Exponential asymptotics for

SAFFMAN-TAYLOR IN A WEDGE

Consider an incompressible and irrotational fluid suspended in a narrow space between two parallel glass plates. A source injects an inviscid fluid at constant speed. The interface develops fingers which split and spread over time. This is the classic Saffman-Taylor problem.

At this point solutions stop existing because a tip splitting instability occurs. The finger will split into multiple fingers where each can then be thought of as a single finger in a wedge of smaller \uparrow angle.

BIFURCATION
 DIAGRAM $\boldsymbol{\theta}_{0}=1 \mathbf{1 0}^{\circ}$

SELECTION CONDITION

At the corner of the wedge there are boundary conditions which require the interface to be oscillation-free. This means any oscillations present near the tip of the finger must be cancelled out by crossing Stokes lines before the end of the finger. Imposing this gives a selection condition which must be satisfied in order for ends of the finger to be oscillation-free, and thus for a solution to the model to exist:

$$
\mathrm{F}(\lambda)=A_{1} e^{-\frac{\chi_{1}}{\epsilon}}+A_{2} e^{-\frac{\chi_{2}}{\epsilon}}+A_{3} e^{-\frac{\chi_{3}}{\epsilon}}=0
$$ at ends of finger.

Exponentially small oscillations at tips of fingers.

There are now two fingers each with wedge angle $\theta_{0}=5^{\circ}$.

