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Abstract

In this project we look at the general theory of asymptotic power series and how they play a crucial
role in solving ordinary differential equations (ODEs). In particular, we prove a theorem about a
class of ODEs that have a solution with an asymptotic power series defined in some sector. Later
we extend to hyperasymptotic power series and look at an example with a Riccati equation which
involves the Airy function’s asymptotics.
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Chapter 1

Introduction

When solving ordinary differential equations (ODEs) it is common to have the solutions in terms of
series expansions. Sometimes these expansions converge but there are cases where they diverge.
This may seem useless to quote Niels Abel, “divergent series are the invention of the devil and it
is a shame to base on them any demonstration whatsoever.” However these divergent series can
be useful, for instance they can approximate solutions to an ODE in a certain sector. Also, such
series can be truncated to a finite number of terms and approximate certain quantities with less
computation than their respective convergent series. These divergent series have uses both on the
practical and theoretical level.
The main part of this project involves a theorem (Theorem 3.1.1) that looks at a general class of
ODEs which admit an asymptotic power series. Then there exists an actual solution with this series
in some sector. The proof of this theorem is outlined in this project in detail and a different approach
is taken compare to the work of Wasow (1965). Later we extend to hyperasymptotic power series
and original work is done by look at an example with a Riccati equation that uses the Airy function’s
asymptotics.

Chapter overviews

For Chapter 2 we talk about asymptotic power series in general, by defining what they are and
exploring some of their properties. We will see what operations can be done on them through
various theorems.
For Chapter 3 this is the core of the project, where we prove Theorem 3.1.1.
For Chapter 4, we look beyond standard asymptotic power series by looking at hyperasymptotic
power series. We look at an original piece of work on a Riccati equation that can be solved in terms
of the Airy equation.
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Chapter 2

Theory of Asymptotic Power Series

2.1 Definition of an asymptotic power series

Definition 2.1.1. Let the function f(x) be defined in a point-set S of the complex x-plane having
x = 0 as an accumulation point. The power series

m∑
r=0

arx
r

is said to represent f(x) asymptotically as x→ 0 in S, if

x−m

[
f(x)−

m∑
r=0

arx
r

]
→ 0, ∀m ≥ 0 as x→ 0 in S. (2.1)

Then

f(x) ∼
∞∑
r=0

arx
r, x ∈ S, x→ 0.

An alternative definition is

f(x) =

m∑
r=0

arx
r + o(xm), ∀m ≥ 0 as x→ 0 in S, (2.2)

then

f(x) ∼
∞∑
r=0

arx
r, x ∈ S, x→ 0.

Following this the coefficients are defined as

lim
x→0

f(x) = a0, (2.3)

lim
x→0

x−m

[
f(x)−

m−1∑
r=0

arx
r

]
= am, ∀m > 0, x ∈ S. (2.4)
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Unlike convergent power series where a series converges for any fixed value of x in the limit m→ ∞,
asymptotic power series do not have to converge and generally diverge. They are useful when
truncated to a finite number of terms (fixed m) for a value of x towards a limit L (x → L). This
provides benefits in approximating a function or a solution to an equation. Typically the best
approximation is given by one where the relative error is the smallest from the actual function. It
can often require less computation to achieve the same error bound than a convergent series.

2.2 Examples

There are numerous examples of asymptotic power series expansions, each having very useful features
in many applications. Below are a few notable ones [Olver (1997)].

• Exponential Integral Ei(x)

Ei(x) =

ˆ x

−∞
ett−1 dt ∼ ex

∞∑
r=0

r!x−(r+1), x < 0, x ∈ R.

The function has many applications including time-dependent heat transfer and solutions to
the 1D neutron transport equation.

• Error function and its complement, erf(x) and erfc(x)

erf(x) =
2√
π

ˆ x

0

e−t2 dt, erfc(x) = 1−erf(x) ∼ 1√
πxex2

[
1 +

∞∑
r=1

(−1)r
1 · 3 · 5 · · · (2n− 1)

(2x2)r

]
, x ∈ C.

The functions are useful in probability and thermodynamics.

• Logarithmic Integral Li(x)

Li(x) =

ˆ x

0

dt

ln t
∼ x

∞∑
r=0

r!

(lnx)r+1
, x ̸= 1, x ∈ R,

where the function itself is a very good approximation for the prime-counting function.

2.3 Properties

Now we shall look at some properties of asymptotic power series, including their representation of
functions, linear combinations of different series and their analytical properties. First, we define
a region on the complex plane that we will use for subsequent work in this project unless defined
otherwise.

Definition 2.3.1. The sector Sβ
α is a set of points on the complex plane z, where z = {z | z =

reiθ, 0 < r < ∞, α ≤ θ ≤ β,where r, α, β ∈ R}. The sector Sβ
α has boundary rays at α and β. (See

Figure 2.1 for an example)
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Figure 2.1: An example Sβ
α with vertex at O

2.3.1 Algebraic properties

Theorem 2.3.1. A function f(x) can have at most one asymptotic series representation

∞∑
r=0

arx
r,

as x→ 0 in a given set Sβ
α.

Proof. From equations (2.3) and (2.4), we see that each coefficient ar, ∀r ≥ 0 has a limit represen-
tation which therefore defines ar uniquely.

However, the converse of this theorem is not true, i.e. a power series can never determine a unique
function which is asymptotic to it. For example, we look at the simple power series whose coefficients

are all zero and lies on the positive x-axis. Let two functions be f(x) ≡ 0 and g(x) = e−
1
x3 , we

see that as x → 0 both are asymptotic to 0 in the sector Sϵ
−ϵ where 0 < ϵ << 1, but are not the

same function. Also if we look on the negative x-axis as x → 0 they each have radically different
asymptotic behaviour.

Asymptotic power series can also be term-wise added and multiplied by constants like formal power
series.

Theorem 2.3.2. For x ∈ Sβ
α, x→ 0, if m(x) = αf(x) + βg(x) with constants α, β, where

f(x) ∼
∞∑
r=0

arx
r, g(x) ∼

∞∑
r=0

brx
r,

then

m(x) ∼
∞∑
r=0

(αar + βbr)x
r.
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Proof. We define two new functions with the constants α and β

αf(x) ∼
∞∑
r=0

αarx
r, βg(x) ∼

∞∑
r=0

βbrx
r for x ∈ Sβ

α, x→ 0.

Adding these functions together and their asymptotic power series expansions, the required result
is obtained.

2.3.2 Analytic (differential) properties

Now we consider only analytic or holomorphic functions on Sβ
α, as we explore integration and

differentiation in the complex plane.

Theorem 2.3.3. If f(x) is holomorphic in the whole annular neighbourhood 0 < |x| ≤ x0 < ∞ of
x = 0 and if

f(x) ∼
∞∑
r=0

arx
r, x→ 0, ∀ arg x,

then the series converges to f(x) in that neighbourhood.

Proof. From equation (2.3), we consider the origin as a removable singularity, i.e. we define f(0) =
a0, so the extended function f(x) is now holomorphic at x = 0. Hence there exists a convergent
power series in |x| ≤ x0. Now, we use Theorem 2.3.1 so the series is identically the same as

∞∑
r=0

arx
r.

The idea that an asymptotic series for f(x) converges in a sector Sβ
α, does not mean the series

converges to f(x) anywhere. Unless Sβ
α is a whole annular neighbourhood of x = 0. For example,

the function e−
1
x is not zero anywhere yet its asymptotic expansion converges to zero, as x → 0 in

the right-hand plane.

We now prove an important theorem about the term-wise integration of such series but we will see
later term-wise differentiation does not work entirely in the same way.

Theorem 2.3.4. If f(x) is holomorphic in a sector Sβ
α then

f(x) ∼
∞∑
r=0

arx
r, x ∈ Sβ

α

implies ˆ x

0

f(t) dt ∼
∞∑
r=0

ar
r + 1

xr+1,

through a path of integration that lies in Sβ
α.
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Proof. From the definition of asymptotic series

f(x) =

m∑
r=0

arx
r + E(x,m)xm, (2.5)

where
lim
x→0

E(x,m) = 0 , x ∈ Sβ
α.

