I further introduce the following, mostly standard, definitions.

Definition 2.15. A formula 𝐴 which is a subderivation of a for-

mula 𝐵 is said to be a subformula of 𝐵.
5
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The inference rules of SKSgP :

ti↓
𝐴 ∨𝐴

fw↓
𝐴

𝐴 ∨𝐴c↓
𝐴

𝐴 ∧ (𝐵 ∨𝐶)
s
(𝐴 ∧ 𝐵) ∨𝐶

𝐴 ∧𝐴i↑
f

𝐴w↑
t

𝐴c↑
𝐴 ∧𝐴

(𝐴 ∧ 𝐵) ∨ (𝐶 ∧ 𝐷)
m
(𝐴 ∨𝐶) ∧ (𝐵 ∨ 𝐷)

𝐴 ∨ f =P 𝐴 f ∧ f =P f t ∨ t =P t 𝐴 ∧ t =P 𝐴

𝐴 ∨ 𝐵 =P 𝐵 ∨𝐴 (𝐴 ∨ 𝐵) ∨𝐶 =P 𝐴 ∨ (𝐵 ∨𝐶)

𝐴 ∧ 𝐵 =P 𝐵 ∧𝐴 (𝐴 ∧ 𝐵) ∧𝐶 =P 𝐴 ∧ (𝐵 ∧𝐶)

The remaining inference rules of SKSg1:

𝐴(𝑡)
∃
∃𝑥𝐴(𝑥)

∀𝑥 (𝐴(𝑥) ∨ 𝐵)
r1↓

∀𝑥𝐴(𝑥) ∨ 𝐵
∀𝑥 (𝐴(𝑥) ∧ 𝐵)

r2↓
∀𝑥𝐴(𝑥) ∧ 𝐵

∃𝑥 (𝐴(𝑥) ∨ 𝐵)
r3↓

∃𝑥𝐴(𝑥) ∨ 𝐵
∃𝑥 (𝐴(𝑥) ∧ 𝐵)

r4↓
∃𝑥𝐴(𝑥) ∧ 𝐵

∀𝑥𝐴(𝑥)
∀

𝐴(𝑡)
∃𝑥𝐴(𝑥) ∧ 𝐵

r1↑
∃𝑥 (𝐴(𝑥) ∧ 𝐵)

∃𝑥𝐴(𝑥) ∨ 𝐵
r2↑

∃𝑥 (𝐴(𝑥) ∨ 𝐵)
∀𝑥𝐴(𝑥) ∧ 𝐵

r3↑
∀𝑥 (𝐴(𝑥) ∧ 𝐵)

∀𝑥𝐴(𝑥) ∨ 𝐵
r4↑

∀𝑥 (𝐴(𝑥) ∨ 𝐵)

where 𝑡 is free for 𝑥 in 𝐴(𝑥) in the ∃ and ∀ rules and 𝑥 does not occur free in 𝐵 in the remaining rules.

𝐴 =∃ ∃𝑥𝐴 ∃𝑥∃𝑦𝐵 =∃ ∃𝑦∃𝑥𝐵 ∃𝑥𝐶 (𝑥) =∃ ∃𝑦𝐶 (𝑦)

𝐴 =∀ ∀𝑥𝐴 ∀𝑥∀𝑦𝐵 =∀ ∀𝑦∀𝑥𝐵 ∀𝑥𝐶 (𝑥) =∀ ∀𝑦𝐶 (𝑦)

where 𝑥 does not occur free in 𝐴 and 𝑦 is free for 𝑥 in 𝐶 (𝑥).

Figure 3: The inference rules of SKSg1

Definition 2.16. A derivation is said to be cut-free if it contains
no instances of the rules i↑ or ai↑.

Definition 2.17. For every derivation 𝜙 , terms 𝑠 , 𝑡 and variable

𝑥 , I denote by 𝜙 [𝑡/𝑥] the derivation obtained by replacing every

free occurrence of 𝑥 in 𝜙 with 𝑡 and 𝑠 [𝑡/𝑥] the term obtained by

replacing every free occurrence of 𝑥 in 𝑠 with 𝑡 .

Definition 2.18. A formula context 𝐾{} is a function from deriva-

tions to derivations which is a formula with exactly one occurrence

of the hole {−} in the position of an atomic formula. For all deriva-

tions 𝜙 , 𝐾{𝜙} is given by replacing the hole in 𝐾{} with 𝜙 .

For convenience in normalisation and describing the structure

of derivations, I introduce the notion of sequential composition.

Definition 2.19. Let
𝐴

𝜓

𝐴′
and

𝐴′

𝜙

𝐵

be derivations. The sequential

composition𝜓 ;𝜙 of𝜓 and 𝜙 is defined recursively as follows:

• If𝜓 is a formula, then𝜓 ;𝜙 ≡ 𝜙 . Likewise, if 𝜙 is a formula,

then𝜓 ;𝜙 ≡ 𝜓 .
• If 𝜓 ≡ 𝜒 ;𝜌 𝜔 , where 𝜒 and 𝜔 are derivations and 𝜌 is an

inference rule, then𝜓 ;𝜙 ≡ 𝜒 ;𝜌 (𝜔 ;𝜙). Likewise, if 𝜙 ≡ 𝜒 ;𝜌 𝜔 ,

then𝜓 ;𝜙 ≡ (𝜓 ; 𝜒);𝜌 𝜔 .
• If𝜓 ≡ 𝜒 ★𝜔 and 𝜙 ≡ 𝜒 ′★𝜔 ′

, where★ ∈ {∨,∧} and 𝜒 , 𝜒 ′, 𝜔
and 𝜔 ′

are derivations such that the conclusion of 𝜒 is the

premise of 𝜒 ′ and the conclusion of 𝜔 is the premise of 𝜔 ′
,

then𝜓 ;𝜙 ≡ (𝜒 ; 𝜒 ′) ★ (𝜔 ;𝜔 ′).

• If 𝜓 ≡ 𝑄𝑥𝜒 and 𝜙 ≡ 𝑄𝑥𝜒 ′, where 𝑄𝑥 ∈ {∀𝑥, ∃𝑥} for

some variable 𝑥 and 𝜒 and 𝜒 ′ are derivations, then 𝜓 ;𝜙 ≡
𝑄𝑥 (𝜒 ; 𝜒 ′).

I will write

𝐴

𝜓

𝐴′

𝜙

𝐵

to mean𝜓 ;𝜙 .

I define the notion of an inference rule occurring above or occur-
ring below another instance of an inference rule in a derivation as

follows.

