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ENTRANCE LAWS AT THE ORIGIN OF SELF-SIMILAR

MARKOV PROCESSES IN HIGH DIMENSIONS

ANDREAS E. KYPRIANOU, VICTOR RIVERO, BATI ŞENGÜL, AND TING YANG

Abstract. In this paper we consider the problem of finding entrance laws
at the origin for self-similar Markov processes in Rd, killed upon hitting the
origin. Under suitable assumptions, we show the existence of an entrance law
and the convergence to this law when the process is started close to the origin.
We obtain an explicit description of the process started from the origin as the
time reversal of the original self-similar Markov process conditioned to hit the
origin.
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Part 1. Entrance Laws of Self-Similar Markov Processes

1. Introduction

Suppose H is a locally compact subset of Rd \ {0} (d ≥ 1). An H-valued self-
similar Markov process (ssMp for short) (X,P) = ((Xt)t≥0, {Pz : z ∈ H}) is an
H-valued càdlàg Markov process killed at 0 with Pz (X0 = z) = 1, which fulfils the
scaling property; namely, there exists an α > 0 such that for any c > 0,

((cXc−αt)t≥0,Pz) has the same law as ((Xt)t≥0,Pcz) ∀z ∈ H.

It follows from the scaling property that H = cH for all c > 0. Therefore H is
necessarily a cone of Rd \ {0} which has the form

H = φ(R× S),
where S is a locally compact subset of Sd−1 and φ is the homeomorphism from
R× Sd−1 to Rd \ {0} defined by φ(y, θ) = θey.

The crucial tool in the study of ssMp is the Lamperti-Kiu transform, which we
now describe. Suppose first that (X,Pz) is an H-valued ssMp started at z ∈ H
with index α > 0 and lifetime ζ. Then there exists a Markov additive process
(MAP for short; see Section 2 for a rigorous definition) (ξ,Θ) on R× S started at
(log ‖z‖, arg(z)) with lifetime ζp such that

(1.1) Xt = exp{ξϕ(t)}Θϕ(t)1{t<ζ} ∀t ≥ 0,

where ϕ(t) is the time-change defined by

(1.2) ϕ(t) := inf

{
s > 0 :

∫ s

0

exp{αξu} du > t

}
,

and ζp =
∫ ζ

0
‖Xs‖−αds. We denote the law of (ξ,Θ) started from (y, θ) ∈ R × S

by Py,θ. Conversely given a MAP (ξ,Θ) under Py,θ with lifetime ζp, the process

X defined by (1.1) is an ssMp started from z = θey with lifetime ζ =
∫ ζp
0

eαξsds.
Roughly speaking, a MAP is a natural extension of a Lévy process in the sense
that Θ is an arbitrary well-behaved Markov process and ((ξt,Θt)t≥0,Px,θ) is equal
in law to ((ξt + x,Θt)t≥0,P0,θ) for all x ∈ R and θ ∈ S. Whilst MAPs have found
a prominent role in e.g. classical applied probability models for queues and dams,
cf. [5] when Θ is a Markov chain, the case that Θ is a general Markov process has
received somewhat less attention. Nonetheless a core base of literature exists in the
general setting from the 1970s and 1980s thanks to e.g. [19, 20, 35, 36].

We denote H∪{0} by H0. In this paper we look for entrance laws of ssMp at the
origin, that is, the existence of a probability measure P0 such that the extension
of (X, {Pz : z ∈ H0}) is self-similar and in particular P0 = w- limH�z→0 Pz in
the Skorokhod topology. In Theorem 6.3 we will prove a general result with as
weak assumptions as our study of the underlying MAPs permits. However, the
statement of this theorem comes relatively late in this paper because of the large
amount of fluctuation theory we must first develop for general MAPs in order that
the sufficient conditions make sense. It is quite natural to expect that conditions for
the existence and stochastic continuity of an entrance law will be highly nontrivial
as the process Θ could essentially take on any role as a regular Markov process.
Nonetheless, we want to give a flavor of the main results. We give immediately
below the collection of conclusions we are aiming towards, i.e. (C1)-(C5), without
addressing the technical assumptions.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ENTRANCE LAWS AT THE ORIGIN OF SSMPS IN HIGH DIMENSIONS 6229

The first two conclusions, (C1) and (C2), seem rather specialist and pertain to
analogues of classical fluctuation results for Lévy processes, but now in the setting
of MAPs. However they hold value in the sense that they provide key building
blocks for some of the conclusions later on.

(C1) Conditioning to remain negative. There exists a family of probability

measures P̂↓ = {P̂↓
y,θ : y ≤ 0, θ ∈ S} such that ((ξ,Θ), P̂↓) is a right continuous

Markov process taking values in (−∞, 0]×S. Moreover, for all y < 0, θ ∈ S, t ≥ 0,
and Λ ∈ Ft,

P̂↓
y,θ (Λ) = lim

q→0+
P̂y,θ

(
Λ, t < eq | τ+0 > eq

)
,

where (ξ,Θ) under P̂y,θ is equal in law to (−ξ,Θ), when −ξ0 = y ∈ R, and
Θ0 = θ ∈ S, eq is an independent and exponentially distributed random variable
with parameter q, and τ+0 = inf{t > 0 : ξt > 0}.

(C2) Stationary overshoots and undershoots. For every θ ∈ S, the joint
probability measures on S × R− × S × R+,

P0,θ

(
Θτ+

x − ∈ dv, ξτ+
x − − x ∈ dy,Θτ+

x
∈ dφ, ξτ+

x
− x ∈ dz

)
,

converges weakly to a probability measure ρ(dv, dy, dφ, dz) as x → +∞.

In particular, P0,θ

(
ξτ+

x
− x ∈ dz, Θτ+

x
∈ dφ

)
converges weakly to a probability

measure denoted by ρ�(dz, dφ), and P0,θ

(
ξτ+

x − − x ∈ dy, Θτ+
x − ∈ dv

)
converges

weakly to a probability measure denoted by ρ⊕(dy, dv).
As alluded to above, we can use the former two main conclusions above to build

a process which acts as an entrance law of the ssMp from the origin.

(C3) Candidate entrance law. Let P↘
z denote the law of X given by the

Lamperti-Kiu transform (1.1) under P̂↓
y,θ with y = log ‖z‖ and θ = arg(z), and

let 
 denote the image measure of ρ⊕ under the map (y, θ) 
→ θey. Then the
process (X,P↘

� ) has a finite lifetime ζ̄ with Xζ̄− = 0. Its time reversal process

((X̃t := X(ζ̄−t)−)t<ζ̄ ,P
↘
� ) is a right continuous Markov process satisfying that

X̃0 = 0 and X̃t �= 0 for all t > 0. Moreover, ((X̃t)0<t<ζ̄ ,P
↘
� ) is a strong Markov

process having the same transition rates as the ssMp (X, {Pz, z ∈ H}) killed when
exiting the unit ball.

Moreover the stability of the overshoots and undershoots in the second main
conclusion also helps with identifying the above candidate entrance law as unique
in the sense of weak limits on the Skorokhod space.

(C4) Uniqueness of the entrance law. There exists a probability measure P0

such that

(1) w- limz→0 Pz = P0 in the weak sense of measures on the Skorokhod space.
(2) (X, {Pz, z ∈ H0}) is an ssMp.
(3) (X, {Pz, z ∈ H0}) is a Feller process.
(4) ((Xt)t<τ�

r
,P0) is equal in law to ((rX(ζ̄−r−αt)−)t<rαζ̄ ,P

↘
� ) for every r > 0.

(5) Under P0 the process X starts at 0 and leaves 0 instantaneously.

Here τ�r = inf{t > 0 : ‖Xt‖ > r}. Moreover, P0 is the unique probability measure
such that the extension (X, {Pz, z ∈ H0}) is a right continuous Markov process
satisfying either (3) or (5) listed above.
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Finally we can reassert the stability of the underlying MAP over/undershoots
to generate the unique entrance law at the origin, but now in terms of the ssMp.

(C5) Stability of the the process started at the origin. For every δ > 0,
((Xτ�

δ −, Xτ�
δ
),Pz) converges in distribution to ((Xτ�

δ −, Xτ�
δ
),P0) as z → 0, and

w- lim
H�z→0

Pz

(
arg(Xτ�

1 −) ∈ dv, log ‖Xτ�
1 −‖ ∈ dy, arg(Xτ�

1
) ∈ dφ, log ‖Xτ�

1
‖ ∈ dz

)
= P0

(
arg(Xτ�

1 −) ∈ dv, log ‖Xτ�
1 −‖ ∈ dy, arg(Xτ�

1
) ∈ dφ, log ‖Xτ�

1
‖ ∈ dz

)
= ρ(dv, dy, dφ, dz).

In the case d = 1 and the ssMp is positive, several works have established the
limit P0 = w- limz→0 Pz using various techniques; see [10, 11, 13, 15, 51]. Recently,
in the case when ssMp is allowed to take negative values as well, entrance laws were
obtained in [22]. Our contribution here is two-fold. Firstly we show, under suitable
conditions, the existence of an entrance law at 0 for an ssMp in any dimension.
Secondly, our proof here uses a path reversal argument which follows the spirit of
[11,22], but works directly with the reversal of the ssMp rather than the underlying
MAP. This appeals to the full strength of Hunt-Nagasawa duality as explored in
e.g. [18, 47]. We note that in dimension d = 1 or d = 1/2 (i.e. positive self-similar
Markov processes), taking all fluctuation theory for granted in those settings (which
means fluctuation theory of Lévy processes for d = 1/2), our approach offers an
alternative simple proof of the entrance laws.

The rest of this paper is structured as follows. In Section 2 we develop the
fluctuation theory for general MAPs, which we believe is of independent interest
and should be useful in studying ssMps. In Section 3 we present the notions of
duality as well as several time-reversal results about duality. Among them, Lemma
3.3 plays a key role in our path-reversal argument. In Section 6, we present our
working assumptions and the main result, Theorem 6.3, which gives the existence of
a weak limit of Pz as z → 0, as well as the explicit law of the process started at the
origin. The large number of assumptions given there largely pertains to stability
conditions that permit the aforesaid weak convergence. In Section 7 we give two
interesting examples to illustrate the main result. Our main result is proved step by
step through the arguments in Sections 4-9: Firstly we define a family of probability

measures {P̂↓
x,θ, x ≤ 0, θ ∈ S} under which the MAP (ξ,Θ) is conditioned to stay

negative. Then we show that both the overshoots and undershoots of the MAP
(ξ,Θ) have stationary distributions, which we denote by ρ� and ρ⊕, respectively.

Starting from ((ξ,Θ), P̂↓
ρ⊕) we construct by Lamperti-Kiu transform the process

(X,P↘
� ), which is conditioned to stay inside the unit ball and hit the origin in a

finite time. By time-reversing (X,P↘
� ) from its lifetime, we get the law of (X,P0)

until first exit from a unit ball. Finally we prove P0 is the weak limit of Pz as
z → 0.

Notation. Throughout this paper, we use “:=” as definition and “
d
=” to mean

“equal in distribution”. Suppose E is a locally compact separable metric space.
Let E∂ = E ∪{∂} (where ∂ �∈ E) be the one-point compactification of E. Then E∂

is a compact separable metric space. For T ∈ [0,+∞], let DE [0, T ) denote the space
of functions ω : [0, T ) → E∂ , such that there exists ζ = ζ(ω) ∈ [0, T ], called the
lifetime of ω, with the property that t 
→ ω(t) is a càdlàg function from [0, ζ) to E
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and ω(t) = ∂ for t ≥ ζ. We endow the space DE [0, T ) with the Skorokhod topology
which makes it into a Polish space. We use the shorthand notation DE = DE [0,∞).
Unless stipulated otherwise, every function f on E is automatically extended to E∂

by setting f(∂) = 0. For a point x ∈ Rd, we use ‖x‖ to denote its Euclidean norm.
For q > 0, we use eq to denote an independent exponential random variable with
mean 1/q.

Part 2. Fluctuation Theory of Markov Additive Processes

2. Preliminaries

2.1. Markov additive processes and Lévy systems. Suppose (ξt,Θt)t≥0 is the
coordinate process in DR×S and

((ξ,Θ),P) = ((ξt,Θt)t≥0,F∞, (Ft)t≥0, {Px,θ : (x, θ) ∈ R× S})
is a (possibly killed) Markov process with Px,θ (ξ0 = x,Θ0 = θ) = 1. Here (Ft)t≥0

is the minimal augmented admissible filtration and F∞ =
∨+∞

t=0 Ft.

Definition 2.1. The process ((ξ,Θ),P) is called a Markov additive process (MAP)
on R× S if, for any t ≥ 0, given {(ξs,Θs), s ≤ t}, the process (ξs+t − ξt,Θs+t)s≥0

has the same law as (ξs,Θs)s≥0 under P0,v with v = Θt. We call ((ξ,Θ),P) a
nondecreasing MAP if ξ is a nondecreasing process on R.

For a MAP process ((ξ,Θ),P), we call ξ the ordinate and Θ the modulator. By
definition we can see that a MAP is translation invariant in ξ; i.e., ((ξt,Θt)t≥0,Px,θ)
is equal in law to ((ξt + x,Θt)t≥0,P0,θ) for all x ∈ R and θ ∈ S.

We assume throughout the paper that (Θt)t≥0 is a Hunt process and (ξt)t≥0 is
quasi-left continuous on [0, ζ). Then it is shown in [19] that there exist a continuous
increasing additive functional t 
→ Ht of Θ and a transition kernel Π from S to S×R

satisfying

Π(θ, {(θ, 0)}) = 0,

∫
R

(
1 ∧ |y|2

)
Π(θ, {θ} × dy) < +∞ ∀θ ∈ S,

such that, for every nonnegative measurable function f : S × S × R → R+, every
θ ∈ S, and t ≥ 0,

P0,θ

⎡⎣∑
s≤t

f(Θs−,Θs, ξs − ξs−)1{Θs− �=Θs or ξs− �=ξs}

⎤⎦
= P0,θ

[∫ t

0

dHs

∫
S×R

Π(Θs, dv, dy)f(Θs, v, y)

]
.

This pair (H,Π) is said to be a Lévy system for ((ξ,Θ),P). It can be shown that
for every nonnegative predictable process Z and nonnegative measurable function
g : S × R× S × R → R+,

P0,θ

⎡⎣∑
s≤t

Zsg(Θs−, ξs−,Θs, ξs)1{Θs− �=Θs or ξs− �=ξs}

⎤⎦
= P0,θ

[∫ t

0

dHsZs

∫
S×R

Π(Θs, dv, dy)g(Θs, ξs, v, ξs + y)

]
(2.1)

for all θ ∈ S and t ≥ 0.
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The topic of MAPs is covered in various parts of the literature. We refer to
[5, 6, 17, 19, 20, 37] to name but a few of the texts and papers which give a general
treatment.

For the remainder of the paper we will restrict ourselves to the setting that, up
to killing of the MAP, Ht = t. Because of the bijection in (1.2), this naturally puts
us in a restricted class of ssMps through the underlying driving MAP; however, as
we will shortly see, it is on the MAP that we will impose additional assumptions.

2.2. Fluctuation theory for MAPs.

Definition 2.2. For any y ∈ R, let τ+y := inf{t > 0 : ξt > y}. We say that
((ξ,Θ),P) is upwards regular if

P0,θ

(
τ+0 = 0

)
= 1 ∀θ ∈ S.

Suppose (X,P) = ((Xt)t≥0, {Pz : z ∈ H}) is the ssMp associated to the MAP
((ξ,Θ),P) via Lamperti-Kiu transform. We say that (X,P) is sphere-exterior
regular if ((ξ,Θ),P) is upwards regular. For r > 0, let τ�r := inf{t > 0 :
‖Xt‖ > r}. Immediately by the definition, (X,P) is sphere-exterior regular if
and only if Pz

(
τ�1 = 0

)
= 1 for all z ∈ H with ‖z‖ = 1.

In the remainder of this paper we assume that the MAP ((ξ,Θ),P) is upwards
regular. This assumption is not really necessary but nevertheless avoids a lot of
unnecessary technicalities when we explore the fluctuation properties.

2.2.1. Excursion from maximum/minimum. Let ξ̄t := sups≤t ξs and Ut := ξ̄t − ξt.

Then under P0,θ the process (Θt, ξt, Ut)t≥0 is an S × R× R+-valued right process
started at (θ, 0, 0), whose transition semigroup on (0,+∞) is given by

Ptf(v, x, u) := P0,v

[
f
(
Θt, ξt + x, u ∨ ξ̄t − ξt

)]
for every t > 0 and every nonnegative measurable function f : S × R× R+ → R+.
We shall work with the canonical realization of (Θt, ξt, Ut)t≥0 on the sample space
DS×R×R+ .

We define M̄ := {t ≥ 0 : Ut = 0} and M̄ cl its closure in R+. Obviously the set
R+ \ M̄ cl is an open set and can be written as a union of intervals. We use Ḡ and
D̄, respectively, to denote the sets of left and right end points of such intervals.
Define R̄ := inf{t > 0 : t ∈ M̄ cl}. The upwards regularity implies that every
point in S is regular for M̄ in the sense that P0,θ

(
R̄ = 0

)
= 1 for all θ ∈ S.

Thus by [45, Theorem (4.1)] there exist a continuous additive functional t 
→ L̄t of
(Θt, ξt, Ut)t≥0 which is carried by S × R × {0} and a kernel P from S × R × R+

into DS×R×R+ satisfying Pθ,x,u
(
R̄ = 0

)
= 0 and Pθ,x,u

(
1− e−R̄

)
≤ 1 such that

(2.2) P0,θ

⎡⎣∑
s∈Ḡ

Zs f ◦ θs

⎤⎦ = P0,θ

[∫ +∞

0

Zs P
Θs,ξs,0(f)dL̄s

]
for any nonnegative predictable process Z and any nonnegative function f which
is measurable with respect to σ ((Θt, ξt, Ut)t≥0). Moreover, by [45, Theorem (5.1)],
Pθ,x,0 ((Θ0, ξ0, U0) �= (θ, x, 0)) = 0, and under Pθ,x,0 the process (Θt, ξt, Ut)t>0

has the strong Markov property (as defined in [45, (5.2)]) with respect to Pt. In
particular, if f is measurable with respect to σ((Θt, Ut)t≥0), then the right-hand
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side of (2.2) equals

P0,θ

[∫ +∞

0

Zs P
Θs,0(f)dL̄s

]
,

where P denotes the kernel from S × R+ into DS×R+ for the process (Θt, Ut)t≥0

defined in the same way as in [45]. It is known (see, for example, [36, Section 3])
that there is a nonnegative measurable function �+ : S → R+ such that

(2.3)

∫ t

0

1{s∈M̄}ds =

∫ t

0

1{s∈M̄cl}ds =

∫ t

0

�+(Θs)dL̄s ∀t ≥ 0, P0,θ-a.s.

Let L̄−1
t be the right inverse process of L̄t. Define ξ+t := ξL̄−1

t
and Θ+

t := ΘL̄−1
t

for all t such that L̄−1
t < +∞, and otherwise ξ+t and Θ+

t are both assigned to
be the cemetery state ∂. One can verify by the strong Markov property that
(L̄−1

t , ξ+t ,Θ
+
t )t≥0 defines a MAP whose first two elements are ordinates. Similarly,

both (ξ+t ,Θ
+
t )t≥0 and (L̄−1

t ,Θ+
t )t≥0 are MAPs. These three processes are referred

to as ascending ladder process, ascending ladder height process, and ascending ladder
time process, respectively.

Suppose the set R+ \ M̄ cl is written as a union of random intervals (g, d). For
such intervals, define

(ε(g)s , ν(g)s ) :=

{
(Ug+s,Θg+s) if 0 ≤ s < d− g,

(Ud,Θd) if s ≥ d− g.

(ε
(g)
s , ν

(g)
s )s≥0 is called an excursion from the maximum, and ζ(g) := d− g is called

its lifetime. We use E to denote the collection {(ε(g)s (ω), ν
(g)
s (ω))s≥0 : g ∈ Ḡ(ω), ω ∈

DS×R×R+}, and call it the space of excursions. Let n+θ be the image measure of
Pθ,0 under the mapping that stops the path of (Θt, Ut)t≥0 at time R̄. A direct con-
sequence of [45, equation (4.9)] is that for any nonnegative measurable functionals
F : DR+×S → R+ and G : R+ × DR×S → R+,

Py,θ

⎡⎣∑
g∈Ḡ

G
(
g, (ξt,Θt)t≤g

)
F
(
ε(g), ν(g)

)⎤⎦
= Py,θ

[∫ ∞

0

dL̄s G
(
s, (ξt,Θt)t≤s

) ∫
E
n+Θs

(dε, dν)F (ε, ν)

]
.(2.4)

We call {n+θ : θ ∈ S} the excursion measures at the maximum.
The excursion measures at the minimum and descending ladder process are de-

fined analogously replacing ξ by −ξ.

2.2.2. Fluctuation identities. For t > 0, define

ḡt := sup{s ≤ t : s ∈ M̄ cl} and Θ̄t := Θḡt1{ξ̄t=ξḡt} +Θḡt−1{ξ̄t>ξḡt}.

By the right continuity of sample paths one can easily show that ḡt is equal to

sup{s ≤ t : s ∈ M̄}
with probability 1. Since by quasi-left continuity, P0,θ(ξt �= ξt−) = 0 for all t > 0,
we have P0,θ

(
ḡt = sup{s < t : s ∈ M̄}

)
= 1 for all t > 0. We claim thatP0,θ-almost

surely ḡt is not a jump time of the process (ξ,Θ) for every θ ∈ S. Otherwise, one
can construct a stopping time T such that

P0,θ

(
{T ∈ Ḡ} ∩ {ξT− �= ξT or ΘT− �= ΘT }

)
> 0.
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Noting that by (2.2)

P0,θ

⎛⎝∑
g∈Ḡ

1{Ug>0 or Θg− �=Θg}

⎞⎠=P0,θ

[∫ +∞

0

P
Θs,ξs,0 (U0 > 0 or Θ0 �= 0) dL̄s

]
=0,

we get from the above inequality that P0,θ

(
T ∈ Ḡ, ξT− < ξT

)
> 0. This brings a

contradiction, since if we apply Markov property and upwards regularity at T , we
get ξT+s > ξT > ξT− for s sufficiently small on the event {T ∈ Ḡ, ξT− < ξT },
which is impossible.

The following identity is one of the key tools in extending identities from the
fluctuation theory for Lévy processes to MAPs; it is the base to establish a Wiener-
Hopf type factorization for MAPs.

Proposition 2.3. Suppose that ((ξ,Θ),P) is a Markov additive process taking
values in R×S. Then for every bounded measurable function F,G : [0,∞)×R×S →
R and every θ ∈ S,

P0,θ

[
G
(
ḡeq

, ξ̄eq
, Θ̄eq

)
F
(
eq − ḡeq

, ξ̄eq
− ξeq

,Θeq

)]
=

∫
R+×S×R+

e−qrG(r, z, v)
[
q�+(v)F (0, 0, v)

+n+
v

(
F (eq, εeq

, νeq
)1{eq<ζ}

)]
V +
θ (dr, dv, dz),

where

V +
θ (dr, dv, dz) := P0,θ

[∫ L̄∞

0

1{L̄−1
s ∈dr, Θ+

s ∈dv, ξ+s ∈dz}ds

]
.

Proof. It is known from the above argument that P0,θ-almost surely ḡeq
is not jump

time of (ξ,Θ), and thus (ξ̄eq
, Θ̄eq

) = (ξḡeq ,Θḡeq
) P0,θ-a.s. Then we have

P0,θ

[
F
(
eq − ḡeq

, ξ̄eq
− ξeq

,Θeq

)
G
(
ḡeq

, ξ̄eq
, Θ̄eq

)]
= P0,θ

[
F
(
eq − ḡeq

, ξ̄eq
− ξeq

,Θeq

)
G
(
ḡeq

, ξ̄eq
, Θ̄eq

)
1{ξeq=ξ̄eq}

]
+P0,θ

[
F
(
eq − ḡeq

, ξ̄eq
− ξeq

,Θeq

)
G
(
ḡeq

, ξ̄eq
, Θ̄eq

)
1{ξeq<ξ̄eq}

]
= P0,θ

[
F
(
0, 0,Θeq

)
G
(
eq, ξeq

,Θeq

)
1{ξeq=ξ̄eq}

]
+P0,θ

⎡⎣∑
g∈Ḡ

1{g<eq<g+ζ(g)}F
(
eq − g, ε

(g)
eq−g, ν

(g)
eq−g

)
G
(
g, ξ̄g,Θg

)⎤⎦ .

By (2.4), the above sum is equal to

(2.5) P0,θ

[
F
(
0, 0,Θeq

)
G
(
eq, ξeq

,Θeq

)
1{ξeq=ξ̄eq}

]
+P0,θ

[∫ ∞

0

dL̄s1{s<eq}G
(
s, ξ̄s,Θs

)
n+Θs

(
F
(
eq − s, εeq−s, νeq−s

)
1{eq−s<ζ}

)]
.
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For the second term we can use the memorylessness of the exponential distribution
and a change of variable to yield

P0,θ

[∫ ∞

0

dL̄s1{s<eq}G
(
s, ξ̄s,Θs

)
n+Θs

(
F
(
eq − s, εeq−s, νeq−s

)
1{eq−s<ζ}

)]
= P0,θ

[∫ ∞

0

dL̄se
−qsG

(
s, ξ̄s,Θs

)
n+Θs

(
F
(
eq, εeq

, νeq

)
1{eq<ζ}

)]
= P0,θ

[∫ L̄∞

0

ds e−qL̄−1
s G

(
L̄−1
s , ξ+s ,Θ

+
s

)
n+
Θ+

s

(
F
(
eq, εeq

, νeq

)
1{eq<ζ}

)]
.(2.6)

For the first term in (2.5) we use (2.3) to get

P0,θ

[
F
(
0, 0,Θeq

)
G
(
eq, ξeq

,Θeq

)
1{ξeq=ξ̄eq}

]
= qP0,θ

[∫ +∞

0

e−qtG(t, ξ̄t,Θt)F (0, 0,Θt)1{t∈M̄}dt

]
= qP0,θ

[∫ +∞

0

e−qtG(t, ξ̄t,Θt)F (0, 0,Θt)�
+(Θt)dL̄t

]
= qP0,θ

[∫ L̄∞

0

e−qL̄−1
s G(L̄−1

s , ξ+s ,Θ
+
s )F (0, 0,Θ+

s )�
+(Θ+

s )ds

]
.(2.7)

By plugging (2.6) and (2.7) into (2.5) we get that

P0,θ

[
F
(
eq − ḡeq

, ξ̄eq
− ξeq

,Θeq

)
G
(
ḡeq

, ξ̄eq
, Θ̄eq

)]
= P0,θ

[ ∫ L̄∞

0

ds e−qL̄−1
s G

(
L̄−1
s , ξ+s ,Θ

+
s

) (
q�+(Θ+

s )F (0, 0,Θ+
s )

+ n+
Θ+

s

(
F (eq, εeq

, νeq
)1{eq<ζ}

) )]
.

