
Removing Cycles from Proofs
CSL 2017

Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph

Université Paris Diderot, University of Bath, and University of Bath

August 21, 2017



Cycles in Proofs

A cycle in a proof is a cycle in a path traced by propositional
variables or atom occurrences.

Figure: [2]
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Previous work on cycles
Buss introduced the notion of a logical flow graph for sequent
calculus proofs [1].



Questions about logical flow graphs

I “Does the presence of cycles in proofs of propositional logic
help to shorten the length of a proof?” [2]

I “Given a proof Π (possibly containing cycles), is there an
acyclic proof for the same sequent only polynomially larger
than Π” [1]

I A. Yes: In the sequent calculus we can transform a proof
with n cycles into an acyclic one with an expansion
bounded by a polynomial of degree n + 1 [2].



Our interest in cycles

I In open deduction, an important part of normalisation is
decomposition, pushing contractions through a proof.

I If contractions get stuck in a cycle, they have an infinite
path ahead of them.

→C →C →C . . .

I Therefore, eliminating cycles is a crucial part of
normalisation.



Open Deduction

Open deduction is a deep inference proof formalism that gives
us more ways of composing derivations.

Given derivations
A

Φ

B
and

C
Ψ

D
we can compose them with:

1. An inference rule σ : B/C:

A
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C
Ψ
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2. A binary logical relation ?:
A
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C
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D
=

A ? C
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B ? D



SKS
I The structural rules (all atomic):

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

I The logical rules (all linear):

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial

I The unit rules:

A ∧ t = A A ∨ f = A



Atomic Flows

Atomic flows [3] are a geometric invariant of SKS propositional
logic proofs. Only structural information about the proof is
conserved.
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Composition of proofs naturally corresponds to composition of
flows.
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a ∨ ā a ā
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Open Deduction Examples
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ā ∨ a
∨

f
aw↓

a
=
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The proof above has premise [t ∨ f] ∧ t = t and conclusion
ā ∨ f ∨ a = ā ∨ a.



Open Deduction Examples
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ā ∧ a
ai↑

f
∧

a
aw↑

t

∨
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The derivation above has premise ā ∧ t ∧ a = ā ∧ a and
conclusion (f ∧ t) ∨ f = f.



Normalisation for SKS

Recently, Aler Tubella showed that proofs in many different
logics with certain properties can be normalised using the same
techniques [4]:

φ0 SKS

A
(1)−−→

φ1 SKS\{ac↓,ac↑}
A′
{ac↓}

A

(2)−−→

φ2 KS\{ac↓}
A′
{ac↓}

A

1. Decomposition: (co)contractions are pushed through the
proof until they reach the bottom. This procedure can
increase the size of the proof exponentially.

2. Linear Cut Elimination: A technique called “splitting” is
used to eliminate cuts from the proof. Provided that
decomposition has taken place first, this procedure does
not significantly increase the size of the proof.



Decomposition for SKS
We define the rewriting system C:

1 2 3

−→

1 2 3

1 2 3

−→

1 2 3

1 2

−→
1 2

1 2

−→
1 2

3 4

1 2

−→

3 4

1 2



Cycles cause non-termination

If we apply C to a proof with cycles, the rewriting system will
not terminate.

→C →C →C . . .

Thus, if we want to use decomposition as the first part of our
normalisation, we need a procedure for removing cycles.



Normalisation for SKS

Therefore we need to refine the normalisation procedure:
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2. Linear Cut Elimination



Normalisation for SKS

Therefore we need to refine the normalisation procedure:

φ0 SKS

A
(1)−−→ φ1 SKS

A
(2)−−→

φ2 SKS\{ac↓,ac↑}
A′
{ac↓}

A

(3)−−→

φ3 KS\{ac↓}
A′
{ac↓}

A

1. Cycle Removal

2. Decomposition

3. Linear Cut Elimination

Our paper sets out how to remove cycles from proofs in SKS in a
local way.



Different types of cycle

There are various different shapes and sizes cycles can come in:

For this talk, we assume there is only one cycle in the proof and
it contains only one identity and one cut.



Critical Medial

For a cycle to occur in a proof, two edges of an atomic flow that
were related by ∨ at the top of a connected component have to
be connected by ∧ at the bottom of the flow.

(A{a} ∧ B) ∨ (C ∧ D{ā})
m

[A{a} ∨ C] ∧ [B ∨ D{ā}]

We call this medial a critical medial for the cycle. For this talk,
we will assume there is only one critical medial per cycle.



Trace the ∧-flow

Starting from the bottom, colour red each conjunction (∧)
connecting two green edges until the critical medial for the
cycle.

∧

...
∧

We call the trace of ∧-s the ∧-flow.



Transformation along the ∧-flow

By pushing the critical medial along the ∧-flow in a certain way,
we can break the cycle.

∧

...
∧ −→

However, when the critical medial hits the cut, an unsound rule
is created: (

ā
aw↑

t
∧ a

)
∨

(
ā ∧

a
aw↑

t

)
6=

f



Rewriting System W

We define a new rewriting system, W:

−→ −→

−→ −→

−→



Solving the problem

We can use rewriting system W to solve the problem:

−→∗W

(
ā

aw↑
t
∧ a

)
∨

(
ā ∧

a
aw↑

t

)
6=

f

−→
(t ∧ f) ∨ (f ∧ t)

=
f

The cycle is now successfully removed!



Complexity creation

Rewriting system C can cause exponential blow up in a proof, if
there are “sausages” in the flow.

... −→∗C
...

...
...

...



Creation of complexity through cycle removal

In the process of transforming along the ∧-flow, various different
things can happen to other edges that are involved in the critical
medial.

−→

Note that a sausage can be created. Further work is needed to
explore how this and other methods of cycle removal affect the
complexity of the whole normalisation procedure.
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