Definition 2.20. Let
𝐴1

𝜌1
𝐵1

and

𝐴2
𝜌2
𝐵2

be instances of inference

rules 𝜌1 and 𝜌2 in a derivation 𝜙 . If 𝜙 may be expressed in the

form 𝜓 ;𝐾{𝐴1;𝜌1 𝐵1};𝜓 ′
; 𝐽 {𝐴2;𝜌2 𝐵2};𝜓 ′′

for some derivations 𝜓 ,

𝜓 ′
, 𝜓 ′′

and formula contexts 𝐾{} and 𝐽 {} but not in the form

𝜒 ;𝐾 ′{𝐴2;𝜌2 𝐵2}; 𝜒 ′; 𝐽 ′{𝐴1;𝜌1 𝐵1}; 𝜒 ′′ for any derivations 𝜒 , 𝜒 ′, 𝜒 ′′

and formula contexts 𝐾 ′{} and 𝐽 ′{}, then the instance of 𝜌1 is said

to occur above the instance of 𝜌2 in 𝜙 and the instance of 𝜌2 is said

to occur below the instance of 𝜌1 in 𝜙 .

An instance of an inference rule 𝜌 in a derivation 𝜙 is said to

be a lowermost rule instance (of 𝜌) in 𝜙 if it does not occur above

any other rule instances (of 𝜌) in 𝜙 . Likewise, it is said to be an

uppermost rule instance (of 𝜌) in 𝜙 if it does not occur below any

other rule instances (of 𝜌) in 𝜙 .

6
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3 THE FALSIFIER CALCULUS
I now introduce the falsifier calculus SKSg𝜀 as the system comprised

of propositional rules SKSgP , the universal instantiation rule ∀,
universal equality rules =∀ and the falsifier rule 𝜀, given as follows.

Definition 3.1. The falsifier rule 𝜀 is given by

∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))
𝜀

∀𝑥𝐴(𝑥) ∨ 𝐵(𝜀𝑦𝐴(𝑦))

for all formulae 𝐴(𝑥), 𝐵(𝑥) and all variables 𝑦 such that 𝜀𝑦𝐴(𝑦) is
free for 𝑥 in 𝐵(𝑥).

For any instance of the 𝜀 rule as above, the 𝜀-term 𝜀𝑦𝐴(𝑦) is
called the critical term of the instance of the 𝜀 rule. For all terms

𝑡 (𝑥) which occur with 𝑥 free in 𝐵(𝑥), the term 𝑡 (𝜀𝑦𝐴(𝑦)) is said to

be constructed by the instance of 𝜀.

Definition 3.2. The falsifier calculus SKSg𝜀 is given by SKSg𝜀 =
SKSgP ∪ {𝜀,∀,=∀}.

I can now state the main result of this work, the Falsifier Decom-

position Theorem, which decomposes any first-order proof into an

upper segment in the falsifier calculus SKSg𝜀 and a lower segment

in {∃, qc↓}, with a falsifier disjunction as an intermediate formula

connecting the two segments.

Theorem 3.3 (The Falsifier Decomposition Theorem). For
every epsilon-free proof 𝜙 with conclusion 𝐴 in SKSg1, there exists a
proof of the form

𝜙′ SKSg𝜀

𝐴′

{∃,qc↓}

𝐴

(1)

such that the following elementary bounds hold

|𝜙 ′ | = exp
10 (𝑂 ( |𝜙 |2 ln |𝜙 |))

|𝐴′ | = exp
7 (𝑂 ( |𝜙 |2 ln |𝜙 |))

|𝜙 ′ |𝜀 = exp
12 (𝑂 ( |𝜙 |2 ln |𝜙 |))

|𝐴′ |𝜀 = exp
12 (𝑂 ( |𝜙 |2 ln |𝜙 |))

Furthermore, if 𝜙 is cut-free, then 𝜙 ′ may be chosen to be cut-free.

It is expected that smaller bounds exist for the sizes and 𝜀-sizes of

𝜙 ′ and𝐴′
than those given above, but the present bounds have been

chosen for the sake of exposition of the complexity assessment.

Definition 3.4. The normal form for proofs given by (1) is called

falsifier normal form and the formula 𝐴′
is called a falsifier disjunc-

tion for 𝐴.

I defer the proof of Theorem 3.3 and the statements of some of

its consequences to Section 3.2.

3.1 Rule Admissibility and Permutations
In order to prove Theorem 3.3 the Falsifier Decomposition Theorem,

I first establish some lemmas and propositions.

I note the following standard property of first-order deep-

inference proof systems, that inference rules may be decomposed

into derivations in SKS1.

Proposition 3.5 (Atomicity). For every instance 𝐴
𝜌
𝐵
of an in-

ference rule 𝜌 ∈ {i↓, i↑, c↓, c↑,w↓,w↑,=∃,=∀} such that if 𝜌 is an =

rule it is of the form
∃𝑥∃𝑦𝐴

=

∃𝑦∃𝑥𝐴
,

∀𝑥∀𝑦𝐴
=

∀𝑦∀𝑥𝐴
, 𝐴
=

∃𝑥𝐴
or ∀𝑥𝐴

=

𝐴
, there exists

a derivation
𝐴

𝜌′ S

𝐵

of size 𝑂 (( |𝐴| + |𝐵 |)2) if 𝜌 ∈ {i↓, i↑, c↓, c↑} or 𝑂 ( |𝐴| + |𝐵 |) if 𝜌 ∈
{w↓,w↑,=∃,=∀}, where S ⊆ SKS1 is given by

• {ai↓, ∃, r1↓, s,=P,=∃,=∀} if 𝜌 is i↓
• {ai↑,∀, r1↑, s,=P,=∃,=∀} if 𝜌 is i↑
• {ac↓,m, qc↓,∀,=P,=∀} (or {ac↓,m,∀,=P,=∀} if 𝐴 is weakly
existential-free) if 𝜌 is c↓

• {ac↑,m, qc↑, ∃,=P,=∃} (or {ac↑,m, qc↑,=P} if 𝐴 is weakly
existential-free) if 𝜌 is c↑

• {aw↓, ∃,=P,=∀} if 𝜌 is w↓
• {aw↑,∀,=P,=∃} (or {aw↑,∀,=P} if 𝐴 is weakly existential-
free) if 𝜌 is w↑

• {∃,=∃} if 𝜌 is =∃
• {∀,=∀} if 𝜌 is =∀

Proof. Omitted. See [32], Lemmas 3.17–19 for similar decom-

positions. □

Remarkably, apart from r1↓ and r1↑, the quantifier-shifts may

also be decomposed into derivations in SKS1, as follows.