We have thus proved this proposition. �

Corollary 2.4. For every θ ∈ S, we have

P0,θ

(
ξ̄eq

∈ dz, ξ̄eq
− ξeq

∈ dw, Θeq
∈ dv

)
= δ0(dw)�

+(v)

∫ +∞

0

qe−qrV +
θ (dr, dv, dz)

+

∫
(r,u)∈R+×S

e−qrn+
u

(
εeq

∈ dw, νeq
∈ dv, eq < ζ

)
V +
θ (dr, du, dz).

The excursion measures allow us to gain some additional insight into the ana-
lytical form of the jumping measures of the ascending ladder processes.

Proposition 2.5. Suppose ((ξ,Θ),P) is a MAP with Lévy system (H,Π) where
Ht = t∧ζ. Then the ascending ladder process ((L̄−1, ξ+,Θ+),P) has a Lévy system
(H+,Γ+) where H+

t = t ∧ ζ+ and

Γ+(θ, dv, dr, dy) = δ0(dr)�
+(θ)Π(θ, dv, dy) + n+θ (Π (νr, dv, εr + dy) , r < ζ) dr

for θ, v ∈ S, r ≥ 0, and y > 0. Here ζ+ denotes the lifetime of (ξ+,Θ+). In
particular, the ascending ladder height process ((ξ+,Θ+),P) has a Lévy system
(H+,Π+) where Π+(θ, dv, dy) = Γ+(θ, dv, [0,+∞), dy) for θ, v ∈ S, and y > 0.
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Proof. To prove this proposition we apply the theory for Lévy systems and time-
changed processes developed in [25]. We consider the strong Markov process Yt :=
(Θt, ξt, Ut, t) on the state space S ×R×R+×R+ where Ut = ξ̄t− ξt. Let M̄ = {t ≥
0 : Ut = 0} and R̄ = inf{t > 0 : t ∈ M̄ cl}. It is known that the local time at the

maximum L̄t is a continuous additive functional carried by F̃ := S ×R×{0}×R+.
The argument in the beginning of this subsection implies that almost surely the
“irregular part” (in the sense of [25]) Gi := {s ∈ Ḡ : Us �= 0} is an empty set.

Let Ỹt := (Θ+
t , ξ

+
t , U

+
t , L̄−1

t ) be the time-changed process of Yt by the inverse local

time L̄−1
t . It is a right process on the state space F̃ . Then following the arguments

and calculations in [25, Section 5], one can get a Lévy system for this time-changed
process. In fact, applying [25, Theorem 5.2] here, we have

P0,θ

[∑
s>0

F
(
Θ+

s−, ξ
+
s−, L̄

−1
s−,Θ

+
s , ξ

+
s , L̄

−1
s

)
1{ξ+s− �=ξ+s }

]

= P0,θ

[ ∫ +∞

0

ds

∫
S×R+×[s,+∞)

F (Θ+
s , ξ

+
s , s, v, y, u)

1{ξ+s �=y}
(
PΘ+

s ,ξ+s ,0,s
(
ΘR̄ ∈ dv, ξR̄ ∈ dy, R̄ ∈ du

)
+ �+(Θ+

s )Π(Θ+
s , dv, dy − ξ+s )δs(du)

)]
= P0,θ

[ ∫ +∞

0

ds

∫
S×R+×R+

F (Θ+
s , ξ

+
s , s, v, y, s+ r)

1{ξ+s �=y}
(
P

Θ+
s ,ξ+s ,0,s

(
ΘR̄ ∈ dv, ξR̄ ∈ dy, R̄ − s ∈ dr

)
+ �+(Θ+

s )Π(Θ+
s , dv, dy − ξ+s )δ0(dr)

)]

(2.8)

for every nonnegative measurable function F . Here Pθ,x,0,s denotes the kernel
Pθ,x,0 trivially extended to include the pure drift process issued from s. So, note
that under Pθ,x,0,s the process (Yt)t>0 has the strong Markov property with re-
spect to the same transition semigroup as (Y,Px,θ). Using this and the translation
invariance, we have

P
θ,x,0,s

[
1{s+r<R̄,ξR̄ �=x}f(ΘR̄, ξR̄, R̄− s)

]
= P

θ,0,0

[
1{r<R̄}Pξr,Θr

(
f(Θτ+

0
, ξτ+

0
+ x, r + τ+0 )1{ξ

τ
+
0
>0}

)]
(2.9)

for any r > 0 and nonnegative measurable function f . Since (ξ,Θ) has Lévy system
(H,Π) with Ht = t ∧ ζ, we have

Pz,v

[
f(Θτ+

0
, ξτ+

0
+ x, r + τ+0 )1{ξ

τ
+
0
>0}

]
= Pz,v

[∫ τ+
0

0

dt

∫
S×(−ξt,+∞)

f(w, ξt + x+ y, r + t)Π(Θt, dw, dy)

]
,

where we used that, in the event that {ξτ+
0
> 0}, τ+0 is the first jump time of ξ that

takes ξ into the positive axis, and we applied (2.1). Plugging this into (2.9) and
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using the Markov property under Pθ,0,0, we have

P
θ,x,0,s

[
1{s+r<R̄,ξR̄ �=x}f(ΘR̄, ξR̄, R̄− s

]

= P
θ,0,0

[
1{r<R̄}P−Ur,Θr

(∫ τ+
0

0

dt

∫
S×(Ut,+∞)

f(w,−Ut + x+ y, r + t)Π(Θt,dw, dy)

)]

= n+
θ

[
1{r<ζ}

∫ ζ

r

dt

∫
S×(εt,+∞)

f(w,−εt + x+ y, t)Π(νt,dw, dy)

]
.

By letting r → 0+, we get from the above equation that

1{x�=y}P
θ,x,0,s

(
ΘR̄ ∈ dv, ξR̄ ∈ dy, R̄ − s ∈ dt

)
= dt n+θ

[∫
z∈(εt,+∞)

1{−εt+z+x∈dy}Π(νt, dv, dz)

]
.

Plugging this into (2.8) yields that

P0,θ

[∑
s>0

F
(
Θ+

s−, ξ
+
s−, L̄

−1
s−,Θ

+
s , ξ

+
s , L̄

−1
s

)
1{ξ+s− �=ξ+s }

]
= P0,θ

[ ∫ +∞

0

ds

∫
S×R+×R+

F (Θ+
s , ξ

+
s , s, v, ξ

+
s + y, s+ r)

(
δ0(dr)�

+(Θ+
s )Π(Θ+

s , dv, dy)

+ n+
Θ+

s
(Π (νr, dv, εr + dy) , r < ζ) dr

)]
,

which in turn yields the assertion of this proposition. �

Remark 2.6. Suppose ξ is a non-killed R-valued Lévy process with triplet (a, σ2,Π)
for which 0 is regular for (0,+∞). This process can be viewed as the projection
of an upwards regular MAP (ξ,Θ) where the modulator Θ is equal to a constant.
Therefore all the above results we obtained for MAP can be applied to this Lévy
process. We use P0 (resp. P̂0) to denote the law of ξ (resp. −ξ) started from 0. It
is a known fact that its ascending ladder process (L̄−1

t , ξ+t )t≥0 is a (possibly killed)
bivariate subordinator. Let Π+ be the Lévy measure of ξ+. Proposition 2.5 yields
that for y > 0,

(2.10) Π+(y,+∞) = �+Π(y,+∞) + n+
[∫ +∞

0

Π(εr + y,+∞)dr

]
,

where �+ is the drift coefficient of L̄−1
t and n+ is the excursion measure at maximum.

It follows by Proposition 2.3 that for any nonnegative measurable function F : R →
R+,

P0

[
F (ξ̄eq

− ξeq
)
]

=
q�+F (0) + n+

[∫ ζ

0
qe−qsF (εs)ds

]
Φ(q)

,

P̂0

[
F (ξ̄eq

)
]

= Φ̂(q)

∫
R+×R+

e−qrF (z)V̂ +(dr, dz),(2.11)
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where V̂ +(dr, dz) := P̂0

[∫ +∞
0

1{L̄−1
s ∈dr,ξ+s ∈dz}ds

]
, and Φ(q) (resp. Φ̂(q)) is equal to

the Laplace exponent of the (possibly killed) subordinator (L̄−1
t )t≥0 under P0 (resp.

P̂0). The Wiener-Hopf factorization of the Lévy process implies that Φ(q)Φ̂(q) = κq
for some constant κ > 0. We may and do assume κ = 1. By this and (2.11), we get

�+F (0) + n+

[∫ ζ

0

F (εs)ds

]
= lim

q→0+

P0

[
F (ξ̄eq

− ξeq
)
]
Φ(q)

q

= lim
q→0+

P̂0

[
F (ξ̄eq

)
]

Φ̂(q)

=

∫
R+

F (z)Û+(dz),

where Û+(dz) := P̂0

[∫ +∞
0

1{ξ+t ∈dz}dt
]
. In the second equality we use the fact that

(ξ̄eq
− ξeq

,P0)
d
= (ξ̄eq

, P̂0). Setting F (·) = Π(y+ ·,+∞) in the above equation and
plugging it into (2.10) we get

Π+(y,+∞) =

∫
R+

Π(z + y,+∞)U−(dz)

for y > 0. This is Vigon’s identity for the Lévy process.

Define

U+
θ (dv, dz) := P0,θ

[∫ L̄∞

0

1{Θ+
s ∈dv, ξ+s ∈dz}ds

]
.

Proposition 2.7. Suppose ((ξ,Θ),P) is a MAP with Lévy system (H,Π) where
Ht = t ∧ ζ. Then for any x > 0, θ ∈ S, and any nonnegative measurable functions
f, g : S × R+ → R+,

P0,θ

[
f(Θτ+

x −, x− ξτ+
x −)g(Θτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x
>x}

]
=

∫
S×[0,x]

U+
θ (dv, dz)

[
�+(v)f(v, x− z)G(v, x− z)

+ n+v
( ∫ ζ

0

f(νs, x− z + εs)G(νs, x− z + εs)ds
)]
,(2.12)

where G(v, u) :=
∫
S×(u,+∞)

g(φ, y − u)Π(v, dφ, dy) for v ∈ S and u ∈ R. In partic-

ular,

P0,θ

[
g(Θτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x
>x}

]
=

∫
S×[0,x]

U+
θ (dv, dz)

∫
S×(x−z,+∞)

g(φ, z + y − x)Π+(v, dφ, dy).(2.13)
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Proof. Let Δξs := ξs − ξs− for any s > 0. By (2.1) we have

P0,θ

[
f(Θτ+

x −, x− ξτ+
x −)g(Θτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x
>x}

]
= P0,θ

⎡⎣∑
s≥0

f(Θs−, x− ξs−)g(Θs, ξs− +Δξs − x)1{ξ̄s−≤x,ξs−+Δξs−x>0}

⎤⎦
= P0,θ

[∫ ζ

0

1{ξ̄s≤x}f(Θs, x− ξs)ds

∫
S×R+

g(v, ξs + y − x)1{ξs+y−x>0}Π(Θs, dv, dy)

]

= P0,θ

[∫ ζ

0

1{ξ̄s≤x}f(Θs, x− ξs)G(Θs, x− ξs)ds

]
.

(2.14)

We set F (y, v) := f(v, x− y)G(v, x− y). Then the right-hand side of (2.14) equals

P0,θ

[∫ ζ

0

1{ξ̄s≤x}F (ξs,Θs)ds

]

= P0,θ

[∫ ζ

0

1{ξ̄s≤x,s∈M̄cl}F (ξs,Θs)ds

]
+P0,θ

[∫ ζ

0

1{ξ̄s≤x, s �∈M̄cl}F (ξs,Θs)ds

]

= P0,θ

[∫ +∞

0

1{ξ̄s≤x}F (ξs,Θs)�
+(Θs)dL̄s

]

+P0,θ

⎡⎣∑
g∈Ḡ

1{ξ̄g≤x}

∫ d

g

F (ξs,Θs)ds

⎤⎦ .

By (2.4) the second term equals

P0,θ

[∫ +∞

0

1{ξ̄s≤x}n
+
Θs

(∫ ζ

0

F
(
ξ̄s − εr, νr

))
dL̄s

]
.

Hence we have

P0,θ

[
f(Θτ+

x −, x− ξτ+
x −)g(Θτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x
>x}

]
= P0,θ

[∫ +∞

0

1{ξ̄s≤x}

(
�+(Θs)F (ξs,Θs) + n+Θs

(∫ ζ

0

F
(
ξ̄s − εr, νr

)))
dL̄s

]

= P0,θ

[∫ L̄∞

0

1{ξ+s ≤x}

(
�+(Θ+

s )F (ξ+s ,Θ
+
s ) + n+

Θ+
s

(∫ ζ

0

F
(
ξ+s − εr, νr

)))
ds

]

=

∫
S×[0,x]

U+
θ (dv, dz)

(
�+(v)F (v, z) + n+v

(∫ ζ

0

F (z − εr, νr)dr

))
,

which yields (2.12). Equation (2.13) follows directly from (2.12) and Proposition
2.5. �

We say a path of ξ creeps across level x if it enters (x,+∞) continuously; that is,
the first passage time in (x,+∞) is not a jump time. The next lemma we present
is about what happens in the event of creeping. It follows from [20, Proposition
(1.5) and Theorem (1.7)].
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Lemma 2.8. Suppose the ascending ladder height process ((ξ+,Θ+),P) has a Lévy
system (H+,Π+) where H+

t = t ∧ ζ+. If the continuous part of ξ+ can be repre-

sented by
∫ t∧ζ+

0
a+(Θ+

s )ds for some nonnegative measurable function a+ on S, then
for every θ ∈ S, 1{a+(v)>0}U

+
θ (dv, dx) has a kernel u+

θ (dv, x) with respect to the

Lebesgue measure dx. Moreover, if we define T+
x := inf{t > 0 : ξ+t > x}, then for

any nonnegative measurable function f : S ×S ×R+ ×R+ → R+ and almost every
x > 0,

(2.15) P0,θ

(
ξ+
T+
x − < x = ξ+

T+
x

)
= 0

and

P0,θ

[
f
(
Θ+

T+
x −,Θ

+

T+
x
, x− ξ+

T+
x −, ξ

+

T+
x
− x
)
1{ξ+

T
+
x

=x}

]
=

∫
S
a+(v)f(v, v, 0, 0)u+

θ (dv, x).

(2.16)

Lemma 2.9. Suppose the MAP ((ξ,Θ),P) has a Lévy system (H,Π) where Ht =
t ∧ ζ. If (x, θ) ∈ (0,+∞)× S satisfies that

(2.17) P0,θ

(
ξτ+

x − < x = ξτ+
x

)
= 0,

then

P0,θ

(
Θτ+

x − �= Θτ+
x
, ξτ+

x
= x

)
= 0.

Proof. For x > 0, let τ[x,+∞) denote the first time when ξ enters [x,+∞). The

upwards regularity of ((ξ,Θ),P) implies that τ[x,+∞) = τ+x P0,θ-a.s. It follows by
(2.17) and (2.1) that

P0,θ

(
Θτ+

x − �= Θτ+
x
, ξτ+

x
= x

)
= P0,θ

(
Θτ+

x − �= Θτ+
x
, ξτ+

x − = ξτ+
x
= x

)
= P0,θ

⎡⎣∑
s≥0

1{ξr<x,∀r∈[0,s), Θs− �=Θs, ξs−=ξs=x}

⎤⎦
= P0,θ

[∫ +∞

0

1{ξr<x,∀r∈[0,s), ξs=x}Π(Θs,S \ {Θs}, {0})ds
]

= P0,θ

[∫ +∞

0

1{τ[x,+∞)=s, ξs=x}Π(Θs,S \ {Θs}, {0})ds
]

= 0.

The last equality is because the integral inside P0,θ equals 0. �

Proposition 2.10. Suppose the MAP ((ξ,Θ),P) has a Lévy system (H,Π) where

Ht = t ∧ ζ and the continuous part of ξ+ can be represented by
∫ t∧ζ+

0
a+(Θ+

s )ds

for some nonnegative measurable function a+ on S. Then for every θ ∈ S, every
nonnegative measurable function f : S × S × R+ × R+ → R+, and almost every
x > 0,
(2.18)

P0,θ

[
f(Θτ+

x −,Θτ+
x
, x− ξτ+

x −, ξτ+
x
− x)1{ξ

τ
+
x
=x}

]
=

∫
S
a+(v)f(v, v, 0, 0)u+

θ (dv, x),

where u+
θ (dv, x) is the kernel given in Lemma 2.8.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ENTRANCE LAWS AT THE ORIGIN OF SSMPS IN HIGH DIMENSIONS 6241

Proof. It is easy to see from Proposition 2.5 that the conditions of Lemma 2.8 hold
under the assumptions of this proposition. Fix an arbitrary θ ∈ S. LetR denote the
set of points for which both identities in Lemma 2.8 hold. Then Leb (R+ \ R) = 0.

We note that (ξτ+
x
,Θτ+

x
) = (ξ+

T+
x
,Θ+

T+
x
). If we can prove P0,θ

(
ξτ+

x − < x = ξτ+
x

)
= 0

for every x ∈ R, then by Lemma 2.9, Θτ+
x − = Θτ+

x
P0,θ-a.s. on {ξτ+

x
= x}, and

(2.18) is a direct consequence of (2.16). Now fix an arbitrary x ∈ R. Let τ[x,+∞)

denote the first time when ξ enters [x,+∞). Equation (2.15) implies that ξ+
T+
x − = x

P0,θ-a.s. on the event {ξτ+
x − < x = ξτ+

x
}, which in turn implies that τ[x,+∞) < τ+x

P0,θ-a.s. in {ξτ+
x − < x = ξτ+

x
}. Hence P0,θ

(
ξτ+

x − < x = ξτ+
x

)
= 0; otherwise

P0,θ

(
τ[x,+∞) < τ+x

)
> 0, which contradicts the upwards regularity of (ξ,Θ). Hence

we complete the proof. �

We note that the result in Proposition 2.10 holds only for almost every x > 0.
In the following we give sufficient conditions under which it holds for every x > 0.

Lemma 2.11. Suppose ((ξ,Θ),P) is a MAP in R × S and (X,P) is the ssMp
underlying ((ξ,Θ),P) via the Lamperti-Kiu transform. Then for any θ ∈ S and
rn, r ∈ R such that limn→+∞ rn = r, the process (X,Pernθ) converges to (X,Perθ)
in distribution under the Skorokhod topology.

Proof. We need to show that for an arbitrary Lipschitz continuous function f :
DRd → R,

lim
n→+∞

Pernθ [f(X)] = Perθ [f(X)] .

Suppose the ssMp (X,P) has index α > 0. By the scaling property of X, it suffices
to show that

(2.19) lim
n→+∞

Pθ

[
f
(
(ernXe−αrn t)t≥0

)]
= Pθ

[
f
(
(erXe−αrt)t≥0

)]
.

We use d(·, ·) to denote Prokhorov’s metric in DRd , which is compatible with the
Skorokhod convergence. It follows from [23, Proposition 3.5.3(c)] that for any
ωn, ω0 ∈ DRd , one has limn→+∞ d(ωn, ω0) = 0 if and only if for every T ∈ (0,+∞),
there exists a sequence of strictly increasing continuous functions {λn : [0, T ] →
R+, n ≥ 1} with λn(0) = 0, such that

lim
n→+∞

sup
t∈[0,T ]

(‖ωn(t)− ω0 ◦ λn(t)‖ ∨ |λn(t)− t|) = 0.

For an arbitrary ω ∈ DRd , by setting ωn(t) = ernω (e−αrnt), ω0(t) = erω (e−αrt),
and λn(t) = eα(r−rn)t for all t ≥ 0, one can easily show that

sup
t∈[0,T ]

(‖ωn(t)− ω0 ◦ λn(t)‖ ∨ |λn(t)− t|)

= sup
t∈[0,T ]

(
|ern − er| ‖ω(e−αrnt)‖ ∨ |eα(r−rn) − 1|t

)
→ 0

as n → +∞, and hence d(ωn, ω0) → 0. This implies that the processes
(ernXe−αrn t)t≥0 converge to (erXe−αrt)t≥0 Pθ-almost surely under the Skorokhod
topology. Therefore (2.19) follows from this and the bounded convergence theo-
rem. �
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Proposition 2.12. Suppose the conditions in Proposition 2.10 hold. Then for
every θ ∈ S and every x > 0,

P0,θ

(
ξτ+

x − < x or Θτ+
x − �= Θτ+

x
; ξτ+

x
= x

)
= 0,

and for every bounded continuous function g : R+ × S × S × R+ × R+ → R, the
function

x 
→ P0,θ

[
g(τ+x ,Θτ+

x −,Θτ+
x
, x− ξτ+

x −, ξτ+
x
− x)1{ξ

τ
+
x
=x}

]
is right continuous on [0,+∞). If, in addition, a+(v) > 0 for every v ∈ S or if
a+(v) = 0 for every v ∈ S, then the kernel u+

θ (dv, x) of 1{a+(v)>0}U
+
θ (dv, dx) can

take a unique version such that x 
→ a+(v)u+
θ (dv, x) is right continuous on (0,+∞)

in the sense of vague convergence. In this case, (2.18) holds for every x > 0 and
every nonnegative measurable function f : S × S × R+ × R+ → R+.

Proof. For every (x, θ) ∈ R+ × S, let

pθ(x) := P0,θ

(
ξτ+

x
= x

)
,

pθ1(x) := P0,θ

(
ξτ+

x − = ξτ+
x
= x

)
,

and

pθ2(x) := pθ(x)− pθ1(x) = P0,θ

(
ξτ+

x − < x = ξτ+
x

)
.

By Proposition 2.10 we have pθ2(x) = 0 for almost every x > 0. It follows by
Proposition 2.7 that

P0,θ

(
ξτ+

x
> x

)
=

∫
S×[0,x]

Π̄+
v (x− z)U+

θ (dv, dz).

Here Π̄+
v (u) = Π+(v,S, (u,+∞)). Obviously from the above equation x 
→ pθ(x) =

1−P0,θ

(
ξτ+

x
> x

)
is right continuous on [0,+∞). Suppose xn, x ∈ R+ and xn ↓ x.

Let (X,P) denote the ssMp underlying ((ξ,Θ),P) via the Lamperti-Kiu transform.
It follows by Lemma 2.11 that

(X,Pθe−xn ) → (X,Pθe−x)

in distribution under the Skorokhod topology. For n ≥ 1, let (Y (n),P∗) and (Y,P∗)
be couplings of (X,Pθe−xn ) and (X,Pθe−x), respectively, such that Y (n) → Y P∗-a.s.
in the Skorokhod topology. Let ς0 := inf{t ≥ 0 : ‖Yt‖ > 1} and ςn := inf{t ≥ 0 :

‖Y (n)
t ‖ > 1} for n ≥ 0. Since X is sphere-exterior regular, so is Y , which implies

that ‖Yt‖ �= 1 for any t < ς0 P∗-a.s. In view of this, it follows by [57, Theorem
13.6.4] that

(Y
(n)
ςn−, Y

(n)
ςn ) → (Yς0−, Yς0) P∗-a.s.
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as n → +∞. Hence
(
(Xτ�

1 −, Xτ�
1
),Pθe−xn

)
converges in distribution to(

(Xτ�
1 −, Xτ�

1
),Pθe−x

)
. This weak convergence yields that

pθ1(x) = P−x,θ

(
ξτ+

0 − = ξτ+
0
= 0
)

= Pθe−x

(
Xτ�

1 − ∈ Sd−1, Xτ�
1
∈ Sd−1

)
≥ lim sup

n→+∞
Pθe−xn

(
Xτ�

1 − ∈ Sd−1, Xτ�
1
∈ Sd−1

)
= lim sup

n→+∞
pθ1(xn).

This and the right continuity of pθ(·) imply that lim infn→+∞ pθ2(xn) ≥ pθ2(x). Hence

(2.20) pθ2(x) = P0,θ

(
ξτ+

x − < x = ξτ+
x

)
= 0 ∀x > 0.

It then follows by Lemma 2.9 that

(2.21) P0,θ

(
Θτ+

x − �= Θτ+
x
, ξτ+

x
= x

)
= 0 ∀x > 0.

We need to show that

lim
n→+∞

P0,θ

[
g(τ+xn

,Θτ+
xn−,Θτ+

xn
, xn − ξτ+

xn−, ξτ+
xn

− xn)1{ξ
τ
+
xn

=xn}

]
= P0,θ

[
g(τ+x ,Θτ+

x −,Θτ+
x
, x− ξτ+

x −, ξτ+
x
− x)1{ξ

τ
+
x
=x}

]
(2.22)

for any sequence xn, x ∈ R+, xn ↓ x, and any bounded continuous function g :
R+ × S × S × R+ × R+ → R. Let An := {ξτ+

xn
= xn} and A := {ξτ+

x
= x}. By

the strong Markov property and the fact that limy→0+ pv(y) = pv(0) = 1 for every
v ∈ S, we have for every θ ∈ S,

P0,θ (A \An) = P0,θ

(
ξτ+

x
= x, ξτ+

xn
> xn

)
= P0,θ

(
P0,Θ

τ
+
x

(
ξτ+

xn−x
> xn − x

)
; ξτ+

x
= x

)
= P0,θ

[(
1− p

Θ
τ
+
x (xn − x)

)
1{ξ

τ
+
x
=x}

]
→ 0, as n → +∞.

