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This report presents a proposed direction of research for the continuation and
eventual completion of my PhD. It is a course of study recommended by my own
academic interests, the expertise of staff in the research group, and the formal
requirements of a PhD in Computer Science.

Towards a Natural Theory of Quantification for Deep Inference

Much of my first year at Bath has been dedicated to immersing myself in what is,
to me, largely a new field: the mathematical foundations of computation. From
my undergraduate degree, I gained a perspective on logic very much influenced by
themathematical and philosophical tradition. Despite the obvious difficulties and
misunderstandings that arose from this change of field, my academic past hope-
fully allows me to attack problems and design issues with a varied and broad log-
ical arsenal. Many of the interests from my Master’s Degree in Mathematics and
Philosophy have carried over into my doctorate: a focus on classical logic (both
propositional and first-order), a sensitivity to the relationship between syntax and
semantics, and an appreciation and assessment of the motivations behind histor-
ical design choices in logic.

The past and future course of my study—developed throughout the year in fre-
quent discussion with my supervisor and other members of the research group—
reflects these interests, as well as the academic strengths of the group. In addition,
there is much scope for reasonable modification of the aims and expectations of
the research over the next two years, while preserving a consistent intellectual
direction.

A natural grouping of my research—past, present and future—is into three areas.
The first is largely material that has been known for a while by various people
working in the area, but has not yet been formally presented. The second can per-
haps be considered new work, although it is largely synthetic: bringing together a
few strands already extant in recent literature to show an interesting result. The
third area will likely represent the creative core of my PhD thesis, and consists of
speculative, design-orientated work. As a totality, they represent a continuation
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of a research programme going back over 15 years, that of deep inference [4, 20].1

More specifically, I hope to add to the many contributions that deep inference has
provided to the structural proof theory of classical logic. As well as carrying out
preliminary research in the well-furrowed field of classical propositional logic, I
hope to enrich the deep-inference proof theory of predicate logic, which, pace the
work of Kai Brünnler and Richard McKinley [6, 7, 8, 26], is comparatively unstud-
ied.

Natural and confluent cut elimination for propositional logic. Ever since the
proof of Gentzen’s Hauptsatz for the sequent calculus [16], which proceeds by an
induction on both the height and depth of a cut, it has been noticed that there are
certain non-convergent critical pairs in the cut elimination procedure. This has
long caused angst among proof theorists: the resulting lack of confluence denies
classical proof theory many desirable properties that follow from the existence of
unique normal forms: a denotational semantics, a Curry-Howard style correspon-
dence and a confluent normalisation procedure for natural deduction [17, 30]. The
two most prominent examples of such critical pairs in the classic cut elimination
procedure arise from the following proofs [17, 18, 24]:

Π1

Γ
weak

Γ, A

Π2

∆
weak

Ā,∆
cut

Γ,∆

and

Π1

Γ, A,A
cont

Γ, A

Π2

Ā, Ā,∆
cont

Ā,∆
cut

Γ,∆

In each of these cases, the proof of the Hauptsatz relies on the fact that one can
replace such proofs with another where the cut has either been eliminated, or the
induction measure has decreased. For example:

Π1

Γ
weak

Γ, A

Π2

∆
weak

Ā,∆
cut

Γ,∆

=⇒
Π1

Γ
weak

Γ,∆

/ Π2

∆
weak

Γ,∆

However, as is shown by the example above, in these situations there seems to
be no canonical way to proceed. Thus, it has become the received view that one
needs an extra-logical strategy—Girard’s LC [17], Parigot’s λµ-calculus [29] and
Coquand’s game semantics [14] can be seen as examples of this phenomenon—to
achieve confluent cut elimination.