Proposition 3.6 (Decomposition of qantifier-shifts). For

every instance 𝐴
𝜌
𝐵
of an inference rule 𝜌 ∈ {r2↓, r2↑, r3↓, r3↑, r4↓, r4↑},

there exists a derivation
𝐴

{aw↓,aw↑,qc↓,qc↑,∃,∀,=P,=∃,=∀ }

𝐵

of size 𝑂 ( |𝐴|), which does not contain any = rules of the form
∃𝑥∃𝑦𝐴

=

∃𝑦∃𝑥𝐴
,

∀𝑥∀𝑦𝐴
=

∀𝑦∀𝑥𝐴
, 𝐴
=

∃𝑥𝐴
or ∀𝑥𝐴

=

𝐴
.

Proof. I present derivations for r2↓, r3↓ and r4↓. The remaining

rules may be derived dually.

∀𝑥 (𝐴(𝑥) ∧ 𝐵)
r2↓

∀𝑥𝐴(𝑥) ∧ 𝐵
↓

∀𝑥 (𝐴(𝑥) ∧ 𝐵)
qc↑

∀𝑥 𝐴(𝑥) ∧ 𝐵w↑
t

∧ ∀𝑥 𝐴(𝑥)
w↑

t
∧ 𝐵

∀
t ∧ 𝐵

=

∀𝑥𝐴(𝑥) ∧ 𝐵

where the instances of w↑ in the derivation above are replaced with

derivations in {aw↑,∀,=P,=∃} using Proposition 3.5 and sequential

composition.
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∃𝑥 (𝐴(𝑥) ∨ 𝐵)
r3↓

∃𝑥𝐴(𝑥) ∨ 𝐵
→

∃𝑥
𝐴(𝑥)

∃
∃𝑦𝐴(𝑦)

∨ 𝐵

=

∃𝑥𝐴(𝑥) ∨ 𝐵
where 𝑦 is some variable that is free for 𝑥 in 𝐴(𝑥).

∃𝑥 (𝐴(𝑥) ∧ 𝐵)
r4↓

∃𝑥𝐴(𝑥) ∧ 𝐵
→

∃𝑥
𝐴(𝑥)

∃
∃𝑦𝐴(𝑦)

∧ 𝐵

=

∃𝑥𝐴(𝑥) ∧ 𝐵
where 𝑦 is some variable that is free for 𝑥 in 𝐴(𝑥).

Observe that the size of each construction is linear with respect to

the size of the premise of each inference rule. The result follows. □

The following lemma will be used to establish bounds for the 𝜀-

size of formulae and derivations in terms of their size. In particular,

it provides an elementary bound for the 𝜀-size of a derivation in

the falsifier calculus terms of its size.

Lemma 3.7. Let 𝜙 be a derivation in SKSg𝜀 such that every 𝜀-term
which occurs in 𝜙 is constructed by some instance of the 𝜀 rule or the

∀ rule in 𝜙 and for every instance 𝐴
𝜌
𝐵
of an inference rule in 𝜙 :

(1) every 𝜀-term which occurs in𝐴 is constructed by some instance
of the 𝜀 rule or the ∀ rule which occurs above the instance of 𝜌
in 𝜙

(2) if 𝜌 is ∀, every 𝜀-term which occurs in the term 𝑡 that instanti-
ates the instance of 𝜌 is constructed by some instance of the 𝜀
rule or the ∀ rule which occurs above the instance of 𝜌 in 𝜙

(3) if 𝜌 is an inference rule other than 𝜀 or ∀, every 𝜀-term which
occurs in 𝐵 is constructed by some instance of the 𝜀 rule or the
∀ rule which occurs above the instance of 𝜌 in 𝜙

Then |𝜙 |𝜀 = 𝑂 (exp(exp |𝜙 | ln |𝜙 |)).

Proof. By induction on the number of instances of 𝜀 and ∀. □

The proof of Theorem 3.3 will proceed in three phases. In the

first phase, existential contraction rules qc↓ are permuted down to

the bottom of the proof. In the second phase, existential instanti-

ation rules ∃ are permuted down the proof to separate the proof

into an upper segment of weakly existential-free formulae and a

lower segment in {∃, qc↓}. In the third phase, universal cocontrac-

tion rules qc↑ are permuted up the proof until they are eliminated.

The procedure will use the following lemmas to locally rewrite

subderivations of the proof when performing the permutations.

The following lemma provides reduction rules for permuting

qc↓ rules down through other inference rules during the first phase

of the procedure.

Lemma 3.8. For every inference rule 𝜌 ∈ (SKS1\{qc↓, qc↑})∪{c↑}
and every derivation 𝜙 of the form

𝐾

{
∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓

∃𝑥𝐴

}
𝜌

𝐵

where 𝐾{} is a formula context, there exists a derivation of the form

𝐾{∃𝑥𝐴 ∨ ∃𝑥𝐴}
𝜌′ (SKS1\{qc↓,qc↑,ai↑})∪{c↑}

𝐵′

{qc↓}

𝐵

such that |𝜌 ′ | ≤ 𝑘 |𝜙 |2 for some constant 𝑘 .

Proof. The cases for most inference rules 𝜌 are omitted. I

present constructions for when 𝜌 is a vacuous =∃ rule, which results

in the largest derivations 𝜌 ′, and for the rules r1↑ and c↑, which are

responsible for most of the complexity during the first phase of the

procedure:

∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓
∃𝑥𝐴

=

𝐴

→
∃𝑥𝐴

=

𝐴
∨ ∃𝑥𝐴

=

𝐴

c↓
𝐴

where the instance of c↓ in the derivation above is replaced with

a derivation in {ac↓,m, qc↓,∀,=P,=∀} using Proposition 3.5 and

sequential composition. By Proposition 3.5, the resultant derivation

is of size 𝑂 ( |𝐴|2).

∃𝑥𝐴(𝑥) ∨ ∃𝑥𝐴(𝑥)
qc↓

∃𝑥𝐴(𝑥)
∧𝐶

r1↑
∃𝑥 (𝐴(𝑥) ∧𝐶)

↓

(∃𝑥𝐴(𝑥) ∨ ∃𝑥𝐴(𝑥)) ∧ 𝐶c↑
𝐶 ∧𝐶

s
(∃𝑥𝐴(𝑥) ∨ (∃𝑥𝐴(𝑥) ∧𝐶)) ∧𝐶

s

∃𝑥𝐴(𝑥) ∧𝐶
r1↑

∃𝑥 (𝐴(𝑥) ∧𝐶)
∨

∃𝑥𝐴(𝑥) ∧𝐶
r1↑

∃𝑥 (𝐴(𝑥) ∧𝐶)
qc↓

∃𝑥 (𝐴(𝑥) ∧𝐶)

𝐾

{
∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓

∃𝑥𝐴

}
c↑

𝐾{∃𝑥𝐴} ∧ 𝐾{∃𝑥𝐴}
↓

𝐾{∃𝑥𝐴 ∨ ∃𝑥𝐴}
c↑

𝐾

{
∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓

∃𝑥𝐴

}
∧ 𝐾

{
∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓

∃𝑥𝐴

}
□

The following lemma provides reduction rules for permuting ∃
rules down through other inference rules during the second phase

of the procedure. Prior to this phase, instances of r1↓ in the proof

are replaced with equivalent instances of the falsifier rule 𝜀 to
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ensure that the permutations are possible. When an instance of

∃ is permuted down through an instance of 𝜀, an 𝜀-term may be

introduced into the proof.

