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Hilbert’s 24th Problem

David Hilbert, 1900:
“Criteria of simplicity, or proof of the greatest simplicity of
certain proofs. Develop a theory of the method of proof in
mathematics in general. Under a given set of conditions there
can be but one simplest proof.”

Dominic Hughes/Lutz Straßburger:
“Two proofs are the same iff they have identical combinatorial
proofs.”

Ben Ralph:
“Two structural proof systems are the same iff they have
identical homomorphism classes.”
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Formulae

• Atoms: A := {a , ā ,b , b̄ , . . . }

• Formulae: F :=A | F ∧F | F ∨F
• Formula Equivalence: ≡= (≡C ∪ ≡A )∗, where:

A ∨B ≡C B ∨A A ∨ (B ∨C) ≡A (A ∨B)∨C

A ∧B ≡C B ∧A A ∧ (B ∧C) ≡A (A ∧B)∧C

• What candidates for f : F → S with f(A) = f(B) iff. A ≡ B?
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Graphs

• Graphical atoms: AG = {a , ā ,b , b̄ , . . . }

• Graphical formulae: GF =AG | GF ∧GF | GF ∨GF .

a1
a2

a3

∨
b2

b3

b1 = a1
a2

a3

b2

b3

b1

a1
a2

a3

∧
b2

b3

b1 = a1
a2

a3

b2

b3

b1

• Thus we have G : F → GF , with G(A) =G(B) iff A ≡ B .
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• Graphical formulae: GF =AG | GF ∧GF | GF ∨GF .

a1
a2

a3

∨
b2

b3

b1 = a1
a2

a3

b2

b3

b1

a1
a2

a3

∧
b2

b3

b1 = a1
a2

a3

b2

b3

b1

• Thus we have G : F → GF , with G(A) =G(B) iff A ≡ B .



Formulae without Syntax Proofs without Syntax Proof Systems without Syntax

Graphs

• Graphical atoms: AG = {a , ā ,b , b̄ , . . . }
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Cographs

• Can we characterise GF ?

a b

c d

a b

c d

a b

c d

a b

c d

(a ∨ c)∧ (b ∨d) ? (a ∧ b)∨ (c ∧d) (a ∧ (b ∨d))∨ c

• The second graph, the P4 graph, is the only one not in GF .
• A cograph is a graph that contains no P4 subgraph.

Theorem (e.g. Duffin (1965))
GF is exactly the set of cographs.
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Multiplicative Linear Logic

MLL = ax
` a , ā

` Γ ,A ` ∆,B
∧R
` Γ ,∆,A ∧B

` Γ ,A ,B
∨R
` Γ ,A ∨B

ax
` a , ā

ax
` b , b̄

∧R
` (a ∧ b), ā , b̄

∨R
` (a ∧ b),(ā ∨ b̄)

ax
` a , ā

ax
` b , b̄

∧R
` (a ∧ b), ā , b̄

∨R
` (a ∧ b),(ā ∨ b̄)

∧R
` (a ∧ b),(a ∧ b),((ā ∨ b̄)∧ (ā ∨ b̄))

2∨R
` (a ∧ b)∨ (a ∧ b)∨ ((ā ∨ b̄)∧ (ā ∨ b̄))

Are there graph theoretic criteria to determine which cographs
correspond to theorems of MLL?
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∧R
` (a ∧ b),(a ∧ b),((ā ∨ b̄)∧ (ā ∨ b̄))
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R&B Graphs and MLL Proofs

Theorem (Retore (1999))
There is a MLL proof of A with G(A) = (V ,R) iff there is a
critically chorded R&B cograph (V ;R ,B).
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ā

b b̄

bb̄
ax
` a , ā
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∨R
` (a ∧ b),(ā ∨ b̄)
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∨R
` (a ∧ b),(ā ∨ b̄)
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Classical Logic

LKR = MLL +
` Γ ,A ,A

cR
` Γ ,A

` Γ
wR
` Γ ,A

ax
` a , ā
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` a , ā
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` a ,a ,(ā ∧ ā)

cR
` a ,(ā ∧ ā)
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` b , b̄
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` b , b̄

∧R
` b ,b ,(b̄ ∧ b̄)

cR
` b ,(b̄ ∧ b̄)

∧R
` a ∧ b ,(ā ∧ ā),(b̄ ∧ b̄)

wR
` a ∧ b ,(ā ∧ ā),(b̄ ∧ b̄),(a ∨ b)

Are there graph theoretic criteria to determine which cographs
correspond to theorems of classical logic?
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wR
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Fibrations and Skew Fibrations

f(v) z

v ẑ∃!

zf(v)

ẑ1

ẑ2v
∃
∃

f(v)
z

f(ẑ)

v ẑ∃

Let f : G → H be a graph homomorphism such that for every
v ∈ VG ,z ∈ VH with f(v)z ∈ EH , there is some vẑ ∈ EG . We
consider 3 conditions on ẑ .