Non-confluence is also a feature of the most wide-ranging cut elimination pro-
cedure for deep inference proof systems, splitting [6, 19]. Due to the fact that a
deep-inference proof is not tree-like (instead there is top-down symmetry [19]), the
Gentzen method of cut elimination is not going to work in the same way. Instead,
we use the fact that the cut rule can be reduced to an atomic cut rule, where the
eigenformula must be atomic [12]. Non-convergent critical pairs arise when elim-
inating atomic cuts using the splitting lemma. The lemma guarantees that we can

1In light of this, I have joined the research project Efficient and Natural Proof Systems (EPSRC Project
EP/K018868/1).
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“split” a proof Π with an atomic cut at the bottom into three:

Π =

ai↑ free

C

{
a ∧ ā

ai↑
f

}
=⇒ Π1 ai↑ free

[U ∨ a]
,

Π2 ai↑ free

[U ∨ ā]
and

U
∆ ai↑ free
C{f}

Now, we can create a proof of Π3 ai↑ free

[U ∨ U ]
from Π1 and Π2 and then use contraction

to compose it with ∆, creating a cut-free proof of C{f}. But, crucially, there are
two ways to create Π3: either by plugging Π1 into Π2 or vice versa. So the move to
deep inference does not immediately solve our problems.

Nevertheless, we can make progress by taking inspiration from the fact that in
deep inference formalisms, in particular open deduction [20], there are more natu-
ral ways to compose derivations than in Gentzen systems, one of the key features

of the methodology. To be precise: given two derivations
A

Φ

B
,
C

Ψ

D
, we can com-

pose vertically, with an inference rule
B

σ
C
, to form

A

D
; or horizontally, with a bi-

nary logical relation ?, to form
A ? C

B ? D
(and similarly for n-ary logical relations and

negation of derivations). This characteristic is exploited in the use of a geometric
invariant of derivations, the atomic flow, a graph where the edges trace the atoms
in a derivation and the nodes are structural rules [20, 21]:

t
ai↓
a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t

Thus, only the structural information about the derivation is conserved; the logical
and equality rules are not represented.

Atomic flow composition naturally corresponds to derivation composition in open
deduction, and reasoning about various aspects of a derivation can be carried out
at the level of the atomic flow: the most significant work is in normalisation [20,
21] and complexity [15]. Furthermore, the atomic flow gives us a simple, almost
trivial, new way at looking at identity between atoms, and occurrence: by using
the connected components of the atomic flow as the basis for an equivalence re-
lation on atoms. This notion of occurrence is truly proof-theoretic, rather than an
adapted formula-theoretic concept.
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t

ā ∨ a
∨

f

a

ā ∨
a ∨ a

a

∧

t

ā

ā ∧
ā

t

∨ a

=
[ā ∨ a] ∧ [ā ∨ a]

ā ∨
a ∧ ā

f
∨ a

ā a a

a ā

ā

ā a

With this more geometric and compositional mindset, it is possible to circumvent
the problems discussed above and construct a natural and confluent cut elimina-
tion procedure for classical propositional logic, which has been called the “exper-
iments” method. It involves a simple and semantically motivated transformation
of a proof into a number of derivations (exponential in the number of connected
components of the flow), which are then disjunctively composed.

The intuition stems from the simple idea that each atom is either true or false. By
tracing up the atoms up from a cut using the atomic flow, we create two deriva-
tions: one from the positive atom in the true case, and one from the negative atom
in the false case. Unlike in the sequent calculus, we can disjunctively compose
these derivations, adding an identity at the top and a contraction at the bottom to
recover a proof:

C
a ∧ ā

ai↑
f

A

↗+

↘−

C

a

t
∧ f

=
f

A

C
f ∧

ā

t
=

f

A

induces Φ

A

↗+

↘−

a
Φ+

A

ā
Φ−

A

↘

↗

t
ai↓

a
Φ+

A

∨
ā

Φ−

A
c↓

A

To better see the dynamics of the procedure, it is sensible to look at the level of
the atomic flow, rather than the derivation. Below is an example:
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ā a

a ā

ā a

↙+ −↘

ā a

a ā

ā a ā a a

a ā

ā a

↓ ↓

ā a

a ā

a ā

ā

ā a

↘ ↙

ā a

a

a ā

ā

ā a

ā a

The above procedure is only sufficient for when there are cuts in one connected
component of the proof. Thus, if there are n > 1 connected components con-
taining cuts, we create a “truth table” of derivations from the original proof, by
repeating the one cut procedure for each connected component. This creates 2n

“experiments”, which, when disjunctively composed, have a tautology on top and
copies of the conclusion at the bottom. Again, we can easily recover a proof, with
a “cap” proving the tautology at the top, and contractions at the bottom.