We know that limx→0 f(x) , x ∈ Sβ
α exists, so the integral from 0 to x of the function in equation

(2.5) also exists and is independent of the path in Sβ
α. We take this path to be a straight line

segment. As the function E(x,m) is holomorphic and tends to zero at the origin, E(x,m) is then
uniformly continuous on the closure of Sβ

α, provided E(x,m) is defined to be 0 at the origin. This
implies that the right-hand side of the integral

ˆ x

0

E(t,m)tm dt = xm+1

ˆ 1

0

E(τx,m)τm dτ , t = τx , 0 ≤ τ ≤ 1

tends to zero uniformly in Sβ
α as x → 0. Finally we integrate (2.5) from 0 to x and we obtain the

required result.

As mentioned earlier, there is not a completely analogous property for term-wise differentiation.
In general for functions with asymptotic power series that are restricted to a single ray or fixed
argument, then term-wise differentiation of the series does not work. For instance, let f(x) =
e−1/x cos(e1/x). For x > 0, we have f(x) ∼ 0 as x→ 0. However

f ′(x) = x−2[e−1/x cos(e1/x) + sin(e1/x)]

does not have an asymptotic power series on the positive real axis, because

lim
x→0

f ′(x)

does not exist.

We now consider a theorem that uses the term-wise differentiation of asymptotic power series not
restricted to a single ray.

Theorem 2.3.5. If f(x) is holomorphic in a sector S defined by the inequalities 0 < |x| ≤ x0 <
∞, θ1 ≤ arg x ≤ θ2, with θ2 > θ1 and if f(x) has an asymptotic expansion,

f(x) ∼
∞∑
r=0

arx
r, x ∈ S,

then

f ′(x) ∼
∞∑
r=0

rarx
r−1

in every proper sub-sector S∗ : θ1 < θ∗1 ≤ arg x ≤ θ∗2 < θ2.

Proof. By assumption the equation (2.5) is valid in S. We then differentiate

f ′(x) =

m∑
r=0

rarx
r−1 +mxm−1E(x,m) + xmE′(x,m). (2.6)

9



Now we denote by α, as a positive number so small that the circle Cx of radius |x|α about x lies in S,
∀x ∈ S∗. Also letM(x,m) be the maximum of |E(x,m)| on Cx. Then, since E(x,m) is holomorphic
on and inside the circle, we use Cauchy’s integral formula to bound E′(x,m)

E(x,m) =
1

2πi

˛
Cx

E(y,m)

y − x
dy, E′(x,m) =

1

2πi

˛
Cx

E(y,m)

(y − x)2
dy,

|E′(x,m)| ≤ 1

2π

∣∣∣∣˛
Cx

E(y,m)

(y − x)2
dy

∣∣∣∣ = M(x,m)2π|x|α
2π(|x|α)2

,

∣∣∣∣dE(x,m)

dx

∣∣∣∣ ≤ M(x,m)

|x|α
. (2.7)

Hence using (2.7) and equation (2.6)∣∣∣∣∣f ′(x)−
m∑
r=0

rarx
r−1

∣∣∣∣∣ ≤ |x|m−1

[
m|E(x,m)|+ M(x,m)

α

]
,

where this expression tends to zero as x→ 0 in S∗, obtaining the required result.

2.3.3 Existence properties

Now we link asymptotic series to formal power series with some interesting theorems that will later
help out in the next chapter.

Theorem 2.3.6. If f(x) is holomorphic in the sector Sβ
α and if all of the limits below exist

fr = lim
x→0
x∈S

f (r)(x) , r = 0, 1, . . . , (2.8)

then

f(x) ∼
∞∑
r=0

fr
r!
xr. (2.9)

Note, if only a finite number m of limits exist of the form (2.8), then f(x) has an asymptotic
expansion of m terms. For example, f(x) = ex + x3 log(x) has the following asymptotic expansion
to four terms

ex + x3 log(x) = 1 + x+
x2

2
+ E(x, 2)x2.

Another important theorem discusses the use of formal power series and functions, similar to converse
Theorem 2.3.1.

Theorem 2.3.7. Corresponding to every formal power series

∞∑
r=0

arx
r

with every sector Sβ
α, ∃ a function f(x) that is holomorphic in Sβ

α for |x| ≤ x0 (x0 is any real
constant), such that

f(x) ∼
∞∑
r=0

arx
r, x ∈ Sβ

α.
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Chapter 3

Main Asymptotic Existence
Theorem

3.1 Theorem statement

The following theorem stated below (Theorem 3.1.1) looks at a general class of ODEs, where Theorem
3.1.1 says the ODE admits an asymptotic power series then there exists a solution to the ODE with
this series in some sector. The proof is based on the work of Wasow (1965), but will include more
detail and a different approach is taken.

Theorem 3.1.1. Let S be an open sector of the complex x-plane with a vertex at the origin O and
a positive central angle not exceeding π

q+1 , where q ∈ Z+. Let f(x, z) be an N -dimensional vector
function of x and an N -dimensional vector z with the following properties.

(a) f(x, z) is a polynomial in the components zj for z, where j = 1, 2, ..., N . The coefficients are
also holomorphic in x in the region

0 < x0 ≤ |x| <∞, x ∈ S and x0 ∈ R. (3.1)

(b) The coefficients of the polynomial f(x, z) have an asymptotic series expansion in powers of
x−1, as x→ ∞, in S.

(c) Let fj(x, z) denotes the components of f(x, z) and the Jacobian matrix J (N×N matrix) have
components

Jjk = lim
x→∞
x∈S

∂fj
∂zk

∣∣∣∣
z=0

, (3.2)

for j, k = 1, 2, . . . , N . Then all of J ’s eigenvalues λj , j = 1, 2, . . . , N are non-zero.

(d) The differential equation
x−qy′ = f(x, y) (3.3)

is formally satisfied by a power series of the form

y =

∞∑
r=1

yrx
−r. (3.4)
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Then there exists, for sufficiently large x in S, a solution for y = ϕ(x) in the equation (3.3)
such that in every proper subsector of S,

ϕ(x) ∼
∞∑
r=1

yrx
−r , x→ ∞. (3.5)

3.2 Proof

We will only consider the case in which the eigenvalues of J (3.2) are distinct.

3.2.1 Transformation for the differential equation

We break down f defined Theorem 3.1.1 into its constant, linear and non-linear parts

a(x) := f(x, 0) =


f1(x, 0)
f2(x, 0)

...
fN (x, 0)

 , A(x) :=



∂f1
∂z1

∣∣∣∣
z=0

∂f1
∂z2

∣∣∣∣
z=0

· · · ∂f1
∂zn

∣∣∣∣
z=0

∂f2
∂z1

∣∣∣∣
z=0

∂f2
∂z2

∣∣∣∣
z=0

· · · ∂f2
∂zn

∣∣∣∣
z=0

...
...

. . .
...

∂fn
∂z1

∣∣∣∣
z=0

∂fn
∂z2

∣∣∣∣
z=0

· · · ∂fn
∂zn

∣∣∣∣
z=0


, (3.6)

g(x, z) := f(x, z)− a(x)−A(x)z (g contains all non-linear terms). (3.7)

The differential equation (3.3) becomes

x−qy′ = a(x) +A(x)y + g(x, y). (3.8)

From assumption (b) of Theorem 3.1.1, the coefficients of f(x, z) have asymptotic series expansions,
in particular the linear coefficients are expressed as

A(x) ∼
∞∑
r=0

Arx
−r , x→ ∞ , x ∈ S.

As x→ ∞ for x ∈ S, the nature of the solution for (3.8) is driven by the leading coefficient of A(x),
A0. Without loss of generality we take A0 to be diagonal due to the following reasoning.
Let an invertible linear transformation be applied to the differential equation (3.8) with y = Kỹ. We
first define the diagonalN×N matrix containing all the eigenvalues in (3.2) as Λ = diag(λ1, λ2, ..., λn)
and K as the N ×N matrix containing the corresponding eigenvectors v1, v2, ..., vn.
Applying these ideas below, as x→ ∞ for x ∈ S

x−qKỹ′ = a(x) +
(
A0 +A1x

−1 + · · ·
)
Kỹ + g(x,Kỹ)

⇒ x−q ỹ′ = K−1a(x) +K−1A0Kỹ +K−1g(x,Kỹ).

