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Hilbert’'s 24th Problem

David Hilbert, 1900:

“Criteria of simplicity, or proof of the greatest simplicity of
certain proofs. Develop a theory of the method of proof in
mathematics in general. Under a given set of conditions there
can be but one simplest proof.”
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Hilbert’'s 24th Problem

David Hilbert, 1900:

“Criteria of simplicity, or proof of the greatest simplicity of
certain proofs. Develop a theory of the method of proof in
mathematics in general. Under a given set of conditions there
can be but one simplest proof.”

Dominic Hughes/Lutz StraRburger:
“Two proofs are the same iff they have identical combinatorial
proofs.”

Ben Ralph:
“Two structural proof systems are the same iff they have
identical homomorphism classes.”
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Formulae

e Atoms: A:=la,a,b,b,...}
e formulae: F = A|FAF|FVF

e Formula Equivalence: == (=¢ U =4)*, where:

AVB=cBVA AV(BVC)=x(AVB)VC

AAB=cBAA AANBAC)=5(AAB)A

C
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Formulae

Atoms: A :={a,a,b,b,...}
Formulae: F .= A|FAF|FVF

Formula Equivalence: == (=¢ U =,)*, where:

AVB=cBVA AV(BVC)=x(AVB)VC
AAB=cBAA AANBAC)=5(AAB)AC

What candidates for f : F — S with f(A) = f(B) iff. A = B?
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e Graphical atoms: Ag = {a, a, b, b,...}
e Graphical formulae: Gr = Ag|Gr AGr |GV Gr.
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Graphs

e Graphical atoms: Ag = {a, a, b, b,...}
e Graphical formulae: Gr = Ag|Gr AGr |GV Gr.

® Thus we have &: F — Gr, with B(A) = &(B) iff A = B.
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Cographs

e Can we characterise Gz?

a—-»>b a—-»>b a—-»>b

X

c—d c——d c—d

Proof Systems without Syntax
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a—-n>b a—-n»>b a—-mn>b

X

c—d c—-d c—d c d

a—-»>b

(ave)A(bvd) 7 (anb)V(cAd) (an(bvd))Vve
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e Can we characterise Gz?
a>< b a—-»>b a—-»>b a—-»>b
c—d c——d c—d C d

(ave)A(bvd) 7 (anb)V(cAd) (an(bvd))Vve

e The second graph, the P4 graph, is the only one not in G¢.
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Cographs

e Can we characterise Gz?

a—»>Db a—=»> a—-»>b a—->b

X

c—d c—-d c—d c d

(ave)A(bvd) 7 (anb)V(cAd) (an(bvd))Vve
e The second graph, the P4 graph, is the only one not in G¢.
® A cographis a graph that contains no P4 subgraph.

Theorem (e.g. Duffin (1965))
Gr is exactly the set of cographs.
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Multiplicative Linear Logic

+tILA +AB +T,A,B

MLL = ax AR VR
Fa,a FI,A,AAB +T,AVB

ax ax ax ax

Fa,a +b,b Fa,a +b,b
R = AR —
F(aAb)a,b F(aAab)ab
\% — \% =
“r(aAb),(aVb) F(anb)(avh)

“v(anb)(anb),((aVb)A(aVvh))
"r(anb)v(arb)v((avb)Aa(avh))

s without Syntax



Proofs without Syntax
o] Yo}

Multiplicative Linear Logic

+T,A FAB +I,A,B

MLL = ax AR VR
Fa,a FI,A,AAB +T,AVB

ax ax ax ax

Fa,a +b,b la,a +b,b
AR = AR —
F(aAb)a,b +(anb)ab
\% — \% =
“r(aAb),(aVb) F(anb)(avh)
“v(anb)(anb),((aVb)A(aVvh))
R
F(aanb)v(aab)v((av v

Are there graph theoretic criteria to determine which cographs
correspond to theorems of MLL?
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R&B Graphs and MLL Proofs

Theorem (Retore (1999))

There is a MLL proof of A with &(A) = (V,R) iff there is a
critically chorded R&B cograph (V; R, B).

b—b>b

NN
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R&B Graphs and MLL Proofs

Theorem (Retore (1999))

There is a MLL proof of A with &(A) = (V,R) iff there is a
critically chorded R&B cograph (V; R, B).