Φ

A

↗

. . .

↘

a1 ∧ . . . ∧ an
Φ1

A
...

ā1 ∧ . . . ∧ ān
Φ2n

A

↘

. . .

↗

{s,ai↓,ac↓}

a1 ∧ . . . ∧ an
Φ1

A
∨ . . . ∨

ā1 ∧ . . . ∧ ān
Φ2n

A

{ac↓,m}

A

Not only is this a simple procedure, but it is confluent, modulo equivalences such
as associativity and commutativity of conjunction anddisjunction—all critical pairs
end up converging since we can disjunctively compose proofs.

Extending to predicate logic. With the approach and techniques of the previous
section in mind, one natural progression is from propositional to first-order pred-
icate logic. As noted before, the deep-inference proof theory of predicate logic is
one of the less studied areas in the field and, in particular, there is little or no ex-
ploration (tomy knowledge) since the shift of focus from the calculus of structures
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formalism to the less “bureaucratic” open deduction [20]. Thus, work in this area
serves the dual purpose of updating previous research to the current formalism,
as well as hopefully contributing new ideas.

An obvious starting point for any exploration of predicate logic proof theory is
Herbrand’s Theorem [22], especially when looking to develop an approach from
propositional logic. Perhaps the standard modern reference to the theorem is a
formulation and proof due to Samuel Buss [13], which proves equivalence between
first-order provability and the existence of a “Herbrand Proof”. Thus, an inter-
esting development that recommends further study is McKinley’s discovery of an
error in Buss’s proof [27], easily fixed by moving to a deep inference system. The
error occurs in the reduction of contraction to quantifier-free formulae, which,
as contraction reduction is so central to deep inference [12], suggests an impor-
tant link between deep inference and this presentation of Herbrand’s Theorem. In
fact, the necessary contraction reduction has been shown to be impossible in the
sequent calculus [5], meaning that deep inference is not only helpful for a “Buss-
style” Herbrand’s theorem, but essential.

For these reasons, my work is focusing on a factorisation of proofs (which I call
a Herbrand Stratification), due to Brünnler [6], that recovers a “Buss-Style” Her-
brand’s Theorem for a minimal deep inference proof system for first-order predi-
cate logic, KSgr. This system adds four rules (as well as some syntactic equalities),
two to address quantification generally, and two to specifically deal with contrac-
tion of formulas containing quantifiers:

Quantification rules:
A[τ/x]

n↓
∃xA

Q{P{R}}
gr↓
P{Q{R}}

Contraction:
∃xA ∨ ∃xA

qc↓
∃xA

∀xA ∨ ∀xB
m2↓
∀x[A ∨B]

where Q is a series of quantifiers, and no variable in P is bound by any quantifier
in Q.

The Herbrand stratification procedure below, much like the experiments method,
is simple, semantically natural (in that it is intimately related to Herbrand’s Theo-
rem), and confluent modulo equivalences such as associativity and commutativity
of binary connectives, and variable renaming.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W (B)

n↓
Q{B}

gr↓
A′

qc↓
A

The basic idea is to draw the predicate logic rules down to the bottom of the proof,
isolating the propositional component at the top. This allows the use of tech-
niques and methods from propositional logic, such as the atomic flow, and, cru-
cially, the experiments method.



PHD CONFIRMATION REPORT 7

The work up to this point, mainly a synthesis of previous results and approaches,
was presented at the PCC 2015 Oslo workshop in May.2 An extended version is
currently being written up for hopeful publication. But this research also serves
as a springboard for the next topic.