Let ã(x) := K−1a(x), Ã0 := K−1A0K = Λ and g̃(x,Kỹ) := K−1g(x,Kỹ). This means we have
a differential equation after applying this linear transformation, which has the same form as the
original differential equation (3.8), just with A0 replaced by its diagonalisation Ã0.
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Now using Theorem 2.3.7, ∃ a vector function ϕ(x) which is holomorphic for |x| ≥ x0 in S such that

ϕ(x) ∼
∞∑
r=1

yrx
−r , x→ ∞ in S. (3.9)

By constructing ϕ(x) for a larger sector than S and applying Theorem 2.3.5, we deduce equation
(3.9) is term-wise differentiable in S.
Substituting

u = y − ϕ(x), y = u+ ϕ(x), (3.10)

in the differential equation (3.8) gives

x−qu′ = a(x) +A(x)u+A(x)ϕ(x)− x−qϕ(x) + g(x, u+ ϕ(x)). (3.11)

Since the series (3.4) solves the differential equation (3.8) formally, we use this series with equation
(3.9) to define b(x)

b(x) := a(x) +A(x)ϕ(x) + g(x, ϕ(x))− x−qϕ(x),

where

b(x) ∼ 0 , x→ ∞ , x ∈ S. (3.12)

Then equation (3.11) is written as

x−qu′ = b(x) +A(x)u+ g(x, u+ ϕ(x))− g(x, ϕ(x)). (3.13)

Consider the Taylor series expansion of g(x, u+ ϕ(x))

g(x, u+ ϕ(x))− g(x, ϕ(x)) = A∗(x)u+ h(x, u), (3.14)

where h(x, u) is a non-linear polynomial in component of uj from j = 1, ..., N and its coefficients
admits an asymptotic power series in x−1, as x→ ∞ in S.
We denote the components of g(x, u + ϕ(x)) by gj(x, u + ϕ(x)) for j = 1, . . . , N . Then we define
A∗(x) as a N ×N matrix with components

A∗(x)jk =
∂gj(x, u+ ϕ(x))

∂uk

∣∣∣∣
u=0

, (3.15)

for j, k = 1, 2, . . . , N . Looking at the asymptotic series for ϕ(x) in equation (3.9) we see that

lim
x→∞

ϕ(x) = 0, x ∈ S,

and as g(x, z) contains only non-linear terms of z, then
∂gj(x,z)

∂uk

∣∣∣∣
z=0

= 0,∀j = 1, . . . , N . Similarly in

equation (3.15)

lim
x→∞

(
∂gj(x, u+ ϕ(x))

∂uk

∣∣∣∣
u=0

)
= 0, x ∈ S,

so
lim
x→∞

A∗(x) = 0, x ∈ S.
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Now looking back at the transformed differential equation (3.13), we substitute the relevant expres-
sions from equation (3.14) and define a N ×N matrix B(x) := A(x) +A∗(x), to obtain

lim
x→∞

B(x) = Λ, x ∈ S (3.16)

and
x−qu′ = b(x) +B(x)u+ h(x, u). (3.17)

Theorem 3.1.1 will be proved by showing that this transformed differential equation (3.17) has a
solution where u(x) ∼ 0, as x→ ∞, x ∈ S.

3.2.2 Integral form of the differential equation

For the transformed differential equation (3.17), we will manipulate it to show u(x) ∼ 0 and therefore
show that y ∼ ϕ(x), x → ∞. This will require some bounds and estimates on functions in equation
(3.17) and having it in the integral form makes it easier to work with.
First, we express equation (3.17) as

x−qu′ = Λu+ p(x, u), (3.18)

where
p(x, u) = b(x) + (B(x)− Λ)u+ h(x, u). (3.19)

Here for large x and small u, p(x, u) << u, since b(x) ∼ 0, B(x) − Λ → 0 for x → ∞ and h(x, u)
is a non-linear polynomial in u that tends to zero much more quickly than u. Also, note that if
p(x, u) ≡ 0, u ≡ 0 is a solution.

Variation of parameters method

We apply a standard method for solving linear ODEs called variation of parameters [Lakshmikan-
tham and Deo (1998)]. From equation (3.18) we first solve the homogeneous equation

x−qu′ = Λu ,
u′

u
= Λxq

⇒ ln |u| = Λxq+1

q + 1
+D, D is a constant

⇒ u = k exp

[
xq+1

q + 1
Λ

]
, M(x) := exp

[
xq+1

q + 1
Λ

]
,

uH := kM(x), where k ∈ R is a constant. (3.20)

Now we substitute u(x) =M(x)C(x) into the full equation (3.18) solving the inhomogeneous equa-
tion and use the fact M ′(x) = ΛxqM(x) to find C(x). So,

x−q[M(x)C(x)]′ = x−qM ′(x)C(x) + x−qM(x)C ′(x) = ΛM(x)C(x) + p(x, u).

Now we rearrange for C ′(x) and integrate with respect to t from a fixed point a to x

C ′(x) = xqM−1(x)p(x, u),

C(x) =

ˆ x

a

M−1(t)tqp(t, u(t)) dt,
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then the solution to the inhomogeneous equation is

uIH :=

ˆ x

a

M(x)M−1(t)tqp(t, u(t)) dt. (3.21)

As u(x) is a N dimensional vector function, we have N scalar integrals. Instead of taking the same
path of integration for all of them, we shall choose individual paths γj(x), j = 1, . . . , N which all
end at x. These paths will be defined in the next Section 3.2.3 and the set of all of them are denoted
by Γ(x).
Then, we put this all together and substitute the constant k = 0. Since when we construct the
estimates for u(x) later in this section, it is a difference of successive estimates so kM(x) in uH
(3.20) vanishes. So, we obtain

u(x) = uH + uIH =

ˆ
Γ(x)

exp

[
xq+1 − tq+1

q + 1
Λ

]
tqp(t, u(t)) dt. (3.22)

Integral operator form

Now we introduce the idea of a non-linear integral operator P, where P is the integral in equation
(3.22) acting on u. So we have

u(x) = P(u(x)) where Py(x) =
ˆ
Γ(x)

exp

[
xq+1 − tq+1

q + 1
Λ

]
tqp(t, y(t)) dt. (3.23)

Our ultimate aim is to show equation (3.23) has a solution asymptotic to zero by using the method
of successive approximations, similar to finding a root for a function using the Newton-Raphson
method [Verbeke and Cools (1995)]. We define a sequence of vector functions, ur(x) for r = 0, 1, . . . ,

u0 ≡ 0, ur+1 = Pur, r ≥ 0. (3.24)

Also we look at the convergence of this sequence, which will be established by estimating the differ-
ences between successive approximations and it should tend to zero,

ur+1 − ur = Pur − Pur−1. (3.25)

In the subsequent sections we will establish a suitable set for the paths of integration, Γ(x) and some
inequalities to help us show the existence and convergence for the equation (3.23).

3.2.3 Paths of integration

Looking at the integral (3.22), in particular the exponential function, we choose paths of integration
γj(x), j = 1, 2, . . . , N such that along the paths the exponential function is bounded. To construct
this, we describe the plane of an auxiliary variable τ from the t-plane as

τ = tq+1. (3.26)

Then we let the image of x under this mapping be

ξ = xq+1. (3.27)
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The image of the sector S of the t-plane is a sector Ω in the τ -plane, with the central angle < π,
matching the assumption that the central angle of S does not exceed π

q+1 , where q ∈ Z+ in Theorem

3.1.1. We consider 2N rays in the τ -plane along which Re(τλj) = 0, for the eigenvalues λj , j =
1, 2, ..., N for the matrix Λ defined in Section 3.2.1. Without loss of generality, none of these rays
lie on the boundary of Ω.
We consider two classes of the eigenvalues λj , j = 1, 2, ..., N .