Lemma 3.9. For every inference rule 𝜌 ∈ (SKS1 \ {qc↓, qc↑, r1↓,
∃}) ∪ {c↑, 𝜀} and every derivation 𝜙 of the form

𝐾

{
𝐴(𝑡)

∃
∃𝑥𝐴(𝑥)

}
𝜌

𝐵

where 𝐾{} is a formula context, there exists a derivation of the form

𝐾{𝐴(𝑡)}
𝜌′ {𝜌 }

𝐵′

{∃}

𝐵𝜀

such that |𝜌 ′ | ≤ |𝑡 | |𝜙 |, 𝜌 ′ contains at most one instance of 𝜌 and
𝐵𝜀 is a formula obtained by replacing some 𝜀-terms of the form
𝜀𝑧 (𝐽 {∃𝑥𝐴(𝑥)}[𝑧/𝑦]) which occur in 𝐵 with 𝜀𝑧 (𝐽 {𝐴(𝑡)}[𝑧/𝑦]) for
some formula context 𝐽 {} and variables 𝑦, 𝑧.

Proof. The cases for most inference rules 𝜌 are omitted. I

present constructions for when 𝜌 is ∀, which is responsible for

most of the complexity during the second phase of the procedure,

and for when 𝜌 is 𝜀, which introduces 𝜀-terms into the proof:

∀𝑦𝐽
{

𝐴(𝑡)
∃
∃𝑥𝐴(𝑥)

}
∀

𝐽 {∃𝑥𝐴(𝑥)}[𝑠/𝑦]

→

∀𝑦𝐽 {𝐴(𝑡)}
∀

𝐽

{
𝐴(𝑡)

∃
∃𝑥𝐴(𝑥)

}
[𝑠/𝑦]

∀𝑦
(
𝐶 (𝑦) ∨ 𝐽

{
𝐴(𝑡)

∃
∃𝑥𝐴(𝑥)

})
𝜀

∀𝑦𝐶 (𝑦) ∨ 𝐽 {∃𝑥𝐴}[𝜀𝑧𝐶 (𝑧)/𝑦]
↓

∀𝑦 (𝐶 (𝑦) ∨ 𝐽 {𝐴(𝑡)})
𝜀

∀𝑦𝐶 (𝑦) ∨ 𝐽

{
𝐴(𝑡)

∃
∃𝑥𝐴(𝑥)

}
[𝜀𝑧𝐶 (𝑧)/𝑦]

∀𝑦
(
𝐽

{
𝐴(𝑡)

∃
∃𝑥𝐴(𝑥)

}
∨𝐶 (𝑦)

)
𝜀

∀𝑦𝐽 {∃𝑥𝐴(𝑥)} ∨𝐶 (𝜀𝑧 (𝐽 {∃𝑥𝐴(𝑥)}[𝑧/𝑦]))
↓

∀𝑦 (𝐽 {𝐴(𝑡)} ∨𝐶 (𝑦))
𝜀

∀𝑦𝐽
{

𝐴(𝑡)
∃
∃𝑥𝐴(𝑥)

}
∨𝐶 (𝜀𝑧 (𝐽 {𝐴(𝑡)}[𝑧/𝑦]))

□

The following lemma provides reduction rules for permuting

universal cocontraction rules qc↑ up through most other inference

rules during the third phase of the procedure.

Lemma 3.10. For every inference rule 𝜌 ∈ SKS1 \ {qc↓, qc↑, r1↓,
r1↑, ∃, =∃} and every derivation 𝜙 of the form

𝐵
𝜌

𝐾

{
∀𝑥𝐴qc↑

∀𝑥𝐴 ∧ ∀𝑥𝐴

}
where 𝐾{} is a formula context and 𝐵 is weakly existential-free, there
exists a derivation of the form

𝐵

{qc↑}

𝐵′

𝜌′ SKS1\{qc↓,qc↑,ai↑,r1↓,r1↑,∃,=∃ }

𝐾{∀𝑥𝐴 ∧ ∀𝑥𝐴}

such that |𝜌 ′ | ≤ 𝑘 |𝜙 |2 for some constant 𝑘 .

Proof. The cases for most inference rules 𝜌 are omitted. I

present a construction for when 𝜌 is a vacuous =∀ rule, which

results in the largest derivations 𝜌 ′:

𝐴
=

∀𝑥𝐴qc↑
∀𝑥𝐴 ∧ ∀𝑥𝐴

→

𝐴c↑

𝐴
=

∀𝑥𝐴
∧ 𝐴

=

∀𝑥𝐴

where the instance of c↑ in the derivation above is replaced with a

derivation in {ac↑,m, qc↑,=∀} using Proposition 3.5 and sequential

composition. By Proposition 3.5, the resultant derivation is of size

𝑂 ( |𝐴|2). □

During the third phase of the procedure, when universal cocon-

traction rules qc↑ are permuted up the proof, the greatest source

of complexity and most troublesome case is when qc↑ rules are

permuted up through falsifier rules 𝜀. In this case, we use the con-

struction given in the following lemma, which is invariant under

the permutation.