A new syntax for quantification. There are certain attractive proof theoretic
properties that characterise deep inference: locality [8], quasipolynomial-time
normalisation [3] and low complexity [2], for example. One property especially
pertinent to this research is a certain sort of homotopic flexibility in derivations,
captured by the atomic flow. It reflects the fact that, as long as certain geometric
relations are preserved, inference rules can be moved around with relative free-
dom. For example, it is simple tomove identities to the top of a proof - a procedure
important to the experiments method:

t

a

t

b ∨ b̄
∧

a

a ∧ a

∨

ā

ā

ā ∧ ā
∧

t

b ∨ b̄

(b ∧ a) ∨
(
b̄ ∧ a

)
∨ (ā ∧ b) ∨

(
ā ∧ b̄

)
−→

t

b ∨ b̄
∧

t

a ∨ ā
∧

t

b ∨ b̄
s2 ([

b ∨ b̄
]
∧

a

a ∧ a

)
∨

(
ā

ā ∧ ā
∧
[
b ∨ b̄

])
(b ∧ a) ∨

(
b̄ ∧ a

)
∨ (ā ∧ b) ∨

(
ā ∧ b̄

)

−→

However, the traditional syntax for expressing quantification poses instant prob-
lems to achieving these desirable properties for a first-order proof system—this is
why, in the previous section, it is convenient simply to move the predicate logic
component of a proof out the way before starting the cut elimination process. In
fact, derivations in SKSgr have certain similarities to an extension of the sequent
calculus using some deep-inference principles, nested sequents [9], which allow for
nesting of “boxed” sequents. Nested sequent systems aremost commonly used for
modal logics [11, 25], but have also been adapted for predicate logic [10]. However,
such systems seem to preclude any notion of locality as strong as that we obtain
for propositional logic due to the reasons spelled out in [8]—for example the fact
that in the n↓ rule,A is an unbounded formula that needs to be inspected for occur-
rences of x (looking at derivations from the bottom-up, proof-search perspective).

So the question is framed: can we design a calculus for first-order logic and a proof
system that possesses these attractive properties listed above? Furthermore, can
we design this syntax such that it is without unnecessary bureaucracy, the elimina-
tion of which is a key motivation for much of structural proof theory? Encouraged
by the results of the first two sections, I believe that deep inference is an appro-
priate proof theoretic tool to achieving these ends, and that a formalism can be
developed which employs a similar cut elimination procedure to those described
above, one which is semantically natural and confluent. Furthermore, I believe
that an augmented version of the atomic flow can be developed for a first-order
calculus, providing an important invariant that allows for a highly useful perspec-
tive on deep-inference derivations.

2The abstract and slides for the presentation can be found online at
http://people.bath.ac.uk/bdr25/papers
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Thus, a reasonable starting point is to look at the predicate logic system described
in the previous section, KSgr, and seeing where improvements can be made. The
example below, of a (rather trivial) derivation in SKSgr (i.e. KSgr plus all dual
rules), exhibits some of the problems and syntactic inadequacies that must be
overcome:

Pa
n↓
∃xPx

∃x

[
Px

Px ∧ Px

]
∃xPx ∧ ∃xPx

∧
∀y

 t

P̄ y ∨
Py

∃zPz


∀yP̄ y ∨ ∃zPz

∃x

[
Px

t

]
t

∧

∃xPx ∧
[
∀yP̄ y ∨ ∃zPz

]
s

∃xPx ∧ ∀yP̄ y
gr↑

∃x

Px ∧ ∀yP̄ yP̄x

f

 ∨ ∃zPz
∃zPz

∃x

∀y

∃z

One simple observation to make is that the quantifiers create boxes in the deriva-
tion, a feature that has already been compared to nested sequents proof systems.
As discussed above, these pose an immediate problem to achieving local inference
rules and normalisation procedures. In fact, the atomicity of the structural rules
inherited from SKSmakes for clumsiness rather than elegance in a predicate logic,
with quantifiers having to be pushed out for the structural rules and in for the log-
ical rules.