(F1) f(ẑ) = z .
(SF1) f(ẑ)z < EH .

(F2) For all vẑ ′ with f(ẑ ′) = z we have ẑ ′ = ẑ (i.e. ẑ is
unique).

For f to be a fibration, ẑ must satisfy (F1) and (F2), for a weak
fibration it must satisy (F1) and for a skew fibration it must
satisfy only (SF1).
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consider 3 conditions on ẑ .
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(SF1) f(ẑ)z < EH .
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Combinatorial Proofs

A combinatorial proof of a formula A is a critically chorded
cograph GR&B together with a skew fibration f : GR →G(A).

Below is a combinatorial proof of: (a ∧ b)∨ ((ā ∨ b̄)∧ (ā ∨ b̄)):

a b
ā

b̄
ā

b̄

a
b

a
b

ā
b̄

ā
b̄
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Mismatch

Critically chorded R&B graphs are invariant of MLL sequent
calculus proofs. Does the skew fibration correspond to a
contraction-weakening extension of the proof?

a
b

a
b

ā
b̄

ā
b̄

a
a

b
b

ā
ā

b̄
b̄

ax
` a , ā

ax
` b , b̄

∧R
` (a ∧ b), ā , b̄

∨R
` (a ∧ b),(ā ∨ b̄)

ax
` a , ā

ax
` b , b̄

∧R
` (a ∧ b), ā , b̄

∨R
` (a ∧ b),(ā ∨ b̄)

∧R
` (a ∧ b),(a ∧ b),((ā ∨ b̄)∧ (ā ∨ b̄))

ax
` a , ā

ax
` a , ā

∧R
` a ,a ,(ā ∧ ā)

∨R
` (a ∨a),(ā ∧ ā)

ax
` b , b̄

ax
` b , b̄

∧R
` b ,b ,(b̄ ∧ b̄)

∨R
` (b ∨ b),(b̄ ∧ b̄)

∧R
` (a ∨a)∧ (b ∨ b),(ā ∧ ā),(b̄ ∧ b̄)
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ax
` b , b̄

∧R
` (a ∧ b), ā , b̄
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ā

b̄
b̄

ax
` a , ā
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ax
` a , ā
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∧R
` a ,a ,(ā ∧ ā)
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Structure

Formulae without Syntax

G : Formulae −→ Cographs

Proofs without Syntax

G : MLL Proofs −→ Critically Chorded R&B Graphs
G : Classical Proofs −→ Combinatorial Proofs

Proof Systems without Syntax

G : Proof Systems −→ Homomorphism Classes



Formulae without Syntax Proofs without Syntax Proof Systems without Syntax

Structure

Formulae without Syntax

G : Formulae −→ Cographs

Proofs without Syntax

G : MLL Proofs −→ Critically Chorded R&B Graphs
G : Decomposed Proofs −→ Combinatorial Proofs

Proof Systems without Syntax

G : Proof Systems −→ Homomorphism Classes



Formulae without Syntax Proofs without Syntax Proof Systems without Syntax

Open Deduction
We use a different proof formalism to correspond to skew
fibrations, open deduction.

1. Inference Rule σ ∈ S:
A

Φ S

B
σ

C
Ψ S

D

2. Binary Connective ? ∈ {∧,∨}:

A
Φ S

B
?

C
Ψ S

D
=

A?C
Φ?Ψ S

B?D
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KS

MLL
A ∧ (B ∨C)

s
(A ∧B)∨C

ai↓
a ∨ ā

switch atomic
identity

Structural rules

A ∨A
c↓

A

a ∨a
ac↓

a

(A ∧B)∨ (C ∧D)
m

(A ∨C)∧ (B ∨D)

A
w↓

A ∨B
contraction atomic medial weakening

contraction

KSg = MLL∪ {c↓,w↓} KS = MLL∪ {ac↓,m,w↓}
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Examples

Two proofs of (a ∧ b)∨ ((ā ∨ b̄)∧ (ā ∨ b̄)), the first in KSg, the
second in KS.

ai↓
a ∨ ā

∧ ai↓
b ∨ b̄

2s
(a ∧ b)∨ (ā ∨ b̄)

