Reverse engineering Atmospheric Dust Content
from Engine Samples

ITT 20: Rolls-Royce

Amin Sabir Bill Nunn Daniel Hajnal Matt Evans
Supervised by: Matt Nunes, Sergey Dolgov, Theresa Smith

University of Bath



Problem overview

- As a jet engine is used it will accumulate dust internally
- Most dust from take-off
- Mixed in the engine

- The type of dust varies geographically
- Some types are more damaging than others

Plus NaCl and atmospheric

SAS contamination and | |[ESS s
i sulphur (SO, and S0,%)

Corrosion-Fatigue

- Can we infer what type of dust is present at each airport?



- Synthetic proportions of 5 types of accumulated dust (oxides)
from each engine
- Data from 20 engines over 58k real flight paths from 298 airports
- Synthetic ground truth for dust-concentration per airport
Top 10 departure airports from engine 1
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Two approaches

1. Inverse problems on this dataset
2. Bayesian approach on some toy examples



Inverse problem approach

Linear system:
AX =Yy

- Final vector y - the 5 different dust concentrations in the engines
- Dust-concentration vector x of all the airports [(Nairports: 5) x 1]
- Under-determined linear system

- Specify a suitable forward model of A - airport to engine
dust-concentrations



Forward model for A

- Assume each airport has a time-independent concentration
vector, X;

- Final concentration vector y in a given engine

Break down the y into a sum over the flights:

1
y= Z (m' m ) Z M; inXi,in + Mj outXi,out
; i,in I,out flights;i

Now assume that the mass (m) is known and is the same at each

airport:
]
flights giohts:i
| Y ———
Ax




Least-squares method

- Reduce A to a square matrix (19 airports visited > 350 times)

- Take the pseudo-inverse of A

- Constrain predicted results to be positive and sum to 1 (full dust
concentration)

Structure of A (Elements) Lo

Engines x 5 concentrations
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Preliminary results

Contrained Optimisation Solution: EPDFs of the Errors
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Preliminary results

Contrained Optimisation Solution: EPDFs of the Errors
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Extensions: time-dependence x by weighing recent flights more
than earlier - geometric decay



Exact inference toy examples

- We assume each airport has two types of dust, two engines are
tracked, with flight patterns shown in blue and red

Airport 1 [0.7,0.3] Airport 3 [0.1,0.9]
Toy A A
Model [0.55,0.45] [0.5,0.5]
One A 4 v
Airport 2 [0.4,0.6] Airport 4 [0.9,0.1]
[0.55,0-45] [0.25,0.75]
Toy " >
Model Airport 1 P " Airport 2 P " Airport 3
Two - -

[0.7,0.3] [0.4,0.6] [0.1,0.9]



A Bayesian model for these toy examples

- We sample the posterior distribution
Pxjly;) o< P(y;lx;) x P(x))

using Markov chain Monte Carlo



A Bayesian model for these toy examples

- We sample the posterior distribution
Pxjly;) o< P(y;lx;) x P(x))

using Markov chain Monte Carlo
- The forward model (a.k.a likelihood) for the proportion of each
dust type in the first engine is

1
y, ~ Normal (2(x1 +x2),02l>

- The prior beliefs for the proportion of each dust type at airport j
are
xj ~ Dirichlet(ay))
a; ~ Uniform([10,100]?)
- The posterior sampling means approximates the pseudo inverse
solution discussed by Amin



Results: two pairs of airports

Airport1 A
_ *
Airport 2 /\ B Posterior for dust type 1
*

o x X i Posterior for dust type 2
. / r\\ % True value for dust type 1
Airport 3
|z S True value for dust type 2

Airport 4 / \\
¢ =



Results: pairs of airports one shared

Airport 1 /\
02/ 0.4 0.6 * 70 8
Airport 2 /\
0.2 ) 5 0.6 0.

Airport 3 K

* 0.2 ) 0.4 0.6

0.0

B Posterior for dust type 1

Posterior for dust type 2

% True value for dust type 1

.8

True value for dust type 2

0.8 1.0
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Results: pairs of airports one shared

Assume Airport 1is known

Airport 2
B Posterior for dust type 1
0.35 oﬁo 0.45 0.50 0.55 0.60 0.65 POSterior for dUSt type 2
% True value for dust type 1
True value for dust type 2
Airport 3
*
0.2 0.4 0.6 0.8

Much more certain estimates, centred around the ‘true values’



Extending this Bayesian model

- We can apply a similar Bayesian methodology to the full data
set, yielding a strict extension of the pseudo-inverse method

- The Bayesian methods are much more computationally costly



Extending this Bayesian model

- We can apply a similar Bayesian methodology to the full data
set, yielding a strict extension of the pseudo-inverse method
- The Bayesian methods are much more computationally costly
- There are other natural ways to incorporate additional
information in the Bayesian model
- Pooling of the Dirichlet parameters based on geography
- Hard coding other knowledge-based constraints. For instance we

can encode knowledge that there is no dust of a certain type at a
particular airport in the Dirichlet parameter priors



Conclusions and next steps

Conclusions

- Inverse problem method: reasonable approach for finding the
mean dust concentrations per airport

- Bayesian approach: strictly extends the inverse problem
method. Understanding uncertainty via posterior sampling is
essential

14



Conclusions and next steps

Conclusions

- Inverse problem method: reasonable approach for finding the
mean dust concentrations per airport

- Bayesian approach: strictly extends the inverse problem
method. Understanding uncertainty via posterior sampling is
essential

Next steps

- Extend the forward model to include time dependence with
seasonality

- Use the CAMS dataset to inform the dust masses per airport

- Pooling of Dirichlet parameters geographically

- Which airports should we empirically measure to best reduce
the uncertainty in our posterior estimates?
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Time-dependence extension for inverse problems

Modified setup:

- |: specific airport
- T: total observations of flights over time
- Weighting later flights more than earlier

T

% T—tyi
Xi=> 87X
=
Therefore ]
= %;
Nflights qionts:i
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Which airports can be inferred exactly?

Exact rab

Jointly Inferable



Toy forward model

- Assume each airport has a time-independent concentration
vector, X;

- Final concentration vector y

We look to consider the values of the x;'s for each engine. We first
break down the y vector into a sum over the flights:

1
y= Z m +m; ) Z ml le in + m/ outX/ out
i,in I,out flights;i

We further this by generating a toy problem by assuming that the
contribution of the arrival vector is low and so y reduces to:

D X

flights;i

nﬂ(ghts



Toy forward model 2

From here we rewrite as a linear system Ax = y, we collate the x;'s
into one by considering X = [x1; X2; ..; Xn,,,,.] and we can break down
Ainto a flat matrix determined by the Kronecker product:

A= nmm ——[Nq, Ny, .. nnmm] ® Is, where n; is the number of visits to
airport i in each engine’s life.

We can consider the set Z = {i : n; > 0} and reduce A to

—L[nj,jeZ)®Isand x to x = [x;;j € Z].

rghts

This system is still under-determined (and sparse) but the
pseudo-inverse should work to get a solution.
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