Since P0,θ (An \A)−P0,θ (A \An) = P0,θ(An)−P0,θ(A) = pθ(xn)− pθ(x) → 0 as
n → +∞, we have

(2.23) P0,θ (A�An) = P0,θ (An \A) +P0,θ (A \An) → 0 as n → +∞.
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Note that by (2.20) and (2.21)∣∣P0,θ

[
g(τ+xn

,Θτ+
xn−,Θτ+

xn
, xn − ξτ+

xn−, ξτ+
xn

− xn)1{ξ
τ
+
xn

=xn}
]

−P0,θ

[
g(τ+x ,Θτ+

x −,Θτ+
x
, x− ξτ+

x −, ξτ+
x
− x)1{ξ

τ
+
x
=x}
]∣∣

=
∣∣P0,θ

[
g(τ+xn

,Θτ+
xn
,Θτ+

xn
, xn − ξτ+

xn
, ξτ+

xn
− xn)1{ξ

τ
+
xn

=xn}
]

−P0,θ

[
g(τ+x ,Θτ+

x
,Θτ+

x
, x− ξτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x
=x}
]∣∣

≤
∣∣P0,θ

[
g(τ+xn

,Θτ+
xn
,Θτ+

xn
, xn − ξτ+

xn
, ξτ+

xn
− xn)

(
1{ξ

τ
+
xn

=xn} − 1{ξ
τ
+
x
=x}
)]∣∣

+
∣∣P0,θ

[(
g(τ+xn

,Θτ+
xn
,Θτ+

xn
, xn − ξτ+

xn
, ξτ+

xn
− xn)

− g(τ+x ,Θτ+
x
,Θτ+

x
, x− ξτ+

x
, ξτ+

x
− x)

)
1{ξ

τ
+
x
=x}
]∣∣

≤ ‖g‖∞P0,θ

(
A�An

)
+P0,θ

[∣∣g(τ+xn
,Θτ+

xn
,Θτ+

xn
, xn − ξτ+

xn
, ξτ+

xn
− xn)

− g(τ+x ,Θτ+
x
,Θτ+

x
, x− ξτ+

x
, ξτ+

x
− x)

∣∣].
We have τ+xn

↓τ+x P0,θ-a.s. by the upwards regularity of (ξ,Θ) and hence
(
Θτ+

xn
, ξτ+

xn

)
→
(
Θτ+

x
, ξτ+

x

)
P0,θ-a.s. by the right continuity of (ξ,Θ). In view of this and (2.23),

(2.22) follows by letting n → +∞ in the above inequality.
By (2.20) and (2.21), we have for every x > 0 and every nonnegative measurable

function f : S × S × R+ × R+ → R+,

P0,θ

[
f(Θτ+

x −,Θτ+
x
, x− ξτ+

x −, ξτ+
x
− x)1{ξ

τ
+
x
=x}

]
= P0,θ

[
f(Θτ+

x
,Θτ+

x
, 0, 0)1{ξ

τ
+
x
=x}

]
=

∫
S
f(v, v, 0, 0)P0,θ

(
Θτ+

x
∈ dv, ξτ+

x
= x

)
.

(2.24)

Let us momentarily assume that a+(v) > 0 for all v ∈ S. In view of (2.24) and
Proposition 2.10, we can set the kernel u+

θ (dv, x) of U
+
θ (dv, dx) to be

1

a+(v)
P0,θ

(
Θτ+

x
∈ dv, ξτ+

x
= x

)
for every x > 0, in which case the function

x 
→ a+(v)u+
θ (dv, x) = P0,θ

(
Θτ+

x
∈ dv, ξτ+

x
= x

)
is right continuous on (0,+∞) in the sense of vague convergence, because x 
→
P0,θ

[
h(Θτ+

x
); ξτ+

x
= x

]
is right continuous on (0,+∞) for every bounded continuous

function h : S → R. For the other case that a+(v) = 0 for all v ∈ S, there is nothing
to prove as, irrespective of our choice of u+

θ , the quantity a+(v)u+
θ (dv, x) is right

continuous as claimed (in fact it is identically equal to zero). �

2.3. Long time behavior of MAPs. It is well-known that for any R-valued
Lévy process χ one has χt/t → Eχ1 almost surely whenever Eχ1 is well-defined.
Its proof relies on the classical strong law of large numbers. Following this, a
Lévy process exhibits exactly one of the following behaviors: limt→+∞ χt = +∞
a.s., limt→+∞ χt = −∞ a.s., and lim supt→+∞ χt = − lim inft→+∞ χt = +∞ a.s.
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according as Eχ1 >, <, = 0. This basic trichotomy is also true for the MAPs
where (Θt)t≥0 is a positive recurrent Markov process on a countable state space.
We refer to [3] and the references therein. In such case, let τ0(i) := 0 and {τn(i) :
n ≥ 1} denote the renewal sequence of successive return times to each state i ∈
S. Then for each i, {ξτn(i) : n ≥ 0} constitutes an ordinary random walk. In
fact, a law of large numbers can be obtained by applying known results for these
embedded random walks, but with considerable additional analysis. Regarding the
more general situation when the modulator Θ has an uncountably infinite state
space, we note that a natural substitute for {τn(i) : n ≥ 1} is a sequence of
random times {Rn : n ≥ 0}, in terms of which the process can be decomposed
into independent and stationary blocks. In order to construct such random times,
we assume the MAP satisfies the following Harris-type condition: There exist a
constant δ > 0, a probability measure ρ on S, and a family of measures {φ(θ, ·) :
θ ∈ S} on R with infθ∈S φ(θ,R) > 0 such that

(HT) P0,θ (ξδ ∈ Γ, Θδ ∈ A) ≥ φ(θ,Γ)ρ(A) ∀θ ∈ S, A ∈ B(S), Γ ∈ B(R).

This section aims to provide the trichotomy regarding the almost sure behavior of
ξt as t → +∞ when condition (HT) is satisfied.

Define M0 := Θ0, S0 := ξ0, and for any n ≥ 1 define

Mn := Θnδ, Δn := ξnδ − ξ(n−1)δ and Sn := S0 +
n∑

k=1

Δk.

It is easy to verify that ((Sn,Mn)n≥0,P) is a discrete-time MAP satisfying

(2.25) P0,θ (Δ1 ∈ Γ, M1 ∈ A) ≥ φ(θ,Γ)ρ(A)

for all θ ∈ S, A ∈ B(S), and Γ ∈ B(R). In particular we have

P0,θ (M1 ∈ A) ≥ ερ(A) ∀θ ∈ S, A ∈ B(S),

where ε := infθ∈S φ(θ,R) > 0. This implies that {Mn : n ≥ 0} is an irreducible and
strongly aperiodic Harris recurrent chain on S. Given this and (2.25), it follows
by [48, 49] that there exists a sequence of regeneration times 0 ≤ R0 < R1 <
· · · < +∞ such that {Rn+1 − Rn : n ≥ 0} is a sequence of independent and
identically distributed nonnegative random variables and that the random blocks
{MRn

, . . . ,MRn+1−1,ΔRn+1, . . . ,ΔRn+1
} are independent with

P0,θ

[
MRn

∈ A | GRn−1
,ΔRn

]
= ρ(A) ∀A ∈ B(S),

where Gk denotes the σ-field generated by {M0, . . . ,Mk,Δ1, . . . ,Δk}.
We assume that (Θt)t≥0 has an invariant distribution π. By [5, Theorem 3.2] π

is uniquely determined by

(2.26) π(A) =
1

P0,ρ[R1]
P0,ρ

⎡⎣R1−1∑
j=0

1{Mj∈A}

⎤⎦ ∀A ∈ B(S)
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where 0 < P0,ρ[R1] < +∞. It follows that

P0,π [S1] =
1

P0,ρ[R1]

+∞∑
j=0

∫
S
P0,ρ [Sj+1 − Sj |Mj = θ]P0,ρ (Mj ∈ dθ, j ≤ R1 − 1)

=
1

P0,ρ[R1]
P0,ρ

⎡⎣R1−1∑
j=0

(Sj+1 − Sj)

⎤⎦
=

1

P0,ρ[R1]
P0,ρ [SR1

]

(2.27)

wheneverP0,π [|S1|] < +∞. The regeneration structure implies that
(
SRn+1

− SRn

)
is independent of {Sk, k ≤ Rn} and its distribution is independent of n. Let Nn :=
sup{k : Rk ≤ n}. We can write

Sn = SR0∧n +
[
(SR1

− SR0
) + · · ·+

(
SRNn

− SRNn−1

)]
+
(
Sn − SRNn

)
.

It is easy to see that SR0∧n/n → 0 a.s., since R0 is finite and limn→+∞ SR0∧n =
SR0

< +∞ almost surely. Note that (SR1
− SR0

) + · · · +
(
SRNn

− SRNn−1

)
is a

random sum of i.i.d. summands. In view of (2.27), we have by the standard LLN
and the elementary renewal theory that

lim
n→+∞

(SR1
− SR0

) + · · ·+
(
SRNn

− SRNn−1

)
n

= lim
n→+∞

(SR1
− SR0

) + · · ·+
(
SRNn

− SRNn−1

)
Nn

· Nn

n

= P0,ρ [SR1
] · 1

P0,ρ[R1]
= P0,π [S1] P0,θ-a.s.

Moreover, one can easily show by the Borel-Cantelli lemma that
(
Sn − SRNn

)
/n →

0 P0,θ-a.s. if

P0,ρ

[
max

1≤k≤R1

|Sk|
]
< +∞.

We have hence proved the following lemma.

Lemma 2.13. If P0,ρ [max1≤k≤R1
|Sk|] < +∞, then limn→+∞ Sn/n = P0,π[S1]

P0,θ-a.s. for every θ ∈ S.

Lemma 2.14. If P0,π

[
sups∈[0,t] |ξs|

]
is finite for some t > 0, then it is finite for

all t > 0. Moreover, P0,π

[
sups∈[0,eq ] |ξs|

]
is finite for all q > 0.

Proof. In this proof we use ‖ξ‖t to denote sups∈[0,t] |ξs|. Let f(t) := P0,π [‖ξ‖t] for
t ≥ 0. We observe that for any t, r > 0,

(2.28) ‖ξ‖t+r ≤ ‖ξ‖t ∨
(

sup
s∈[t,t+r]

|ξs − ξt|+ |ξt|
)

≤ ‖ξ‖t + sup
s∈[t,t+r]

|ξs − ξt|.

By the Markov property and translation invariance in ξ, we have

P0,π

[
sup

s∈[t,t+r]

|ξs − ξt|
]
= P0,π [P0,Θt

[‖ξ‖r]] = P0,π [‖ξ‖r] = f(r).
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The second equality is because π is an invariant distribution of (Θt)t≥0. Hence
by (2.28) we get f(t + r) ≤ f(t) + f(r). Given that f(t) is finite for some t > 0,
f is a nonnegative locally bounded subadditive function on [0,+∞). Hence there
exist some constants b, c > 0 such that f(t) ≤ ct + b for all t > 0. Consequently,

P0,π

[
‖ξ‖eq

]
=
∫ +∞
0

qe−qtf(t)dt < +∞ for all q > 0. �

Proposition 2.15. Suppose ((ξ,Θ),P) is a MAP satisfying (HT) and π is an
invariant distribution for (Θt)t≥0. If

(2.29) P0,π

[
sup

s∈[0,1]

|ξs|
]
< +∞,

then ξt/t → P0,π[ξ1] P0,θ-a.s. for every θ ∈ S.

Proof. Without loss of generality we assume that (HT) holds for δ = 1. This proof
works for any δ > 0 with minor modifications. By Lemma 2.14, condition (2.29)

implies that P0,π

[
sups∈[0,t] |ξs|

]
< +∞ for all t > 0 and P0,π[|Δ1|] = P0,π[|ξ1|] <

+∞. We have

P0,ρ

[
max

1≤k≤R1

|Sk|
]

≤ P0,ρ

⎡⎣R1−1∑
j=0

|Δj+1|

⎤⎦
=

+∞∑
j=0

∫
S
P0,ρ [|Δj+1| |Mj = θ]P0,ρ (Mj ∈ dθ, j ≤ R1 − 1)

=

∫
S
P0,θ [|Δ1|]P0,ρ

⎡⎣R1−1∑
j=0

1{Mj∈dθ}

⎤⎦
= P0,ρ[R1]P0,π[|Δ1|] < +∞,(2.30)

where in the last equality we use (2.26). It follows by Lemma 2.13 that Sn/n →
P0,π[S1] = P0,π[ξ1] P0,θ-a.s. for every θ ∈ S. Note that for any t ∈ [Rk, Rk+1),

SRk

Rk

Rk

Rk+1
−

sups∈[Rk,Rk+1] |ξs − SRk
|

Rk+1
≤ ξt

t
≤ SRk

Rk
+

sups∈[Rk,Rk+1] |ξs − SRk
|

Rk
.

It is known by the renewal theorem that Rk/k → P0,ρ[R1] P0,θ-a.s. Hence to prove
ξt/t → P0,π [ξ1] P0,θ-a.s., it suffices to prove that

(2.31)
sups∈[Rk,Rk+1] |ξs − SRk

|
k

→ 0 as k → +∞ P0,θ-a.s.

for every θ ∈ S. The regeneration structure implies that {sups∈[Rk,Rk+1] |ξs−SRk
| :

k ≥ 1} under P0,θ is a family of i.i.d. random variables which have the same

distribution as
(
sups∈[0,R1] |ξs|,P0,ρ

)
. Hence by the second Borel-Cantelli lemma,

(2.31) holds if and only if

(2.32) P0,ρ

[
sup

s∈[0,R1]

|ξs|
]
< +∞.
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We note that

sup
s∈[0,R1]

|ξs| ≤ max
0≤k≤R1−1

|Sk|+ max
0≤k≤R1−1

sup
s∈[k,k+1]

|ξs − Sk|.

Applying similar calculations as in (2.30) we can deduce that

P0,ρ

[
max

0≤k≤R1−1
sup

s∈[k,k+1]

|ξs − Sk|
]

≤ P0,ρ

[
R1−1∑
k=0

sup
s∈[k,k+1]

|ξs − Sk|
]

= P0,ρ[R1]P0,π

[
sup

s∈[0,1]

|ξs|
]
< +∞.

Hence (2.32) follows from this and (2.30), completing the proof. �

Proposition 2.16. Suppose the conditions of Proposition 2.15 hold. Then we
have (a’) ξt → +∞, (b’) lim supt→+∞ ξt = +∞, lim inft→+∞ ξt = −∞, and (c’)
ξt → −∞ P0,θ-a.s. for every θ ∈ S according as (a) P0,π[ξ1] > 0, (b) P0,π[ξ1] =
0 and the increment distribution in each block is not concentrated at 0, and (c)
P0,π[ξ1] < 0.

Proof. It is immediate from Proposition 2.15 that (a)⇒(a’) and (c)⇒(c’). In case
(b), we consider the sequence {SRk

: k ≥ 0} which is a discrete-time random
walk with mean 0 and the increment distribution not concentrated at 0. Hence
lim supk→+∞ SRk

= +∞ and lim infk→+∞ SRk
= −∞, which implies (b’). �

Remark 2.17. Let us make a brief remark on the condition (HT). This condition
is of course not the most general condition under which the results of Propositions
2.15 and 2.16 hold. We believe an extension is possible, at least to some extent.
One direction is to assume the Harris recurrence of (Mn)n≥0 alone. However, in
this way, instead of having i.i.d. increments, {SRn

: n ≥ 0} has 1-dependent and
stationary increments. Therefore in all places where we apply results for ordinary
random walks, extensions to the case of 1-dependent and stationary increments are
needed. Since this cannot be done briefly, we have restricted this section to the
case when condition (HT) is satisfied.

Hereafter we say that ξt drifts to +∞, oscillates, or drifts to −∞ at θ, re-
spectively, if limt→+∞ ξt = +∞, lim supt→+∞ ξt = − lim inft→+∞ ξt = +∞, or
limt→+∞ ξt = −∞ P0,θ-a.s.

Proposition 2.18. For every θ ∈ S,∫
S×R+

n+
v (ζ = +∞)U+

θ (dv, dz) =

{
0 if ξt oscillates or drifts to +∞ at θ,

1 if ξt drifts to −∞ at θ.

Proof. Let ḡ∞ denote the last time when ξt attains its running maximum. If ξt
oscillates or drifts to +∞ at θ, then P0,θ (ḡ∞ = +∞) = 1. By Proposition 2.3 we
have

P0,θ

[
e−λḡeq

]
=

∫
R+×S×R+

e−λr−qr
(
q�+(v) + n+v

(
1− e−qζ

))
V +
θ (dr, dv, dz) ∀λ, q > 0.

(2.33)
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Letting q → 0+, we get by Fatou’s lemma that

0 = P0,θ

[
e−λḡ∞

]
≥
∫
R+×S×R+

e−λrn+v (ζ = +∞)V +
θ (dr, dv, dz).

Then by letting λ → 0+, we get by the monotone convergence theorem that∫
S×R+

n+v (ζ = +∞)U+
θ (dv, dz) = 0.

On the other hand, if ξt drifts to −∞ at θ, then P0,θ (ḡ∞ < +∞) = 1. Note that
for any 0 < q < λ/2, the integrand in the right-hand side of (2.33) is bounded from
above by e−λr

(
λ
2 �

+(v) + n+v
(
1− e−λζ/2

))
and

∫
R+×S×R+

e−λr

(
λ

2
�+(v) + n+v

(
1− e−λζ/2

))
V +
θ (dr, dv, dz)

= P0,θ

[
e
−λ

2 ḡeλ/2

]
< +∞.

Hence by letting q → 0+ in (2.33) and using the dominated convergence theorem
in the right-hand side and the monotone convergence theorem in the left-hand side
we get

P0,θ

[
e−λḡ∞

]
=

∫
R+×S×R+

e−λrn+v (ζ = +∞)V +
θ (dr, dv, dz).

Letting λ → 0+, we have∫
S×R+

n+v (ζ = +∞)U+
θ (dv, dz) = P0,θ (ḡ∞ < +∞) = 1,

which completes the proof. �

2.4. Invariant measures.

Proposition 2.19. Suppose ((ξ,Θ),P) is a MAP on R× S and ν is an invariant
measure for the modulator Θ. Then the measure

(2.34) ν+(·) := P0,ν

[∫ 1

0

1{Θs∈·}dL̄s

]
is an invariant measure for the modulator Θ+ of the ascending ladder height process
((ξ+,Θ+),P). Moreover, ν+ is finite if and only if P0,ν

[
L̄1

]
< +∞.

Proof. It suffices to show that

(2.35)

∫ +∞

0

e−αsP0,ν+

[
f(Θ+

s )
]
ds =

1

α

∫
S
f(θ)ν+(dθ)
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for any α > 0 and nonnegative measurable function f : S → R+. The left integral
is equal to

P0,ν+

[∫ +∞

0

e−αsf(Θ+
s )ds

]
= P0,ν+

[∫ +∞

0

e−αL̄sf(Θs)dL̄s

]
= P0,ν

[∫ 1

0

P0,Θr

[∫ +∞

0

e−αL̄sf(Θs)dL̄s

]
dL̄r

]
.

(2.36)

Recall that s 
→ L̄s is an additive functional of (Θt, ξ̄t − ξt)t≥0. Hence the law of
(L̄t,Θt)t≥0 under Px,θ does not depend on x. The right-hand side of (2.36) is equal
to

P0,ν

[∫ 1

0

Pξr,Θr

[∫ +∞

0

e−αL̄sf(Θs)dL̄s

]
dL̄r

]
= P0,ν

[∫ 1

0

dL̄r

∫ +∞

r

e−α(L̄s−L̄r)f(Θs)dL̄s

]
= P0,ν

[∫ +∞

0

dL̄se
−αL̄sf(Θs)

∫ 1∧s

0

eαL̄rdL̄r

]
=

1

α

[
P0,ν

[∫ 1

0

e−αL̄sf(Θs)
(
eαL̄s − 1

)
dL̄s

]
+P0,ν

[∫ +∞

1

e−αL̄sf(Θs)
(
eαL̄1 − 1

)
dL̄s

]]
=

1

α

[
P0,ν

[∫ 1

0

f(Θs)dL̄s

]
−P0,ν

[∫ +∞

0

e−αL̄sf(Θs)dL̄s

]
+P0,ν

[∫ +∞

1

e−α(L̄s−L̄1)f(Θs)dL̄s

]]
.

(2.37)

In the first equality we use the Markov property and the additivity of L̄s. Using
these facts again we have

P0,ν

[∫ +∞

1

e−α(L̄s−L̄1)f(Θs)dL̄s

]
= P0,ν

[
Pξ1,Θ1

[∫ +∞

0

e−αL̄rf(Θr)dL̄r

]]
= P0,ν

[
P0,Θ1

[∫ +∞

0

e−αL̄rf(Θr)dL̄r

]]
= P0,ν

[∫ +∞

0

e−αL̄rf(Θr)dL̄r

]
.

(2.38)

In the last equality we use the fact that P0,ν (Θ1 ∈ ·) = ν(·). In view of (2.38), the
right-hand side of (2.37) equals

1

α
P0,ν

[∫ 1

0

f(Θs)dL̄s

]
=

1

α

∫
S
f(θ)ν+(dθ).

Hence we get (2.35). �
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Corollary 2.20. Suppose the modulator Θ of ((ξ,Θ),P) has an invariant distribu-
tion π. If P0,π

[
L̄1

]
> 0 and infθ∈S

[
�+(θ) + n+θ

(
1− e−ζ

)]
> 0, then the measure

π+ defined by

π+(·) := 1

P0,π

[
L̄1

]P0,π

[∫ 1

0

1{Θs∈·}dL̄s

]
is an invariant distribution for the modulator Θ+ of ((ξ+,Θ+),P).

Proof. By Proposition 2.19, it suffices to show that P0,π

[
L̄1

]
< +∞. Let

c := inf
θ∈S

[
�+(θ) + n+θ

(
1− e−ζ

)]
∈ (0,+∞).

By (2.3) and (2.4) we have

P0,π

[
L̄1

]
≤ 1

c
P0,π

[∫ 1

0

�+(Θs) + n+Θs

(
1− e−ζ

)
dL̄s

]

=
1

c

⎡⎣P0,π

[∫ 1

0

1{s∈M̄}ds

]
+P0,π

⎡⎣ ∑
gi∈Ḡ,gi≤1

(
1− e−ζ(gi)

)⎤⎦⎤⎦
≤ 1

c

⎡⎣1 +P0,π

⎡⎣ ∑
gi∈Ḡ,gi≤1

(
1 ∧ ζ(gi)

)⎤⎦⎤⎦ .

We note that among all the excursions that start in the time interval [0, 1], there
is, at most, one excursion having a lifetime longer than 1, and the sum of lifetimes

of other excursions does not exceed 1. Hence P0,π

[∑
gi∈Ḡ,gi≤1

(
1 ∧ ζ(gi)

)]
≤ 2 and

P0,π

[
L̄1

]
< +∞. �

3. Duality

In this section we present the notion of duality as well as several results about
duality. Here we suppose that E is a Polish space and μ is a σ-finite Radon measure
on E. Suppose that (X,P) and (X̂,Q) are two, possibly killed, right continuous
strong Markov processes having left limits in E except perhaps at their lifetime.

We use ζ and ζ̂ respectively to denote their lifetimes. We take the convention that
X0− = X0 and X̂0− = X̂0.

Definition 3.1. Two processes (X,P) and (X̂,Q) are dual with respect to μ if for
every nonnegative measurable function f, g : E → R+ and every t ≥ 0,∫

E

μ(dx)g(x)Px[f(Xt), t < ζ] =

∫
E

μ(dx)f(x)Qx[g(X̂t), t < ζ̂].

Note that there is no requirement that μ be a finite measure. The notion of
duality is closely linked with reversibility. The following result is from [56, Theo-
rem 2.1].
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Lemma 3.2. Suppose that (X,P) and (X̂,Q) are dual with respect to μ. Then,∫
E

μ(dx)Px

[
F ((Xs)s≤t)1{t<ζ}

]
=

∫
E

μ(dx)Qx

[
F
(
(X̂(t−s)−)s≤t

)
1{t<ζ}

]
for every t ≥ 0 and nonnegative functional F : DE [0, t] → R+.

We present a result on the time reversal from the lifetime, which is an application
of [47, Theorem 3.5]. We also refer to [18, Theorem 13.34] for a simple proof in

the special case where the resolvent kernels of (X,P) and (X̂,Q) are absolutely
continuous with respect to μ.

Lemma 3.3. Suppose that (X,P) and (X̂,Q) are dual with respect to μ. If the
process X has initial distribution η and a finite lifetime ζ such that

(3.1)

∫
E

μ(dx)f(x) =

∫
E

η(dx)Px

[∫ ζ

0

f(Xt)dt

]
for every nonnegative measurable function f : E → R+, then

(
(X(ζ−t)−)0<t<ζ ,Pη

)
is a right continuous strong Markov process having the same transition rates as
(X̂,Q).

We remark here that in general the measure η appearing in (3.1) may not exist.
If it exists, it is uniquely determined by the reference measure μ; see, for example,
[29, Theorem 2.12 and Section 6].

Throughout the remainder of this paper, we assume that the process ((ξ,Θ), P̃) is

a MAP satisfying that P̃y,v (ξ0 = y,Θ0 = v) = 1 and is linked to ((ξ,Θ),P) through
the following weak reversability property: There exists a probability measure π on
S with full support such that

(WR) P0,θ(ξt ∈ dz; Θt ∈ dv)π(dθ) = P̃0,v(ξt ∈ dz; Θt ∈ dθ)π(dv) ∀t ≥ 0.

By integrating (WR) over variable z, it follows that the Markov processes

((Θt)t≥0, {P0,θ, θ ∈ S}) and ((Θt)t≥0, {P̃0,θ, θ ∈ S})

are dual with respect to the measure π. Hereafter we denote by P̂x,θ the law

of (−ξ,Θ) under P̃−x,θ. We will use the notation ˆ to specify the mathematical

quantities related to the process ((ξ,Θ), P̂). In the following we give some examples
for a MAP to be weakly reversible. Each example corresponds to a well-known class
of ssMps via the Lamperti-Kiu transform.

Example 3.4. Suppose S = {s1, . . . , sn} is a finite set. It is known that the process
((ξ,Θ),P) is a MAP on R×S if and only if ((Θt)t≥0, {Px,θ : θ ∈ S}) is a (possibly
killed) Markov chain on S whose law does not depend on x and for each sj , sk ∈ S
there exist a (nonkilled) Lévy process ξj and an R-valued random variable Ξj,k

such that when Θ is in state sj , ξ evolves according to an independent copy of ξj ,
and when Θ changes from sj to another state sk, ξ has an additional jump which
is an independent copy of Ξj,k, and until the next jump of Θ, ξ evolves according
to an independent copy of ξk, and so on, until the lifetime of Θ. For such a MAP

condition (WR) is equivalent to require that there be a MAP ((ξ,Θ), P̃) on R× S
and a probability measure π on S such that πj = π({sj}) > 0 for 1 ≤ j ≤ n and
(3.2)

πjP̃0,sj

[
eiλξt1{Θt=sk}

]
= πkP0,sk

[
eiλξt1{Θt=sj}

]
∀t ≥ 0, λ ∈ R, 1 ≤ j, k ≤ n.
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We let (qj,k)1≤j,k≤n denote the intensity matrix of the Markov chain Θ, let ψj(λ)
denote the characteristic exponent of the Lévy process ξj , and let Jj,k(λ) denote
the characteristic function of the random variable Ξj,k. The matrix

F (λ) := diag(−ψ1(λ), . . . ,−ψn(λ)) + (qj,kJj,k(λ))1≤j,k≤n ∀λ ∈ R

is called the characteristic matrix exponent of the MAP ((ξ,Θ),P) because

P0,sj

[
eiλξt1{Θt=sk}

]
=
(
eF (λ)t

)
j,k

∀t ≥ 0, 1 ≤ j, k ≤ n.

Equation (3.2), in terms of the characteristic matrix exponent, is equivalent to

F̃ (λ) = �−1
π F (λ)T�π ∀λ ∈ R,

where �π = diag(π1, . . . , πn). Condition (WR) is satisfied, in particular, if the

process Θ is dual with itself with respect to a probability measure π and Ξj,k
d
= Ξk,j

for all 1 ≤ j, k ≤ n, in which case we can take P̃ = P.