∨
ai↓

a ∨ ā
∧ ai↓

b ∨ b̄
2s

(a ∧ b)∨ (ā ∨ b̄)
2s

(a ∧ b)∨ (a ∧ b)
c↓

a ∧ b
∨ ((ā ∨ b̄)∧ (ā ∨ b̄))

ai↓
a ∨ ā

∧ ai↓
a ∨ ā

2s
(a ∨a)∧ (ā ∧ ā)

∨
ai↓

b ∨ b̄
∧ ai↓

b ∨ b̄
2s

(b ∨ b)∧ (b̄ ∧ b̄)
2s  a ∨a

ac↓
a
∧

b ∨ b
ac↓

b

∨ (ā ∧ ā)∨ (b̄ ∧ b̄)
m

(ā ∨ b̄)∧ (ā ∨ b̄)
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Decomposed Proofs
Derivations in open deduction are called decomposed if they
are stratified into different sections of inference rules.

MLL

A
{c↓,w↓}

B

or

MLL

A
{ac↓,m,w↓}

B

Theorem
All proofs in KS/KSg can be decomposed.

Theorem (Strassburger (2007,2017))
A formula has a decomposed proof in KS/KSg iff it has a
combinatorial proof. The top section corresponds to a critically
chorded R&B Graph, and the bottom section corresponds to
the skew fibration.
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Decomposed Proof Example

We can now extend G to a class of classical proofs -
decomposed proofs.

ai↓
a ∨ ā

∧ ai↓
b ∨ b̄

2s
(a ∧ b)∨ (ā ∨ b̄)

∨
ai↓

a ∨ ā
∧ ai↓

b ∨ b̄
2s

(a ∧ b)∨ (ā ∨ b̄)
2s

(a ∧ b)∨ (a ∧ b)
c↓

a ∧ b
∨ ((ā ∨ b̄)∧ (ā ∨ b̄))

ai↓
a ∨ ā

∧ ai↓
a ∨ ā

2s
(a ∨a)∧ (ā ∧ ā)

∨
ai↓

b ∨ b̄
∧ ai↓

b ∨ b̄
2s

(b ∨ b)∧ (b̄ ∧ b̄)
2s  a ∨a

ac↓
a
∧

b ∨ b
ac↓

b

∨ (ā ∧ ā)∨ (b̄ ∧ b̄)
m

(ā ∨ b̄)∧ (ā ∨ b̄)

a b
ā

b̄
ā

b̄

a
b

a
b

ā
b̄

ā
b̄

a b
ā

b̄
ā

b̄

a
a

b
b

ā
ā

b̄
b̄
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ā

b̄

a
b

a
b

ā
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Structure

Formulae without Syntax

G : Formulae −→ Cographs

Proofs without Syntax

G : MLL Proofs −→ R&B Cographs
G : Decomposed Proofs −→ Combinatorial Proofs

Proof Systems without Syntax

G : Structural Proof Systems −→ Homomorphism Classes
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Structural Proof Systems

We can think of proof systems as a lattice, ordered by
derivability:

〈S↓,�〉=

{≡} {ac↓}

{m} {m,c↓}

{w↓} {w↓,ac↓}

{w↓,m} {w↓,m,c↓}
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Homomorphism Classes

Critically chorded R&B cographs:

G

(
φ MLL

A

)
=G(A)R&B

Iso−−→G(A)

Combinatorial Proofs:

G


MLL

B
{w↓,c↓}

A

 =G(B)R&B
SkFib−−−−−→G(A)

What about other homomorphism classes?

G(B)R&B
H−−→G(A)
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Homomorphism Class Lattice

We can also consider a lattice of homomorphism classes,
ordered by set inclusion:

〈2SkFib,⊆〉=

Iso FSur

Bij Sur

FInj FSkFib

Inj SkFib
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Proof Systems without Syntax
We now have two lattices:

〈S↓,�〉 and 〈2SkFib,⊆〉

We can extend the cograph map G to an order-preserving
injection between the two:

G : 〈S↓,�〉→ 〈2SkFib,⊆〉

where

G


MLL

B
S

A

 =G(B)R&B
G(S)
−−−−→G(A)

We can consider homomorphism classes as invariants of proof
systems.
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Corresponding Lattices

G(〈S↓,�〉) = 〈2SkFib,⊆〉

{≡} : Iso {ac↓} : FSur

{m} : Bij {m,c↓} : Sur

{w↓} : FInj {w↓,ac↓} : FSkFib

{w↓,m} : Inj {w↓,m,c↓} : SkFib



Formulae without Syntax Proofs without Syntax Proof Systems without Syntax

Slogans

No Weakening = Surjectivity
No Contraction = Injectivity

Absence of Medial = Fullness
Shallow Inference = Fibrations

Deep Inference = Skew Fibrations
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Previously Known Results