Lemma 3.11. For all variables 𝑥 and 𝑦 and all weakly existential-
free formulae 𝐴(𝑥) and 𝐵(𝑥), let 𝐷 (𝐴(𝑥), 𝐵(𝑥), 𝑥,𝑦, 𝑛) denote the
derivation

∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))
𝜀

∀𝑥𝐴(𝑥) ∨ 𝐵(𝜀𝑦𝐴(𝑦))
∧ · · · ∧

∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))
𝜀

∀𝑥𝐴(𝑥) ∨ 𝐵(𝜀𝑦𝐴(𝑦))

{s}

(∀𝑥𝐴(𝑥) ∧ · · · ∧ ∀𝑥𝐴(𝑥)) ∨
𝐵(𝜀𝑦𝐴(𝑦)) ∨ · · · ∨ 𝐵(𝜀𝑦𝐴(𝑦))

{c↓}

𝐵(𝜀𝑦𝐴(𝑦))

where the premise of the derivation is a conjunction of 𝑛 copies of the
formula ∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥)).
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For all derivations of the form
∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥)) ∧ · · · ∧ ∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))

𝐷 (𝐴(𝑥),𝐵 (𝑥),𝑥,𝑦,𝑛)

𝐾

{
∀𝑧𝐶qc↑

∀𝑧𝐶 ∧ ∀𝑧𝐶

}
where 𝐾{} is a formula context, there exists a derivation of the form

∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥)) ∧ · · · ∧ ∀𝑥 (𝐴(𝑥) ∨ 𝐵(𝑥))
{qc↑}

∀𝑥 (𝐴′(𝑥) ∨ 𝐵′(𝑥)) ∧ · · · ∧ ∀𝑥 (𝐴′(𝑥) ∨ 𝐵′(𝑥))
𝐷 (𝐴′ (𝑥),𝐵′ (𝑥),𝑥,𝑦,𝑛′)

(∀𝑥𝐴′(𝑥) ∧ · · · ∧ ∀𝑥𝐴′(𝑥)) ∨ 𝐵′(𝜀𝑦𝐴′(𝑦))
{aw↑,∀,=P }

(∀𝑥𝐴(𝑥) ∧ · · · ∧ ∀𝑥𝐴′(𝑥) ∧ · · · ∧ ∀𝑥𝐴(𝑥)) ∨ 𝐵′(𝜀𝑦𝐴′(𝑦))
of size 𝑂 (𝑛2 ( |𝐴(𝑥) | + |𝐵(𝑥) |)), where 𝐴′(𝑥), 𝐵′(𝑥) and 𝑛′ are given
by one of the following

(1) 𝐴′(𝑥) is obtained by replacing a subformula ∀𝑧𝐶 of𝐴(𝑥) with
∀𝑧𝐶 ∧ ∀𝑧𝐶 , 𝐵′(𝑥) is the formula 𝐵(𝑥) and 𝑛′ = 𝑛

(2) 𝐴′(𝑥) is the formula 𝐴(𝑥), 𝐵′(𝑥) is obtained by replacing a
subformula ∀𝑧𝐶 of 𝐵(𝑥) with ∀𝑧𝐶 ∧ ∀𝑧𝐶 and 𝑛′ = 𝑛

(3) 𝐴′(𝑥) is the formula 𝐴(𝑥), 𝐵′(𝑥) is the formula 𝐵(𝑥) and
𝑛′ = 𝑛 + 1

Proof. Omitted. □

3.2 Consequences and Proof of Main Result
Before proving Theorem 3.3 the Falsifier Decomposition Theorem,

I note some of its corollaries and provide an example.

It follows from the Falsifier Decomposition Theorem that the

falsifier calculus SKSg𝜀 admits non-elementarily smaller cut-free

proofs than LK for certain formulae and that there exist first-order

theorems with non-elementarily smaller falsifier disjunctions than

Herbrand disjunctions, as follows.

Corollary 3.12. Every valid epsilon-free formula has a proof
in (SKSg𝜀 \ {i↑}) ∪ {∃, qc↓} and there is no elementary function
bounding the size of the smallest cut-free LK proof of a formula in
terms of the (𝜀-)size of its smallest (SKSg𝜀 \ {i↑}) ∪ {∃, qc↓} proof.

Proof. By Theorem 3.3 of [2], there is no elementary function

bounding the size of the smallest cut-free LK proof of a formula in

terms of the size of its smallest cut-free LKshift proof, where LKshift
is the system presented in [2]. It is a standard exercise to show

that SKSg1 \ {i↑} polynomially simulates cut-free LKshift so that

there is no elementary function bounding the size of the smallest

cut-free LK proof of a formula in terms of the size of its smallest

SKSg1 \ {i↑} proof. The result follows by Theorem 3.3. □

Corollary 3.13. There is no elementary function bounding the
size of the smallest Herbrand disjunction of a valid epsilon-free for-
mula in terms of the (𝜀-)size of its smallest falsifier disjunction.

Proof. For any Herbrand disjunction 𝐴′
for a valid formula

𝐴, a cut-free LK proof of 𝐴 exists of size 𝑂 (exp |𝐴′ |), since
exponentially-sized cut-free LK proofs exist for all propositional

tautologies. Hence if such an elementary function did exist, it would

contradict Corollary 3.12. □

Remark. The fact that there is no elementary bound on the size

of the smallest Herbrand disjunction for a formula in terms of the

𝜀-size of its smallest falsifier disjunction demonstrates that the 𝜀-

terms in falsifier disjunctions compress the complexity of Herbrand

disjunctions, rather than simply rearranging their complexity.

Example 3.14. The following is a proof of the drinker’s paradox

in falsifier normal form.

t
=

∀𝑥
ti↓

𝑃 (𝑥) ∨ 𝑃 (𝑥)
𝜀

∀𝑥𝑃 (𝑥) ∨ 𝑃 (𝜀𝑦𝑃 (𝑦))
∃
∃𝑦 (∀𝑥𝑃 (𝑥) ∨ 𝑃 (𝑦))

In this example, the falsifier disjunction for the formula

∃𝑦 (∀𝑥𝑃 (𝑥) ∨ 𝑃 (𝑦)) is ∀𝑥𝑃 (𝑥) ∨ 𝑃 (𝜀𝑦𝑃 (𝑦)). The smallest Herbrand

disjunction for the formula is ∀𝑥1∀𝑥2 (𝑃 (𝑥1)∨𝑃 (𝑐)∨𝑃 (𝑥2)∨𝑃 (𝑥1)),
reflective of the compression seen in falsifier disjunctions over Her-

brand disjunctions.

I now prove the Falsifier Decomposition Theorem.

Proof of Theorem 3.3. I present a procedure for transforming

𝜙 into the desired form. The procedure is separated into three

phases. In Phase 1, we permute instances of the existential con-

traction rule qc↓ down to the bottom of the proof. In Phase 2, we

permute instances of the existential instantiation rule ∃ down to

the bottom of the proof, separating the proof into an upper segment

of weakly existential-free formulae and a lower segment in {∃, qc↓}.
In Phase 3, we permute instances of the universal cocontraction

rule qc↑ up the proof until they are eliminated.

