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The deep-inference formalism, by allowing for very
fine-grained inference steps and freer composition of
proofs, has produced important results and innova-
tions in various logics, especially classical proposi-
tional logic. A natural progression is to extend these in-
sights to classical first-order logic (FOL) but, although
a direct cut-elimination procedure has been provided
[2], there has been no work as of yet that incorporates
the many perspectives and techniques developed in
the last ten years.
In the talk, I will give the outline of a new cut elim-

ination procedure for FOL in deep inference, as well
as a decomposition-style presentation of Herbrand’s
Theorem called a Herbrand Stratification that is proved
not as a corollary of cut elimination, but in tandem
with it. In doing so, I hope to provide a different and
perhaps better perspective on FOL normalisation, Her-
brand’s Theorem, and their relationship. More con-
cretely, there is good reason to believe that, as in propo-
sitional logic [1], this research can provide us with new
results in proof complexity.

Deep Inference Deep inference differs from the se-
quent calculus in that composition of proofs is allowed
with the same connectives that are used for the compo-
sition of formulae [5]. Thus in classical propositional

logic, two proofs
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This freedom of composition has enabled many proof-
theoretic innovations: the reduction of cut to atomic
form by a local procedure of polynomial-time complex-
ity [3], and the development of a quasi-polynomial cut
elimination procedure for propositional logic using a
geometric invariant of proofs known as the atomic flow
[5]. In FOL, we also allow quantifiers to be applied to
proofs, not only formulae:
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Normalisation in Deep Inference. Recently, study
of normalisation in deep-inference proof systems has
led to the perspective that the process is a conflation

of two mechanisms that operate on two distinct com-
position methods: contraction and a linear cut. When
normalised, the first of these mechanisms increases
complexity, whereas the second reduces it. Thus, two-
stage cut elimination procedures for proof systems are
being developed: those which first decompose a proof
into a suitable form before linear cut elimination then
is performed.

Herbrand’s Theorem as Decomposition I will show
how for FOL, a certain presentation of Herbrand’s the-
orem I call a Herbrand Stratification effectively carries
out the decomposition phase of normalisation. This
inverts the more common idea of using cut elimina-
tion to prove Herbrand’s Theorem [4], and fits with
the complexity narrative: proving Herbrand’s Theo-
rem constructively requires increasing the size of a
proof, possibly greatly [6].
The proof of Herbrand’s Theorem that I will present,

which draws inspiration from normalisation tech-
niques developed for propositional logic that use the
atomic flow, proceeds by combining existential instan-
tiation and contraction into a single rule, called a Her-
brand Expander:
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and pushing these rules to the bottom of the proof.
The result, what I call a Herbrand Stratification of a
proof, is a version of Herbrand’s Theorem for deep
inference and allows for propositional linear cut elimi-
nation methods to be used to complete normalisation.
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