b—b>b

ax ax — ax ax —
la,a +b,b a,a +b,b

M (anb)ab v (anb)ab
" (@anb)(avb) “r(anb)(aVb)
M (@anb),(anb)(AVE)A(aVD))

\ / Y @anb)v(anb)v((EVE)A(aVE)

H——
H—0
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Classical Logic

FT,AA T

LKr = MLL + e
R * +FT,A WRl—F,A

ax ax ax a;

= X =
+a,a Fa,a +b,b +b,b
AR = =
Fa,a(ana) Fb,b,(bAb)
Cr CR ——=
Fa,(ana) +b,(bADb)
AR = =
raAb,(ana),(bAb)
WR = =
raAb,(aAna),(bAb)(aVvb)

AR

Proof Systems without Syntax
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Classical Logic

FT,AA T
LKg = MLL +|cg—— W
+FT,A FT,A

= ax =
la,a Fa,a Fb,b +b,b
AR

AR = =
Fa,a(ana) Fb,b,(bAb)
SR CR ——
Fa,(ana) +b,(bADb)
AR —
raAb,(ana),(bAb)
WR = =
raAb,(aAna),(bAb)(aVvb)

Are there graph theoretic criteria to determine which cographs
correspond to theorems of classical logic?
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Fibrations and Skew Fibrations

vl s v\}Aéz vz
1 4

. H - _f(2)

F(v)—z f(v) s fv)—,

Let f: G — H be a graph homomorphism such that for every

v € Vg, z € Vy with f(v)z € Ey, there is some vz € E5. We
consider 3 conditions on Z.
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Fibrations and Skew Fibrations

vl s v\}Aéz vz
1 4

. H - _f(2)

F(v)—z f(v) s fv)—,

Let f: G — H be a graph homomorphism such that for every
v € Vg, z € Vy with f(v)z € Ey, there is some vz € E5. We
consider 3 conditions on Z.

(F1) f(2) =z.



Formulae without Syntax Proofs without Syntax

Proof Systems without Syntax
[e] 000 000000
(oo} [e]e] le]ele] 000000
0000000

Fibrations and Skew Fibrations

vl s v\}Aéz vz
1 4

. H - _f(2)

F(v)—z f(v) s fv)—,

Let f: G — H be a graph homomorphism such that for every

v € Vg, z € Vy with f(v)z € Ey, there is some vz € E5. We
consider 3 conditions on Z.

(F1) f(2) =z.
(SF1) f(2)z & En.
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=

Jr . S v 5
e 4 v—", <2 z
34
H H L - _f(2)
f(v)—z f(v) z fv)—,

Let f: G — H be a graph homomorphism such that for every
v € Vg, z € Vy with f(v)z € Ey, there is some vz € E5. We
consider 3 conditions on Z.
(F1) f(2) =z.
(SF1) f(2)z ¢ En.
(F2) For all vz’ with f(2’) = z we have 2" = 2 (i.e. Z is
unique).
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Fibrations and Skew Fibrations

vl s v%éz vz
1 4

. H - _f(2)

F(v)—z f(v) s fv)—,

Let f: G — H be a graph homomorphism such that for every
v € Vg, z € Vy with f(v)z € Ey, there is some vz € E5. We
consider 3 conditions on 2.

(F1) f(2) =z.

(SF1) £(2)z & Ep.
(F2) For all vz’ with f(2’) = z we have 2" = 2 (i.e. Z is
unique).

For f to be a fibration, 2 must satisfy (F1) and (F2), for a weak
fibration it must satisy (F1) and for a skew fibration it must
satisfy only (SF1).
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Combinatorial Proofs

A combinatorial proof of a formula A is a critically chorded
cograph Cgg,g together with a skew fibration f: Gg — G(A).



Formulae without Syntax Proofs without Syntax >ms without Syntax

Combinatorial Proofs

A combinatorial proof of a formula A is a critically chorded
cograph Cgg,g together with a skew fibration f: Gg — G(A).

Below is a combinatorial proof of: (a Ab)V ((aVb)A(aVb)):

;

)
I\
VI
|
VI

1<

T

Qi<
I«
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Mismatch

Critically chorded R&B graphs are invariant of MLL sequent
calculus proofs. Does the skew fibration correspond to a
contraction-weakening extension of the proof?
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Mismatch

Critically chorded R&B graphs are invariant of MLL sequent
calculus proofs. Does the skew fibration correspond to a
contraction-weakening extension of the proof?

e YIRS Ve YR

b b b——b a—b a b
/ / AN A
a a a—a3a ?lb a b
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Critically chorded R&B graphs are invariant of MLL sequent
calculus proofs. Does the skew fibration correspond to a
contraction-weakening extension of the proof?