To begin, we replace all instances of the rules

i↓, i↑,w↓,w↑, c↓, r2↓, r2↑, r3↓, r3↑, r4↓, r4↑ and = rules of the

forms

∃𝑥∃𝑦𝐴
=

∃𝑦∃𝑥𝐴
,

∀𝑥∀𝑦𝐴
=

∀𝑦∀𝑥𝐴
,

𝐴
=

∃𝑥𝐴
and

∀𝑥𝐴
=

𝐴
in the proof with

derivations in SKS1 using Propositions 3.5 and 3.6 and sequential

composition. Note that in order to avoid introducing unnecessary

vacuous =∃ rule instances into the proof (since they duplicate

instances of qc↓ during Phase 1), we do not decompose instances

of c↑ in this way, but will do so at a later stage (see Phase 3 below).

For ease of expression, we replace every instance of qc↑ introduced
by this decomposition with an instance of c↑. By Propositions 3.5

and 3.6, the resultant proof𝜓0 is of size 𝑂 ( |𝜙 |2) and if 𝜙 is cut-free

then𝜓0 is cut-free.

To ensure that instances of inference rules may be permuted

around the proof without creating variable binding conflicts, we

rename (𝛼-convert) variables and quantifiers in the proof such that

for all variables 𝑥 , no ∃𝑥 or ∀𝑥 in the proof occurs in the scope

of another ∃𝑥 or ∀𝑥 symbol. We then extend the proof with a

derivation in {=∃,=∀} using sequential composition to ensure that

this renaming does not alter the conclusion of the proof.

Phase 1
We permute all instances of qc↓ down the proof using the rewrit-

ing system defined as follows. At each inductive step, we select a

10
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lowermost instance of qc↓ in the proof which occurs above some

instance of a rule other than qc↓. We then permute this instance of

qc↓ down through a rule instance 𝜌 immediately beneath it in the

proof in the following manner:

If 𝜌 occurs inside the context of qc↓, we apply the following

rewrite, replacing the subderivation in the proof using sequential

composition:

∃𝑥𝐾{𝐴} ∨ ∃𝑥𝐾{𝐴}
qc↓

∃𝑥𝐾
{

𝐴
𝜌
𝐵

}
↓

∃𝑥𝐾
{

𝐴
𝜌
𝐵

}
∨ ∃𝑥𝐾

{
𝐴

𝜌
𝐵

}
qc↓

∃𝑥𝐾{𝐵}
Otherwise, if 𝜌 occurs outside the context of qc↓, in a subderiva-

tion of the form

𝐾

{
∃𝑥𝐴 ∨ ∃𝑥𝐴qc↓

∃𝑥𝐴

}
𝜌

𝐵

for some formula context 𝐾{}, we replace the above subderiva-

tion in the proof with the derivation given by Lemma 3.8 using

sequential composition.

The procedure terminates once every instance of qc↓ in the proof
is above only other instances of qc↓. Termination is guaranteed

since the height of the selected instance of qc↓ is reduced after each
inductive step.

The resultant proof is of the form

𝜓1 (SKS1\{qc↓,qc↑})∪{c↑}

𝐴′
1

{qc↓}

𝐴

By Lemma 3.8, if 𝜓0 is cut-free then the rewrites presented do

not introduce any further instances of ai↑ into the proof. Therefore,
if 𝜙 is cut-free then𝜓1 is cut-free.

Phase 2
In this phase, we permute all instances of the ∃ rule down the

proof.

To begin, to ensure that ∃ rules can be permuted down the proof,

we replace every instance of r1↓ in the proof with an instance of

the falsifier rule 𝜀, using the following transformation:

∀𝑥 (𝐴(𝑥) ∨ 𝐵)
r1↓

∀𝑥𝐴(𝑥) ∨ 𝐵
→

∀𝑥 (𝐴(𝑥) ∨ 𝐵)
𝜀

∀𝑥𝐴(𝑥) ∨ 𝐵
For the convenience of further normalisation, we assume that the

critical terms of all instances of the 𝜀 rule in the proof use distinct

variables which are not used anywhere else in the proof.

We now permute instances of the ∃ rule down the proof using

the rewriting system defined as follows. At each inductive step, we

select a lowermost instance of ∃ in the proof which occurs above

some instance of a rule other than ∃ or qc↓. We then permute this

instance of ∃ down through a rule instance 𝜌 immediately beneath

it in the proof in the following manner:

If 𝜌 occurs inside the context of ∃, we apply the following rewrite,
replacing the subderivation in the proof using sequential composi-

tion:

𝐾{𝐴}[𝑡/𝑥]
∃

∃𝑥𝐾
{

𝐴
𝜌
𝐵

}
→

𝐾

{
𝐴

𝜌
𝐵

}
[𝑡/𝑥]

∃
∃𝑥𝐾{𝐵}

(2)

Otherwise, if 𝜌 occurs outside the context of ∃, in a subderivation
of the form

𝐾

{
𝐴(𝑡)

∃
∃𝑥𝐴(𝑥)

}
𝜌

𝐵

for some formula context 𝐾{}, we replace the above subderivation
in the proof with the derivation given by Lemma 3.9 using sequen-

tial composition. To maintain correctness of the proof, if an 𝜀-term

𝜀𝑧 (𝐽 {∃𝑥𝐴(𝑥)}[𝑧/𝑦]) is locally renamed to 𝜀𝑧 (𝐽 {𝐴(𝑡)}[𝑧/𝑦]) by this
reduction, we replace every occurrence of 𝜀𝑧 (𝐽 {∃𝑥𝐴(𝑥)}[𝑧/𝑦]) in
the proof with 𝜀𝑧 (𝐽 {𝐴(𝑡)}[𝑧/𝑦]). When performing this replace-

ment, in the case of nested 𝜀-terms, we replace innermost occur-

rences of the term 𝜀𝑧 (𝐽 {∃𝑥𝐴(𝑥)}[𝑧/𝑦]) before outermost occur-

rences.

The procedure terminates once every instance of ∃ in the proof is

above only other instances of ∃ and qc↓. Termination is guaranteed

since the height of the selected instance of ∃ is reduced after each

inductive step.

The resultant proof is of the form

𝜓2 (SKS1\{qc↓,qc↑,ai↑,r1↓,r1↑,∃,=∃ })∪{c↑,𝜀 }

𝐴′
2

{∃,qc↓}

𝐴

where every formula in𝜓2 is weakly existential-free.

By Lemma 3.9, if 𝜓1 is cut-free then the rewrites presented do

not introduce any further instances of ai↑ into the proof. Therefore,
if 𝜙 is cut-free then𝜓2 is cut-free.

Phase 3
In this phase, we permute all instances of qc↑ up the proof until

they are eliminated.

To begin, we replace all instances of c↑ in the proof with deriva-

tions in {ac↑,m, qc↑,=P} using Proposition 3.5 and sequential com-

position.