Example 3.5. Suppose ∂ is an isolated extra state and the transition probabilities
of ((ξ,Θ),P) have the following form:{

Px,θ (ξt ∈ dy, Θt ∈ dv) = e−λtPξ′

x (ξ′t ∈ dy) PΘ′

θ (Θ′
t ∈ dv) ,

Px,θ ((ξt,Θt) = ∂) = 1− e−λt

for all t ≥ 0 and (x, θ) ∈ R × S, where λ ≥ 0 is a constant, (ξ′,Pξ′

x ) is a non-

killed R-valued Lévy process started from x and (Θ′,PΘ′

θ ) is a nonkilled S-valued
Markov process started from θ. Then condition (WR) is satisfied if and only if

there exists an S-valued Markov process ((Θ′
t)t≥0, {P̃Θ′

θ , θ ∈ S}) which is dual to

((Θ′
t)t≥0, {PΘ′

θ , θ ∈ S}) with respect to a probability measure π on S. In this case,

we can take the MAP ((ξ,Θ), P̃) to be such that its transition probabilities have
the following form:{

P̃x,θ (ξt ∈ dy, Θt ∈ dv) = e−λtPξ′

x (ξ′t ∈ dy) P̃Θ′

θ (Θ′
t ∈ dv) ,

P̃x,θ ((ξt,Θt) = ∂) = 1− e−λt

for all t ≥ 0 and (x, θ) ∈ R× S.

Example 3.6. Suppose S = Sd−1 and for any orthogonal transformation O of Sd−1

and (x, θ) ∈ R × Sd−1, ((ξ,Θ),Px,θ) is equal in law to
(
(ξ,O(Θ)),Px,O−1(θ)

)
. In

view of this property, if X is the ssMp associated with (ξ,Θ) by the Lamperti-Kiu
transform, then X is a rotationally invariant Markov process on Rd. Hence its
norm (‖Xt‖)t≥0 is a positive ssMp, which in turn implies that ξ alone is a Lévy

process. In this case condition (WR) is satisfied with P̃ = P and π being the
uniform measure on the sphere Sd−1. We refer to [1, Proposition 3.2] for a proof.

Proposition 3.7. The processes ((ξ,Θ),P) and ((ξ,Θ), P̂) are dual with respect
to the measure Leb⊗ π, where Leb is the Lebesgue measure on R.
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Proof. Suppose f, g : R × S → R+ are nonnegative measurable functions. By an
application of Fubini’s theorem, a change of variable, and condition (WR) we get∫

R×S
dxπ(dθ)f(x, θ)Px,θ [g(ξt,Θt)]

=

∫
R×S

dxπ(dθ)f(x, θ)P0,θ [g(x+ ξt,Θt)]

=

∫
R×S

dyπ(dθ)P0,θ [f(y − ξt, θ)g(y,Θt)]

=

∫
R×S

dyπ(dθ)

∫
R×S

P0,θ (ξt ∈ dz,Θt ∈ dν) f(y − z, θ)g(y, ν)

=

∫
R×S

dyπ(dν)

∫
R×S

P̃0,ν (ξt ∈ dz,Θt ∈ dθ) f(y − z, θ)g(y, ν)

=

∫
R×S

dyπ(dν)g(y, ν)P̃0,ν [f(y − ξt,Θt)]

=

∫
R×S

dyπ(dν)g(y, ν)P̂0,ν [f(y + ξt,Θt, )]

=

∫
R×S

dyπ(dν)g(y, ν)P̂y,ν [f(ξt,Θt)]

for all t ≥ 0. Hence we complete the proof. �

Lemma 3.8. Suppose t > 0. For every x ∈ R, the process

(ξ(t−s)− − ξt,Θ(t−s)−)0≤s≤t

under Px,π has the same law as (ξs,Θs)0≤s≤t under P̂0,π.

Proof. In order to prove this lemma it suffices to consider the finite dimensional
distributions. Let n ≥ 1 be a fixed integer. For 0 ≤ k ≤ n we take nonnegative
measurable functions fk : S ×R → R+ and 0 = t0 < t1 < t2 < · · · < tn < tn+1 = t.
Let g : R → R+ be a nonnegative measurable function. We know by Proposition
3.7 and Lemma 3.2 that the process

(
(ξ(t−s)−,Θ(t−s)−)0≤s≤t,P

)
has the same law

as
(
(ξs,Θs)0≤s≤t, P̂

)
, both started according to the measure Leb ⊗ π. Using this

and the quasi-left continuity of ξ, we have

∫
R×S

dxπ(dθ)g(x)Px,θ

[
f0(Θ(t−t0)−, ξ(t−t0)− − ξt) · · · fn(Θ(t−tn)−, ξ(t−tn)− − ξt)

]
=

∫
R×S

dxπ(dθ)Px,θ

[
f0(Θ(t−t0)−, ξ(t−t0)− − ξt−)

· · · fn(Θ(t−tn)−, ξ(t−tn)− − ξt−)g(ξ(t−tn+1)−)
]

=

∫
R×S

dxπ(dθ)P̂x,θ

[
f0(Θt0 , ξt0 − ξ0) · · · fn(Θtn , ξtn − ξ0)g(ξtn+1

)
]

=

∫
R×S

dxπ(dθ)P̂0,θ

[
f0(Θt0 , ξt0) · · · fn(Θtn , ξtn)g(ξtn+1

+ x)
]
.
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By Fubini’s theorem and a change of variable, the integral on the right-hand side
is equal to

P̂0,π

[
f0(Θt0 , ξt0) · · · fn(Θtn , ξtn)

∫
R

g(ξtn+1
+ x)dx

]
=

∫
R×S

dxπ(dθ)g(x)P̂0,θ [f0(Θt0 , ξt0) · · · fn(Θtn , ξtn)] .

Since g is arbitrary, it follows by the above equations that {(ξs,Θs), 0 ≤ s ≤ t}
under P̂0,π has the same law as {(ξ(t−s)− − ξt,Θ(t−s)−), 0 ≤ s ≤ t} under Px,π for
almost every x ∈ R. We observe that the law of the latter does not depend on x;
thus the claim holds for every x ∈ R. �

The upwards regularity of ((ξ,Θ),P) implies that almost surely the local maxima
of ξ during a finite time interval are all distinct. In view of this and Lemma 3.8,
we have the following result.

Proposition 3.9. For every t > 0,
(
Θ0, t− ḡt,Θt, ξ̄t − ξt, ḡt, Θ̄t, ξ̄t

)
under P̂0,π is

equal in distribution to
(
Θt, ḡt,Θ0, ξ̄t, t− ḡt, Θ̄t, ξ̄t − ξt

)
under P0,π.

4. MAPs conditioned to stay negative

In this section we assume that ((ξ,Θ), P̂) is an upwards regular MAP. Define

Ĥ+
θ (y) := P̂y,θ

(
τ+0 = +∞

)
, ∀(y, θ) ∈ R× S.

Obviously, Ĥ+
θ (y) = 0 for all y ≥ 0.

Proposition 4.1. Assume that

(4.1) n̂+v (ζ = +∞) > 0 for every v ∈ S,
then

(i) Ĥ+
θ (y) > 0 for all θ ∈ S and y < 0;

(ii) Ĥ+
Θt
(ξt)1{t<τ+

0 } is a P̂y,θ-martingale for every y < 0 and θ ∈ S.

Proof. (i) For y < 0 and θ ∈ S,
Ĥ+

θ (y) = P̂0,θ

(
τ+−y = +∞

)
= lim

q→0+
P̂0,θ

(
τ+−y > eq

)
.

It follows by Proposition 2.3 that

P̂0,θ

(
τ+−y > eq

)
= P̂0,θ

(
ξ̄eq

≤ −y
)

=

∫
R+×S×R+

e−qr1{z≤−y}

(
q�̂+(v) + n̂+v

(
1− e−qζ

))
V̂ +
θ (dr, dv, dz).

Hence by condition (4.1) and Fatou’s lemma,

Ĥ+
θ (y) ≥

∫
S×[0,−y]

n̂+v (ζ = +∞)Û+
θ (dv, dz) > 0.

(ii) By the Markov property of ((ξ,Θ), P̂), we have for any y < 0 and θ ∈ S,

P̂y,θ

[
Ĥ+

Θt
(ξt)1{t<τ+

0 }

]
= P̂y,θ

[
P̂ξt,Θt

(
τ+0 = +∞

)
1{t<τ+

0 }

]
= P̂y,θ

(
τ+0 = +∞

)
= Ĥ+

θ (y).
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Using this and the Markov property of ((ξ,Θ), P̂) we prove that Ĥ+
Θt
(ξt)1{t<τ+

0 } is

a P̂-martingale. �

Under the conditions of Proposition 4.1 we can define probability measures P̂↓
y,θ

on the Skorokhod space DR×S by

dP̂↓
y,θ

dP̂y,θ

∣∣∣∣∣
Ft

:=
Ĥ+

Θt
(ξt)

Ĥ+
θ (y)

1{t<τ+
0 } ∀y < 0, θ ∈ S, t ≥ 0.

It follows by the theory of Doob’s h-transform that for every y < 0 and θ ∈ S the

process ((ξ,Θ), P̂↓
y,θ) is a strong Markov process on the state space (0,+∞) × S

with semigroup (P̂ ↓
t )t≥0 given by

P̂ ↓
t f(z, ν) =

1

Ĥ+
θ (z)

P̂z,ν

[
Ĥ+

Θt
(ξt)f(ξt,Θt)1{t<τ+

0 }

]
∀z < 0, ν ∈ S, t ≥ 0.

Since Ĥ+
Θt
(ξt)1{t<τ+

0 } is a P̂-martingale, the semigroup (P̂ ↓
t )t≥0 is Markovian, and

accordingly the process ((ξ,Θ), P̂↓) has an infinite lifetime.

Proposition 4.2. Suppose that (4.1) holds. For all y < 0, θ ∈ S, t ≥ 0, and
Λ ∈ Ft,

P̂↓
y,θ (Λ) = lim

q→0+
P̂y,θ

(
Λ, t < eq | τ+0 > eq

)
.

Proof. Note that by the Markov property of ((ξ,Θ), P̂),

P̂y,θ

(
Λ; t < eq < τ+0

)
=

∫ +∞

t

qe−qsP̂y,θ(Λ; s < τ+0 )ds

=

∫ +∞

0

qe−q(s+t)P̂y,θ(Λ; s+ t < τ+0 )ds

= e−qtP̂y,θ

(
1{Λ,t<τ+

0 }P̂ξt,Θt
(τ+0 > eq)

)
.

Thus by the bounded convergence theorem,

lim
q→0+

P̂y,θ

(
Λ, t < eq | τ+0 > eq

)
= lim

q→0+
e−qtP̂y,θ

(
1{Λ,t<τ+

0 }
P̂ξt,Θt

(τ+0 > eq)

P̂y,θ(τ
+
0 > eq)

)

= P̂y,θ

(
Ĥ+

Θt
(ξt)

Ĥ+
θ (y)

1{Λ,t<τ+
0 }

)
= P̂↓

y,θ (Λ) .

�

The process ((ξ,Θ), P̂↓) is referred to as the MAP conditioned to stay negative.

Proposition 4.3. Suppose that (4.1) holds. For every θ ∈ S, there exists a prob-

ability measure P̂↓
0,θ on DR×S satisfying that ξ0 = 0 and ξt �= 0 for all t > 0,

P̂↓
0,θ-a.s., and that the process (ξt,Θt)t>0 under P̂↓

0,θ is a strong Markov process

with the same transition rates as ((ξ,Θ), {P̂↓
y,θ : y < 0, θ ∈ S}). Moreover, we have

(4.2) P̂↓
0,θ

[
f(ξt,Θt)1{t<ζ}

]
=

n̂+θ

[
Ĥ+

νt
(−εt)f(−εt, νt)1{t<ζ}

]
n̂+θ (ζ = +∞)

for any t > 0 and nonnegative measurable function f : R× S → R+.
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Proof. Suppose P̂ is the kernel from S × R× R+ to DS×R×R+ with respect to the

process ((Θt, ξt, Ut)t≥0, P̂) defined in the same way of [45] (see also the arguments in

Section 2.2). Then under P̂θ,0,0 the process (Θt, ξt, Ut)t≥0 starts from (θ, 0, 0) and
(Θt, ξt, Ut)t>0 has the strong Markov property with respect to the same transition

semigroup as ((Θt, ξt, Ut)t≥0, P̂0,θ). Let R̄ = inf{t > 0 : t ∈ M̄ cl}. Note that

Ĥ+
θ (y) = limq→0+ P̂y,θ

(
τ+0 > eq

)
for y < 0 and θ ∈ S. It follows from the Markov

property and the bounded convergence theorem that

P̂θ,0,0
[
Ĥ+

Θt
(ξt)1{t<R̄}

]
= lim

q→0+
P̂θ,0,0

[
P̂ξt,Θt

(
τ+0 > eq

)
1{t<R̄}

]
= lim

q→0+
eqtP̂θ,0,0

(
t < eq < R̄

)
= lim

q→0+
n̂+θ (t < eq < ζ)

= n̂+θ (ζ = +∞).

Thus we can define a probability measure P̂↓
0,θ on DR×S by

(4.3) P̂↓
0,θ(A) :=

1

n̂+θ (ζ = +∞)
P̂θ,0,0

[
Ĥ+

Θt
(ξt)1{t<R̄}1A

]
∀A ∈ Ft, t > 0.

One can easily show from the properties of P̂θ,0,0 that under P̂↓
0,θ the process ξt

leaves 0 instantaneously and never hits 0 again, and that the process (ξt,Θt)t≥0 is
a Markov process whose transition rates satisfy

P̂↓
0,θ [ξt+s ∈ A,Θt+s ∈ B | ξs,Θs] = P̂↓

ξs,Θs
[ξt ∈ A,Θt ∈ B]

for all t, s ≥ 0, A ∈ B(R) and B ∈ B(S). Note that, by definition, under P̂θ,0,0, Ut

equals −ξt for t < R̄. Hence by (4.3) for every t > 0 and nonnegative measurable
function f : R× S → R+, we have

P̂↓
0,θ

[
f(ξt,Θt)1{t<ζ}

]
=

1

n̂+θ (ζ = +∞)
P̂

θ,0,0
[
Ĥ+

Θt
(−Ut)f(−Ut,Θt)1{t<R̄}

]
=

1

n̂+θ (ζ = +∞)
n̂+θ

[
Ĥ+

νt
(−εt)f(−εt, νt)1{t<ζ}

]
.

In the second equality we use the fact that n̂+θ is the image measure of (Ut,Θt)t<R̄

under P̂θ,0,0. �

Remark 4.4. Suppose S = {s1, s2, · · · , sn} is a finite set and ((ξ,Θ),P) is a MAP
taking values in R× S. For simplicity we assume the random variables Ξj,k intro-

duced in Example 3.4 are such that Ξj,k
d
= Ξk,j for all 1 ≤ j, k ≤ n. Suppose the

process (Θ, {Px,θ, θ ∈ S}) is irreducible and hence ergodic. Its invariant distribu-
tion is denoted by π = (π1, π2, · · · , πn). In this case condition (WR) is satisfied

by taking P̃0,v to be P0,v. Hence P̂0,v is the law of (−ξ,Θ) under P0,v. Let

φ̂j(q) := n̂+j (1− e−qζ) for 1 ≤ j ≤ n and q > 0. It is proved in [22] that

lim
q→0+

φ̂j(q)

φ̂k(q)
= lim

q→0+

n̂+j (ζ = +∞) + n̂+j (1− e−qζ , ζ < +∞)

n̂+k (ζ = +∞) + n̂+k (1− e−qζ , ζ < +∞)
=

πj

πk
.

It follows that if n̂+j (ζ = +∞) > 0 for some (then for all) 1 ≤ j ≤ n, then

there is a constant c > 0 independent of j such that n̂+j (ζ = +∞) = cπj . Since
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P̂y,si

(
τ+0 = +∞

)
= limq→0+ P̂0,si

(
ξ̄eq

≤ −y
)
, we get by Proposition 2.3 and the

bounded convergence theorem that

P̂y,si

(
τ+0 = +∞

)
= c

n∑
j=1

Û+
ij (−y)πj ,

where Û+
ij (−y) = P̂0,si

[∫ L̄∞
0

1{ξ+t ≤−y,Θ+
t =sj}dt

]
. In [22],

∑n
j=1 Û

+
ij (−y)πj is used

as the harmonic function to define a martingale change of measure under which the
MAP is conditioned to stay negative.

Remark 4.5. Suppose ((ξ,Θ),P) is a MAP where ξ is a (possibly killed) Lévy
process on R whose law is independent of Θ and Θ has an invariant distribution.

In this case condition (WR) is satisfied by taking P̃0,v = P0,v and hence P̂0,v is
the law of (−ξ,Θ) under P0,v. We assume that for ξ, 0 is regular for both (−∞, 0)
and (0,+∞), in which case, both ((ξ,Θ),P) and ((−ξ,Θ),P) are upwards regular.
We claim that (4.1) is satisfied if and only if the Lévy process ξt drifts to +∞. To
see this, we first recall some known facts about Lévy processes. Let Lt be the local
time of ξ at the running minima and n− be the excursion measures at the minimum.
In fact, n− equals n̂+ which is the excursion measure at the maximum of the dual
process −ξ. Since 0 is regular for (−∞, 0), there is a continuous version of Lt and a

nonnegative constant l− such that almost surely
∫ t

0
1{ξs=infr∈[0,s] ξr}ds = l− Lt for

all t ≥ 0. In this case, the inverse local time L−1
t is a (possibly killed) subordinator

with Laplace exponent given by Φ̂(q) = l−q + n−(1− e−qζ). It follows that L∞ is
exponentially distributed with parameter n−(ζ = +∞). Hence n−(ζ = +∞) > 0
if and only if ξt drifts to +∞, in which case [16] showed further that n+(ζ) =
l++n+

(
1− e−ζ

)
< +∞ where n+ denotes the excursion measure at the maximum

of ξ and l+ is the drift coefficient for the inverse local time at the maximum.

5. Stationary overshoots and undershoots of MAPs

Throughout this section we will assume that the modulator of ((ξ,Θ),P)
(5.1)
Θ is positive recurrent with invariant distribution π which is fully supported on S.

Definition 5.1. For q > 0, let {T (q)
n : n ≥ 0} be a sequence of random variables

such that T
(q)
0 = 0 and {T (q)

n+1 − T
(q)
n : n ≥ 0} are independent and exponentially

distributed random variables with mean 1/q. Define

M (q),+
n := Θ+

T
(q)
n

∀n ≥ 0.

We call M (q),+ := {M (q),+
n : n ≥ 0} the q-embedded chain of the process (Θ+

t )t≥0.
Moreover, in the spirit of [46], we say that Θ+ is a (nonarithmetic aperiodic)
Harris recurrent process if Θ+ has a (nonarithmetic aperiodic) Harris recurrent
q-embedded chain for some q > 0.

Under the preceding assumption (5.1), together with the assumption that

(5.2) inf
v∈S

[
�+(v) + n+v

(
1− e−ζ

)]
> 0 and n+v (ζ) < +∞ for every v ∈ S,

it follows by Corollary 2.20 that

(5.3) π+(·) = 1

P0,π

[
L̄1

]P0,π

[∫ 1

0

1{Θs∈·}dL̄s

]
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is an invariant distribution for Θ+ and hence for M (q),+. It follows by [36, Theorem
(5.1)] that

π(dv) =
1

cπ+

[
�+(v)π+(dv) +

∫
S
n+θ

(∫ ζ

0

1{νt∈dv}dt

)
π+(dθ)

]
,

where cπ+ :=
∫
S
[
�+(θ) + n+θ (ζ)

]
π+(dθ) is a positive constant.

Lemma 5.2. Assume that (5.1) and (5.2) hold and, further, that P0,π+

[
ξ+1
]
< +∞

where π+ given in (5.3) is fully supported on S. Suppose that the continuous part

of ξ+ can be represented by
∫ t

0
a+(Θ+

s )ds for some nonnegative measurable function

a+ on S. Then for all q > 0, we have

μ+ :=

∫
S
a+(φ)π+(dφ) +

∫
S×R+

Π̄+
φ (y)π

+(dφ)dy = qP0,π+

[
ξ+eq

]
< +∞,

where Π̄+
φ (y) := Π+(φ,S, (y,+∞)).

Proof. Using that P0,π+

[
ξ+1
]
< +∞ and the subadditivity of t 
→ P0,π+

[
ξ+t
]
, one

can show in the same way as in the proof of Lemma 2.14 that P0,π+

[
ξ+t
]
< +∞

for all t > 0 and P0,π+

[
ξ+eq

]
< +∞ for all q > 0. We note that for every t > 0,

ξ+t =

∫ t

0

a+(Θ+
s )ds+

∑
0≤s≤t

Δξ+s 1{Δξ+s >0},

where Δξ+s = ξ+s − ξ+s−. By Proposition 2.5 and Fubini’s theorem, we have

P0,θ

⎡⎣ ∑
0≤s≤t

Δξ+s 1{Δξ+s >0}

⎤⎦ = P0,θ

[∫ t

0

ds

∫
S×R+

yΠ+(Θ+
s , dφ, dy)

]

= P0,θ

[∫ t

0

ds

∫ +∞

0

Π̄+

Θ+
s
(z)dz

](5.4)

for every θ ∈ S. Hence

P0,π+ [ξ+t ] = P0,π+

[∫ t

0

ds

(
a+(Θ+

s ) +

∫ +∞

0

Π̄+

Θ+
s
(z)dz

)]
= t

(∫
S
a+(φ)π+(dφ) +

∫
S×R+

Π̄+
φ (z)π

+(dφ)dz

)
= tμ+.

In the second equality we use the fact that π+ is an invariant distribution for Θ+.
Consequently we have

P0,π+

[
ξ+eq

]
= q

∫ +∞

0

e−qtP0,π+

[
ξ+t
]
dt =

μ+

q
.

�
Under the assumptions of Lemma 5.2, the measure ρ� given below is a proba-

bility measure on R+ × S,
ρ�(dz, dv)

:=
1

μ+

[
a+(v)π+(dv)δ0(dz)+1{z>0}

∫
S×R+

π+(dφ)dyΠ+(φ, dv, dz+y)

]
.

(5.5)
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We will show in the following that ρ� is the stationary distribution for the over-
shoots of the MAP, assuming additionally that the modulator

(5.6) Θ+ of ((ξ+,Θ+),P) is a nonarithmetic aperiodic Harris recurrent process.

The key to the proof is an application of the Markov renewal theory developed in

[2]. Suppose that {M (q),+
n = Θ+

T
(q)
n

: n ≥ 0} is a nonarithmetic aperiodic Harris

recurrent q-embedded chain of (Θ+,P). Define

S(q),+
n := ξ+

T
(q)
n

, N (q),+
n := L̄−1

T
(q)
n

∀n ≥ 0.

One can show that both (M
(q),+
n , S

(q),+
n )n≥0 and (M

(q),+
n , N

(q),+
n )n≥0 are Markov re-

newal processes in the sense of [2]. We shall first consider the process

(M
(q),+
n , S

(q),+
n )n≥0. For every θ ∈ S, let

Fθ(dv, dz) := P0,θ(M
(q),+
1 ∈ dv, S

(q),+
1 ∈ dz)

=

∫ +∞

0

qe−qtP0,θ

(
Θ+

t ∈ dv, ξ+t ∈ dz
)
dt.

(5.7)

Let F ∗0
θ (dv, dz) := δθ(dv)δ0(dz) and let F ∗n

θ be the n-th convolution of Fθ for n ≥ 1.

Then
∑+∞

n=0 F
∗n
θ (dv, dz) is the renewal measure of (M

(q),+
n , S

(q),+
n )n≥0. Note that

P0,π+

[
S
(q),+
1

]
= P0,π+

[
ξ+eq

]
= μ+/q. Given (5.6), it follows by [2, Theorem 2.1]

that

(5.8) lim
y→+∞

∫
S×[0,y]

g(v, y − z)

+∞∑
n=0

F ∗n
θ (dv, dz) =

q

μ+

∫
S×R+

g(v, z)π+(dv)dz

for every θ ∈ S and every measurable function g : S × R+ → R satisfying the
following two conditions:

(i) for each v ∈ S, the set of discontinuous points of z 
→ g(v, z) has zero
Lebesgue measure;

(ii)
∫
S
∑+∞

n=0 supz∈[np,(n+1)p) |g(v, z)|π+(dv) < +∞ for some p > 0.

We use M to denote the space of measurable functions satisfying both of the above

conditions. In view of the fact that P0,θ

(
T

(q)
n ∈ dt

)
= qntn−1

(n−1)! e
−qtdt for n ≥ 1, we

have

U+
θ (dv, dz) =

∫ +∞

0

P0,θ

(
Θ+

t ∈ dv, ξ+t ∈ dz
)
dt

=
+∞∑
n=1

∫ +∞

0

e−qt (qt)
n−1

(n− 1)!
P0,θ

(
Θ+

t ∈ dv, ξ+t ∈ dz
)
dt

=
1

q

+∞∑
n=1

P0,θ

(
M (q),+

n ∈ dv, S(q),+
n ∈ dz

)
=

1

q

[
+∞∑
n=0

F ∗n
θ (dv, dz)− δθ(dv)δ0(dz)

]
.

This and (5.8) imply that for every θ ∈ S and every g ∈ M,

(5.9) lim
y→+∞

∫
S×[0,y]

g(v, y − z)U+
θ (dv, dz) =

1

μ+

∫
S×R+

g(v, z)π+(dv)dz.
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Remark 5.3. It is easy to see that g ∈ M if, in particular, z 
→ g(v, z) is right
continuous on [0,+∞) and there is a measurable function f : S × R+ → R+ such
that |g(v, z)| ≤ f(v, z) for all (v, z) ∈ S×R+, z 
→ f(v, z) is a monotone function on
R+, and

∫
S×R+ f(v, z)π+(dv)dz < +∞. In fact this sufficient condition for g ∈ M

is easy to verify and will be used later in our proofs where the Markov renewal
theory is applied.

Proposition 5.4. Suppose (5.6) and the conditions in Proposition 2.12 and Lemma
5.2 hold. For every θ ∈ S, the joint probability measures on S × R− × S × R+,

P0,θ

(
Θτ+

x − ∈ dv, ξτ+
x − − x ∈ dy,Θτ+

x
∈ dφ, ξτ+

x
− x ∈ dz

)
,

converge weakly to a probability measure ρ given by

ρ(dv, dy, dφ, dz)

:=
1

μ+

[
1{y<0,z>0}�

+(v)Π(v, dφ, dz − y)π+(dv)dy

+1{y<0,z>0}dy

∫
S
π+(dϕ)n+ϕ

( ∫ ζ

0

1{εs≤−y,νs∈dv}Π(v, dφ, dz − y)ds
)

+ a+(v)π+(dv)δ0(dy)δ0(dz)δv(dφ)
]

as x → +∞. In particular, P0,θ

(
ξτ+

x
− x ∈ dz, Θτ+

x
∈ dφ

)
converges weakly to

ρ�(dz, dφ) given by (5.5), and P0,θ

(
ξτ+

x − − x ∈ dy, Θτ+
x − ∈ dv

)
converges weakly

to a probability measure ρ⊕(dy, dv) given by

ρ⊕(dy, dv) :=
1

μ+

[
a+(v)π+(dv)δ0(dy) + 1{y<0}�

+(v)Π̄v(−y)π+(dv)dy

+1{y<0}dy

∫
S
π+(dφ)n+φ

( ∫ ζ

0

Π̄v(−y)1{εr≤−y,νr∈dv}dr
)]
.

