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Problem overview

• As a jet engine is used it will accumulate dust internally
• Most dust from take-off
• Mixed in the engine

• The type of dust varies geographically
• Some types are more damaging than others

• Can we infer what type of dust is present at each airport?
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Dataset

• Synthetic proportions of 5 types of accumulated dust (oxides)
from each engine

• Data from 20 engines over 58k real flight paths from 298 airports
• Synthetic ground truth for dust-concentration per airport
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Two approaches

1. Inverse problems on this dataset
2. Bayesian approach on some toy examples
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Inverse problem approach

Linear system:
Ax = y

• Final vector y - the 5 different dust concentrations in the engines
• Dust-concentration vector x of all the airports [(Nairports· 5) × 1]
• Under-determined linear system
• Specify a suitable forward model of A - airport to engine
dust-concentrations
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Forward model for A

• Assume each airport has a time-independent concentration
vector, xi

• Final concentration vector y in a given engine

Break down the y into a sum over the flights:

y =
∑
i

1
(mi,in +mi,out)

∑
flights;i

mi,inxi,in +mi,outxi,out

Now assume that the mass (m) is known and is the same at each
airport:

y =
1

nflights

∑
flights;i

xi︸ ︷︷ ︸
Ax
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Least-squares method

• Reduce A to a square matrix (19 airports visited > 350 times)
• Take the pseudo-inverse of A
• Constrain predicted results to be positive and sum to 1 (full dust
concentration)
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Preliminary results

• Extensions: time-dependence x by weighing recent flights more
than earlier - geometric decay
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Exact inference toy examples

• We assume each airport has two types of dust, two engines are
tracked, with flight patterns shown in blue and red
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A Bayesian model for these toy examples

• We sample the posterior distribution

P(xj|yi) ∝ P(yi|xj)× P(xj)

using Markov chain Monte Carlo

• The forward model (a.k.a likelihood) for the proportion of each
dust type in the first engine is

y1 ∼ Normal
(
1
2
(x1 + x2), σ2I

)
• The prior beliefs for the proportion of each dust type at airport j
are

xj ∼ Dirichlet(αj)

αj ∼ Uniform([10, 100]2)

• The posterior sampling means approximates the pseudo inverse
solution discussed by Amin
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Results: two pairs of airports
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Results: pairs of airports one shared

11



Results: pairs of airports one shared

Much more certain estimates, centred around the ‘true values’
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Extending this Bayesian model

• We can apply a similar Bayesian methodology to the full data
set, yielding a strict extension of the pseudo-inverse method

• The Bayesian methods are much more computationally costly

• There are other natural ways to incorporate additional
information in the Bayesian model

• Pooling of the Dirichlet parameters based on geography
• Hard coding other knowledge-based constraints. For instance we
can encode knowledge that there is no dust of a certain type at a
particular airport in the Dirichlet parameter priors
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Conclusions and next steps

Conclusions

• Inverse problem method: reasonable approach for finding the
mean dust concentrations per airport

• Bayesian approach: strictly extends the inverse problem
method. Understanding uncertainty via posterior sampling is
essential

Next steps

• Extend the forward model to include time dependence with
seasonality

• Use the CAMS dataset to inform the dust masses per airport
• Pooling of Dirichlet parameters geographically
• Which airports should we empirically measure to best reduce
the uncertainty in our posterior estimates?
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Time-dependence extension for inverse problems

Modified setup:

• i: specific airport
• T : total observations of flights over time
• Weighting later flights more than earlier

x̃i =
T∑
t=1

βT−txit

Therefore
y =

1
nflights

∑
flights;i

x̃i
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Which airports can be inferred exactly?
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Toy forward model

• Assume each airport has a time-independent concentration
vector, xi

• Final concentration vector y

We look to consider the values of the xi’s for each engine. We first
break down the y vector into a sum over the flights:

y =
∑
i

1
(mi,in +mi,out)

∑
flights;i

mi,inxi,in +mi,outxi,out

We further this by generating a toy problem by assuming that the
contribution of the arrival vector is low and so y reduces to:

y =
1

nflights

∑
flights;i

xi
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Toy forward model 2

From here we rewrite as a linear system Ax = y, we collate the xi’s
into one by considering x = [x1; x2; ...; xnairports ] and we can break down
A into a flat matrix determined by the Kronecker product:
A = 1

nflights
[n1,n2, ...nnairports ]⊗ I5, where ni is the number of visits to

airport i in each engine’s life.

We can consider the set I = {i : ni > 0} and reduce A to
A = 1

nflights
[nj, j ∈ I]⊗ I5 and x to x = [xj; j ∈ I].

This system is still under-determined (and sparse) but the
pseudo-inverse should work to get a solution.
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