We now permute instances of qc↑ up the proof using the rewrit-

ing system defined as follows. At each inductive step, we permute

an uppermost instance of qc↑ up through a rule instance 𝜌 immedi-

ately above it in the proof in the following manner:

If 𝜌 occurs inside the context of qc↑, we apply the following

rewrite, replacing the subderivation in the proof using sequential

11
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composition:

∀𝑥𝐾
{

𝐵
𝜌
𝐴

}
qc↑

∀𝑥𝐾{𝐴} ∧ ∀𝑥𝐾{𝐴}
↓

∀𝑥𝐾{𝐵}
qc↑

∀𝑥𝐾
{

𝐵
𝜌
𝐴

}
∧ ∀𝑥𝐾

{
𝐵

𝜌
𝐴

}
Otherwise, if the instance of qc↑ being permuted is immediately

below a derivation of the form 𝐷 (𝐴(𝑥), 𝐵(𝑥), 𝑥,𝑦, 𝑛) as described
in Lemma 3.11, we replace the whole subderivation with the ap-

propriate of the three derivations described in Lemma 3.11, using

sequential composition. To maintain correctness of the proof, if

an 𝜀-term is locally renamed by this reduction (case (1) of Lemma

3.11), we replace every occurrence of the 𝜀-term in the proof, in the

same manner as was described in Phase 2.

Otherwise, if 𝜌 occurs outside the context of qc↑, in a subderiva-

tion of the form

𝐵
𝜌

𝐾

{
∀𝑥𝐴qc↑

∀𝑥𝐴 ∧ ∀𝑥𝐴

}
for some formula context 𝐾{}, we replace the above subderiva-

tion in the proof with the derivation given by Lemma 3.10 us-

ing sequential composition. Note that if 𝜌 is 𝜀, it is of the form

𝐷 (𝐶 (𝑥), 𝐸 (𝑥), 𝑥,𝑦, 1) as described in Lemma 3.11 and hence is han-

dled by the reduction described in the previous paragraph.

The procedure terminates once the proof contains no instances

of qc↑. Termination is guaranteed since the height of an uppermost

instance of qc↑ is increased after each inductive step. Every univer-

sal quantifier in the proof must be introduced by a vacuous =∀ rule

and when an instance of qc↑ is permuted up through such a rule

it is eliminated, introducing one further instance of qc↑ for each
universal quantifier in the premise of the =∀ instance.

After termination, we replace every instance of c↓ in the proof

(resulting from the constructions of Lemma 3.11) with a derivation

in {ac↓,m,∀,=P,=∀} using Proposition 3.5 and sequential compo-

sition. We then replace all atomic rules in the proof with their

standard variants in SKSgP (ac↓ instances are replaced with c↓
instances, etc.) to obtain a proof of the form

𝜙′ SKSg𝜀

𝐴′

{∃,qc↓}

𝐴

as required.

By Lemmas 3.10 and 3.11, if 𝜓2 is cut-free then the rewrites

presented do not introduce any further instances of ai↑ into the

proof. Therefore, if 𝜙 is cut-free then 𝜙 ′ is cut-free, as required.
Complexity (Sketch)

I now assess the size and 𝜀-size of the relevant formulae and

derivations. The bounds computed are not intended to be optimal,

but demonstrate elementary complexity with respect to |𝜙 |. I pro-
ceed by computing bounds for the size of the proof at the end of

each of the three phases. As shown above, the proof 𝜓0 prior to

Phase 1 is of size 𝑂 ( |𝜙 |2).
Phase 1

Each rewrite for permuting an instance of qc↓ down through a

rule instance immediately beneath it replaces a subderivation 𝜒 of

the proof with a derivation of size at most 𝑘 |𝜒 |2 for some constant

𝑘 , by the rewrites described in Phase 1 and Lemma 3.8. Therefore

|𝜓1 | ≤ 𝑘 (2
𝑁 −1) |𝜓0 | (2

𝑁 )
(3)

where 𝑁 is the number of qc↓ instances permuted down the proof.

As such, I compute an upper bound for the number of instances of

qc↓ in the proof during Phase 1.

There are three sources which introduce further instances of qc↓
into the proof during Phase 1: (A) permuting instances of qc↓ down
through instances of c↑ which occur in the proof prior to Phase 1,

(B) permuting instances of qc↓ down through instances of vacuous

=∃ rules, and (C) permuting instances of qc↓ down through the

instances of c↑ introduced when permuting instances of qc↓ down
through instances of r1↑. For a given instance of an inference rule in
the proof, the potentially-greatest source of further instances of qc↓
is that of type (C), when the inference rule is r1↑, since an instance

of c↑may be introduced each time an instance of qc↓ is permuted

down through an instance of r1↑. It therefore suffices to compute

an upper bound for the number of qc↓ instances introduced by a

single instance of r1↑ and then account for every instance of an

inference rule in the proof introducing that many qc↓ instances.
For a given instance of r1↑ in the proof which has 𝑁 instances of

qc↓ permuted down through it during Phase 1, at most 𝑁 instances

of c↑ are introduced into the proof. When an instance of qc↓ is

permuted down through an instance of c↑, a further instance of
qc↓ is introduced. Hence if 𝑁 instances of qc↓ occur above a given
instance of r1↑ in the proof, at most𝑁 instances of c↑ are introduced
when permuting the qc↓ instances down through it, resulting in

at most 𝑁 2
instances of qc↓ after the duplication from permuting

down through the introduced c↑ instances.
A proof which contains 𝑁 instances of qc↓ and𝑀 instances of

r1↑ prior to Phase 1 will therefore contain at most 𝑁 2𝑀
instances of

qc↓ during Phase 1 due to this duplication. Since the proof prior to

Phase 1 is of size 𝑂 ( |𝜙 |2), it contains 𝑂 ( |𝜙 |2) instances of qc↓ and
𝑂 ( |𝜙 |2) total inference rule instances, yielding an upper bound of

𝑂 (( |𝜙 |2)𝑂 ( |𝜙 |2) ) = 𝑂 (exp(𝑂 ( |𝜙 |2 ln |𝜙 |))) instances of qc↓ in the

proof during Phase 1. By (3) above, since |𝜓0 | = 𝑂 ( |𝜙 |2), this yields
the bound

|𝜓1 | = exp
3 (𝑂 ( |𝜙 |2 ln |𝜙 |)) (4)