I believe that it is the boxed approach to quantification that impedes the desired
sort of proof theory, and that it is necessary to look beyond the quantifier for solu-
tions. Thus, taking inspiration from a wide range of sources—Hilbert’s ε-calculus
[1], Herbrand’s Theorem [22], Miller’s expansion trees [28], Hintikka’s hyperclas-
sical (or independence-friendly) logic [23] to name a few—I hope to develop a syn-
tax for first-order logic without the standard quantifiers that satisfies the require-
ments and specifications described above.

At this juncture, I have conducted preliminary investigations into an approach I
call the æ-calculus (read “alpha-epsilon calculus”).3 It is a simplified version of
the ε-calculus that replaces quantification with term-level quantifier dependency
information:

∀x∀y∀z(Pxy ∧Qxz ∧Ryz) −→ Pαxαy ∧Qαxαz ∧Rαyαz

∀x∃y[Pxy ∨Qy] ∧ ∃zRz −→ [Pαxεy(x) ∨Qεy(x)] ∧Rεz

∀x∃y[Px ∨Qy] ∧ ∃zRz −→ [Pαxεy ∨Qεy] ∧Rεz

3Some of these ideas were presented to the research group here in Bath. The slides for the presentation
can be found online at http://people.bath.ac.uk/bdr25/files/expres.pdf
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∀x∃y∀z∃w[(Pw ∧Qwz) ∨ (Rzy ∧Ryx)]

↓
[(Pεw(z, x) ∧Qεw(z, x)αz(y)) ∨ (Rαz(y)εy(x) ∧Rεy(x)αx)]

Moving quantification information from the propositional level to the term level
allows much more freedom for permutation of the propositional rules of deep in-
ference and the possibility of an atomic equivalent to the n↓ rule, making it sim-
pler to extend the local cut elimination techniques for propositional logic. The
improvement can be seen clearly from the translation of the earlier proof into the
new calculus, and motivates an obvious extension to the atomic flow:

Pa
n↓
∃xPx

∃x

[
Px

Px ∧ Px

]
∃xPx ∧ ∃xPx

∧
∀y

 t

P̄ y ∨
Py

∃zPz


∀yP̄ y ∨ ∃zPz

∃x

[
Px

t

]
t

∧

∃xPx ∧
[
∀yP̄ y ∨ ∃zPz

]
s

∃xPx ∧ ∀yP̄ y
gr↑

∃x

Px ∧ ∀yP̄ yP̄x

f

 ∨ ∃zPz
∃zPz

−→

Pa
æ↓
Pεx

Pεx
ac↑

Pεx ∧ Pεx
∧

t
ai↓

P̄αz ∨
Pαz

æ↓
Pεy

Pεx

t
∧

Pεx ∧
[
P̄αz ∨ Pεy

]
Pεx ∧

P̄αz

P̄ εx

f

∨ Pεy

Pεy

Hopefully, this inquiry will lead to a logical syntax that can express first-order
logic (and perhaps more) equipped with a sound and complete proof system and a
natural and confluent cut elimination procedure. But even partial results could be
of interest: for example it should be very straightforward to construct an æ-style
system for the (decidable) monadic fragment of first-order predicate logic. Results
that are likely to be interesting and useful include analogues to the first and second
ε-theorems [1], and an appropriate formulation of Herbrand’s Theorem—probably
a similar version to that described above.

The value in such a calculus, if successful, would be to further explore the proof
theory of classical logic; in particular, the calculus should help to distinguish proof
theoretical properties central to the logic from those that are artefacts of any par-
ticular syntax. Unlike in Gentzen’s time, the fear of inconsistency is no longer the
driving force behind proof theory. Instead, we can turn our efforts towards issues
of identity and complexity—aproof theory thatmight already have been developed
had Hilbert’s discarded twenty-fourth problem replaced his second [31].
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