
 

         alone can affect
the speed and hence,

the shape of the
travelling wave. 

Negative
density

dependent
diffusion leads

to higher
diffusion in low
density regions. 

Speed increases
with        as

predicted by the
theory.

Link to Microscopic Models 

Assume equal local and non-local contributions, then in the additive and   
 multiplicative cases respectively, we require                             or  
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BackgroundFor a population with density           , the general form of a reaction-
diffusion equation with density dependent diffusion and logistic

growth is given by:

This reduces to the FKPP when both        and   are constant with 
 value 1 [1,2], which has been extensively studied due to it's

biological interpretation as a weakly invasive species. 

Positive and negative density dependent diffusion in specific forms
have also been studied [3,4,5], but these often lead to solutions

which have unrealistic biological interpretations. 

Motivation 

Positive density dependent diffusion is often thought of
as a populations response to overcrowding, whereas
negative density dependent diffusion can be a useful
interpretation in the context of mate searching and
pursuit behaviour. 

Despite the limitations of
some cases, density
dependent diffusion still
provides us with a greater
understanding of real-
world population invasion
and dispersal.

We investigate non-degenerate cases of both positive
and negative density dependent diffusion. In particular,
the effects they have on the speed and shape of the
front, and on the underlying dynamics. 

This is with the aim of developing a deeper
mathematical understanding of biologically realistic
reaction-diffusion systems and hence provide an
enhanced explanatory power of the real-world systems
they describe. 
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Results

Speed of a Travelling Wave

It is well-known that for constant diffusion, this constant
travelling wavespeed is given by: 

Which reduces to a minimum stable wavespeed of          
 in the case of the FKPP [6].

Assuming that the travelling wave solution with density
dependent diffusion is also of the pulled type [7], we can
obtain an equation for their speed similarly, from the
linearised version of the PDE:

Following the same stability arguments used in [6] for the
case of constant diffusion, there exists a family of travelling
wave solutions with wavespeeds:

This result indicates that the non-linearity in the diffusion
rates are as irrelevant as the non-linearity in the growth
rates when determining speed and long-time behaviour.

It further highlights why the degenerate cases of density
dependent diffusion given above are biologically
unrealistic. 

A travelling wave solution is one which travels without
change of shape, and therefore propagates at a constant
speed [6]. 

Time

It remains to determine if the stable wavespeed is also the
minimum as it is in the case of constant diffusion. 

u (x,t) 

D(u) r

c* = 2

Starting from a discrete description of the model, we can formulate a chemical master
equation to describe the evolution of the joint probability of the number of particles in
each cell. Diffusive transition rates are made up of both local and non-local contributions.
They can be:

additive multiplicative

or

Following the steps outlined in [8,9], in either case we can derive the continuous PDE
description of the system via a mean-field approximation. 

This result indicates that we cannot simply
view density dependent movement rates
to be the same as density dependent
diffusion. 
Further steps are required to reconcile
the movement rates in the discrete
system with a single density dependent
diffusion function        . We have two
simplifying cases:

 

D(u)

Consider only local contributions which, in either case results in the relation given               
below. This can be solved for well-behaved, integrable functions.
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