<N e YR
b b b——b a—>b a b
/ / AN A
D BN
ax ax — ax ax — ax ax ax — ax —
Fa,a +b,b Fa,a +b,b Fa,a Fa,a +b,b Fb,b
AR = AR — AR AR —
+(aAb),ab F(aAb),ab ta,a(ana) Fb,b,(bAb)
\Y — — vV = =
"t(anb),(avb) "r(aAb)(avb) r(ava)(ara) r(bvb)(bAb)
= = A =
" r(aab)(arb),((GVB)A(aVh)) " F(ava)Aa(bvb),(ana)(bAb)
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Mismatch
Critically corded R&B graphs are invariant of MLL sequent
calculus proofs. Does the skew fibration correspond to a
contraction-weakening extension of the proof?

e YN pava YR

b b b——b a—»>b a b
AN -
a/ a/ a-——a3a ?>b a \b
NS S NS
i—b . B P a—p . bP
a——a a——a

>ms without Syntax
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Critically corded R&B graphs are invariant of MLL sequent
calculus proofs. Does the skew fibration correspond to a
contraction-weakening extension of the proof?

b" b 3 amb
/ e Z N_ oSN
W w b % % b
b X X a—-nb X L
a a a—-a
ax ax — ax ax —
Fa,a +b,b Fa,a Fb,b ax —  ax - ax —  ax —
= — Fa,a Fa,a +b,b +b,b
F(aAb),ab F(aAb),ab AR AR —
— Ve — Fa,a,(ana) +b,b,(bAb)
F(anb),(avb) F(aAb),(avb) —— Vi —
— —— F(ava)(ana) F(bVvb),(bAb)
F(anb),(anb)((avb)a(avb)) —
c L F(ava)a(bvb),(ana),(bAb)

?
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Open Deduction

We use a different proof formalism to correspond to skew
fibrations, open deduction.

1. Inference Rule o € S:
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Open Deduction

We use a different proof formalism to correspond to skew
fibrations, open deduction.

1. Inference Rule o € S:

2. Binary Connective * € {A, V}:

A C AxC
DSk (S = oIS
B D BxD
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MLL
AAN(BVC)

il
(AAB)V C “ava

S
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KS
MLL
AA(BVC)
s—m ——— ail
(AAB)V C ava
switch atomic
identity
Structural rules
AVA aVva (AAB)V(CAD) A
cl acl m wl
A a (AVC)A(BVD) AVB
contraction atomic medial weakening

contraction
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KS
MLL
AA(BVC)
s—m ———— ail
(AAB)V C ava
switch atomic
identity
Structural rules
AVA aVva (AAB)V(CAD) A
cl ac| m wl
A a (AVC)A(BVD) AVB
contraction atomic medial

weakening
contraction

KSg =MLLU{c|,wl} KS =MLLU{acl,m,w]}
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Examples
Two proofs of (a Ab)V ((2 V b) A(aV b)), the first in KSg, the
second in KS.

ail A ail —— ail —— Aail —— ail A ail ail—— A ail —
ava IJ\/I::V2 ava bvb , ava aVEVZ bvb bvb
“anb)v(avb)  (anb)v(avb) , “ava)a(ara)  (bvb)A(bAD)
cli(aAb)v(aAb)v((évE)/\(évE)) aclava/\aclb\/b Vmi(é:mé:i)v(t_mt_))

anb a b (avb)A(avb)
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Decomposed Proofs

Derivations in open deduction are called decomposed if they
are stratified into different sections of inference rules.
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Decomposed Proofs

Derivations in open deduction are called decomposed if they
are stratified into different sections of inference rules.

MLL MLL
A A
letwll %" lljackmwl)

B B
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Decomposed Proofs

Derivations in open deduction are called decomposed if they
are stratified into different sections of inference rules.

TTMLL ML

A A

lelbwll " Ilaclmwl)
B B

Theorem
All proofs in KS/KSg can be decomposed.



Formulae without Synta Proofs without Syntax stems without Syntax

O0000e

Decomposed Proofs

Derivations in open deduction are called decomposed if they
are stratified into different sections of inference rules.

