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Motivation and challenges

Wessex water is interested in understanding:

• Effects/predictions of velocity: velocity is a key ingredient in predictions;

how can it be better estimated?

• Source apportionment: how can we attribute original upstream sources

of contaminants from downstream measurements.

• Effects of UV exposure on transport and decay

Our approach: develop dynamic mathematical models

2



Overview of approaches

(a) Simplified network model of

contaminants

(b) Dynamic network model of

contaminants

(c) Exploring functions influencing the

concentration profile (d) Varying velocity and flow rates
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Toy setup: the 3-reach geometry

We consider a simplified geometry divided into three river sections (“reaches”).

• Contaminants injected (or measured) in Reach 1 and Reach 2 (“in”)

• Key downstream measurement at Reach 3 (“out”)
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Introduction to physics-based models

1D physics based model for bacteria concentration, ci(xi, t), and velocity,

ui(xi, t), i = 1, 2, 3.

• Concentration: advection-diffusion-reaction equation in each reach:

∂ci
∂t

+ ui
∂ci
∂xi︸ ︷︷ ︸

advection

= k
∂2ci
∂x2

i︸ ︷︷ ︸
diffusion

+[source terms] + [decay terms],

where xi is the arc length coordinate along the river.

• Velocities: determined using the St. Venant shallow water equations

describing river flow:

∂ui

∂t
+ ui

∂ui

∂xi︸ ︷︷ ︸
acceleration

+ g
∂hi

∂xi︸ ︷︷ ︸
pressure

= g
Sf

hi︸︷︷︸
friction

− gS0︸︷︷︸
gravity

,

∂hi

∂t
+

∂(hiui)

∂xi
= [source terms].
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Developing a simplified graph-based model I

River network with 3 segments.

Red: inputs of the reach models. Blue: outputs of the reaches.
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Developing a simplified graph-based model II

In each reach model, we assume

• No internal mass change within the reach

• Reach flows are constant and governed by a law:

F(Q1, Q2, . . . , QN ) = 0 =⇒ Qin = Qout.

We assume the flows are known in the procedure; either approximated via

simple mass balance or simulated via PDE models

• Contaminants obey a mass balance law:

G(C;Q) = 0 =⇒ C
(3)
in =

Q1C
(1)
out +Q2C

(2)
out

Q1 +Q2
.

• Velocities assumed known via empirical law: v = aQb, after which travel

time in each reach determined via τ = length/velocity.

• Once travel time is known, contaminant concentration can be predicted.
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A simple decay law I

• Let us assume the decay rate is constant and contaminants obey

∂Ci

∂t
= −kiCi.

=⇒ Ci = Ci0e
−kit for each reach.

• Then the output concentration at reach 3 is

C
(3)
out = Γ1e

−Λ1 + Γ2e
−Λ2 ,

where Γi(C
(i)
in , Qi) and Λi(ki, Li, Qi) are completely known.

• For example, concentration behaviour is strongly dominated by the

Lambda-functions:

Λ1 = k1
L1

Q1
+ k3

L3

Q1 +Q2

i.e. decay dictated by reach properties.
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A simple decay law II

Simplicity of such approximate decay laws facilitate intuition of processes.

• Consider the effect of erroneous

prediction of a flow measurement,

Q1 7→ Q1 + δQ. It can be verified

this modifies decay prediction:

log
(
C

(3)
out

)
∝ (−Λ̄− PδQ)t

Figure 2: Parametric sensitivity analysis
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Dynamic decay laws I

Now including transport/velocity, the 1D advection-diffusion-reaction equations

can be solved in closed form.

• Concentration C(x, t) in each reach follows

∂C(j)

∂t
+ u(Qj)

∂C(j)

∂x
= −k(t)C(j)

I.C. C(j)(x, 0) = C
(j)
in (x), j = 1, 2

C(3)(x, 0) = 0

• Concentration at the junction

C
(3)
i (t) =


0 t < t∗1
Q1C

(1)
out (L1,t

∗
1)

Q1+Q2
t∗1 ≤ t < t∗2

Q1C
(1)
out (L1,t

∗
1)+Q2C

(2)
out (L2,t

∗
2)

Q1+Q2
t ≥ t∗2
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Dynamic decay laws II

• In each reach, solution is

combination of wave and decay:

C(x, t) = Cin(x− ut)︸ ︷︷ ︸
wave phenom

e−K(x,t)︸ ︷︷ ︸
decay

,

K(x, t) =

∫ t

t−x/u

k(t′) dt′

where all three solutions must be

matched at the junction.

• Example diurnal effects:

k(t) = A cos(πt/12) +B Figure 3: I.C. for first two reach models

Conclusion: highly-efficient formulae for concentration decay and transport
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Exploring suitable functions for k(t’)

(a) Exponential decay for smooth behaviour (b) Sawtooth function for periodic decay

• Exponential Decay: k(t′) = e−at′ - continuous decay patterns.

• Sawtooth function: k(t′) = mod(s, period) - periodic/cyclic decay

processes.
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Influence of u and k(t) in the analytical solution

(a) Exponential decay(u values) (b) Sawtooth function(u values)

• High Q(flux) - Steeper slopes and faster rate of decay

• Low Q(flux) - gentler slopes and lower decay rates over time
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Approach 2: PDE model (3 rivers)

• Challenge: Can we use a PDE model to develop dynamic

(spatial-temporal-varying) river velocities?

(a) 3 rivers catchment (b) Cuboid shape for a river

• Assume cuboid river. Width (w), energy slope (S0) and initial heights are

known
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Model setup

Find ui and hi from the St. Venant (shallow river) conservation of momentum

and conservation of mass equations (i = 1, 2, 3):

∂ui

∂t
+ ui

∂ui

∂xi︸ ︷︷ ︸
acceleration

+ g
∂hi

∂xi︸ ︷︷ ︸
pressure

= g
Sf

hi︸︷︷︸
friction

− gS0︸︷︷︸
gravity

,

∂hi

∂t
+

∂(hiui)

∂xi
= [source terms],

where Sf is found using Manning’s Law,

Sf =
ui

2n2(2hi + wi)
4/3

(hiwi)4/3
.

Equation for the flow, Qi, linking ui and hi:

Qi = wihiui.
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Boundary conditions

• For reaches 1 and 2, we specify Q at the upstream end (x = 0).

• Modelled Qi = Ai sin(ωit) to reflect the diurnal flow variation.

• At the river junction, require continuity of momentum/mass:

Q1 +Q2 = Q3,

h1w1 + h2w2 = h3w3.

• Imposed simplified boundary conditions on reach 3:

Q3 =
Q1 +Q2

2
, h3 =

h1 + h2

2
.
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Numerical results

Gif Animation!
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Conclusions and future work

Conclusions

• Simplified network models can provide powerful machinery for intuition

and approximation.

• Sensitivity analysis and optimisation is possible within simplified

physics-based frameworks.

• Physics-based PDE models for river flows can provide detailed predictions

of transport phenomena.

Next steps

• Develop framework for data-driven simulations: Can we couple

uncertainties with physics-based modelling?

• Upscaling: Incorporate realistic river geometries, source effects, storm

overflows.

• Can we augment a network model with PDE behaviours?

• Combine varying velocity field with simplified concentration models.

• Source apportionment: Inverse problem for unknown concentrations.
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