• Affine Logic - Hughes (2006)
G({w↓}) = FInj, G({w↓,m}) = Inj

• Relevance Logic - Acclavio, Strassburger (2019)
G({m,c↓}) =G({m,c↓}) = FSur,G({ac↓}) = Sur

• Logic of Bijections - Hughes (2006), Strassburger (2007)
G({m}) = Bij
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A Logic of Fibrations

What about fibrations? It is instructive to turn to the simplest
possible examples that are skew fibrations but not fibrations.

a
w↓

a ∨ c
∧ b a

c
b

a b
a ∨a

ac↓
a
∧ b

a b

a a
b

In both cases, it is precisely the deepness of the rules that
breaks the fibration.
Therefore, the proof system corresponding to fibrations has
shallow contraction and weakening:

G({sw↓,sc↓}) = Fib, G({sw↓,c↓}) = WFib
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Examples
Fibration Skew Fibration

a b
ā

b̄
ā

b̄

a
b

a
b

ā
b̄

ā
b̄

a b
ā

b̄
ā

b̄

a
a

b
b

ā
ā

b̄
b̄

ax
` a , ā

ax
` b , b̄

∧R
` (a ∧ b), ā , b̄

∨R
` (a ∧ b),(ā ∨ b̄)

ax
` a , ā

ax
` b , b̄

∧R
` (a ∧ b), ā , b̄

∨R
` (a ∧ b),(ā ∨ b̄)

∧R
` (a ∧ b),(a ∧ b),((ā ∨ b̄)∧ (ā ∨ b̄))

c↓R
` (a ∧ b),((ā ∨ b̄)∧ (ā ∨ b̄))

∨R
` (a ∧ b)∨ ((ā ∨ b̄)∧ (ā ∨ b̄))

ax
` a , ā

ax
` a , ā

∧R
` a ,a ,(ā ∧ ā)

∨R
` (a ∨a),(ā ∧ ā)

ax
` b , b̄

ax
` b , b̄

∧R
` b ,b ,(b̄ ∧ b̄)

∨R
` (b ∨ b),(b̄ ∧ b̄)

∧R
` (a ∨a)∧ (b ∨ b),(ā ∧ ā),(b̄ ∧ b̄)

?

ai↓
a ∨ ā

∧ ai↓
b ∨ b̄

2s
(a ∧ b)∨ (ā ∨ b̄)

∨
ai↓

a ∨ ā
∧ ai↓

b ∨ b̄
2s

(a ∧ b)∨ (ā ∨ b̄)
2s

(a ∧ b)∨ (a ∧ b)
c↓

a ∧ b
∨ ((ā ∨ b̄)∧ (ā ∨ b̄))

ai↓
a ∨ ā

∧ ai↓
a ∨ ā

2s
(a ∨a)∧ (ā ∧ ā)

∨
ai↓

b ∨ b̄
∧ ai↓

b ∨ b̄
2s

(b ∨ b)∧ (b̄ ∧ b̄)
2s  a ∨a

ac↓
a
∧

b ∨ b
ac↓

b

∨ (ā ∧ ā)∨ (b̄ ∧ b̄)
m

(ā ∨ b̄)∧ (ā ∨ b̄)
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Proof Systems and Homomorphism Classes

{≡} : Iso
MLL

{sac↓} : FSFib {ac↓} : FSur = FSWFib

? {sc↓} : SFib {c↓} : SWFib
Relevance Logic

{m} : Bij {m,sc↓} {m,c↓} : Sur

{sw↓} : FIFib {sw↓,sac↓} : FFib {sw↓,ac↓} : FWFib

? {sw↓,sc↓} : Fib
Shallow Inference

{sw↓,c↓} : WFib

{sw↓,m} {sw↓,m,sc↓} {sw↓,m,c↓}

{w↓} : FInj
Affine Logic

{w↓,sac↓} {w↓,ac↓} : FSkFib

? {w↓,sc↓} {w↓,c↓} : SkFib

{w↓,m} : Inj {w↓,m,sc↓} {w↓,m,c↓} : SkFib
Classical Logic
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Closing Remarks

“Two structural proof systems are the same iff they have
identical homomorphism classes.”

“Two substructural logics are the same iff they have identical
homomorphism classes.”

What if we replace MLL with different logics? IMLL? BV?
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