TTMLL ML

A A

lelbwll " Ilaclmwl)
B B

Theorem
All proofs in KS/KSg can be decomposed.

Theorem (Strassburger (2007,2017))

A formula has a decomposed proof in KS/KSg iff it has a
combinatorial proof. The top section corresponds to a critically
chorded R&B Graph, and the bottom section corresponds to
the skew fibration.
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Decomposed Proof Example

We can now extend & to a class of classical proofs -
decomposed proofs.
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Decomposed Proof Example

We can now extend & to a class of classical proofs -
decomposed proofs.

ail A ail —— ail —— Aail —— ail A ail ail ——= A ail =
ava bvbv ava bvb ava avav b bvb

— 2 — 2 —
“(anb)v(avb)  (anb)v(avb) “ava)a(ara)  (bvb)A(bAD)
2s —

(anb)v(anb) _ _ ava bVvb (ana)v(bab)
cl——————————v((avb)Aa(avhb)) acl Aacl Vm-o— —
aAnb a b (avb)A(avb)
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Decomposed Proof Example
We can now extend & to a class of classical proofs -
decomposed proofs.
ail —ANail ——= ail —— Aail —— ail —Aail - ail — A ail =
ava bvbv ava bvb ava avayv bvb bvb
s 2s s 2s
(aAab)v(avb) (aAnb)v(avb) (ava)a(ana) (bvb)A(bAb)
2s
(anb)v(aab) aVva bVb (ana)v(bab)
cl——————————v((avb)Aa(avhb)) acl Aacl Vm-o— —
aAnb a b (avb)A(avb)
e Y e Y
b b —b a—»>b a b
a’ a a a ?K\vb TS
N S NS
VL*B = = b 5 E = - b
a a a a
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Structural Proof Systems

We can think of proof systems as a lattice, ordered by
derivability:
{wl,m} ——{wl,m,cl}
— <
fwl} ——{wl,acl}

(S, %)= ‘
‘ CAmbe b (mecl)
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Homomorphism Classes

Critically chorded R&B cographs:

S ROES
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Homomorphism Classes

Critically chorded R&B cographs:

&("4") = S )na > 6(4)

Combinatorial Proofs:

mMLL

B SkFi
G ey |~ B(Blres 2, B(A)

A

Proof Systems without Syntax
00000
000000
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Homomorphism Classes

Critically chorded R&B cographs:

TIMLL Iso
(B(¢A ) = G(A)res — G(A)
Combinatorial Proofs:
TIMLL
B SkFib
Gl whel) |~ &(B)res —> G(A)
A

What about other homomorphism classes?

B(B)res — B(A)
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Homomorphism Class Lattice

We can also consider a lattice of homomorphism classes,
ordered by set inclusion:

Inj & SkFib
/
FInj —— FSkFib

<25kFib’g> _ .
. Bij« - Sur

lso —— FSur
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Proof Systems without Syntax

We now have two lattices:

(S,<) and (25Fib cy
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Proof Systems without Syntax

We now have two lattices:
<5ir5> and <23kFib’ g)

We can extend the cograph map & to an order-preserving
injection between the two:

(B: <Sll ﬁ) BN <25kFib’g>

where
TTMLL
B &(S)
G Is ZCB(B)R&B —)CB(A)
A
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We now have two lattices:
<5i!5> and <25kFib, g)

We can extend the cograph map & to an order-preserving
injection between the two:

(B: <Sli ﬁ) BN <23kFib’ g)

where
TTMLL
B &(S)
G Is :@(B)R&B —)CB(A)
A

We can consider homomorphism classes as invariants of proof
systems.
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Corresponding Lattices

{wl,m}: Inj—— {wl,m,cl}: SkFib

— —

{wl}: FInj «——— {wl,acl}: FSkFib

B((S), %)) = (2%, C)

{m} : Bij « {m,cl}: Sur

{

}ilso —— {acl}: FSur
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Slogans

No Weakening = Surjectivity
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Slogans
No Weakening = Surjectivity

No Contraction = Injectivity
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Slogans
No Weakening = Surjectivity

No Contraction
Absence of Medial

Injectivity
Fullness
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No Contraction = Injectivity
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Slogans