1.
Re(τλj) < 0 in Ω, ∀j = 1, ..., j1, where 0 ≤ j1 ≤ N (3.28)

2.
Re(τλk) > 0 in Ω, ∀j1 < k ≤ N or exactly one λk where Re(τλk) = 0 in Ω (3.29)

Let ξ1 be a point on the bisector of Ω such that |ξ1| > xq+1
0 , where x0 is defined as indicated in

part a) of the Theorem 3.1.1 statement (3.1). Also, let Ω∗ denote the closed sector with its vertex
at ξ1 and boundary rays parallel to Ω. Therefore, Ω∗ ⊂ Ω and |τ | > xq+1

0 , τ ∈ Ω. The paths are the
following in this region, where ξ ∈ Ω∗:

1. For eigenvalues in the first class (3.28), we let δj(ξ) be the directed segment from ξ1 to ξ, where
Re(τλj) decreases along this segment. The analogous path in the t-plane is γj(x) for j ≤ j1.

2. For eigenvalues in the second class (3.29), ∀j1 < k ≤ N we choose a ray lk from the origin into
Ω where Re(τλk) > 0. Let δk(ξ) be an infinite half-line in Ω∗ that starts from infinity to ξ,
parallel to lk. Like the first path, Re(τλk) decreases along δk(ξ). Again, the analogous path
in the t-plane is γk(x) for k > j1.

See Figure 3.1 and 3.2 below for an illustration of the paths in the t and τ planes.

Figure 3.1: Paths in t-plane
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Figure 3.2: Paths in τ -plane

Note that, sector S∗ in the t-plane is analogous to Ω∗. So, S∗ ⊂ S and is bounded by two curves

meeting at x1 = ξ
1

q+1

1 with boundary rays of S as asymptotes (see Figure 3.1). This implies that S∗

contains all the points at a sufficiently large distance from the origin of any closed subsector of S.
We see that S∗ is a proper subsector of S and recall that Theorem 3.1.1 will be proved on proper
subsectors of S.

3.2.4 Inequalities

These inequalities play a crucial role in the final stages of the proof of Theorem 3.1.1.

Lemma 3.2.1. Let
λ0 = min

j=1,...,N
|λj |. (3.30)

Then, ∃ a positive constant µ, independent of λ0, j and ξ1, such that

Re

[
(xq+1 − tq+1)λj

q + 1

]
≤ −|xq+1 − tq+1|λ0µ(q + 1) (3.31)

for t ∈ γj(x), x ∈ S∗ (from Section 3.2.3) and where q is a positive integer.

Proof. Let ξ = xq+1 and τ = tq+1 be paths as constructed in Section 3.2.3 and images for Lemma
3.2.1. By these constructions, we see that (τ − ξ)λj lies in a closed proper subsector of the right
half-plane (Re > 0). So for its opposite sign, (ξ − τ)λj lies in the left half-plane (Re < 0). Then

0 < cos [arg(τ − ξ)λj ] < 1,

−1 < cos [arg(ξ − τ)λj ] ≤ −µ < 0,

Re

[
(ξ − τ)λj
q + 1

]
=

|ξ − τ ||λj |
q + 1

cos [arg(ξ − τ)λj ] ≤ −|ξ − τ |
q + 1

λ0µ ≤ −|xq+1 − tq+1|λ0µ(q + 1)

as required.
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,
Lemma 3.2.1 will help us prove the next crucial lemma, Lemma 3.2.2. First let us define a vector
norm which will be used for subsequent calculations unless stated otherwise.

Definition 3.2.1. Let v be a column vector with components v1, . . . , vn. Then the norm ||v|| is
defined as

||v|| = max
j∈{1,...,n}

|vj |.

Lemma 3.2.2. Let χ(x) be a vector function holomorphic for x ∈ S∗ satisfying an inequality of the
form

||χ(x)|| ≤ c|x|−m, (3.32)

where m is a non-negative integer and c is a constant. Then

ψ(x) =

ˆ
Γ(x)

exp

[
xq+1 − tq+1

q + 1
Λ

]
tqχ(t) dt (3.33)

is holomorphic in S∗ and satisfies the inequality

||ψ(x)|| ≤ Kc|x|−m, (3.34)

where K is a constant independent of χ(t) but dependent on m.

Proof. First we consider the components ψj of ψ for j = 1, 2, ..., N . This means it is enough to show
that

|ψj(x)| ≤ Kc|x|−m, for j = 1, 2, ..., N. (3.35)

By considering the mappings defined for t and x with equations (3.26) and (3.27) respectively, we
change the variables of integration, dτ = (q+1)tqdt and the path will be δj(ξ) as defined in Section
3.2.3. We also look at each element of the matrix Λ from this use λj for ψj(x). This means the
integral (3.33) for ψj(x) becomes

ψj(x) =
1

q + 1

ˆ
δj(ξ)

exp

[
(ξ − τ)λj
q + 1

]
χj(t) dτ. (3.36)

Next we take the modulus of (3.36) with Lemma 3.2.1’s result (3.31) and the assumption established
in this Lemma 3.2.2 (3.32) to obtain

|ψj(x)| ≤
c

q + 1

ˆ
δj(ξ)

exp

[
−|ξ − τ |λ0µ

q + 1

]
|τ |−

m
q+1 |dτ |. (3.37)

Before proving the inequality (3.35) by using equation (3.37), we construct a strategy for proof. We
require ψj(x) to be holomorphic in S∗, j = 1, . . . , N . From equation (3.36), we take out the terms
not involving τ and then it is enough to show that

ˆ
δj(ξ)

exp

[
−τλj
q + 1

]
χj(t) dτ (3.38)

are holomorphic functions of ξ in Ω∗ and therefore S∗,∀j = 1, ..., N . Note that χj(t) is well defined
and bounded ∀j = 1, . . . , N by the assumption in the lemma (3.32). We consider the two eigenvalue
cases we defined in Section 3.2.3 and show equation (3.38) is holomorphic in both cases.
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For the first case (3.29), recall that the path of δj(ξ) is a finite line segment from ξ1 to ξ and Re(τλj) <
0 in Ω, ∀j = 1, . . . , j1 ≤ N (See figure 3.2). Therefore, the exponential in the integrand (3.38) is
well defined along δj(ξ). Thus, the integrand is well-defined and bounded on Ω, Ω∗ and therefore
on S∗. So, ψj(x) is holomorphic on S∗ for j = 1, . . . , j1 ≤ N .

For the second case (3.28), recall that the δk(ξ) is a semi infinite line segment from ∞ to ξ and
Re(τλk) > 0 in Ω, ∀j1 < k ≤ N or exactly one λk where Re(τλk) = 0 in Ω (See figure 3.2). Then
we apply the same idea as the first eigenvalue case, looking at the exponential in the integrand of
(3.38). However this time, we see that the integrand becomes exponentially small for large values of
τ and so the integrand is holomorphic on S∗ as required.

This forms the strategy of the proof, where now we consider the classes defined in (3.28) and (3.29)
separately. First, we look at (3.28) case.

We set the difference between the mappings to be some complex number ρeiα := ξ − τ , with
ρ = |ξ− τ | and α as the directional angle of the path of δj(ξ). Substituting in ρ into equation (3.37)
we obtain

|ψj(x)| ≤
c

q + 1

ˆ |ξ−ξ1|

0

exp

[
−ρλ0µ
q + 1

]
|τ |−

m
q+1 dρ =: I. (3.39)

We split the integral I into two with paths of equal length, where I = I1 + I2 as defined below

I1 =
c

q + 1

ˆ |ξ−ξ1|
2

0

exp

[
−ρλ0µ
q + 1

]
|τ |−

m
q+1 dρ, (3.40)

I2 =
c

q + 1

ˆ |ξ−ξ1|

|ξ−ξ1|
2

exp

[
−ρλ0µ
q + 1

]
|τ |−

m
q+1 dρ. (3.41)

First look at equation (3.40) with ρ ≤ |ξ−ξ1|
2 . We need to find a lower bound for |τ |. Our claim is

|τ | ≥ |ξ|
2 . To show this we refer back to Section 3.2.3, where from the construction of the sector Ω

in the τ -plane, we know it has a central angle < π and ξ1 is the vertex of the bisector of Ω, namely
Ω∗ (See Figure 3.2). This means arg ξ1 <

π
2 , so |ξ − ξ1| ≤ |ξ| and we use the triangle inequality for

ξ, τ ∈ Ω∗

|ξ| ≤ |ξ − τ |+ |τ | = ρ+ |τ |

≤ |ξ − ξ1|
2

+ |τ | ≤ |ξ|
2

+ |τ |.