Phase 2
Each rewrite for permuting an instance of the ∃ rule which is

witnessed by a term 𝑡 down through a rule instance immediately

beneath it replaces a subderivation 𝜒 of the proof with a derivation

of size at most |𝑡 | |𝜒 |, by the rewrites described in Phase 2 and

Lemma 3.9, since the existential quantifier in the conclusion is

replaced by 𝑡 . Therefore, since there are at most |𝜓1 | existential
12
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quantifiers in𝜓1,

|𝜓2 | ≤ |𝑡 | |𝜓1 | |𝜓1 | (5)

where 𝑡 is the largest term which witnesses an instance of ∃ during

Phase 2. I therefore compute an upper bound for |𝑡 |.
The substitutions introduced by ∀ rules can increase the size of

terms which witness ∃ rules. Whenever an instance of ∃ which

is witnessed by a term 𝑠 is permuted down through an instance

of ∀ which is instantiated by a term 𝑟 , an instance of ∃ which

is witnessed by 𝑠 [𝑟/𝑥] for some variable 𝑥 is introduced (see the

first construction in the proof of Lemma 3.9). Furthermore, the

terms which instantiate instances of ∀ rules may be altered in the

same way when permuting an instance of ∃ down by the rewrite

(2) presented in Phase 2, when 𝜌 is ∀. Consider an instance of ∀
in the proof which is instantiated by 𝑟 and has 𝑀 instances of ∃
above it during Phase 2, witnessed by 𝑠1, . . . , 𝑠𝑀 . After the instances

of ∃ have been permuted down, it will be instantiated by a term

of size at most |𝑟 [𝑠1/𝑥1] . . . [𝑠𝑀/𝑥𝑀 ] | ≤ |𝑟 | |𝑠 |𝑀 , where 𝑠 is the

largest of the terms 𝑠𝑖 . Therefore each of the 𝑀 instances of ∃
will be witnessed by terms of size at most |𝑟 | |𝑠 |𝑀+1

after being

permuted down through the∀ rule. If𝑀 instances of ∃ are permuted

down through 𝐿 instances of ∀, the resultant ∃ instances are thus

witnessed by terms of size at most |𝑟 |𝑂 (𝑀𝐿−1) |𝑠 |𝑂 (𝑀𝐿)
, where 𝑟 is

the largest term which instantiates one of the ∀ instances.

Since all terms which witness ∃ instances and instantiate ∀ in-

stances in𝜓1 must occur in 𝜙 , we have |𝑠 |, |𝑟 | ≤ |𝜙 |. Since the proof
contains at most |𝜓1 | instances of ∀, we have 𝐿 ≤ |𝜓1 | and since

it contains at most |𝜓1 | existential quantifiers, we have 𝑀 ≤ |𝜓1 |.
Therefore the largest term which witnesses an instance of ∃ during

Phase 2 is of size at most |𝜙 |𝑂 ( |𝜓1 | |𝜓1
|)
. By (4) and (5), this yields

the bound

|𝜓2 | = exp
7 (𝑂 ( |𝜙 |2 ln |𝜙 |)) (6)

Phase 3
The complexity increase from Phase 3 is analogous to that of

Phase 1, since each rewrite for permuting an instance of qc↑ up

through a rule instance immediately above it replaces a subderiva-

tion 𝜒 of the proof with a derivation of size at most 𝑘 |𝜒 |2 for some

constant 𝑘 and the constructions of Lemma 3.11 duplicate qc↑ in-
stances in the same manner that r1↑ instances duplicate qc↓ in-

stances during Phase 1. Therefore

|𝜙 ′ | = exp
10 (𝑂 ( |𝜙 |2 ln |𝜙 |))

Finally, since 𝐴′
is obtained by renaming 𝜀-terms in 𝐴′

2
during

Phase 3, by (6), |𝐴′ | = |𝐴′
2
| ≤ |𝜓2 | = exp

7 (𝑂 ( |𝜙 |2 ln |𝜙 |)). The
resultant proof also meets the conditions of Lemma 3.7, by the

rewrites of Phases 2 and 3 which alter 𝜀-terms, and so the required

bounds for |𝜙 ′ |𝜀 and |𝐴′ |𝜀 follow. □

4 CONCLUSION
I introduced the falsifier calculus, a new proof system for first-order

predicate logic in the language of Hilbert’s epsilon-calculus which

admits non-elementarily shorter cut-free proofs than traditional

sequent-calculus systems. I further proved the Falsifier Decompo-

sition Theorem, giving rise to the notion of falsifier disjunctions,

analogues to Herbrand disjunctions which are non-elementarily

shorter than Herbrand disjunctions for certain first-order theorems.

Unlike Herbrand’s Theorem or Gentzen’s sharpened Hauptsatz

(midsequent theorem) [14], the Falsifier Decomposition Theorem

does not fully separate the propositional and first-order parts of a

proof, but is a new decomposition that provides a novel insight into

the normalisation theory of first-order proofs. It is also expected

that the Falsifier Decomposition Theoremwill be useful in establish-

ing further normalisation results for first-order proofs within the

deep-inference methodology, including extending the experiments
method [32], a deep-inference cut-elimination procedure for propo-

sitional classical logic, to first-order predicate logic and formalising

the connection between falsifier disjunctions and Herbrand disjunc-

tions to give an independent proof of Herbrand’s Theorem. I note

that the 𝜀-terms contained in falsifier disjunctions resemble the case

distinctions used to derive Herbrand disjunctions in Shoenfield’s

variant of Gödel’s functional interpretation [15, 34] (see also [1])

and Kreisel’s no-counterexample interpretation [23, 24].

Central to the proof theory of the traditional critical-axiom-based

epsilon-calculus are the first epsilon theorem and second epsilon
theorem (see [30]), which establish conservativity of the epsilon-

calculus over propositional classical logic and first-order predicate

logic, respectively. The extended first epsilon theorem [6, 30] fur-

ther establishes that for any quantifier-free, epsilon-free formula

𝐴(𝑥1, . . . , 𝑥𝑛) and 𝜀-terms 𝜀𝑥1𝐵1, . . . , 𝜀𝑥𝑛𝐵𝑛 , if 𝐴(𝜀𝑥1𝐵1, . . . , 𝜀𝑥𝑛𝐵𝑛)
is provable in the epsilon-calculus, then there exist epsilon-free

terms 𝑡𝑖
𝑗
such that

𝑖=𝑚∨
𝑖=1

𝐴(𝑡𝑖
1
, . . . , 𝑡𝑖𝑛) is a propositional tautology.

This may be used to prove Herbrand’s Theorem for existential the-

orems, by encoding existential quantifiers with 𝜀-terms. It is not

yet known whether an analogous result holds for the falsifier cal-

culus, but this provides an interesting avenue for further research,

especially since the Falsifier Decomposition Theorem is proved for

general first-order theorems.
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