No Weakening

No Contraction
Absence of Medial
Shallow Inference
Deep Inference

Surjectivity
Injectivity
Fullness
Fibrations

Skew Fibrations
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Previously Known Results

e Affine Logic - Hughes (2006)
G({wl}) =FInj, &({wl, m}) =Inj



Formulae without Syntax Proofs without Syntax Proof Systems without Syntax

Previously Known Results

e Affine Logic - Hughes (2006)
G({wl}) =FInj,  &({wl,m}) =Inj

e Relevance Logic - Acclavio, Strassburger (2019)

&({m,cl}) = &({m,cl}) =FSur,&({acl}) = Sur
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Previously Known Results

e Affine Logic - Hughes (2006)
&(wl) = Finj,  G(fwl,m]) = Inj

e Relevance Logic - Acclavio, Strassburger (2019)
G({m,cl}) = &({m,cl}) = FSur,&({acl}) = Sur

® Logic of Bijections - Hughes (2006), Strassburger (2007)
&({m}) = Bij
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A Logic of Fibrations

What about fibrations? It is instructive to turn to the simplest
possible examples that are skew fibrations but not fibrations.
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A Logic of Fibrations

What about fibrations? It is instructive to turn to the simplest
possible examples that are skew fibrations but not fibrations.

a—->b b
Z
l b iava b a/a
w A = - ac A
avc a C/b a a- b
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A Logic of Fibrations

What about fibrations? It is instructive to turn to the simplest
possible examples that are skew fibrations but not fibrations.

a——>b b
7z
aVva a‘/a
Ab

wl

Ab > K acl
avc a C/b a

RS ~

b

In both cases, it is precisely the deepness of the rules that
breaks the fibration.
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A Logic of Fibrations

What about fibrations? It is instructive to turn to the simplest
possible examples that are skew fibrations but not fibrations.

wl

Ab 3 A acl
aVvc a C/b a

In both cases, it is precisely the deepness of the rules that
breaks the fibration.

Therefore, the proof system corresponding to fibrations has
shallow contraction and weakening:

G({swl,scl}) =Fib, &({swl,cl}) = WFib
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Examples
Fibration Skew Fibration
/7(\ /7(\
b b b——b a~—»b a b
S - T AN
a—b . P a—b P
a—-a a—-a
ax ax — ax ax —
Fa,a +b,b Fa,a +b,b ax ax ax — ax =
= AR = ka,a ka,a +b,b +b,b
F(anb)ab F(anb)ab AR AR ——

— — Fa,a,(ana) Fb,b,(bAD)
+(aAb)(avb) F(anb),(avb) Vr — —
® — F(ava)(ana) +(bVb),(bAb)
F(anb),(anb),((avb)a(avb)) Ar ——
cl — — F(ava)Aa(bvb),(ana)(bab)

F(aAb),((avb)a(avb)) 5
Vv = =
F(anb)v((avb)Aa(avb))
ail ail ai Aail —— ail A ail | ——=Aail -
ava bvbv ava bvb ava avayv bv bvb
_ 2 _ 2 —
“anb)v(avb)  (anb)v(avb) “ava)r(ana) (bvb)A(bAD)
2 2 —
ST (anb)v(anb) , _ [ ava  bvb) (ara)v(bAD)
cdl————————v((avb)A(avb)) acl acl m-— —
b avb)a(avb)

aAb
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Proof Systems and Homomorphism Classes

{wl,m,cl}: SkFib

twl,m} - Inj vl m,scl) Classical Logic
? {wl,scl} {wl,cl}: SkFib
A{f\z*}e:LE:gc ——{wl,sacl} —— {wl,acl} : FSkFib
{swl,m} {swl,m,scl} « {swl,m,cl}

"

{sw],scl}: Fib e {swi,cl} : WFib

Shallow Inferenge

{swl}: Fll;ib —— {swl,sacl} :kFFib — {swl,acl}: FWFib

{m} : Bij {m,scl} {m,cl}: Sur

{cl}: SWFib

2 fscl}+ SFib« Relevance Logic

{E'\}AL:_SO ——— {sacl} : FSFib < {acl} : FSur = FSWFib
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Closing Remarks

“Two structural proof systems are the same iff they have
identical homomorphism classes.”
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Closing Remarks

“Two structural proof systems are the same iff they have
identical homomorphism classes.”

“Two substructural logics are the same iff they have identical
homomorphism classes.”
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Closing Remarks

“Two structural proof systems are the same iff they have
identical homomorphism classes.”

“Two substructural logics are the same iff they have identical
homomorphism classes.”

What if we replace MLL with different logics? IMLL? BV?
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