Therefore, |τ |−1 ≤ 2|ξ|−1 as required. See Figure 3.3 for an illustration of this on the τ -plane.
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Figure 3.3: Lengths in τ -plane

We have enough to bound the integral (3.40)

I1 ≤ c

q + 1
2

m
q+1 |ξ|−

m
q+1

ˆ ∞

0

exp

[
−ρλ0µ
q + 1

]
dρ

=
c

q + 1
2

m
q+1 |ξ|−

m
q+1

[
−q + 1

λ0µ
e−

ρλ0µ
q+1

]ρ=∞

ρ=0

=
c2

m
q+1

λ0µ
|ξ|−

m
q+1 =

c2
m

q+1

λ0µ
|x|−m,

by using the mapping of ξ as defined in equation (3.27). Therefore, the inequality (3.35) is satisfied

with a constant K1 = 2
m

q+1

λ0µ
,

I1 ≤ K1c|x|−m (3.42)

as required.

Now, we look at I2 (3.41), where ρ > |ξ−ξ1|
2 and we see that |τ | ≥ |ξ1|, by definition of ρ with |ξ1| as

the starting point of the whole path of integration defined in Section 3.2.3 (Figure 3.2). Then, we
can use a similar estimate to what we did for I1 to obtain the inequality (3.42),

I2 ≤ c

q + 1
|ξ1|−

m
q+1

ˆ ∞

|ξ−ξ1|
2

exp

[
−ρλ0µ
q + 1

]
dρ =

c

q + 1
|ξ1|−

m
q+1

[
−q + 1

λ0µ
e−

ρλ0µ
q+1

]ρ=∞

ρ=
|ξ−ξ1|

2

,

I2 ≤ c

λ0µ
|ξ1|−

m
q+1 exp

[
−|ξ − ξ1|λ0µ

2(q + 1)

]
. (3.43)

To show that the right hand side of the inequality is less than or equal to Kc|x|−m for a given K,
we look at two cases within inequality (3.43).

1. |ξ − ξ1| ≤ |ξ|
2
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2. |ξ − ξ1| > |ξ|
2

In the first case we use the triangle inequality to obtain an upper bound on ξ1,

|ξ| ≤ |ξ − ξ1|+ |ξ1| ≤
|ξ|
2

+ |ξ1|

⇒ |ξ|
2

≤ |ξ1|, |ξ1| ≤ 2|ξ|−1.

Also the exponential function is a strictly increasing function with exp(0) = 1, we can then use the
inequality (3.43) to obtain

I2 ≤ c2
m

q+1

λ0µ
|ξ|−

m
q+1 = K2|x|−m. (3.44)

Like the inequality (3.42) for I1, I2 satisfies the inequality (3.35) as required with K2 = K1, the
same constant as I1.
In the second case we multiply the inequality (3.43) by |ξ|

m
q+1 and use the fact the exponential

function is a strictly increasing function, e−|ξ−ξ1| < e−
|ξ|
2 . Hence

|ξ|
m

q+1 I2 ≤ c

λ0µ
|ξ1|−

m
q+1 f(|ξ|), (3.45)

where

f(X) = X
m

q+1 exp

[
−Xλ0µ
4(q + 1)

]
, X = |ξ| ≥ 0.

We find the maximum of f(X) through differentiation,

f
′
(X) = exp

[
−Xλ0µ
4(q + 1)

] [
m

q + 1
X

m
q+1−1 − λ0µ

4(q + 1)
X

m
q+1

]
= 0

⇒ m

q + 1
X−1 =

λ0µ

4(q + 1)
, X = |ξ| = 4m

λ0µ
.

Substituting this maximum value X into the inequality (3.45) and rearranging to get an upper bound
of I2 in terms of x using its mapping defined in equation (3.27),

I2 ≤ c

λ0µ
|ξ1|e−

m
q+1

(
4m

λ0µ

)− m
q+1

|ξ|−
m

q+1 = K3|x|−m. (3.46)

This inequality (3.46) satisfies the inequality (3.35) with the constant K3 = c
λ0µ

|ξ1|e−
m

q+1

(
4m
λ0µ

)− m
q+1

as required. Adding these quantities together for the two cases for I2, we have an inequality for I2
that satisfies the inequality (3.35).
We then conclude by combining the inequality for I1 (3.42) with the two inequalities found for I2
(3.44) and (3.46) to obtain the inequality for I,

I ≤ Kc|x|−m

where a constant K is a combination of the constants K1,K2 and K3 as required.
Having proved Lemma 3.2.2 for the first class (3.29), we now consider Lemma 3.2.2 for the second
class (3.29). First of all, we have to show the existence of a positive real number p that is independent
of k (where k is the eigenvalue index for Re(τλk) > 0 defined in (3.29)), such that on the path δk(ξ)

|τ | ≥ p|ξ|, τ ∈ δk(ξ). (3.47)
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To show this, let P be the point where its perpendicular line from the origin meets the path δk(ξ).
We shall consider two cases for P .

1. P /∈ δk(ξ)

2. P ∈ δk(ξ)

For the first case, the path from the origin to ξ is the shortest path to δk(ξ) (see Figure 3.4), which
means that |τ | ≥ |ξ| for τ ∈ δk(ξ). So the inequality (3.47) is true for p = 1.

Figure 3.4: Case when P /∈ δk(ξ)

For the second case where P ∈ δk(ξ) (see Figure 3.5) we see that the angle OξP is greater than or
equal to the smaller of the positive angles lk forms with the boundary rays of Ω. Let the minimum
of these angles, which are both acute be called β. Then, as OP is the shortest distance from the
origin to P like the first case, however now as P ∈ δk(ξ) we obtain

|τ | ≥ OP ≥ |ξ| sinβ.

So inequality (3.47) is true for the second case when p = sinβ > 0 and therefore is true for all of
the eigenvalues in the second class defined in (3.29).
With this, we have enough to tackle equation (3.37) in the same fashion as we did for the eigenvalues
in the first class (3.28). We define ρ = |ξ− τ | again and using the lower bound for τ involving ξ only
from inequality (3.47), we use the same method as we did in estimating integral I (3.39). However
we do not have to split the path into two equal paths, because our lower bound of τ (3.47) is for the
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Figure 3.5: Case when P ∈ δk(ξ)

whole path. Then substituting this lower bound into equation (3.39)

|ψj(x)| ≤
c

q + 1
p−

m
q+1 |ξ|−

m
q+1

ˆ ∞

0

exp

[
−ρλ0µ
q + 1

]
dρ

=
c

q + 1
p−

m
q+1 |ξ|−

m
q+1

[
−q + 1

λ0µ
e−

ρλ0µ
q+1

]ρ=∞

ρ=0

=
cp−

m
q+1

λ0µ
|ξ|−

m
q+1 =

cp−
m

q+1

λ0µ
|x|−m,

where p, µ ∈ R+,m ∈ 0 ∪ Z+, q ∈ Z+ (q is related to the central angle defined in Theorem 3.1.1),
λ0 is the minimum eigenvalue of Λ and τ, ξ are the mappings for t and x respectively as defined in
equations (3.26) and (3.27). Thus, inequality (3.35) is satisfied ∀j, 1 ≤ j ≤ N . This concludes the
proof of Lemma 3.2.2.

From Lemma 3.2.2, there are two remarks relating the the constant K in equation (3.34).

Remark 3.2.1. While K depends on ξ1, it does not need to be increased if |ξ1| is increased.