Here Π̄v(−y) := Π(v,S, (−y,+∞)).

Proof. First we claim that ρ given above is a probability measure. Integrating
ρ(dv, dy, dφ, dz) over the variables v and y, we get that

1

μ+

[
a+(φ)π+(dφ)δ0(dz) + 1{z>0}

∫
S×R+

π+(dv)dy �+(v)Π(v, dφ, dz + y)

+ 1{z>0}

∫
S
π+(dϕ)n+ϕ

( ∫ ζ

0

ds

∫ +∞

εs

dy 1{νs∈dv}Π(νs, dφ, dz + y)
)]

=
1

μ+

[
a+(φ)π+(dφ)δ0(dz) + 1{z>0}

∫
S×R+

π+(dv)dy �+(v)Π(v, dφ, dz + y)

+ 1{z>0}

∫
S×R+

π+(dϕ)du n+ϕ
( ∫ ζ

0

1{νs∈dv}Π(νs, dφ, dz + εs + u)
)]

=
1

μ+

[
a+(φ)π+(dφ)δ0(dz) + 1{z>0}

∫
S×R+

π+(dv)dyΠ+(v, dφ, dz + y)
]

= ρ�(dz, dφ).

The first equality follows from a change of variable and Fubini’s theorem, and the
second equality follows from Proposition 2.5. This implies that ρ is a probability
measure and ρ� is its marginal law. Similarly, by integrating ρ(dv, dy, dφ, dz) over
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the variables φ and z, we can show that ρ⊕ is also a marginal law of ρ. Next we
prove the weak convergence. Suppose f, g : S × R → R are bounded continuous
functions. It follows by Proposition 2.7 that for any x > 0,

P0,θ

[
f(Θτ+

x −, ξτ+
x − − x)g(Θτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x >x

}

]
=

∫
S×[0,x]

U+
θ (dv, dz)

[
�+(v)f(v, z − x)G(v, x− z)

+ n+v
( ∫ ζ

0

f(νs, z − x− εs)G(νs, x− z + εs)ds
)]
,(5.10)

where G(v, u) =
∫
S×(u,+∞)

g(φ, y − u)Π(v, dφ, dy). One can easily show that the

condition given in Remark 5.3 is satisfied by the function

(v, z) 
→ �+(v)f(v,−z)G(v, z) + n+v

(∫ ζ

0

f(νs,−z − εs)G(νs, z + εs)ds

)
.

Hence by (5.9), the integral in the right-hand side converges to

(5.11)
1

μ+

∫
S×R+

π+(dv)dz
[
�+(v)f(v,−z)G(v, z)

+ n+v

(∫ ζ

0

f(νs,−z − εs)G(νs, z + εs)ds

)]
.

By Fubini’s theorem, we have∫
S×R+

π+(dv)dzn+v

(∫ ζ

0

f(νs,−z − εs)G(νs, z + εs)ds

)

=

∫
S
π+(dv)n+v

(∫ +∞

0

∫ ζ

0

f(νs,−z − εs)G(νs, z + εs)dsdz

)

=

∫
S
π+(dv)n+v

(∫ ζ

0

ds

∫ +∞

εs

f(νs,−y)G(νs, y)dy

)

=

∫
S×R+

π+(dv)dy n+v

(∫ ζ

0

1{εs≤y}f(νs,−y)G(νs, y)ds

)
.(5.12)

Next we deal with the creeping event {ξτ+
x
= x}. Note that

Fθ(dv, dz) =

∫ +∞

0

qe−qtP0,θ

(
Θ+

t ∈ dv, ξ+t ∈ dz
)
dt

= q

∫ +∞

0

P0,θ

(
Θ+

t ∈ dv, ξ+t ∈ dz, t < eq
)
dt.

This equation implies that Fθ(dv, dz)/q can be viewed as the potential measure of
the nondecreasing MAP (ξ+,Θ+) killed by an independent exponential time eq. In
fact, we can verify that this killed process is a nondecreasing MAP and satisfies
all the conditions in Lemma 2.8. Hence by Lemma 2.8 1{a+(v)>0}Fθ(dv, dz) has a
kernel fθ(dv, z) with respect to the Lebesgue measure dz such that

(5.13) P0,θ

(
h(Θ+

T+
x
); ξ+

T+
x
= x, T+

x < eq

)
=

1

q

∫
S
a+(v)h(v)fθ(dv, x)
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for every nonnegative measurable function h : S → R+ and almost every x > 0. We

claim that x 
→ P0,θ

(
h(Θ+

T+
x
); ξ+

T+
x
= x, T+

x < eq

)
= P0,θ

(
e−qT+

x h(Θ+

T+
x
); ξ+

T+
x
= x

)
is right continuous on [0,+∞) if in particular h is a bounded continuous function.
To see this, we take arbitrary {xn : n ≥ 1} and x ∈ R+ satisfying xn ↓ x. Since
ξ+
T+
x
= ξτ+

x
we have∣∣P0,θ

(
e−qT+

xnh(Θ+

T+
xn

); ξ+
T+
xn

= xn

)
−P0,θ

(
e−qT+

x h(Θ+

T+
x
); ξ+

T+
x
= x

)∣∣
≤
∣∣P0,θ

[
e−qT+

xnh(Θ+

T+
xn

)
(
1{ξ+

T
+
xn

=xn} − 1{ξ+
T

+
x

=x}
)]∣∣

+
∣∣P0,θ

[
e−qT+

xnh(Θ+

T+
xn

)− e−qT+
x h(Θ+

T+
x
); ξ+

T+
x
= x

]∣∣
≤ ‖h‖∞P0,θ

(
{ξτ+

xn
= xn}�{ξτ+

x
= x}

)
+P0,θ

[∣∣e−qT+
xnh(Θ+

T+
xn

)− e−qT+
x h(Θ+

T+
x
)
∣∣].

In view of (2.23) and the fact that T+
xn

↓ T+
x and Θ+

T+
xn

→ Θ+

T+
x

P0,θ-a.s., we get by

the above inequality and the bounded convergence theorem that

lim
n→+∞

P0,θ

(
e−qT+

xnh(Θ+

T+
xn

); ξ+
T+
xn

= xn

)
= P0,θ

(
e−qT+

x h(Θ+

T+
x
); ξ+

T+
x
= x

)
.

Hence we prove the claim. Now we set

fθ(dv, x) =
q

a+(v)
P0,θ

(
Θ+

T+
x
∈ dv, ξ+

T+
x
= x, T+

x < eq

)
for every x > 0 in the setting that a+(v) > 0 for all v ∈ S, and otherwise we
set a+(v)fθ(dv, x) as identically equal to zero for all v ∈ S. The above arguments
show that x 
→ a+(v)fθ(dv, x) is right continuous on (0,+∞) in the sense of vague
convergence and (5.13) holds for every x > 0 and every nonnegative measurable
function h : S → R. Reverting back to the setting a+(v) > 0 for all v ∈ S, since

U+
θ (dv, dz) =

1

q

+∞∑
n=0

F
∗(n+1)
θ (dv, dz)

=
1

q

∫
S×[0,z]

Fφ(dv, dz − y)

+∞∑
n=0

F ∗n
θ (dφ, dy),

we can take the kernel u+
θ (dv, z) of U

+
θ (dv, dz) to be such that

(5.14) u+
θ (dv, z) =

1

q

∫
S×[0,z]

fφ(dv, z − y)

+∞∑
n=0

F ∗n
θ (dφ, dy) ∀z > 0.

For n ≥ 1,

F ∗n
θ (dv, dz) =

∫ +∞

0

P0,θ

(
Θ+

T
(q)
n

∈ dv, ξ+
T

(q)
n

∈ dz
)
dt

=

∫ +∞

0

qntn−1

(n− 1)!
e−qtPθ(Θ

+
t ∈ dv, ξ+t ∈ dz)dt.

Obviously F ∗n
θ (dv, dz) is absolutely continuous with respect to U+

θ (dv, dz), and
hence F ∗n

θ (dv, dz) has a kernel with respect to the Lebesgue measure dz which is
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denoted by f∗n
θ (dv, z). In view of this, u+

θ (dv, z) given in (5.14) can be represented
by

u+
θ (dv, z) =

1

q
fθ(dv, z) +

1

q

∫ z

0

dy

∫
S
fφ(dv, z − y)

+∞∑
n=1

f∗n
θ (dφ, y).

Using this expression and the fact that z 
→ a+(v)fφ(dv, z) is right continuous on
(0,+∞), we can show that x 
→ a+(v)u+

θ (dv, x) is right continuous on (0,+∞) in

the sense of vague convergence. Hence u+
θ (dv, z) given in (5.14) is the kernel taken

in Proposition 2.12, and we have

P0,θ

[
f(Θτ+

x −, ξτ+
x − − x)g(Θτ+

x
, ξτ+

x
− x)1{ξ

τ
+
x
=x}

]
=

∫
S
a+(v)f(v, 0)g(v, 0)u+

θ (dv, x)

=
1

q

∫
S×[0,x]

+∞∑
n=0

F ∗n
θ (dφ, dy)

∫
S
f(v, 0)g(v, 0)a+(v)fφ(dv, x− y)(5.15)

for every x > 0. Again by Remark 5.3 we can show that

(φ, z) 
→
∫
S
f(v, 0)g(v, 0)a+(v)fφ(dv, z)

= qP0,φ

[
f(Θ+

T+
z
, 0)g(Θ+

T+
z
, 0);T+

z < eq

]
∈ M.

Hence by (5.8) the integral on the right-hand side of (5.15) converges, as x → +∞,
towards

1

μ+

∫
S×R+

π+(dφ)dy

∫
S
a+(v)f(v, 0)g(v, 0)fφ(dv, y)

=
1

μ+

∫
S
π+(dφ)

∫
S×R+

a+(v)f(v, 0)g(v, 0)Fφ(dv, dy)

=
1

μ+

∫
S
π+(dφ)P0,φ

[
a+(M

(q),+
1 )f(M

(q),+
1 , 0)g(M

(q),+
1 , 0)

]
=

1

μ+

∫
S
a+(v)f(v, 0)g(v, 0)π+(dv).(5.16)

In the final equality we use the fact that π+ is an invariant distribution for

(M
(q),+
n )n≥0. In the setting that a+(v) = 0 for all v ∈ S, the limit in (5.16) is

trivial.
Combining (5.11), (5.12), and (5.16) we get

P0,θ

[
f(Θτ+

x −, ξτ+
x − − x)g(Θτ+

x
, ξτ+

x
− x)

]
→ 1

μ+

[ ∫
S×R+

π+(dv)dz�+(v)f(v,−z)G(v, z) +

∫
S
π+(dv)a+(v)f(v, 0)g(v, 0)

+

∫
S×R+

π+(dv)dy n+v
( ∫ ζ

0

1{εs≤y}f(νs,−y)G(νs, y)ds
)]

as x → +∞,

which yields the first assertion of this proposition. The second and third asser-
tions follow immediately from the above equation by setting f ≡ 1 and g ≡ 1,
respectively. �
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In the remainder of this section we consider the nondecreasing MAP (L̄−1,Θ+).
The ordinate L̄−1 can be represented by

(5.17) L̄−1
t =

∫ t

0

�+(Θ+
s )ds+

∑
s≤t

ΔL̄−1
s ∀t ≥ 0,

where ΔL̄−1
s = L̄−1

s − L̄−1
s−. Note that for any t ≥ 0, assuming (5.1) and (5.2),

P0,π+

[
L̄−1
t

]
= P0,π+

⎡⎣∫ t

0

�+(Θ+
s )ds+

∑
s≤t

ΔL̄−1
s

⎤⎦
= P0,π+

[∫ t

0

(
�+(Θ+

s ) + n+
Θ+

s
(ζ)
)
ds

]
=

∫ t

0

P0,π+

[(
�+(Θ+

s ) + n+
Θ+

s
(ζ)
)]

ds

= t

∫
S

(
�+(θ) + n+θ (ζ)

)
π+(dθ) = tcπ+ .

In the last equality we use the fact that π+ is an invariant distribution for

(Θ+
t )t≥0. If we consider the Markov renewal process (M

(q),+
n , N

(q),+
n )n≥0, then

we have

(5.18) P0,π+

[
N

(q),+
1

]
= P0,π+

[
L̄−1
eq

]
=

∫ +∞

0

qe−qtP0,π+ [L̄−1
t ]dt =

1

q
cπ+ .

For every θ ∈ S, define

W+
θ (dv, dr) := P0,θ

[∫ L̄∞

0

1{Θ+
s ∈dv, L̄−1

s ∈dr}ds

]

andGθ(dv, dr) := P0,θ

(
M

(q),+
1 ∈dv,N

(q),+
1 ∈ dr

)
. LetG∗0

θ (dv, dr) := δθ(dv)δ0(dr)

and G∗n
θ be the nth convolution of Gθ for n ≥ 1. In view of (5.18), under the as-

sumptions of Proposition 5.4, it follows by [2, Theorem 2.1] that

(5.19) lim
t→+∞

∫
S×[0,t]

g(v, t− r)

+∞∑
n=0

G∗n
θ (dv, dr) =

q

cπ+

∫
S×R+

g(v, r)π+(dv)dr

for every θ ∈ S and every measurable function g ∈ M. By applying similar
calculations to W+

θ (dv, dr) as we did to U+
θ (dv, dz), we can show that qW+

θ (dv, dr)

is equal to
∑+∞

n=1 G
∗n
θ (dv, dr). Hence by (5.19) we have

(5.20) lim
t→+∞

∫
S×[0,t]

g(v, t− r)W+
θ (dv, dr) =

1

cπ+

∫
S×R+

g(v, r)π+(dv)dr.

Lemma 5.5.

(i) The nondecreasing MAP (L̄−1,Θ+) has a Lévy system (H+, N+) where
H+

t = t ∧ ζ+ and N+(θ, dv, dr) := Γ+(θ, dv, dr, [0,∞)) is a kernel from S
to S × R+.

(ii) For r > 0, define

d̄r := inf{s > r : ξ̄s = ξs}.
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Then for every θ ∈ S, 1{�+(v)>0}W
+
θ (dv, dr) has a kernel w+

θ (dv, r) with
respect to the Lebesgue measure dr such that

P0,θ

[
f(Θr); d̄r = r

]
=

∫
S
f(v)�+(v)w+

θ (dv, r)

for every nonnegative measurable function f : S → R+ and almost every
r > 0. Moreover, for every θ ∈ S and every bounded continuous function
h : S → R, the function r 
→ P0,θ

[
h(Θr); d̄r = r

]
is lower semi-continuous

on (0,+∞).

Proof. The claim in (i) follows by taking marginals in Proposition 2.5.
(ii) Since t 
→ L̄t is a nondecreasing right continuous process, we have L̄r =

inf{s > 0 : L̄−1
s > r} for every r > 0. We also note that L̄−1(L̄r) = inf{s > r :

ξ̄s = ξs} = d̄r. In view of this, (i), and (5.17), we can apply Proposition 2.10 to the
process (L̄−1,Θ+) and deduce that 1{�+(v)>0}W

+
θ (dv, dr) has a kernel w+

θ (dv, r)
with respect to the Lebesgue measure dr such that
(5.21)

P0,θ

[
f(Θr); d̄r = r

]
= P0,θ

[
f(Θ+

L̄r
); L̄−1(L̄r) = r

]
=

∫
S
f(v)�+(v)w+

θ (dv, r)

for almost every r > 0 and every nonnegative measurable function f : S → R+.
Now take an arbitrary bounded continuous function h : S → R. We have

P0,θ

[
h(Θr); d̄r = r

]
= P0,θ [h(Θr)]−P0,θ

[
h(Θr); d̄r > r

]
.

It is easy to see that r 
→ P0,θ [h(Θr)] is right continuous on [0,+∞) since Θ is a
right continuous process. We only need to show, that r 
→ P0,θ

[
h(Θr); d̄r > r

]
is

upper semi-continuous on (0,+∞). Take an arbitrary sequence rn ↓ r ∈ (0,+∞).
Note that, for any s > 0, d̄s > s if and only if s ∈

⋃
gi∈Ḡ[gi, di). Hence {d̄rn >

rn i.o.} = {rn ∈
⋃

gi∈Ḡ[gi, di) i.o.} ⊂ {r ∈
⋃

gi∈Ḡ[gi, di)} = {d̄r > r}. It fol-
lows that lim supn→+∞ 1{d̄rn>rn} = 1{d̄rn>rn i.o.} ≤ 1{d̄r>r}. Thus by the reverse

Fatou’s lemma, P0,θ

[
h(Θr); d̄r > r

]
≥ lim supn→+∞ P0,θ

[
h(Θrn); d̄rn > rn

]
. We

complete the proof. �

Lemma 5.6. Suppose that ((ξ,Θ),P) and ((ξ,Θ), P̂) are a pair of upwards regular
MAPs for which condition (WR) is satisfied. Under the assumptions of Proposition
5.4, we have

(i)
∫
S �+(θ)π+(dθ) = 0 and

∫ +∞
0

�+(Θs)dL̄s = 0, P0,π-a.s.
(ii) For every y < 0,

(5.22) Ĥ+
θ (y)π(dθ) =

1

cπ+

∫
S
π+(dφ)n+φ

(∫ ζ

0

1{εr≤−y, νr∈dθ}dr

)
,

where Ĥ+
θ (y) = P̂y,θ

(
τ+0 = +∞

)
, and

(5.23)
n̂+θ (ζ = +∞)

�+(θ) + n+θ (ζ)
Û+
π (dθ,R+) =

1

cπ+

π+(dθ).

Proof. (i) By (5.3), we have

(5.24)

∫
S
�+(θ)π+(dθ) =

1

P0,π

[
L̄1

]P0,π

[∫ 1

0

�+(Θs)dL̄s

]
.
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We note that by (2.3) and Fubini’s theorem,

P0,π

[∫ +∞

0

�+(Θs)dL̄s

]
= P0,π

[∫ +∞

0

1{s∈M̄}ds

]
=

∫ +∞

0

P0,π

(
s ∈ M̄

)
ds.

By Proposition 3.9, we have for any s > 0,

P0,π

(
s ∈ M̄

)
= P0,π

(
ξ̄s − ξs = 0

)
= P̂0,π

(
ξ̄s = 0

)
≤ P̂0,π

(
τ+0 ≥ s

)
= 0.

The last equality is because ((ξ,Θ), P̂) is upwards regular. It follows that

(5.25) P0,π

[∫ +∞

0

�+(Θs)dL̄s

]
= 0,

and hence by (5.24)
∫
S �+(θ)π+(dθ) = 0.

(ii) First we claim that

(5.26) P0,π

(
d̄r = r

)
= 0 ∀r > 0.

In fact, by Lemma 5.5(ii) and (5.25), we have

∫ +∞

0

P0,π

(
d̄r = r

)
dr =

∫ +∞

0

dr

∫
S
�+(v)w+

π (dv, r)

=

∫ +∞

0

∫
S
�+(v)W+

π (dv, dr)

= P0,π

[∫ +∞

0

�+(Θs)dL̄s

]
= 0.(5.27)

Thus P0,π

(
d̄r = r

)
= 0 for almost every r > 0 and hence for every r > 0 since

r 
→ P0,π

(
d̄r = r

)
is lower semi-continuous on (0,+∞). By Proposition 3.9 we

have

(5.28) P̂0,π

[
g(Θ0); ξ̄t ≤ −y

]
= P0,π

[
g(Θt); ξ̄t − ξt ≤ −y

]
for every y < 0, t ≥ 0, and every bounded measurable function g : S → R. It
follows by the bounded convergence theorem that

P̂0,π

[
g(Θ0); ξ̄t ≤ −y

]
= P̂0,π

[
g(Θ0); τ

+
−y > t

]
=

∫
S
π(dθ)g(θ)P̂0,θ

(
τ+−y > t

)
→

∫
S
π(dθ)g(θ)P̂0,θ

(
τ+−y = +∞

)
=

∫
S
π(dθ)g(θ)Ĥ+

θ (y),(5.29)

as t → +∞. On the other hand, we have by (5.26)

(5.30) P0,π

[
g(Θt); ξ̄t − ξt ≤ −y

]
= P0,π

[
g(Θt); ξ̄t − ξt ≤ −y, d̄t > t

]
∀t > 0.
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We note that d̄t > t if and only if t ∈
⋃

gi∈Ḡ[gi, di). Hence by (2.4) the above
expectation equals

P0,π

⎡⎣g(Θt); ξ̄t − ξt ≤ −y, t ∈
⋃

gi∈Ḡ

[gi, di)

⎤⎦
= P0,π

[∫ t

0

n+Θs

(
g(νt−s)1{εt−s≤−y,t−s<ζ}

)
dL̄s

]
= P0,π

[∫ +∞

0

1{L̄−1
u ≤t}n

+

Θ+
u

(
g(νt−L̄−1

u
)1{ε

t−L̄
−1
u

≤−y,t−L̄−1
u <ζ}

)
du

]
=

∫
S×[0,t]

W+
π (dv, dr)n+v

(
g(νt−r)1{εt−r≤−y,t−r<ζ}

)
.(5.31)

By (5.20), the integral in the right converges as t → +∞ to

1

cπ+

∫
S×R+

π+(dv)dr n+v
(
g(νr)1{εr≤−y,r<ζ}

)
=

1

cπ+

∫
S
π+(dv)n+v

(∫ ζ

0

g(νr)1{εr≤−y}dr

)
.

Combining this and (5.28)-(5.31) we get that∫
S
π(dθ)g(θ)Ĥ+

θ (y) =
1

cπ+

∫
S
π+(dθ)n+θ

(∫ ζ

0

g(νr)1{εr≤−y}dr

)
for any bounded measurable function g : S → R, which in turn yields (5.22).

Next we prove (5.23). It follows by Proposition 3.9 that

(5.32) P̂0,π

[
g(Θ̄t)

]
= P0,π

[
g(Θ̄t)

]
∀t ≥ 0

for any bounded measurable function g : S → R. Similarly by (5.26) and (2.4) we
have

P0,π

[
g(Θ̄t)

]
= P0,π

[
g(Θ̄t); t ∈ ∪gi∈Ḡ[gi, di)

]
= P0,π

⎡⎣∑
gi∈Ḡ

g(Θgi)1{gi≤t<di}

⎤⎦
=

∫
S×[0,t]

W+
π (dv, dr)g(v)n+v (t− r < ζ).

By (5.20), we get

lim
t→+∞

P0,π

[
g(Θ̄t)

]
=

1

cπ+

∫
S
g(θ)n+θ (ζ)π

+(dθ).

It follows by this, (5.32), the bounded convergence theorem, and Lemma 5.6(i) that

P̂0,π

[
g(Θ̄eq

)
]
= P0,π

[
g(Θ̄eq

)
]

=

∫ +∞

0

e−sP0,π

[
g(Θ̄s/q)

]
ds

→ 1

cπ+

∫
S
g(θ)n+θ (ζ)π

+(dθ) =
1

cπ+

∫
S
g(θ)

(
�+(θ) + n+θ (ζ)

)
π+(dθ)

(5.33)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ENTRANCE LAWS AT THE ORIGIN OF SSMPS IN HIGH DIMENSIONS 6269

as q → 0+. Let C denote the set of nonnegative bounded measurable functions
h : S → R+ such that θ 
→ h(θ)a+(θ)/

(
�+(θ) + n+θ (ζ)

)
is a bounded function. On

the one hand, by (5.33) we have

(5.34) P̂0,π

⎡⎣ h(Θ̄eq
)a+(Θ̄eq

)

�+(Θ̄eq
) + n+

Θ̄eq
(ζ)

⎤⎦→ 1

cπ+

∫
S
h(θ)a+(θ)π+(dθ) as q → 0+

for any h ∈ C. On the other hand, by Proposition 2.3 we have

P̂0,π

⎡⎣ h(Θ̄eq
)a+(Θ̄eq

)

�+(Θ̄eq
) + n+

Θ̄eq
(ζ)

⎤⎦
=

∫
S×R+

Ŵ+
π (dv, dr)e−qr h(v)a+(v)

�+(v) + n+v (ζ)

(
q�̂+(v) + n̂+v (1− e−qζ)

)
.

(5.35)

If we can show that

lim
q→0+

P̂0,π

⎡⎣ h(Θ̄eq
)a+(Θ̄eq

)

�+(Θ̄eq
) + n+

Θ̄eq
(ζ)

⎤⎦
=

∫
S
Ŵ+

π (dv,R+)
h(v)a+(v)

�+(v) + n+v (ζ)
n̂+v (ζ = +∞) ∀h ∈ C,

(5.36)

then by (5.34) and the fact that Ŵ+
π (dv,R+)= Û+

π (dv,R+)=P̂0,π

[∫ L̄∞
0

1{Θ̂+
s ∈dv}ds

]
we get
(5.37)∫

S
Û+
π (dv,R+)

h(v)a+(v)

�+(v) + n+v (ζ)
n̂+v (ζ = +∞) =

1

cπ+

∫
S
h(θ)a+(θ)π+(dθ) ∀h ∈ C.

Note that for any q ∈ (0, 1] the integrand on the right-hand side of (5.35) is bounded
from above by

‖h‖∞
a+(v)

�+(v) + n+v (ζ)

(
�̂+(v) + n̂+v (1− e−ζ)

)
.

Hence to prove (5.36) it suffices to prove that

(5.38)

∫
S
Ŵ+

π (dv,R+)
a+(v)

�+(v) + n+v (ζ)

(
�̂+(v) + n̂+v (1− e−ζ)

)
< +∞.

By Propositions 3.9 and 2.3 the above integral is equal to

P̂0,π

[
eḡe1

a+(Θ̄e1)

�+(Θ̄e1) + n+
Θ̄e1

(ζ)

]
= P0,π

[
e(e1−ḡe1 )

a+(Θ̄e1)

�+(Θ̄e1) + n+
Θ̄e1

(ζ)

]

=

∫
R+×S×R+

e−ra+(v)V +
π (dr, dv, dz)

= P0,π

[∫ +∞

0

e−L̄−1
s a+(Θ+

s )ds

]
= P0,π

[∫ L̄e1

0

a+(Θ+
s )ds

]
.
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The finiteness of the final expectation is implied by the finiteness of P0,π+

[
ξ+1
]
.

Indeed, by (5.3) and the Markov property

P0,π+

[
ξ+1
]
=

1

P0,π

[
L̄1

]P0,π

[∫ 1

0

P0,Θs

[
ξ+1
]
dL̄s

]

=
1

P0,π

[
L̄1

]P0,π

[∫ L̄1

0

P0,Θ+
s

[
ξ+1
]
ds

]

=
1

P0,π

[
L̄1

]P0,π

[∫ L̄1

0

(
ξ+s+1 − ξ+s

)
ds

]
.

Since the continuous part of ξ+s+1−ξ+s is
∫ s+1

s
a+(Θ+

r )dr, we get by Fubini’s theorem
that

+∞ > P0,π+

[
ξ+1
]
P0,π

[
L̄1

]
≥ P0,π

[∫ L̄1

0

ds

∫ s+1

s

a+(Θ+
r )dr

]

= P0,π

[∫ L̄1+1

0

a+(Θ+
r )dr

]
.

By writing P0,π

[∫ L̄s

0
a+(Θ+

r )dr
]
= P0,π

[∫ s

0
a+(Θr)dL̄r

]
, one can show that s 
→

P0,π

[∫ L̄s

0
a+(Θ+

r )dr
]
is a subadditive and locally bounded nonnegative function,

which implies the finiteness of P0,π

[∫ L̄e1

0
a+(Θ+

s )ds
]
.

We deduce therefrom that (5.36) and hence (5.37) hold for every h ∈ C. Now, for
a general nonnegative measurable function h, one can always find a nondecreasing
sequence of functions hn ∈ C such that hn → h in the pointwise sense. Using this
and the monotone convergence theorem, one can show that (5.37) holds for any
nonnegative function h. The identity (5.23) follows immediately. �

Proposition 5.7. Suppose that the assumptions of Lemma 5.6 hold. Then the
stationary distribution ρ⊕(dy, dv) given in Proposition 5.4 can be represented by

ρ⊕(dy, dv) = ρ⊕1 (dy, dv) + ρ⊕2 (dy, dv),

where
ρ⊕1 (dy, dv) :=

cπ+

μ+
1{y<0}Π̄v(−y)Ĥ+

v (y)dy π(dv)

and

ρ⊕2 (dy, dv) :=
cπ+

μ+

a+(v)n̂+v (ζ = +∞)

�+(v) + n+v (ζ)
δ0(dy)Û

+
π (dv,R+).

Part 3. Main Results and their Proofs

6. Assumptions and main results

Suppose E is a locally compact separable metric space and B(E) is the minimal
Borel field in E containing all the open sets. Let E∂ = E ∪ {∂} (where ∂ �∈ E) be
its one-point compactification and let C0(E) be the class of all continuous functions
on E∂ vanishing at ∂. Suppose (Y, {Qy : y ∈ E}) is a Markov process on E with
lifetime ζ whose transition semigroup (Qt)t≥0 is given by

Qtf(y) = Qy [f(Yt), t < ζ] , Q0f(y) = Qy [f(Y0)] = f(y)
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for t > 0, y ∈ E, and nonnegative B(E)-measurable function f . In general, (Qt)t≥0

is a sub-Markovian semigroup on (E,B(E)). It can be extended to be strictly
Markovian on (E∂ ,B(E∂)) by setting additionally that: for t ≥ 0,

Qt1{∂}(x) = 1−Qt1E(x) ∀x ∈ E,

Qt1E(∂) = 0, Qt1{∂}(∂) = 1.

This extended transition semigroup naturally defines a Markov process (Y, {Qy :
y ∈ E∂}) on E∂ , where we have Q∂ (Yt = ∂ for all t ≥ 0) = 1.

Definition 6.1. We say the Markov process (Y, {Qy : y ∈ E}) is a Feller process
if its extended transition semigroup on (E∂ ,B(E∂)) has the Feller property:

(i) Qtf ∈ C0(E) for all t > 0 and f ∈ C0(E);
(ii) limt→0 supy∈E∂

|Qtf(y)− f(y)| = 0 for all f ∈ C0(E).

It is known by [18, Chapter 2] that under (i) the condition (ii) is equivalent to the
apparently weaker condition below:

(ii’) limt→0 Qtf(y) = f(y) for all f ∈ C0(E) and y ∈ E∂ .

Let I = R×S and I∂ = I ∪{∂} be the one-point compactification of I. Suppose
((ξ,Θ), {Px,θ : (x, θ) ∈ I}) is a MAP on I. It can be extended to be a Markov
process on I∂ as shown in the above argument. Recall that φ(x, θ) = θex for
(x, θ) ∈ I. We denote φ(∂) by �. Let H� = φ(I∂) = H ∪ {�}. For every
(x, θ) ∈ I∂ , let Pφ(x,θ) be the law of X given by the Lamperti-Kiu transform (1.1)
under Px,θ. Here we assume conventionally that P� (Xt = � for all t ≥ 0) = 1.
Then (X, {Pz : z ∈ H�}) is a Markov process on H�. First we give a lemma which
complements the result given in Lemma 2.11.

Lemma 6.2. Suppose the following condition holds.

(a1) ((ξ,Θ), {Px,θ : (x, θ) ∈ I}) is a Feller process.

Then for any (rn, θn), (r0, θ0) ∈ I∂ with (rn, θn) → (r0, θ0) as n → +∞,
(X,Pφ(rn,θn)) converges to (X,Pφ(r0,θ0)) in distribution under the Skorokhod topol-
ogy.

Proof. Fix an arbitrary sequence {(rn, θn) : n ≥ 1} ⊂ I∂ such that (rn, θn) →
(r0, θ0) ∈ I∂ . In view of (a1), it follows by [23, Theorem 4.2.5] that ((ξ,Θ),Prn,θn)
converges to ((ξ,Θ),Pr0,θ0) in distribution under the Skorokhod topology. (Here
we take the convention that P∂ ((ξt,Θt) = ∂ for all t ≥ 0) = 1.) Thus by the
Skorokhod representation theorem, there exist a probability space (Ω◦,F◦,P◦)
and couplings (ξ(n),Θ(n)), (ξ(0),Θ(0)) of the processes ((ξ,Θ),Prn,θn) and

((ξ,Θ),Pr0,θ0), respectively, such that (ξ(n),Θ(n)) converges to (ξ(0),Θ(0)) P◦-
almost surely under the Skorokhod topology. Thus there is a subset Ω′ ⊂ Ω◦ with
P◦(Ω′) = 1 such that for all ω ∈ Ω′, (ξ(n)(ω),Θ(n)(ω)) converges to (ξ(0)(ω),Θ(0)(ω))

in DR×S . We fix an arbitrary ω ∈ Ω′. For k ≥ 0 and t ≥ 0, let z
(k)
t (ω) :=

eαξ
(k)
t (ω)Θ

(k)
t (ω), x

(k)
t (ω) := eαξ

(k)
t (ω), y

(k)
t (ω) :=

∫ t

0
x
(k)
s (ω)ds, and y

(k),−1
t (ω) :=

inf{s > 0 : y
(k)
s (ω) > t}. It follows by [58, Theorem 3.1] that z(n)(ω) converges to

z(0)(ω) in DRd and x(n)(ω) converges to x(0)(ω) in DR. Hence by [23, Proposition
3.5.3(c)], for every T ∈ (0,+∞), there is a sequence of strictly increasing continuous
functions {λn : [0, T ] → R+} with λn(0) = 0 such that

(6.1) lim
n→+∞

sup
t∈[0,T ]

(
|x(n)

t (ω)− x
(0)
λn(t)

(ω)| ∨ |λn(t)− t|
)
= 0.
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We observe that

|y(n)t (ω)− y
(0)
λn(t)

(ω)| =
∣∣∣∣∣
∫ t

0

x(n)
s (ω)ds−

∫ λn(t)

0

x(0)
s (ω)ds

∣∣∣∣∣
≤
∣∣∣∣∫ t

0

x(n)
s (ω)− x

(0)
λn(s)

(ω)ds

∣∣∣∣+ ∣∣∣∣∫ t

0

x
(0)
λn(s)

(ω)− x(0)
s (ω)ds

∣∣∣∣
+

∣∣∣∣∣
∫ t

0

x(0)
s (ω)ds−

∫ λn(t)

0

x(0)
s (ω)ds

∣∣∣∣∣
≤
∫ t

0

∣∣∣x(n)
s (ω)− x

(0)
λn(s)

(ω)
∣∣∣ds+ ∫ t

0

∣∣∣x(0)
λn(s)

(ω)− x(0)
s (ω)

∣∣∣ ds
+

∫ t∨λn(t)

t∧λn(t)

|x(0)
s (ω)|ds.

Hence for T ∈ (0,+∞),

sup
t∈[0,T ]

|y(n)t (ω)− y
(0)
λn(t)

(ω)| ≤ T sup
t∈[0,T ]

|x(n)
t (ω)− x

(0)
λn(t)

(ω)|

+

∫ T

0

∣∣∣x(0)
λn(s)

(ω)− x(0)
s (ω)

∣∣∣ds
+ sup

t∈[0,T ]

|λn(t)− t| · sup
s∈[0,T+|λn(T )−T |]

|x(0)
s (ω)|.(6.2)

Immediately by (6.1) the first and third terms on the right-hand side converge to 0

as n → +∞. Since λn(s) → s for every s ∈ [0, T ], one has x
(0)
λn(s)

(ω)− x
(0)
s (ω) → 0

at every continuous point s ∈ [0, T ] of the function t 
→ x
(0)
t (ω). Thus by the right

continuity of t 
→ x
(0)
t (ω) and the bounded convergence theorem the second term

on the right-hand side of (6.2) converges to 0. Therefore we get supt∈[0,T ] |y
(n)
t (ω)−

y
(0)
λn(t)

(ω)| → 0, and again by [23, Proposition 3.5.3(c)] y(n)(ω) converges to y(0)(ω)

in DR. It then follows by Theorems 7.2 and 3.1 in [58] that y(n),−1(ω) converges to
y(0),−1(ω) in DR and z(n)◦y(n),−1(ω) converges to z(0)◦y(0),−1(ω) in DRd . The above
argument shows that z(n) ◦y(n),−1 converges to z(0)◦y(0),−1 P◦-almost surely under
the Skorokhod topology. We note that for k ≥ 0, z(k) ◦ y(k),−1 corresponds to the
process (ξ(k),Θ(k)) via the Lamperti-Kiu transform, and thus

(
z(k) ◦ y(k),−1,P◦)

is equal in law to (X,Pφ(rk,θk)). Hence we prove that (X,Pφ(rn,θn)) converges to
(X,Pφ(r0,θ0)) in distribution under the Skorokhod topology. �

In what follows, we assume that (X, {Pz, z ∈ H}) is an H-valued ssMp and
((ξ,Θ),P) is the corresponding MAP via the Lamperti-Kiu transform, for which
its Lévy system (H,Π) satisfies Ht = t until killing. We assume condition (a1) and
that the following additional conditions hold.

(a2) The modulator of ((ξ,Θ),P) is a positive recurrent process having an in-
variant distribution π which is fully supported on S. The continuous part

of ξ+ of ((ξ+,Θ+),P) can be represented by
∫ t

0
a+(Θ+

s )ds, either for some
strictly positive measurable function a+ on S or such that a+(v) = 0 for
all v ∈ S.

(a3) ((ξ,Θ),P) and ((ξ,Θ), P̂) are a pair of upwards regular MAPs for which
(WR) is satisfied.
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(a4) ((ξ,Θ), P̂) satisfies condition (HT).

(a5) P0,π

[
sups∈[0,1] |ξs|

]
< +∞.

(a6) The modulator of the ascending ladder height process ((ξ+,Θ+),P) is a
nonarithmetic aperiodic Harris recurrent process having an invariant dis-
tribution π+ on S with full support such that P0,π+

[
ξ+1
]
< +∞.

(a7) n̂+v (ζ = +∞) > 0 for every v ∈ S.
(a8) infv∈S

[
�+(v) + n+v

(
1− e−ζ

)]
> 0 and n+v (ζ) < +∞ for every v ∈ S.

As noted in Section 5, given conditions (a2) and (a8), it follows by Corollary
2.20 that

π+(·) = 1

P0,π

[
L̄1

]P0,π

[∫ 1

0

1{Θs∈·}dL̄s

]
is an invariant distribution for Θ+. Moreover, the Harris recurrence of Θ+ given in
(a6) implies that π+ is the unique invariant distribution for Θ+.

Theorem 6.3. Under assumptions (a1)-(a8), the conclusions (C1)-(C5) in the
Introduction are true.

We conclude this section by considering a slight adjustment of the sufficient con-
ditions (a1)-(a8), such that (a5) and (a7) can be replaced by the stronger sufficient
conditions (i.e. ones that imply (a5) and (a7)). Our principal aim here is to pro-
duce conditions that can be identified in terms of the components of the ascending
ladder process of ((ξ,Θ),P) and the ascending ladder process of the dual process

((ξ,Θ), P̂). More precisely, we have the following alternative conditions to Theorem
6.3.

Theorem 6.4. Suppose conditions (a5) and (a7) are replaced by:

(a5)’ The modulator (Θ+
t )t≥0 of the ascending ladder height process ((ξ

+,Θ+), P̂),
is an aperiodic Harris recurrent process having an invariant distribution π̂+

on S with full support such that∫
S
π̂+(dv)

[
â+(v) + n̂+

v (|εζ |; ζ < ∞)
]
< +∞.

(a7)’ infv∈S n̂+
v (ζ = +∞) > 0.

Then the conclusion of Theorem 6.3 is still valid.

Remark 6.5. Before continuing to the proof, let us note that the condition in (a5)’
is the natural analogue of (a6). Indeed, note that

P0,π+

[
ξ+1
]
=

∫
S
π+(dv)

[
a+(v) + n+

v (|εζ |; ζ < ∞)
]
.

Proof of Theorem 6.4 Condition (a7)’ obviously implies (a7). The proof is based
around showing that the new conditions together with (a1)-(a4) and (a8) imply
(a5). Suppose that eq is an independent exponentially distributed random variable

with rate q > 0. Due to the fact that t 
→ P0,π

[
sups∈[0,t] |ξs|

]
is increasing, to show

(a5) it suffices to show that

P0,π

[
sup

s∈[0,eq ]

|ξs|
]
=

∫ ∞

0

qe−qtP0,π

[
sup

s∈[0,t]

|ξs|
]
dt < ∞.
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For the latter, we note that

P0,π

[
sup

s∈[0,eq ]

|ξs|
]
≤ P0,π

[
ξ̄eq

]
−P0,π

[
ξ
eq

]
.

Next define

(6.3) Λ+
v (q) := �+(v)q + n+v (1− e−qζ), q ≥ 0.

Note from Proposition 2.3 that

(6.4) P0,π

[
ξ̄eq

]
= P0,π

[∫ ∞

0

1{ξ+s <∞}e
−qL̄−1

s ξ+s Λ
+

Θ+
s
(q)ds

]
.

Next define the change of measure

(6.5)
dP

(q)
0,θ

dP0,θ

∣∣∣∣∣
Gt

= e
−qL̄−1

t +
∫ t
0
Λ+

Θ
+
s
(q)ds

for θ ∈ S, where Gt = σ((L̄−1
s , ξ+s ,Θ

+
s ), s ≤ t). To see why the right-hand side of

(6.5) is a martingale, it suffices to note that (L̄−1
t ,Θ+

t )t≥0 is a MAP and that, for
θ ∈ S,

P0,θ[e
−qL̄−1

t |Θ+
s : s ≤ t] = e

−
∫ t
0
Λ+

Θ
+
s

(q)ds
, t ≥ 0,

which follows from the the definition (6.3) and the fact that the constituent parts
of Λ+

v , namely �+(v) and n+v (1 − e−qζ), describe the rate at which L̄−1
s moves

continuously and with jumps given Θ+
s = v for v ∈ S.

Using (6.5) in (6.4), we have

P0,π

[
ξ̄eq

]
=P

(q)
0,π

[∫ ∞

0

e
−

∫ s
0
Λ+

Θ
+
u

(q)du
ξ+s ΛΘ+

s
(q)ds

]
= P

(q)
0,π

[∫ ∞

0

e
−

∫ s
0
Λ+

Θ
+
u

(q)du
dξ+s

]
,

where the final equality follows by a straightforward integration by parts (recall
that the process ξ+ is nondecreasing and therefore has bounded variation paths).
From (a8), we now have that there exists a constant c > 0 such that for any q ≥ 1
(6.6)

P0,π

[
ξ̄eq

]
≤P

(q)
0,π

[∫ ∞

0

e−csdξ+s

]
=cP

(q)
0,π

[∫ ∞

0

e−csξ+s ds

]
=c

∫ ∞

0

e−csP
(q)
0,π

[
ξ+s
]
ds,

where, again, we have performed an integration by parts. Next note that, given
Θ+, the exponent associated to (L̄−1

t , ξ+t )t≥0 is given by

P
(q)
0,π[e

−αL̄−1
t −βξ+t |Θ+]

= exp

{
−
∫ t

0

ds
[
α�+(Θ+

s ) + βa+(Θ+
s ) + n+

Θ+
s
((1− e−αζ−βεζ )e−qζ ; ζ < ∞)

]}
,

for α, β, t ≥ 0. From this it is easily deduced by differentiation that

P(q)[ξ+t |Θ+] =

∫ t

0

ds
[
a+(Θ+

s ) + n+
Θ+

s
(|εζ |e−qζ ; ζ < ∞)

]
≤
∫ t

0

a+(Θ+
s ) + n+

Θ+
s
(|εζ |; ζ < ∞)ds

= P[ξ+t |Θ+].
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Using the ergodic properties of Θ+ under P, we can invoke Theorem 1.1 of [26] and
conclude that

lim sup
t→∞

1

t
P

(q)
0,π[ξ

+
t ] ≤ lim

t→∞

1

t
P0,π[ξ

+
t ]

= lim
t→∞

1

t
P0,π

[∫ t

0

a+(Θ+
s ) + n+

Θ+
s
(|εζ |; ζ < ∞)ds

]
=

∫
S
π+(dv)

[
a+(v) + n+v (|εζ |; ζ < ∞)

]
= P0,π+ [ξ+1 ].

Using the above linear growth, it follows from (6.6) that P0,π

[
ξ̄eq

]
< ∞.

Using obvious notation, the analogous object to Λ+
v (q) for the descending ladder

height MAP takes the form

Λ−
v (q) = n−v (ζ = +∞) + �−(v)q + n−v (1− e−qζ ; ζ < ∞), q ≥ 0.

(Specifically, we cannot rule out the possibility of killing.) Let us momentarily
assume that the modulator of the descending ladder height process ((ξ−,Θ−),P) is
an aperiodic Harris recurrent process with an invariant distribution π− on S with
full support such that∫

S
π−(dv)

[
a−(v) + n−v (|εζ |; ζ < ∞)

]
< +∞

and infv∈S n−v (ζ = +∞) > 0. Following the above computations, albeit using the
last lower bound to justify the lower bounding constant c in (6.6), we can show

that P0,π

[
ξ
eq

]
< ∞.

To complete the proof, we need to show that the assumptions in the last para-
graph match those in the statement of the theorem by verifying that P0,π−

[
ξ−1
]
=

P̂0,π̂+

[
ξ+1
]
. Thanks to the weak reversal relation between P and P̃ (see the dis-

cussion below Lemma 3.3), we have that P0,π− [ξ−1 ] = P̃0,π̃− [ξ−1 ], where π̃− plays

the role of π− but for ((ξ,Θ), P̃). The relation between P̃ and P̂ then implies that

π̃− = π̂+ and P̃0,π̃− [ξ−1 ] = P̂0,π+ [ξ+1 ] as required.
The remainder of the paper is devoted to the proof of Theorem 6.3; as such, we

always assume conditions (a1)-(a8) hold unless otherwise stated. Before moving
to the proof of Theorem 6.3, we first engage in a little discussion concerning its
applicability.

7. Applicability of results

There are two immediate cases of interest: The case of a Brownian motion in
a cone and the case of a stable process in a cone. The general philosophy of the
proofs of Theorems 6.3 and 6.4 is to use a judiciously chosen harmonic function to
construct a process whose dual can serve as the desired ssMp entering at the origin.
In the two examples below, we verify the general criteria of the aforesaid theorem(s).
The reader will note that, in both cases, it is first necessary to construct the notion
of the process conditioned to remain in a cone (appealing to an appropriate change
of measure, which ultimately comes from a harmonic function constructed on the
Martin boundary of the base process killed on exiting a cone) and transfer that
notion into the general setting of required criteria on MAPs. One may argue that
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it may prove to be easier to construct the candidate process entering at the origin
in a direct way rather than via Theorem 6.3 or 6.4. Indeed this was the approach
in [43]. It is also worthy of noting that the majority of the conditions in Theorem
6.3 (and hence in Theorem 6.4) boil down to controlling the stability of the ssMp in
order to obtain the Skorokhod limit in (C4), limx→0 Px, rather than the existence
of the limit P0.

In the remainder of this section we will also discuss further open problems that
could in principle be analyzed appealing to the fluctuation theory of the Lamperti–
Kiu decomposition. Moreover, we also discuss the reason why the general fluctua-
tion theory of MAPs is deserving of further investigation given what has been laid
out in this article.

7.1. Brownian motion in a cone. We are interested in cones of the form

(7.1) Γ = {x = rθ : r > 0, θ ∈ Ω},
where Ω is a nonempty open subset on Sd−1. We assume further that there is a
complete set of eigenfunctions {mj : Sd−1 → R, j ≥ 1} which are orthonormal
with respect to the surface measure on Ω with eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · ·
which satisfy

Δd−1mj = −λjmj on Ω

mj = 0 on ∂Ω, j ≥ 1,

such that every boundary point of Ω is regular for the above Dirichlet problem,
where Δd−1 denotes the Laplace-Beltrami operator on Sd−1.

Suppose (B,P) is a d-dimensional (d ≥ 2) standard Brownian motion and that
Γ is a regular cone in Rd. Let τΓ := inf{t > 0 : Bt �∈ Γ}. From Theorem B of [28]
(see also [7]), it is known that there exists a constant κ > 0 such that

Px(τ
Γ > t) = κ‖x‖pm1(arg(x))t

−p/2(1 + o(1)), t → ∞,

where p =
√
λ1 + (d/2− 1)2 − (d/2 − 1) . It thus is relatively straightforward to

show that, for A ∈ Ft = σ(Bu : u ≤ t) and x ∈ Γ,

(7.2) PΓ
x(A) := lim

s→∞
Px(A | τΓ > t+ s)

defines a family of conservative probabilities on the space of continuous paths such
that

(7.3)
dPΓ

x

dPx

∣∣∣∣
Ft

:=
M(Bt)

M(x)
1{t<τΓ}, t ≥ 0,

where
M(x) = ‖x‖pm1(arg(x))

is a harmonic function in the cone. In particular, the right-hand side of (7.3) is a
martingale. Furthermore, if PΓ = {PΓ

x , x ∈ Γ}, then the process (B,PΓ) is an ssMp.
Brownian motion conditioned to stay in a cone has previously been considered

in [7, 27, 28, 54]. Only in [27] was the notion of a Brownian motion conditioned to
stay in the cone issued from the apex considered. In that case, the authors built the
law of the Brownian motion conditioned to remain in the cone and survive for at
least one unit of time from a point x away from the apex and then showed the weak
limit on path space as x converges to the apex of the cone. The authors described
their construction as analogous to the construction of the Brownian meander in
the upper half-line (i.e. a Brownian meander in the cone). Independently of the
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aforementioned work, Theorem 6.3 provides an easy route to the construction of
Brownian motion conditioned to stay in a cone, issued from the apex, as the weak
limit on path space of the conditioned process issued from any other point in the
interior of the cone.

To understand how to see (B,PΓ) as an ssMp, we first consider standard Brow-
nian motion as such. Its Lamperti-Kiu decomposition has MAP (ξ,Θ), with prob-
abilities P = {Py,θ, y ∈ R, θ ∈ Sd−1} and has the property that ξ is independent of
Θ. Moreover, ξ is a Brownian motion with drift on R, whose Laplace exponent is
given by ψ(θ) = θ2 + (d− 2)θ. Since d ≥ 2, the drift is strictly positive. Note that

(7.4)
M(Bt)

M(x)
1{t<τΓ} = ep(ξϕ(t)−log ‖x‖) m1(Θϕ(t))

m1(arg(x))
1{t<τΓ}, t ≥ 0.

Hence, recalling that ϕ(t) is a stopping time, we can think of the change of measure
(7.3) as the product of an Esscher transform on ξ and the natural change of measure
on Θ corresponding to a Doob h-transform with h = m1. Indeed, treating s = ϕ(t)
as the natural timescale of (ξ,Θ), we have the martingale on the right-hand side of
(7.4) equal to

ep(ξs−log ‖x‖) m1(Θs)

m1(arg(x))
1{s<kΩ} = ep(ξs−log ‖x‖)−ψ(p)s × eψ(p)s m1(Θs)

m1(arg(x))
1{s<kΩ}

= ep(ξs−log ‖x‖)−ψ(p)s × eλ1s
m1(Θs)

m1(arg(x))
1{s<kΩ}, s ≥ 0,

(7.5)

where ψ(p) = p2 + (d− 2)p = λ1 and kΩ = inf{t > 0 : Θt �∈ Ω}.
As such, we see that the Brownian motion conditioned to stay in a cone has

underlying MAP (ξ,Θ) with probabilities PΓ = {PΓ
y,θ, y ∈ R, θ ∈ Ω}, such that

PΓ is absolutely continuous with respect to P, with the change of measure on
σ((ξu,Θu), u < s) given by the right-hand side of (7.5). Because of the factorization
of (7.5) into a martingale acting on the law of ξ and another acting on the law of
Θ, it is clear that the components of the pair (ξ,Θ) under PΓ are still independent.
Moreover, ξ still belongs to the family of Brownian motion with strictly positive
drift; the latter being characterized by the Laplace exponent

ψΓ(θ) = ψ(θ + p)− ψ(p) = θ2 + (d+ 2p− 2)θ.

Now referring back to Theorem 6.3, we may consider the question of whether the
process conditioned to remain in the cone may be issued from its apex. To the best
of our knowledge this would offer a new result.

To this end, let us consider each of the assumptions (a1)-(a8).

(a1): In d-dimensions, as alluded to previously, ξ and Θ are independent. Whilst
we have identified above ξ as a Brownian motion with drift, we should
mention that Θ is known from Section 7.15 of [31]. The Feller property is
an easy consequence of known results given there.

(a2): As ξ is a Brownian motion with drift, independent of Θ, the continuous
part of ξ+ is nothing more than a pure drift. Hence a+(θ) = a+ > 0.
The existence of a discrete spectrum of the Laplace–Beltrami operator on
Ω, the independence of Θ from ξ, and thus developing the semigroup of Θ



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6278 A. E. KYPRIANOU, V. RIVERO, B. ŞENGÜL, AND T. YANG

as a spectral expansion allows us to easily deduce that the latter converges
weakly to a stationary distribution, π. In addition, for bounded measurable
function g : Ω → R, we can identify π via∫

Ω

g(θ)π(dθ) =

∫
Ω

g(θ)m̃1(θ)m1(θ)Σ(dθ),

where Σ(dθ) is the uniform measure on the sphere Sd−1 and m̃1 is the
left eigenfunction associated to λ1, which is normalized to satisfy that∫
Ω
m̃1(θ)m1(θ)Σ(dθ) = 1.

(a3): This condition is easily satisfied thanks to the duality properties of Brow-
nian motion with drift and the reversibility of Θ with respect to π.

(a4)-(a5): Note that the dual process ((ξ,Θ), P̂Γ) to ((ξ,Θ),PΓ) is equal in law to
((−ξ,Θ),PΓ) (thanks to the independence of ξ and Θ and the fact that ξ
is a Brownian motion with drift). Rather than verifying the criteria (a4)
and (a5) directly, we can refer back to their use in the proof of Theorem
2.15 and Proposition 2.16. In the spirit of Remark 2.17, we note that it
suffices to show that limt→∞ ξt/t exists P

Γ-almost surely. This is, of course,
a trivial consequence of the independence of Θ and ξ as well as the fact
that ξ under PΓ is a Brownian motion with drift.

(a6): This requirement is fundamentally needed for Section 5, in order to analyze
overshoot distributions of the MAP using the Markov renewal theory. In
the current setting, due to the fact that there are no overshoots, only a
creeping term, and that ξ and Θ are independent, the only requirement
needed is that a stationary distribution for Θ+ exists. However, this was
dealt with in (a2).

(a7): The excursion measure n̂+v of ((ξ,Θ), P̂Γ) from its running maximum does
not depend on v∈Ω, and it agrees with the excursion measure of ((ξ,Θ),PΓ)
from its running minimum. As ξt → ∞, PΓ-a.s., we find easily that n̂+(ζ =
+∞) > 0.

(a8): Once again, independence of ξ and Θ under PΓ ensures that none of the
items in this assumption depend on v ∈ Ω. As such, we note that n+ is
played by the role of the excursion measure of ((ξ,Θ),PΓ) from its max-
imum. Moreover, �+ is the drift coefficient of the inverse local time of ξ
at its maximum, which is zero. The first part of the assumption follows
immediately as n+

(
1− e−ζ

)
> 0. In order to verify the second part of the

assumption, i.e. that n+(ζ) < +∞, it suffices to recall the Wiener-Hopf
factorization for a Brownian motion with strictly positive drift. It is classi-
cally known (see e.g. Section 6.5 of [40]) that the inverse local time at the
maximum is a tempered stable process, and thus has finite mean, which
necessarily implies that n+(ζ) < +∞.

7.2. Stable process in a cone. Recently [43] resolved the matter of conditioning
a d-dimensional (d ≥ 2) isotropic α-stable (α ∈ (0, 2)) process to remain in a
cone Γ of the form defined in (7.1) where Ω is an open set on Sd−1. As here,
their approach relied on the Markov renewal theory, albeit the application was not
undertaken explicitly in the context of excursion theory.

As in the Brownian setting, the conditioning (7.2) can be made sense of, resulting
in a change of measure as in (7.3). Also similarly to the Brownian case, the harmonic
function M is a locally bounded function on Rd which vanishes on Rd \ Γ and has
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the property that it can be written in the form

(7.6) M(x) = ‖x‖pM(arg(x))

for some p ∈ (0, α). Unlike the Brownian case, the underlying MAP ((ξ,Θ),P)
of the isotropic stable process does not have the property that the ordinate is
independent of the modulator. The coupling between the two is complicated to
describe (cf. [41]); moreover, it forces the process ((ξ,Θ),PΓ) to similarly display
coupling.

Nonetheless, what is similar to the Brownian setting is that, thanks to isotropy
itself, the ordinate process of the MAP ((ξ,Θ),P) is a Lévy process. This is known
in explicit detail via its characteristic exponent

(7.7) Ψξ(θ) =
Γ( 12 (−iθ + α))

Γ(− 1
2 iθ)

×
Γ( 12 (iθ + d))

Γ( 12 (iθ + d− α))
, θ ∈ R.

We can also identify the associated Laplace exponent of (ξ,P) via the relation
ψ(λ) = −Ψξ(−iλ), providing Re(λ) ∈ (−d, α). As the ordinate ξ alone is a Lévy
process, it follows that, when seen as a change of measure on (ξ,Θ), (7.3) can be
better written as

(7.8)
dPΓ

0,θ

dP0,θ

∣∣∣∣∣
σ((ξs,Θs):s≤t)

:= epξt−ψ(p)tM(Θt)

M(θ)
eψ(p)t1{t<kΓ}, t ≥ 0.

From (7.7) its Wiener-Hopf factorization (indicated by its multiplicative sign) is
also explicit; see [41, 42] for more details. Moreover, the ordinate process ξ under
PΓ can also be seen as the result of a generalized Esscher transform. However, the
loss of isotropy in the cone means that the ordinate is no longer a Lévy process.
Nonetheless, the excursion theory of ((ξ,Θ),PΓ) can be related back to that of
((ξ,Θ),P).

In terms of verifying assumptions (a1)-(a8), it is unsurprising that some of them
formed part of the proof in [43] or follow as easy corollaries of those proved there.
As such Theorem 6.3 offers an alternative way of assembling many of the smaller
results in [43]. As in Section 7.1, we run through (a1)-(a8) below. We want to
stress that all but (a2) hold for any dimension d ≥ 2; however, for technical reasons
we are only able to deal with d = 2 (see Remark 7.1 below).

(a1): The MAP underlying the isotropic stable process is Feller. Being a gen-
eralized Esscher transform (i.e. a Doob h-transform) of the former, it is
straightforward to verify that ((ξ,Θ),PΓ) is a Feller process.

(a2): From Example 3.6 we know that ((ξ,Θ),P) is dual to ((ξ,Θ), P̂) with

respect to the measure Leb⊗ π where (ξ,Θ) under P̂x,θ is equal in law to
(−ξ,Θ) under P−x,θ and π is the uniform measure on Sd−1. We claim in the

following that condition (WR) is satisfied by ((ξ,Θ),PΓ) and ((ξ,Θ), P̂Γ)

with respect to the measure πΓ(dθ) := 1{θ∈Ω}M(θ)2π(dθ), where P̂Γ =

{P̂Γ
x,θ, x ∈ R, θ ∈ Ω} and P̂Γ

x,θ denotes the law of (−ξ,Θ) under PΓ
−x,θ. In

fact, for any t > 0 and any nonnegative measurable functions f, h : Ω → R+
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and g : R → R+ we have∫
Ω

f(θ)PΓ
0,θ [g(ξt)h(Θt)]π

Γ(dθ)

=

∫
Ω

M(θ)f(θ)P0,θ

[
epξtM(Θt)g(ξt)h(Θt)1{t<kΩ}

]
π(dθ)

= P0,π

[
M(Θ0)f(Θ0)e

pξtM(Θt)g(ξt)h(Θt)1{t<kΩ}
]

= P̂0,π

[
M(Θt)f(Θt)e

p(ξ0−ξt)M(Θ0)g(ξ0 − ξt)h(Θ0)1{t<kΩ}

]
= P0,π

[
M(Θ0)h(Θ0)e

pξtM(Θt)f(Θt)g(ξt)1{t<kΩ}
]

=

∫
Ω

M(υ)h(υ)P0,υ

[
epξtM(Θt)f(Θt)g(ξt)1{t<kΩ}

]
π(dυ)

=

∫
Ω

h(υ)PΓ
0,υ [g(ξt)f(Θt)]π

Γ(dυ).

The third equality follows from Lemma 3.8. In conclusion we’ve proved
that

PΓ
0,θ (ξt ∈ dz,Θt ∈ dυ)πΓ(dθ) = PΓ

0,υ (ξt ∈ dz,Θt ∈ dθ)πΓ(dυ).

By integrating the above equation over z, it follows that (Θ,PΓ) is dual to
itself with respect to πΓ. Without loss of generality we assume πΓ(Ω) = 1.
Thus πΓ is an invariant distribution of (Θ,PΓ).

Next, note from Proposition 20.17 in [34] that as soon as we know that
(Θ,PΓ) is a regular Feller process, due to the fact that (7.3) describes a
conservative process, it follows that Θ is Harris recurrent. Here, by “regular
Feller” the process has the Feller property as well as its transition semigroup
being absolutely continuous with respect to some locally finite measure,
such that the transition density is jointly continuous in time and its spatial
variables.

We consider d = 2 only. We know from [12] that, under P, Θ can
be written in the form of exp(iϑt), where ϑ := {ϑt, t ≥ 0} is a pure
jump Lévy process (the winding number) whose Lévy measure is known.
From [33, Section 5] (see also [38, Theorem 1] for more recent results in
this direction) and the form of the Lévy measure given in [12], m(du) =
c
∫
R2 1{arg(1+x)∈du}‖x‖−(2+α)dx (where c is an unimportant constant), it is

straightforward to verify that the sufficient condition (up to an unimportant
multiplicative constant)

lim
ε→0

∫
(−ε,ε)

u2m(du)

ε2| log ε| = lim
ε→0

c
∫
(−ε,ε)

u2
∫∞
0

|reiu − 1|−(2+α)rdrdu

ε2| log ε| = +∞

holds, in which case ϑ is a Lévy process having transition density function
with respect to the Lebesgue measure, which is bounded continuous and
vanishes at infinity in its spatial variable. Note that the Feller property
also ensures that it is continuous in its temporal variable. Suppose we
write the latter as {pt(x), t ≥ 0, x ∈ R}. This automatically provides us
with a density for the process ϑ killed on exiting Ω. (Note, we are slightly
abusing notation here and we are now interpreting Ω as a subset of (−π, π].)
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Indeed, we can write the latter as

p
†
t(x, y) = pt(y − x)−P0,x[1{kΩ<t}pt−kΩ(y − ϑkΩ)], x, y ∈ Ω.

Note that the Feller property again gives us continuity in t. Moreover, from
e.g. the discussion between (2.18) and (2.19) in [14], it is straightforward to
show that M is continuous. This tells us that (ϑ,PΓ) also has a transition
density function which is continuous in both of its spatial variables, i.e.

in light of (7.8), pΓt (x, y) = exp(ψ(p)t)M(y)p†t(x, y)/M(x), x, y ∈ Ω; and
similarly continuity in t follows from the Feller property. The joint conti-
nuity of (t, x, y) 
→ pΓt (x, y) now follows by a classical epsilon-delta chasing
argument with multiple use of the triangle inequality. Returning to the pre-
vious paragraph, we thus conclude that (Θ,PΓ) is Harris recurrent. This
is slightly weaker than the required positive recurrence; however Theorem
20.20 in [33] ensures that we must be in the positive recurrent setting.

Finally for the third requirement, the ordinate of the ascending ladder
process ((ξ+,Θ+),P) underlying the isotropic stable process has no con-
tinuous part (as ξ alone is a Lévy process with no drift to its ascending
ladder process; cf. (7.7)). Hence after the change of measure corresponding
to conditioning the stable process to remain in a cone, the same is true for
((ξ+,Θ+),PΓ), that is to say, for ((ξ+,Θ+),PΓ), a+(v) = 0 for all v ∈ S.

(a3): It was verified in (a2) that condition (WR) holds for ((ξ,Θ),PΓ) and

((ξ,Θ), P̂Γ). Moreover, since the former can be described as a Doob h-
transform with respect to ((ξ,Θ),P), and since this process is both upwards
and downwards regular, then the same is true of ((ξ,Θ),PΓ) and its dual.

(a4): In the spirit of Remark 2.17 it suffices to show that (Θ,PΓ) has a skeleton
process of the form {Θnδ : n ≥ 1} for some δ > 0 that is Harris recurrent.
This follows from our computations in (a2) and Example 3.1 in [5, Chapter
VII, Section 3].

(a5): Define ξ∗t = sups≤t |ξs|. Appealing to the change of measure between

((ξ,Θ),P) and ((ξ,Θ),PΓ), we have, for some constant C > 0 (whose
value may change from line to line) and 0 < ε � 1,

PΓ
0,πΓ [ξ∗1 ] =

∫
Ω

M(θ)2π(dθ)P0,θ

[
ξ∗1e

pξ1
M(Θ1)

M(θ)
1{t<kΩ}

]
≤ C

∫
Ω

π(dθ)P0,θ

[
ξ∗1e

pξ∗1
]

≤ CP0

[
e(p+ε)ξ∗1

]
,

where ε is chosen so that p + ε < α and we have abused notation and
written (ξ,P0) to denote the Lévy process with characteristic exponent
(7.7) issued from the origin. Appealing to Theorem 24.18 of [53], it follows

that P0

[
e(p+ε)ξ∗1

]
< +∞ if and only if P0

[
e(p+ε)|ξ1|

]
< +∞. The latter

condition occurs if and only if P0

[
e(p+ε)ξ1 ∨ e−(p+ε)ξ1

]
< +∞. However,

P0

[
e(p+ε)ξ1 ∨ e−(p+ε)ξ1

]
≤ P0

[
e(p+ε)ξ1 + e−(p+ε)ξ1

]
= eψ(p+ε) + eψ(−(p+ε)),

and the latter is finite due to the fact that ψ(λ) analytically extends to the
interval (−d, α) and p+ ε < α < d.
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(a6): The modulator of the ascending ladder height process ((ξ+,Θ+),PΓ) was
shown to be a nonarithmetic aperiodic Harris recurrent process having an
invariant distribution πΓ,+ on Ω with full support in Theorems 4.2 and 4.3
of [43]. Moreover, from Remark 4.1 of [43], we recall that M(v)−1πΓ,+(dv)
is an invariant distribution for the process

((Θ+
t 1{t<k+,Ω})t≥0,P),

where k+,Ω = inf{t > 0 : Θ+
t �∈ Ω}. We can thus write

PΓ
0,πΓ,+

[
ξ+1
]
=

∫
Ω

πΓ,+(dθ)

M(θ)
P0,θ

[
ξ+1 e

pξ+1 M(Θ+
1 )1{1<k+,Ω}

]
≤
∫
Ω

πΓ,+(dθ)

M(θ)
P0,θ

[
e(p+ε)ξ+1

]
,

(7.9)

where 0 < ε � 1. The right-hand side of (7.9) is finite due to the fact that
(ξ+,P) is a subordinator whose Laplace exponent is given by

(7.10) κ(λ) :=
Γ((λ+ α)/2)

Γ(λ/2)
, λ > −α.

It is clear from the Laplace exponent above that ξ+ has finite exponential
moments; in particular, the right-hand side of (7.9) is finite, providing
p+ ε < α .

(a7): As mentioned above, the dual of ((ξ,Θ),PΓ) is equal in law to ((−ξ,Θ),PΓ).
It follows that the ascending ladder process of the dual is equal in law to
the descending ladder process of ((ξ,Θ),PΓ). It follows that the associated
excursion measure at the maximum of the dual MAP, n̂Γ,+v , agrees with the
excursion measure at the minimum, nΓ,−v . Hence our objective is to under-
stand nΓ,−v (ζ = +∞). Suppose now that ((ξ−,Θ−),P) is the descending
ladder height process of the isotropic stable process. From (7.7), we know
that ξ− alone is a killed pure jump subordinator with Laplace exponent

κ̂(λ) :=
Γ( 12 (λ+ d))

Γ( 12 (λ+ d− α))
, λ ≥ 0,

and hence has killing rate q− = Γ(d/2)/Γ((d− α)/2). When taking ac-
count of the killing rate for the coupled system ((ξ−,Θ−),P), isotropy
ensures that the killing rate of the pair is also equal to q−. In other
words, the lifetime of the pair ((ξ−,Θ−),P), written as k−, is an in-
dependent and exponentially distributed random variable with parame-
ter q−. From [43, Remark 4.1], we know that ((ξ−,Θ−),PΓ) can be
described as a Doob h-transform with respect to ((ξ−,Θ−),P). Hence
the lifetime of ((ξ−,Θ−,PΓ)) is an independent and exponentially dis-
tributed random variable with parameter q−. In conclusion we have that
n̂Γ,+v (ζ = +∞) = nΓ,−v (ζ = +∞) = q− > 0 for every v ∈ Ω.

(a8): For the MAP ((ξ,Θ),P) underlying the isotropic stable process, the local
time of the ordinate at its maximum is simply that of the Lévy process
at its maximum. As such the drift component of the inverse local time,
say �+, does not depend on v ∈ Ω. In fact, as a consequence of the fact
that (ξ,P) is a Lévy process with unbounded variation, we can show that
�+ = 0. However, the excursion measure n+υ does depend on υ.
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Denote by �Γ,+ the drift component of the additive functional describing
local time of ((ξ,Θ),PΓ) at the running maximum in the spirit of (2.2).
Applying a similar analysis to the verification of (a7), we can deduce in a
straightforward manner that �Γ,+ = �+ and

nΓ,+v (1− e−ζ) =
1

M(v)
n+v

(
ep|εζ |M(νζ)(1− e−ζ); ζ < kΩ

)
≥ 1

M(v)
n+v

(
ep|εζ |M(νζ); ζ < kΩ

)
,

where we have abused slightly our notation for kΩ in the obvious way. A
consequence of the fact that epξtM(Θt)1(t<kΩ) is a martingale is that

�+M(v) + n+v

(
ep|εζ |M(νζ); ζ < kΩ

)
= M(v).

It follows that

inf
v∈Ω

[
�Γ,+ + nΓ,+v

(
1− e−ζ

)]
≥ 1,

as required.
To show that nΓ,+v (ζ) < +∞ for every v ∈ Ω, we note that

(7.11) nΓ,+v (ζ) =
1

M(v)
n+v

(
ζep|εζ |M(νζ); ζ < kΩ

)
≤ C

1

M(v)
n+v

(
ζep|εζ |

)
for some constant C > 0. Note that np,+v (·) := n+v

(
ep|εζ |; ·

)
is the ex-

cursion measure at the maximum of the MAP ((ξ,Θ),Pp) that results by
changing measure with respect to the law of ((ξ,Θ),P) via the martingale
epξt+Ψξ(−ip)t. Note the latter martingale is well-defined thanks to the an-
alytic extension of (7.7) to a moment generating cumulant on (−d, α) and
the fact that p ∈ (0, α). On account of the fact that ξ drifts to +∞ under
P, i.e. its mean is strictly positive, the same is true for ξ under Pp. It is a
general fact that for a Lévy process which drifts to +∞, the inverse local
time at the maximum has finite mean. This implies that np,+v (ζ) < ∞,
which, together with (7.11), implies that nΓ,+v (ζ) < ∞ for all v ∈ Ω.

Remark 7.1. The reader will note that, in light of Theorem 6.4, the criteria (a5)’
and (a7)’ would have been equally easy to check. We also note that as soon as
the regular Feller property can be verified in (a2) for the angular process Θ in
dimension d ≥ 3, then the verification above also works in that setting. It is worth
emphasizing that the reason why the case d = 2 is more tractable here is that
Θ = exp(iϑ) is such that ϑ is a Lévy process. This fact is not true in higher
dimensions. Nonetheless, due to the fact that we know the jump rate of Θ (see e.g.
[41]) it is likely that, with a little effort, one can develop an argument along the
lines of the d = 2 case given in (a2) above.

7.3. Open problems. The examples given in Sections 7.1 and 7.2 have one thing
in common, namely, that they originate from isotropic processes (Brownian motion
and isotropic stable processes, respectively). One major open problem that we can
register here for future inspiration pertains to the obvious removal of the assumption
that the underlying process is isotropic.
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In the setting of Brownian motion, some foundations already exist in that direc-
tion in [28]. However, in the stable setting, very little is known of these anisotropic
Lévy processes beyond some formalities, e.g. that up to a multiplicative con-
stant, their Lévy measures can be written in generalized polar coordinate form
r−(α+1)�(dθ), r > 0, θ ∈ Sd−1, for some (anisotropic) measure � on Sd−1. A
straightforward example thereof could be seen as e.g. �(dθ) = Σ(dθ)1{θ∈Ω}, where

Σ is the surface measure on Sd−1 and Ω is a nonempty open convex domain of Sd−1.
Another example takes the form �(dθ) = h(θ)Σ(dθ) for some anisotropic function
h : Sd−1 → (0,∞).

Due to the fact that all of the aforementioned processes are Lévy processes, being
able to issue them from the origin, their associated weak continuity in the point of
issue, and their Feller property is automatic. However, an outstanding challenge, in
light of the results of this article, is to understand how to condition them to remain
in a cone and show that the apex can be included in the state space, in the sense
discussed in this article.

Whereas understanding conditioning boils down to a matter of considering the
existence of harmonic functions of the cone, as we have seen in Sections 7.1 and
7.2, the matter of including the apex as an entrance point boils down to an under-
standing of how such harmonic functions interact with the underlying MAP of the
anisotropic Brownian motion or Lévy process.

7.4. Remarks on the fluctuation theory of MAPs. The calculations we have
made that concern general MAPs have, on the one hand, been guided by the par-
ticular application to constructing the entrance law at the origin of a general ssMp.
However, it is also notable that most of what has been developed here aligns with
fluctuation theory for Lévy processes that underpin a large body of applied proba-
bility literature. There is an existing body of literature which considers applications
of MAPs in the more basic setting (relative to the context in this article) that the
modulator is an ergodic Markov chain with a finite number of states. Among the
many applications, this includes (with an example item of literature from the many):
Aspects of queuing theory [5]; Fluid queues and dams [50, 52]; Ruin problems for
surplus risk processes [6,24]; Optimal stopping problems [21]; Stochastic differential
equations and stochastic control [44]; Multi-type branching and fragmentation pro-
cesses [9,55]. The more exotic setting of a general Markov modulator for the MAP
opens the door to much richer categories of models with far more subtle questions.
Whilst we have provided some core results in this paper for general MAPs, it is
remarkable that there is a significant amount of material that is still missing from
the literature in the general setting. The papers [19, 20, 35, 36] seem to be some of
the very few general treatments of MAPs. As such, the variety of results proved
here for MAPs lends weight to the perspective that it is a relatively tractable theory
which should now be better understood since the theory of one-dimensional Lévy
processes has largely been resolved.

8. Construction of entrance law

We define the killed process (ξ†,Θ†) by setting

(ξ†t ,Θ
†
t) :=

{
(ξt,Θt) if t < τ+0 ,

∂ if t ≥ τ+0 .
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The next lemma is the analogue of Hunt’s switching identity (see [8, Theorem II.5]
for the case of Lévy processes). It follows from the proof of [30, Theorem(11.3)];
we include it here for completeness.

Lemma 8.1. ((ξ†,Θ†), P̂) and ((ξ†,Θ†),P) are dual with respect to Leb⊗ π.

Proof. Let μ := Leb⊗π and fix an arbitrary t > 0. Then from Proposition 3.7 and
Lemma 3.2 we see that the process ((ξ(t−s)−,Θ(t−s)−)s≤t,Pμ) has the same law

as ((ξs,Θs)s≤t, P̂μ). It follows that the triple process ((ξ(t−s)−,Θ(t−s)−, ξ̄t)s≤t,Pμ)

has the same law as ((ξs,Θs, ξ̄t)s≤t, P̂μ). Thus for any nonnegative measurable
functions f, g : R× S → R+,∫

R×S
μ(dy, dθ)g(y, θ)P̂y,θ[f(ξ

†
t ,Θ

†
t)] =

∫
R×S

μ(dy, dθ)P̂y,θ[g(ξ0,Θ0)f(ξt,Θt)1{ξ̄t≤0}]

=

∫
R×S

μ(dy, dθ)Py,θ[g(ξt−,Θt−)f(ξ0,Θ0)1{ξ̄t≤0}]

=

∫
R×S

μ(dy, dθ)Py,θ[g(ξt,Θt)f(ξ0,Θ0)1{ξ̄t≤0}]

=

∫
R×S

μ(dy, dθ)f(y, θ)Py,θ[g(ξ
†
t ,Θ

†
t)],

where in the third equality we have used the quasi-left continuity of ((ξ,Θ),P). �
Recall the definition of ϕ from (1.2). Let us define the time-changed process

(ξϕ,Θϕ) by setting

(ξϕt ,Θ
ϕ
t ) := (ξϕ(t),Θϕ(t)) ∀ 0 ≤ t < ζ̄,

where ζ̄ :=
∫∞
0

exp{αξu} du is the lifetime of (ξϕ,Θϕ). We denote by (ξϕ,†,Θϕ,†)

the process of (ξϕ,Θϕ) killed after the time τϕ,+0 := inf{t ≥ 0 : ξϕt > 0}.

Lemma 8.2. The processes ((ξϕ,†,Θϕ,†),P) and ((ξϕ,Θϕ), P̂↓) are dual with re-
spect to the measure

ν0(dy, dθ) := 1{y<0}
cπ+

μ+
eαyĤ+

θ (y)dyπ(dθ).

Proof. Let f, g : R × S → R+ be two nonnegative measurable functions. By the
definition of P̂↓ given in Section 4 we have∫

(−∞,0)×S
dyπ(dθ) Ĥ+

θ (y)g(y, θ)P̂↓
y,θ[f(ξt,Θt)]

=

∫
(−∞,0)×S

dyπ(dθ)Ĥ+
θ (y)g(y, θ)P̂y,θ

[
f(ξt,Θt)

Ĥ+
Θt
(ξt)

Ĥ+
θ (y)

; t < τ+0

]

=

∫
(−∞,0)×S

dyπ(dθ)g(y, θ)P̂y,θ

[
f(ξt,Θt)Ĥ

+
Θt
(ξt); t < τ+0

]
=

∫
(−∞,0)×S

dyπ(dθ)Ĥ+
θ (y)f(y, θ)Py,θ

[
g(ξt,Θt); t < τ+0

]
.(8.1)

In the final equality we have applied Lemma 8.1. The above equations show that
((ξ†,Θ†),P) and ((ξ,Θ), P̂↓) are dual with respect to the measure

μ(dy, dθ) := 1{y<0}
cπ+

μ+
Ĥ+

θ (y)dyπ(dθ).
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Next for t ≥ 0, define

At :=

∫ t

0

exp{αξu} du.

Then At is an additive functional in the sense that

At+s = At +A′
t ◦ θs, t, s ≥ 0,

where θ is the shift operator and A′ is an independent copy of A. Since ϕ is
the right inverse of A, [56, Theorem 4.5] states that the time-changed processes

((ξϕ,†,Θϕ,†),P) and ((ξϕ,Θϕ), P̂↓) are dual with respect to the Revuz measure ν
associated with At, which is determined by the following formula:

(8.2)

∫
R×S

f(y, θ)ν(dy, dθ) = lim
t→0+

1

t

∫
R×S

μ(dz, dv)Pz,v

[∫ t

0

f(ξ†s,Θ
†
s)dAs

]
for every nonnegative measurable function f : R × S → R+. By Fubini’s theorem
and the duality relation obtained in (8.1) we have

RHS of (8.2) = lim
t→0+

1

t

∫
R×S

μ(dz, dv)Pz,v

[∫ t

0

f(ξ†s ,Θ
†
s)e

αξ†sds

]
= lim

t→0+

∫
R×S

μ(dz, dv)eαzf(z, v)
1

t

∫ t

0

P̂↓
z,v(s < ζ)ds

=

∫
R×S

μ(dz, dv)eαzf(z, v).

In the final equality we use the dominated convergence theorem. Hence the pro-
cesses ((ξϕ,†,Θϕ,†),P) and ((ξϕ, ξϕ), P̂↓) are dual with respect to eαyμ(dy, dθ) =

1{y<0}
cπ+

μ+ eαyĤ+
θ (y)dyπ(dθ). �

Now we wish to apply Lemma 3.3 to the dual processes ((ξϕ,†,Θϕ,†),P) and

((ξϕ,Θϕ), P̂↓). In order to do so, we need to check the integral condition given in
Lemma 3.3. We will show the integral condition in Lemma 3.3 by breaking it up
into two lemmas as follows.

Lemma 8.3. For every nonnegative measurable function f : R× S → R+,∫
R×S

ρ⊕1 (dy, dθ)P̂
↓
y,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]
=

∫
R×S

ν0(dy, dθ)f(y, θ)Py,θ(ξτ+
0
> 0).

Proof. Let f : R × S → R be an arbitrary nonnegative measurable function. We
have ∫

R×S
ρ⊕1 (dy, dθ)P̂

↓
y,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]

=
cπ+

μ+

∫
(−∞,0)×S

dyeαyĤ+
θ (y)π(dθ)e−αyΠ̄θ(−y)P̂↓

y,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]

=

∫
R×S

ν0(dy, dθ)e
−αyΠ̄θ(−y)P̂↓

y,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]

=

∫
R×S

ν0(dy, dθ)f(y, θ)Py,θ

[∫ τϕ,+
0

0

e−αξϕt Π̄Θϕ
t
(−ξϕt )dt

]
,
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where Π̄v(z) = Π(v,S, (z,+∞)). The last equality follows from Lemma 8.2. We
undo the time-change and write

Py,θ

[∫ τϕ,+
0

0

e−αξϕt Π̄Θϕ
t
(−ξϕt ) dt

]
= Py,θ

[∫ τ+
0

0

Π̄Θt
(−ξt) dt

]
.

Hence we get ∫
R×S

ρ⊕1 (dy, dθ)P̂
↓
y,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]

=

∫
R×S

ν0(dy, dθ)f(y, θ)Py,θ

[∫ τ+
0

0

Π̄Θt
(−ξt) dt

]
.

(8.3)

On the other hand, by the Lévy system representation given in (2.1), we have

Py,θ

(
ξτ+

0
> 0
)
= Py,θ

⎛⎝∑
s≤τ+

0

1{ξs>0}

⎞⎠
= Py,θ

[∫ τ+
0

0

ds

∫
S×R

1{ξs+z>0}Π(Θs, dv, dz)

]

= Py,θ

[∫ τ+
0

0

Π(Θs, S, (−ξs,+∞))ds

]

= Py,θ

[∫ τ+
0

0

Π̄Θs
(−ξs)ds

]
.

(8.4)

The lemma now follows by plugging (8.4) into the right-hand side of (8.3). �

Lemma 8.4. For every nonnegative measurable function f : R× S → R+,
(8.5)∫

R×S
ρ⊕2 (dr, dθ)P̂

↓
r,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]
=

∫
R×S

f(r, θ)ν0(dr, dθ)Pr,θ(ξτ+
0
= 0).

Proof. Without loss of generality we assume that f is a nonnegative compactly
supported function for which the integral on the right-hand side of (8.5) is finite.
First we undo the time-change and write

P̂↓
r,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t )dt

]
= P̂↓

r,θ

[∫ ζ

0

eαξtf(ξt,Θt)dt

]
.

Let F (x, θ) := eαxĤ+
θ (x)f(x, θ) for (x, θ) ∈ R× S. By (4.2) and Fubini’s theorem

we have

P̂↓
0,θ

[∫ ζ

0

eαξtf(ξt,Θt)dt

]
= P̂↓

0,θ

[∫ ζ

0

Ĥ+
Θt
(ξt)

−1F (ξt,Θt)dt

]

=
n̂+θ

[∫ ζ

0
F (−εs, νs)ds

]
n̂+θ (ζ = +∞)

.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6288 A. E. KYPRIANOU, V. RIVERO, B. ŞENGÜL, AND T. YANG

Hence by the definition of ρ⊕2 we get∫
R×S

ρ⊕2 (dr, dθ)P̂
↓
r,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t ) dt

]

=
cπ+

μ+

∫
S
Û+
π (dθ,R+)

a+(θ)n̂+θ (ζ = +∞)

�+(θ) + n+θ (ζ)
P̂↓

0,θ

[∫ ζ

0

eαξtf(ξt,Θt)dt

]

=
cπ+

μ+

∫
S
Û+
π (dθ,R+)

a+(θ)n̂+θ

[∫ ζ

0
F (−εs, νs)ds

]
�+(θ) + n+θ (ζ)

.(8.6)

On the other hand by Proposition 2.10 and Fubini’s theorem we have∫
R×S

ν0(dy, dθ)f(y, θ)Py,θ

(
ξτ+

0
= 0
)

=
cπ+

μ+

∫
R−×S

dyπ(dθ)eαyĤ+
θ (y)f(y, θ)P0,θ

(
ξτ+

−y
= −y

)
=

cπ+

μ+

∫
R+×S

dzπ(dθ)e−αzĤ+
θ (−z)f(−z, θ)

∫
S
a+(v)u+

θ (dv, z)

=
cπ+

μ+

∫
S
π(dθ)

∫
S×R+

U+
θ (dv, dz)F (−z, θ)a+(v).

From this and (8.6) we can see that to show (8.5), it suffices to show that

∫
S
Û+
π (dθ,R+)

a+(θ)n̂+θ

[∫ ζ

0
F (−εs, νs)ds

]
�+(θ) + n+θ (ζ)

=

∫
S
π(dθ)

∫
S×R+

U+
θ (dv, dz)F (−z, θ)a+(v).

(8.7)

By Proposition 3.9 the following equation holds for all q > 0:

P0,π

⎡⎣eqḡeq F (−ξ̄eq
,Θ0)a

+(Θ̄eq
)

q
(
�+(Θ̄eq

) + n+
Θ̄eq

(ζ)
)
⎤⎦

= P̂0,π

⎡⎣eq(eq−ḡeq )
F (−(ξ̄eq

− ξeq
),Θeq

)a+(Θ̄eq
)

q
(
�+(Θ̄eq

) + n+
Θ̄eq

(ζ)
)

⎤⎦ .

(8.8)

By Proposition 2.3, the expectation on the left-hand side equals

∫
S
π(dθ)

∫
S×R+

U+
θ (dv, dz)F (−z, θ)a+(v)

�+(v) + n+v

(∫ ζ

0
e−qsds

)
�+(v) + n+v (ζ)

→
∫
S
π(dθ)

∫
S×R+

U+
θ (dv, dz)F (−z, θ)a+(v)(8.9)

as q → 0+ by the monotone convergence theorem and condition (a8) that n+v (ζ) <
+∞ for all v ∈ S. Similarly by Proposition 2.3 and the monotone convergence
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theorem, the expectation on the right-hand side of (8.8) equals

∫
R+×S×R+

V̂ +
π (dr, dv, dz)e−qr

a+(v)n̂+v

(∫ ζ

0
F (−εs, νs)ds

)
�+(v) + n+v (ζ)

→
∫
S
Û+
π (dv,R+)

a+(v)n̂+v

(∫ ζ

0
F (−εs, νs)ds

)
�+(v) + n+v (ζ)

(8.10)

as q → 0+. Hence (8.7) follows immediately by combining (8.8)-(8.10). �

Finally, we show that the process ((ξϕ,Θϕ), P̂↓) has a finite lifetime.

Lemma 8.5. For every x ≤ 0, θ ∈ S,

P̂↓
x,θ

(∫ +∞

0

eαξtdt < +∞
)

= 1.

In particular, the lifetime ζ̄ of the process ((ξϕ,Θϕ), P̂↓
x,θ) is finite almost surely

and ξϕ
ζ̄− = −∞ P̂↓

x,θ-a.s.

Proof. Since the lifetime of the time-changed process (ξϕ,Θϕ) equals
∫ +∞
0

eαξtdt,
we only need to prove the first assertion. We first consider the case where x < 0

and θ ∈ S. Recall that P̂↓
x,θ is defined from P̂x,θ through a martingale change of

measure with Wt := Ĥ+
Θt
(ξt)1{t<τ+

0 }/Ĥ
+
θ (x) being the martingale. Since Ĥ+

v (y) =

P̂y,v

(
τ+0 = +∞

)
∈ [0, 1], Wt is a bounded P̂x,θ-martingale and hence has an almost

sure limit W∞ such that Wt → W∞ in L1(P̂x,θ). This implies that P̂↓
x,θ(A) =

P̂x,θ [W∞1A] for all A ∈ F∞. Hence we get

(8.11) P̂↓
x,θ

(∫ +∞

0

eαξtdt < +∞
)

= P̂x,θ

[
W∞1{

∫ +∞
0

eαξtdt<+∞}

]
.

It follows by Lemma 3.8 that

P̂0,π

[
sup

s∈[0,1]

|ξs|
]
= P0,π

[
sup

s∈[0,1]

|ξs − ξ1|
]
≤ 2P0,π

[
sup

s∈[0,1]

|ξs|
]
< +∞.

Hence the MAP ((ξ,Θ), P̂) exhibits exactly one of the tail behaviors described in

Proposition 2.16. We have proved in Proposition 4.1(i) that P̂x,θ

(
τ+0 = +∞

)
> 0.

This together with Proposition 2.15 implies that under P̂x,θ the ordinate ξt drifts
to −∞ at a linear rate. Hence we have

P̂x,θ

(∫ +∞

0

eαξtdt < +∞
)

= 1.

By this and (8.11) we get

P̂↓
x,θ

(∫ +∞

0

eαξtdt < +∞
)

= P̂x,θ[W∞] = 1.

Now we consider the case where x = 0. We have proved in Proposition 4.3 that

under P̂↓
0,θ, ξt leaves 0 instantaneously and that the process (ξt,Θt)t>0 has the same
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transition rates as ((ξt,Θt)t>0, P̂
↓
y,θ) where (y, θ) ∈ (−∞, 0) × S. By the Markov

property we have

P̂↓
0,θ

(∫ +∞

s

eαξtdt < +∞
)

= P̂↓
0,θ

[
P̂↓

ξs,Θs

(∫ +∞

0

eαξtdt < +∞
)]

for any s > 0. Hence we get P̂↓
0,θ

(∫ +∞
0

eαξtdt < +∞
)
= 1. �

By Lemma 8.2 the processes ((ξϕ,†,Θϕ,†),P) and ((ξϕ,Θϕ), P̂↓) are dual with
respect to ν0. By Proposition 5.7, Lemma 8.3, and Lemma 8.4 one has

(8.12)

∫
R×S

ρ⊕(dr, dθ)P̂↓
r,θ

[∫ ζ̄

0

f(ξϕt ,Θ
ϕ
t )dt

]
=

∫
R×S

f(r, θ)ν0(dr, dθ)

for every nonnegative measurable function f : R × S → R+. We define the time-
changed reversed process (ξ̃, Θ̃) by setting

(ξ̃t, Θ̃t) :=
(
ξϕ
(ζ̄−t)−,Θ

ϕ

(ζ̄−t)−

)
for 0 ≤ t < ζ̄.

In view of (8.12) and Lemma 8.5 we can apply Lemma 3.3 to deduce that

((ξ̃t, Θ̃t)0<t<ζ̄ , P̂
↓
ρ⊕) is a right continuous strong Markov process having the same

transition rates as ((ξϕ,†,Θϕ,†),P). In conclusion we have just shown the following
proposition.

Proposition 8.6. Let 
 be the image of the probability measure ρ⊕ under the

map φ : (y, θ) 
→ θey. Let P↘
� be the law of the process (X̃t := eξ̃tΘ̃t)t<ζ̄ under

P̂↓
ρ⊕ . Then the process ((X̃t)t<ζ̄ ,P

↘
� ) is a right continuous Markov process such

that X̃0 = 0 and X̃t �= 0 for all t > 0 P↘
� -a.s. Moreover, ((X̃t)0<t<ζ̄ ,P

↘
� ) is a

strong Markov process having the same transition rates as the self-similar Markov
process (X, {Pz, z ∈ H}) killed upon exiting the unit ball.

By applying the scaling property of ssMp, we can describe the law of the process
killed when exiting the ball of radius r for any r > 0. Thus we see that there exists
a process (X,P0) started at the origin such that for any r > 0, ((Xt)t<τ�

r
,P0) is

equal in law to ((rX̃r−αt)t<rαζ̄ ,P
↘
� ).

9. Convergence of entrance law

In the following we give a convergence lemma which gives sufficient conditions
for the candidate law P0 defined in Section 8 to be the weak limit of limH�z→0 Pz.
The idea of its proof is from [22, Proposition 7]. For completeness we also give
details here.

Lemma 9.1. Suppose {μn : n ≥ 0} is a sequence of probability measures on H
which converges weakly to δ0. Then P0 = w- limn→+∞ Pμn

in the Skorokhod space
if the following two conditions are satisfied:

(i) limδ→0 lim supn→+∞ Pμn

[
τ�δ ∧ 1

]
= 0.

(ii) There exists a Δ > 0 such that for every δ ∈ (0,Δ), (Xτ�
δ
,Pμn

) →
(Xτ�

δ
,P0) in distribution as n → +∞.
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Proof. Let DRd be the space of (possibly killed) càdlàg functions ω : [0,∞) → Rd,
equipped with the Skorokhod topology. We work with Prokhorov’s metric d(·, ·),
which is compatible with the Skorokhod convergence: for m ∈ N and two paths
x, y in DRd , define

dm(x, y) := inf
λ∈Λm

{ sup
t∈[0,m]

|λ(t)− t| ∨ sup
t∈[0,m]

|x(t)− y ◦ λ(t)|},

where Λm denotes the set of strictly increasing continuous functions λ : [0,m] → R+

with λ(0) = 0, and define

d(x, y) :=

+∞∑
m=1

2−m (dm(x, y) + dm(y, x)) ∧ 1.

To prove P0 = w- limn→+∞ Pμn
in the Skorokhod space, it suffices to prove that

for an arbitrary Lipschitz continuous function f : DRd → R with Lipschitz constant
κ > 0,

(9.1) lim
n→+∞

Pμn
[f(X)] = P0 [f(X)] .

We note that by Proposition 8.6
(
(Xt+τ�

δ
)t≥0,P0

)
is a Markov process having the

same transition rates as (X, {Pz, z ∈ H}). In view of (a1) and condition (ii), Lemma
6.2 yields that for every δ ∈ (0,Δ),(

(Xt+τ�
δ
)t≥0,Pμn

)
→
(
(Xt+τ�

δ
)t≥0,P0

)
in distribution under the Skorokhod topology as n → +∞. Thus by the repre-
sentation theorem, there exist an appropriate probability space (Ω∗,F∗,P∗) and
couplings Y (n), Y (0) of the processes (X,Pμn

) and (X,P0), respectively, such that

(Y
(n)
t+ςn)t≥0 → (Y

(0)
t+ς0)t≥0 as n → +∞

P∗-almost surely in the Skorokhod space, where for k ≥ 1, ςk := inf{t ≥ 0 :

‖Y (k)
t ‖ > δ} and ς0 := inf{t ≥ 0 : ‖Y (0)

t ‖ > δ}. We observe that for n ≥ 1,

d(Y (n), Y (0)) ≤ 4δ + 2 |ςn − ς0| ∧ 1 + d(Y
(n)
·+ςn

, Y
(0)
·+ς0

).

Thus by the Lipschitz continuity of f ,
(9.2)∣∣∣P∗

[
f(Y (n))

]
− P∗

[
f(Y (0))

]∣∣∣ ≤ 4κδ + 2κP∗ [|ςn − ς0| ∧ 1] + κP∗
[
d(Y

(n)
ςn+·, Y

(0)
ςn+·)

]
.

Obviously the third term converges to 0 as n → +∞ by the dominated convergence
theorem. Note that

P∗ [|ςn − ς0| ∧ 1] ≤ P∗ [ςn ∧ 1] + P∗ [ς0 ∧ 1] .

Condition (i) implies that

lim
δ→0

lim sup
n→+∞

P∗ [ςn ∧ 1] = lim
δ→0

lim sup
n→+∞

Pμn

[
τ�δ ∧ 1

]
= 0,

and the right continuity of (Y (0),P∗) implies that limδ→0 P
∗ [ς0 ∧ 1] = 0. Hence we

get by (9.2) that lim supn→+∞
∣∣P∗ [f(Y (n))

]
− P∗ [f(Y (0))

]∣∣ ≤ 4κδ. Hence (9.1)
follows immediately by letting δ → 0. �

Lemma 9.2. For any δ > 0 and any bounded continuous function f : H → R,

z 
→ Pz

[
τ�δ ∧ 1

]
and z 
→ Pz

[
f(Xτ�

δ
)
]
are continuous on H.
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Proof. Fix an arbitrary δ > 0. Suppose zn, z∞ ∈ H satisfies that limn→+∞ zn =
z∞. It follows by Lemma 6.2 that (X,Pzn) → (X,Pz∞) in distribution under the
Skorokhod topology. For n ≥ 0, let (Y (n),P∗) and (Y,P∗) be couplings of (X,Pzn)
and (X,Pz∞), respectively, such that Y (n) → Y P∗-a.s. in the Skorokhod topology.

Let S := inf{t ≥ 0 : ‖Yt‖ > δ} and ςn := inf{t ≥ 0 : ‖Y (n)
t ‖ > δ} for n ≥ 0. Since

X is a sphere-exterior regular process, so is Y , which implies that ‖Yt‖ �= δ for any
t < S P∗-a.s. In view of this, it follows by [57, Theorem 13.6.4] that

(ςn, Y
(n)
ςn ) → (S, YS) P∗-a.s.

as n → +∞. Consequently
(
(τ�δ , Xτ�

δ
),Pzn

)
converges in distribution to(

(τ�δ , Xτ�
δ
),Pz∞

)
, and hence this lemma follows. �

Lemma 9.3. For any sequence {zn : n ≥ 0} ⊂ H with limn→+∞ zn = 0, we have

(9.3) lim
δ→0

lim sup
n→+∞

Pzn

[
τ�δ ∧ 1

]
= 0.

Proof. Without loss of generality we assume S is a compact subset of Sd−1. It
suffices to prove (9.3) for a sequence {zn : n ≥ 0} with limn→+∞ ‖zn‖ = 0 and
limn→+∞ arg(zn) = θ for some θ ∈ S. We first consider the case where arg(zn) = θ
for n sufficiently large. By the Lamperti-Kiu transform one has(

τ�δ ,Px

) d
=

(∫ τ+
log δ

0

eαξudu,Plog ‖x‖,arg(x)

)
∀δ > 0, x ∈ H.

Taking expectations of both sides and using the translation invariance of ξ and
Fubini’s theorem, we have for every x ∈ H with ‖x‖ < δ,

Px[τ
�
δ ] = Plog ‖x‖,arg(x)

[∫ τ+
log δ

0

eαξudu

]

= δαPlog(‖x‖/δ),arg(x)

[∫ τ+
0

0

eαξudu

]

= δα
∫ ∞

0

duPlog(‖x‖/δ),arg(x)

[
e−α(ξ̄u−ξu)eαξ̄u1{ξ̄u≤0}

]
= δα lim

q↓0

1

q
Plog(‖x‖/δ),arg(x)

[
e−α(ξ̄eq−ξeq )eαξ̄eq 1{ξ̄eq≤0}

]
.(9.4)

Set y = log(‖x‖/δ) < 0 and u = arg(x). By Proposition 2.3 and the monotone
convergence theorem we have

1

q
Py,u

[
e−α(ξ̄eq−ξeq )eαξ̄eq1{ξ̄eq≤0}

]
=

1

q
P0,u

[
e−α(ξ̄eq−ξeq )eα(ξ̄eq−|y|)1{ξ̄eq≤|y|}

]
=

∫
R+×S×[0,|y|]

e−qreα(z−|y|)

[
�+(v) + n+v

(∫ ζ

0

e−qs−αsds

)]
V +
u (dr, dv, dz)

→
∫
S×[0,|y|]

e−α(|y|−z)

[
�+(v) + n+v

(∫ ζ

0

e−αsds

)]
U+
u (dv, dz)(9.5)
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as q ↓ 0. It follows from (9.4) and (9.5) that

(9.6) Pzn

[
τ�δ
]
= δα

∫
S×[0,|yn|]

e−α(|yn|−z)

[
�+(v) + n+v

(∫ ζ

0

e−αsds

)]
U+
θ (dv, dz)

where yn = log(‖zn‖/δ). Since |yn| → +∞ as n → +∞, by (5.9) the integral on
the right-hand side converges to

1

α

∫
S

[
�+(v) + n+v

(∫ ζ

0

e−αsds

)]
π+(dv),

which is bounded from above by cπ+/α. Hence (9.3) follows by letting δ → 0 in
(9.6). For a more general sequence {zn : n ≥ 0} which satisfies the conditions
stated in the beginning of this proof, we set z∗n := ‖zn‖θ. The above argument
shows that limδ→0 lim supn→+∞ Pz∗

n

[
τ�δ ∧ 1

]
= 0. Since limn→+∞ ‖z∗n − zn‖ = 0

and by Lemma 9.2 the function z 
→ Pz

[
τ�δ ∧ 1

]
is uniformly continuous on any

compact subset of H, we have limn→+∞
∣∣Pz∗

n

[
τ�δ ∧ 1

]
− Pzn

[
τ�δ ∧ 1

]∣∣ = 0, and
hence (9.3) follows. �

Lemma 9.4. Suppose {zn : n ≥ 0} ⊂ H satisfies limn→+∞ zn = 0. Then for

any δ > 0, the probability measures Pzn

(
Xτ�

δ
∈ ·
)

converge weakly to a proper

distribution μδ(·) on H.

Proof. We need to show that there exists a distribution μδ on H such that

(9.7) lim
n→+∞

Pzn

[
f(Xτ�

δ
)
]
=

∫
H
fdμδ

for every bounded continuous function f : H → R. In view of Lemma 9.2 and the
argument at the end of the above proof, we only need to prove that (9.7) holds for
a sequence {zn : n ≥ 0} where limn→+∞ ‖zn‖ = 0 and arg(zn) = θ for n sufficiently
large. By the Lamperti-Kiu transform we have

Pzn

[
f(Xτ�

δ
)
]
= Plog ‖zn‖,θ

[
f
(
exp{ξτ+

log δ
}Θτ+

log δ

)]
= P0,θ

[
f

(
elog δ exp

{
ξτ+

log δ
‖zn‖

− log
δ

‖zn‖

}
Θτ+

log δ
‖zn‖

)]
.

Since ‖zn‖ → 0 and log(δ/‖zn‖) → +∞, Proposition 5.4 yields that the distribu-
tion of (ξτ+

log(δ/‖zn‖)
− log(δ/‖zn‖),Θτ+

log(δ/‖zn‖)
) converges weakly to ρ�. Thus the

expectation on the right-hand side of the above equation converges to∫
R+×S

f
(
elog δezv

)
ρ�(dz, dv).

Hence, by setting μδ(·) =
∫
R+×S 1{elog δezv∈·}ρ

�(dz, dv), we get (9.7). �

Lemma 9.5. For any δ > 0, we have P0

(
Xτ�

δ
∈ ·
)
= μδ(·).

Proof. Suppose f : H → R is an arbitrary bounded continuous function and σn :=
1/n for n ≥ 1. By the strong Markov property, we have for any 0 < σn < δ,

(9.8) P0

[
f(Xτ�

δ
)
]
= P0

[
PX

τ
�
σn

[
f(Xτ�

δ
)
]]

= P0

[
g(Xτ�

σn
)
]
,
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where g(x) := Px

[
f(Xτ�

δ
)
]
. Since under P0 the process Xt leaves 0 instantaneously

and continuously, we have Xτ�
σn

→ 0 P0-a.s. as n → +∞. Hence by Lemma 9.4,

g(Xτ�
σn
) = PX

τ
�
σn

[
f(Xτ�

δ
)
]
→ μδ(f) P0-a.s. By letting n → +∞ in (9.8) we get

that P0

[
f(Xτ�

δ
)
]
= μδ(f), which yields this lemma. �

Proof of Theorem 6.3. The statements of (C1), (C2), and (C3) are from Propo-
sitions 4.2-4.3, 5.4, and 8.6, respectively. Hence we only need to show (C4) and
(C5).

(C4): We get P0 = w- limH�z→0 Pz by a combination of Lemmas 9.1-9.5. Prop-
erties (4) and (5) are direct consequences of the construction of (X,P0) given in Sec-
tion 8. Next we show that (X, {Pz, z ∈ H0}) is a Feller process. Let H0

∂ = H0∪{∂}
(resp. H� = H ∪ {�}) be the one-point compactification of H0 (resp. H). Both
H0

∂ and H� are compact separable metric spaces. Let C0(H0) (resp. C0(H)) be
the class of continuous functions on H0

∂ (resp. H�) vanishing at ∂ (resp. �).
Fix an arbitrary f ∈ C0(H0), and let Ptf(z) := Pz [f(Xt)] for z ∈ H0 and
t ≥ 0. To show the Feller property, it suffices to show that Ptf ∈ C0(H0) for
all t > 0 and limt→0+ Ptf(z) = f(z) for all z ∈ H0 . The latter holds naturally
since (X, {Pz, z ∈ H0}) is a right continuous process. We only need to show that
Ptf ∈ C0(H0) for t > 0. Suppose xn, x ∈ H0 and xn → x. It is proved by the
above argument and Lemma 6.2 that w-limn→+∞ Pxn

= Px in the weak sense of
measures on the Skorokhod space. If

(9.9) Px (Xt− �= Xt) = 0

for t > 0, then it follows by [32, Proposition VI.2.1] that (Xt,Pxn
) converges in

distribution to (Xt,Px), and hence limn→+∞ Ptf(xn) = limn→+∞ Pxn
[f(Xt)] =

Px [f(Xt)] = Ptf(x). Note that for x ∈ H and t > 0,

Px (Xt− �= Xt) = Plog ‖x‖,arg(x)
(
(ξϕ(t)−,Θϕ(t)−) �= (ξϕ(t),Θϕ(t))

)
,

where ϕ(t) defined in (1.2) is a stopping time with respect to the process ((ξ,Θ),P).
Hence (9.9) holds by the quasi-left continuity of ((ξ,Θ),P). For x = 0, we have
by the Markov property that

P0 (Xt− �= Xt) = P0

(
PXt/2

(
X t

2− �= X t
2

))
= 0 ∀t > 0.

Thus we have proved (9.9) holds for all x ∈ H0 and t > 0. Hence z 
→ Ptf(z)
is continuous on H0. