Organization of strongly interacting directed polymer liquids in the presence of stringent constraints


The impact of impenetrable obstacles on the energetics and equilibrium structure of strongly repulsive directed polymers is investigated. As a result of the strong interactions, regions of severe polymer depletion and excess are found in the vicinity of the obstacle, and the associated free-energy cost is found to scale quadratically with the average polymer density. The polymer-polymer interactions are accounted for via a sequence of transformations: from the 3D line liquid to a 2D fluid of Bose particles to a 2D composite fermion fluid and, finally, to a 2D one-component plasma. The results presented here are applicable to a range of systems consisting of noncrossing directed lines.

Physical Review Letters
Anton Souslov
Assistant Professor

I am interested in the theory of soft materials.