Remark 3.2.2. If m = 0, the constant K satisfies the inequality

K ≤ K1λ
−1
0 ,

where K1 is a constant that is independent of λ0. In addition, K1 only depends on q, the directions
of the boundary rays of S∗, a lower bound on |ξ1| and µ. The last constant µ depends only on the
angles of the eigenvalues λj.
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3.2.5 Estimating and solving the integral equation

Now we have all the major ingredients needed to tackle the final part of the proof. This section
consists of applying the knowledge of the inequalities and path of integration explained in the last
two sections with the goal of showing the existence of u(x) for successive estimates from equations
(3.24) and (3.25), showing its holomorphism and convergence. Hence, u(x) will solve the integral
equation (3.22).
Let S

′
be a closed subsector of sector S, the open sector we considered in Theorem 3.1.1. The

construction of S∗ ⊂ S in Section 3.2.3 will be repeated with S′ in place of S, therefore obtaining a
region S∗′

. By taking S
′
sufficiently close to S, we have achieved that the set of paths Γ(x) lie in

S∗′ ⊂ S′ when x ∈ S∗′
.

By the definition of b(x) in equation (3.12), we take a positive integer m and a constant d which
depends on a positive integer m such that

||b(x)|| ≤ d|x|−m, x ∈ S∗′
. (3.48)

Next we bound u1(x) using equations (3.19), (3.24) and (3.25),

p(x, u0) = p(x, 0) = b(x) + 0(B(x)− Λ) + h(x, 0) = b(x),

then

u1(x) = Pu0(x) =
ˆ
Γ(x)

exp

[
xq+1 − tq+1

q + 1
Λ

]
tqb(t) dt.

Hence, using (3.48) and the result from Lemma 2.2.2 (3.35) with ψ(x) = u1(x) and c = d for the
constant

||u1(x)|| ≤ Kd|x|−m, x ∈ S∗′
. (3.49)

Now we look at p(x, u) as defined in equation (3.19) for successive estimates and establish an in-
equality that will be useful later on. Let z(1) and z(2) be vectors such that

||z(i)|| ≤ z0 where z0 is a constant, i = 1, 2 (3.50)

so
||(p(x, z(2))− p(x, z(1))|| = ||(B(x)− Λ)(z(2) − z(1)) + h(x, z(2))− h(x, z(1))||. (3.51)

We estimate the first term in the inequality (3.51) using the fact from equation (3.16) B(x) → Λ.
So,

||(B(x)− Λ)(z(2) − z(1)) ≤ R1||z(2) − z(1)||, where R1 is a constant. (3.52)

Looking at the second term in the inequality (3.51)

||h(x, z(2))− h(x, z(1))||

we know from equation (3.14) that h(x, z) is a non-linear polynomial in the components of zj from
j = 1, . . . , N with coefficients that admits an asymptotic power series in x−1, as x → ∞ in S. So
only the constant coefficients will remain. Consider the 2D case for h(x, z)

z =

[
z1
z2

]
, z(i) =

[
z
(i)
1

z
(i)
2

]
for i = 1, 2
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and

h(x, z) =

[∑2N
j+k≥2 a1jkz

j
1z

k
2∑2N

j+k≥2 a2jkz
j
1z

k
2

]
,

where a1jk, a2jk are the coefficients that admit the asymptotic power series in x−1 for j, k = 1, . . . , N .
Then we have

h(x, z(2))− h(x, z(1)) =

∑2N
j+k≥2 a1jk

(
(z

(2)
1 )j(z

(2)
2 )k − (z

(1)
1 )j(z

(1)
2 )k

)
∑2N

j+k≥2 a2jk

(
(z

(2)
1 )j(z

(2)
2 )k − (z

(1)
1 )j(z

(1)
2 )k

) . (3.53)

We want to estimate equation (3.53) in the same way as the inequality (3.52). Each component of
equation (3.53) will have the same form so we focus on the first component. We see that

(z
(2)
1 )j(z

(2)
2 )k − (z

(1)
1 )j(z

(1)
2 )k = (z

(2)
1 )j

[
(z

(2)
2 )k − (z

(1)
2 )k

]
+ (z

(1)
2 )k

[
(z

(2)
1 )j − (z

(1)
1 )j

]
= (z

(2)
1 )j

[
(z

(2)
2 )k−1 + . . .+ (z

(1)
2 )k−1

]
(z

(2)
2 − z

(1)
2 ) + (z

(2)
2 )k

[
(z

(2)
1 )j−1 + . . .+ (z

(1)
1 )j−1

]
(z

(2)
1 − z

(1)
1 ).

Now we use the triangle inequality and the bound for z(1) and z(2) (3.50) to obtain

||(z(2)1 )j(z
(2)
2 )k − (z

(1)
1 )j(z

(1)
2 )k|| ≤ kzj+k−1

0 |z(2)2 − z
(1)
2 |+ jzj+k−1

0 |z(2)2 − z
(1)
2 |,

|(z(2)1 )j(z
(2)
2 )k − (z

(1)
1 )j(z

(1)
2 )k| ≤ max(j, k)zj+k−1

0 |z(2)2 − z
(1)
2 |+ |z(2)1 − z

(1)
1 |. (3.54)

Taking the norm and use of triangle inequality for equation (3.53), we obtain

||h(x, z(2))− h(x, z(1))|| ≤

∑2N
j+k≥2 a1jk max(j, k)zj+k−1

0

(
|(z(2)2 − z

(1)
2 ) + (z

(2)
1 − z

(1)
1 )|

)
∑2N

j+k≥2 a2jk max(j, k)zj+k−1
0

(
|(z(2)2 − z

(1)
2 ) + (z

(2)
1 − z

(1)
1 )|

) ,
⇒ ||h(x, z(2))− h(x, z(1))|| ≤ R2||z(2) − z(1)||, (3.55)

where R2 is a constant involving the coefficients a1jk, a2jk, z0 and max(j, k). This can be generalised
further for higher dimensional cases.
Next use the inequalities (3.52) and (3.55) to obtain the inequality we require

||p(x, z(2) − p(x, z(1))|| = ||(B(x)− Λ)(z(2) − z(1)) + h(x, z(2) − h(x, z(1))|| ≤ γ||z(2) − z(1)||, (3.56)

where γ ∈ R is a constant. The constant γ can be taken as small as we like by making |ξ1| (from
Section 3.2.3) sufficiently large and z0 (3.50) is sufficiently small.

Recall from Remark 3.2.2 that increasing |ξ1| does not affect the constant K in the inequality (3.49),
then we assume that

γ < K−1. (3.57)

Also by increasing x0 from the theorem 3.1.1 (3.1) but fixing γ and K, we construct the inequality

dK

1− γK
|x|−m ≤ z0, for x ∈ S∗′

. (3.58)

With these conditions we will now prove the following two inequalities involving u for x ∈ S∗′

||ur+1 − ur|| ≤ γrKr+1d|x|−m, r = 0, 1, ..., (3.59)

||ur+1|| ≤
dK

1− γK
|x|−m, r = 0, 1, ... . (3.60)
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Proof by induction for equation (3.59)

For r = 0
||u1 − u0|| = ||u1|| ≤ γ0Kd|x|−m = Kd|x|−m,

which matches equation (3.49) as required.
Assume true ∀r ≤ j − 1, then for r = j − 1 we have

||uj − uj−1|| = ||Puj−1 − Puj−2|| ≤ γj−1Kjd|x|−m. (3.61)

Now for r = j

uj+1 − uj = Puj − Pj−1 =

ˆ
Γ(x)

exp

[
xq+1 − tq+1

q + 1
Λ

]
tq(p(t, uj(t))− p(t, uj−1(t))) dt.

Therefore, using equations (3.56) and (3.61)

||p(t, uj(t))− p(t, uj−1(t))|| ≤ γ||uj − uj−1|| = γjKjd|x|−m.

Using the result from Lemma 3.2.2 (3.34) for ψ(x) = uj+1 − uj with its constant c = γjKjd

||uj+1 − uj || ≤ γjKj+1d|x|−m

as required.
We have proved the inequality (3.59) is true for r = j, thus by induction it is true ∀r ∈ N with the
constant c = γrKrd for each iteration of inequality (3.34).
To show inequality (3.60), we look at the norm of ur+1 as a series of the differences in u and use the
triangle inequality and the geometric series formula

||ur+1|| =

∣∣∣∣∣
∣∣∣∣∣

r∑
i=0

(ui+1 − ui)

∣∣∣∣∣
∣∣∣∣∣ ≤

r∑
i=0

||ui+1 − ui||,

||ur+1|| ≤ dK|x|−m
r∑

i=0

γiKi ≤ dK

1− γK
|x|−m, (3.62)

since γK < 1 from inequality (3.57). Next we apply this logic to all r ∈ N and we have then shown
inequality (3.60).
Now, we need to show that u(x) = limr→∞ ur(x) uniformly. Using the inequality (3.59), we see ur(x)
is dominated by a convergent geometric series as r → ∞, for x ∈ S∗′

. For uniform convergence we
need to use the Weierstrass M-test, which will be stated and proved below.

Weierstrass M-Test

Lemma 3.2.3. Suppose that fn is a sequence of real or complex valued functions defined on a set
A and ∃ a sequence of non-negative numbers Mn such that

• |fn(x)| ≤Mn, ∀n ≥ 1 and x ∈ A

•
∑∞

n=1Mn converges

Then the series
∞∑

n=1

fn(x)

converges absolutely and uniformly on A.
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Proof. First, consider the sequence of partial sums

Yn(x) =

n∑
i=1

fi(x).

We know that
∑∞

n=1Mn converges and Mn ≥ 0, ∀n ≥ 1, then use Cauchy’s convergence test

∀ϵ > 0,∃N > 0 s.t ∀m > n > N ,

m∑
i=n+1

Mi ≤ ϵ.

Next we apply this thinking to the sequence of functions, ∀x ∈ A, ∀m > n > N

|Ym(x)− Yn(x)| =

∣∣∣∣∣
m∑

i=n+1

fi(x)

∣∣∣∣∣ ≤
m∑

i=n+1

|fi(x)| ≤
m∑

i=n+1

Mi < ϵ, (3.63)

where we use the first assumption in Lemma 3.2.3 and the triangle inequality. We have just shown
that Yn(x) is a Cauchy sequence in R or C. Recall that all Cauchy sequences are convergent [Cohen
(1987)], so this sequence converges to a number Y (x). Then ∀n > N ,

|Yn(x)− Y (x)| = |Yn(x)− lim
m→∞

Ym(x)| = lim
m→∞

|Yn(x)− Ym(x)| < ϵ.

As N does not depend on x, the sequence of partial sums Yn(x) converges uniformly to Y (x) for
x→ ∞, meaning by definition

∑∞
n=1 fn(x) converges uniformly as required.

Now we apply this to the function u(x) using inequality (3.59) with r in place of n from the Weier-
strass M-Test lemma 3.2.3

fr(x) = ur+1 − ur , Mr = γrKr+1d|x|−m.

As shown in equation (3.62), |fr(x)| ≤ Mr, ∀r ≥ 0 and x ∈ S∗′
. Also,

∑∞
i=0Mi is convergent from

the inequality (3.57) involving γ and K. So

u(x) = lim
r→∞

ur(x) = lim
r→∞

r−1∑
i=0

(ui+1 − ui) (3.64)

exists and converges uniformly from Weierstrass M-test and is therefore holomorphic for x ∈ S∗′
.

We have now shown that u(x) solves the integral equation u = Pu.
Recall from equations (3.22) and (3.23) that

u(x) =

ˆ
Γ(x)

exp

[
xq+1 − tq+1

q + 1
Λ

]
tqp(t, u(t)) dt,

u(x) = P(u(x)),

where P is the integral operator acting on u(x) in equation (3.23). Since limr→∞ ur(x) = u(x)
uniformly then by the bounded convergence integral theorem [Lewin (1987)],

Pur(x) → Pu(x) ⇐⇒ lim
r→∞

Pur = P lim
r→∞

ur.
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Concluding the proof by using inequality (3.60), we see u(x) ∼ 0 as x → ∞, since m is arbitrary.

The region S∗ depends on the choice of x1 = ξ
1

q+1

1 in the paths of integration (Figure 3.2) which is
dependent on the choice of m. However, we do not need to consider this as u(x) is independent of m
and therefore exists in a region that does not depend on m. So, by the definition of u(x) established
in equation (3.10) and definition of ϕ(x) in equation (3.9)

u(x) = u = y − ϕ(x) ∼ 0,

y = ϕ(x) ∼
∞∑
r=1

yrx
−r as x→ ∞, x ∈ S∗ ⊂ S.

This completes the proof of Theorem 3.1.1.
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Chapter 4

Hyperasymptotics

The types of asymptotic power series we have looked at so far are sometimes not good enough to
capture all the information about a function. Behaviour of these asymptotics cannot explain certain
phenomena, for example Stokes phenomenon for non-linear ODEs.
There has been research into a different type of asymptotic power series involving exponential terms
which are called hyperasymptotic power series. These achieve better accuracy and representation of
some functions compared to regular asymptotic power series.
In this chapter, we take the known asymptotics of the Airy function and use them in a particular
type of non-linear ODE called the Riccati equation. The calculations for this are original work.

4.1 Airy equation

There is a famous ODE called the Airy equation

d2y

dz2
= zy, (4.1)

where the solution is an function called the Airy function y(z) (see Figure 4.1). Historically, the
function was first developed when British astronomer and physicist George Biddell Airy was study-
ing the intensity near an optical directional caustic such as a rainbow [Airy et al. (1838)].

There exists two independent solutions [Olver (1997)] with asymptotic expansions where ζ = 2
3z

3/2

y1(z) = Ai(z) ∼ e−ζ

2
√
πz1/4

∞∑
r=0

(−1)rurζ
−r, − π < arg z < π, (4.2)

y2(z) = e−πi/6Ai(ze−2πi/3) ∼ eζ

2
√
πz1/4

∞∑
r=0

urζ
−r, − π

3
< arg z <

5π

3
, (4.3)

where u0 = 1 and ur =
Γ(r+ 1

6 )Γ(r+
5
6 )

2πr!2r for r ≥ 1.
Looking at the positive real axis (arg z = 0), we see that y1(z) (4.2) has recessive behaviour, due
the negative exponential term in the asymptotic expansion, as ζ → ∞. In contrast, y2(z) (4.3) has
dominant behaviour as ζ → ∞.
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4.1.1 Stokes phenomenon for Airy function

Stokes phenomenon is where for a function with multiple asymptotic power series expansions that
are defined across different sectors, there is different asymptotic behaviour across these sectors. As
these series approach boundaries of such sectors, moving from one series to another causes a sudden
jump in asymptotic behaviour. For example, an exponentially small term can contribute only in one
sector and is not present in another sector. The places where this change of behaviour occur are
called Stokes lines.
We look at the Airy function’s asymptotic behaviour on the negative real axis arg z = π compared
to the positive real axis arg z = 0. We need a solution y3(z) for the Airy equation (4.1) in the sector
2π
3 < arg z < 4π

3 . As the Airy equation is a second order ODE with two independent solutions y1(z)
and y2(z), y3(z) will then be linear combination of these independent solutions.

y3(z) = Ay1(ze
−4πi/3) +Ky2(z) (4.4)

where A and K ∈ C are constants. Due to the Stokes phenomenon, the constant K will change in
different sectors for arg z.

Figure 4.1: Airy function

4.2 Riccati equation form of Airy equation

Riccati equations are a class of non-linear second order ODEs which can be converted to linear first
order ODEs [Olde Daalhuis (2005)]. The following is original work on a particular Riccati equation.
We consider a Riccati equation for a function v(z)

v′(z) + v2(z)− z = 0. (4.5)

Let

v(z) =
y′(z)

y(z)
, (4.6)

therefore its derivative is

v′(z) =
y′′(z)y(z)− y′(z)2

y(z)2
. (4.7)
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Substituting (4.6) and (4.7) into the Riccati equation (4.5)

y′′(z)y(z)− y′(z)2

y(z)2
+
y′(z)2

y(z)2
− z = 0

⇒ y′′(z) = zy(z),

which is the Airy equation (4.1).

For now, suppose we have two independent solutions to equation (4.1) y1 and y2 such that y =
αy1 + βy2 where |α|, |β| ≠ 0,∈ C. Then we have

v(z, C) =
αy′1(z) + βy′2(z)

αy1(z) + βy2(z)
=
y′1(z) + Cy′2(z)

y1(z) + Cy2(z)
where C =

β

α
∈ C. (4.8)

With some manipulation a series expansion with C is formed

v(z, C) = (y′1 + Cy′2)((y1 + Cy2)
−1 =

(
y′1
y1

+ C
y′2
y1

)(
1 + C

y2
y1

)−1

=

(
y′1
y1

+ C
y′2
y1

)( ∞∑
n=0

(−C y2
y1

)n

)

=

∞∑
n=0

[(
−C y2

y1

)n
y′1
y1

+ (−1)nCn+1

(
y2
y1

)n
y′2
y1

]
.

We re-index n = n− 1 for the second term in the series

y
′

1

y1
+

∞∑
n=1

Cn

(
−y2
y1

)n [
y′1
y1

− y′2
y1

]

=
y′1
y1

+

∞∑
n=1

Cn(−1)n
(
yn−1
2

yn+1
1

)
[y2y

′
1 − y1y

′
2] ,

then we have the form of the solution for v (4.8)

v(z, C) =
y′1(z)

y1(z)
+

∞∑
n=1

Cn(−1)n
(
y2(z)

n−1

y1(z)n+1

)
W(y2(z), y1(z)) =

∞∑
n=1

Cnvn(z) (4.9)

where

v0(z) =
y′1(z)

y1(z)
, (4.10)

vn(z) = (−1)n
y2(z)

n−1

y1(z)n+1
W(y2(z), y1(z)) =

W(y2(z), y1(z))

y1(z)y2(z)

(
−y2(z)
y1(z)

)n

, ∀n ≥ 1. (4.11)

The solution (4.9) is for a constant C ∈ C and the Wronskian is defined as W(y2(z), y1(z)) =

det

(
y2(z) y1(z)
y′2(z) y′1(z)

)
, which is also a constant. Note that the constant C can change across different

sectors, this is an example of Stokes phenomenon for non-linear ODEs.
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4.2.1 Asymptotic expansions for Riccati equation

Now we substitute v(z, C) (4.9) into the Riccati equation (4.5) to obtain

(v′0(z) + Cv′1(z) + C2v′2(z) + . . .) + (v0(z) + Cv1(z) + C2v2(z) + . . .)2 − z = 0,

(v′0 +Cv′1 +C2v′2 + . . .) + (v20 +2Cv0v1 +2C2v0v2 +C2v21 +2C3v1v2 +C4v22 + . . .)− z = 0. (4.12)

Looking at O(1) terms we have
v′0(z) + v20(z)− z = 0 (4.13)

we see (4.13) is the same as the starting Riccati equation (4.5) we had in Section 4.2. It follows that

the solution is v0(z) =
y′
1(z)

y1(z)
, which is consistent with the change in variables in (4.6).

Now looking at O(C) terms we have

v′1(z) + 2v0(z)v1(z) = 0. (4.14)

Looking at O(C2) terms we have

v′2(z) + 2v0(z)v2(z) + v1(z)
2 = 0. (4.15)

For general O(Cn), n ≥ 1 terms we have

v′n(z) +

n∑
m=0

vm(z)vn−m(z) = 0 n = 1, 2, . . . . (4.16)

We now substitute the asymptotic expansions of y1(z) and y2(z) from (4.2) and (4.3) to obtain the
asymptotic expansions for vn(z),∀n ≥ 0, n ∈ N as ζ = 2

3z
3/2 → ∞.

For v0(z) (4.10) we have

ln y1 ∼ −ζ − lnA− 1

4
ln z +

∞∑
r=0

brζ
−r, (4.17)

where lnA is a real constant and
∑∞

r=0
br
ζr = ln (1 +

∑∞
r=1

ar

ζr ) with ar and br defined in terms of ur
from in (4.2) and (4.3) for r = 0, 1 . . . .
We differentiate (4.17)

y′1(z)

y1(z)
∼ − 1

4z
+ z1/2

[
−1−

∞∑
r=1

rbrζ
−(r+1)

]

and let

W (ζ) =

∞∑
r=0

crζ
−r := −1−

∞∑
r=1

rbrζ
−(r+1), (4.18)

where cr are coefficients to be determined for r = 0, 1, . . . . So we know the asymptotic expansion
of v0(z) from (4.10)

v0(z) =
y′1(z)

y1(z)
∼ z1/2W (ζ) +

1

4z
for ζ =

2

3
z3/2 → ∞, (4.19)
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where W (ζ) is defined as in (4.18).
We now perform a similar calculation for vn(z),∀n ≥ 1 by looking at the expression in (4.11)

W(y2(z), y1(z))

y1y2
∼ Bz1/2

∞∑
r=0

drζ
−r,

(
−y2(z)
y1(z)

)n

∼ e2nζ
∞∑
r=0

fr

where B ∈ R is a constant in terms of π and W(y2(z), y1(z)). The coefficients dr and fr are part of
their asymptotic series expansions. So for vn(z), n ≥ 1

vn(z) ∼ z1/2e2nζ
∞∑
r=0

γrζ
−r,∀n ≥ 1, (4.20)

where the coefficients γr are coefficients to be determined for r = 0, 1 . . . and ζ = 2
3z

3/2 → ∞.

Focusing on v0(z), we substitute its asymptotic expansion (4.19) into the ODE for v0(z) (4.13). We
see that

v′0(z) ∼
W (ζ)

2z1/2
+ z1/2

dζ

dz
W ′(ζ)− 1

4z2
=
W (ζ)

2z1/2
+ zW ′(ζ)− 1

4z2

and

v20 ∼ zW (ζ)2 +
W (ζ)

2z1/2
+

1

16z2
.

For (4.13)

0 = v′0(z) + v20(z)− z ∼ W (ζ)

z1/2
+ zW ′(ζ) + zW (ζ)2 − 3

16z2
− z.

Dividing by z and getting all powers of z in terms of ζ

W ′(ζ) +W (ζ)2 +
W (ζ)

z3/2
− 3

16z3
− 1 ∼ 0,

W ′(ζ) +W (ζ)2 +
2W (ζ)

3ζ
− 1

12ζ2
− 1 ∼ 0 for ζ → ∞, (4.21)

where W (ζ) is defined as in (4.18).
To find the coefficients cr of the asymptotic power series for W (ζ), we substitute (4.18) into (4.21)

−(c1ζ
−2 + c2ζ

−3 + . . .) + (c0 + c1ζ
−1 + . . .)2 +

2

3
(c0ζ

−1 + c1ζ
−2 + . . .)− ζ−2

12
− 1 = 0,

−(c1ζ
−2+ c2ζ

−3+ . . .)+ (c20+2c0c1ζ
−1+ c21ζ

−2 . . .)+
2

3
(c0ζ

−1+ c1ζ
−2+ . . .)− ζ−2

12
− 1 = 0. (4.22)

We then look at the equations at O(ζ−n), n = 0, 1, . . . like we did for (4.12) and find the coefficients
cr in (4.18) via recurrence relations.

Similarly for vn(z), n ≥ 1, we can substitute its asymptotic expansion (4.20) into the ODE (4.16).
This will form another ODE similar to (4.21) giving a series of divergent series called a transseries.
To find coefficients of γr in (4.20), we would conduct a similar method as we did for (4.22).
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Chapter 5

Conclusion

In this project, we have looked at the general theory of asymptotic power series and their properties
in Chapter 2. Then in Chapter 3, we proved Theorem 3.1.1 that looks at a general class of ODEs
where there exists a solution which has an asymptotic power series representation in some sector.
In Chapter 4 we looked at hyperasymptotics, specifically an original worked example involving the
asymptotics of the Airy function with a Riccati equation (4.5). We started to calculate the series
expansion explicitly (4.22) by the link to the Airy function. However, it is possible to generate the
series expansion by substituting the general form (4.9) and obtain recurrence relations for the coef-
ficients. This would generate a hyperasymptotic power series containing exponentially small terms.
These exponentially small terms contain critical information that determines the arbitrary constant
C in (4.9).

Future work can involve looking at higher-order ODEs or ODEs where they cannot be solved in terms
of linear ODEs and explore what transseries they form. Also, derive their respective hyperasymptotic
power series and maybe prove such series exist for these ODEs.
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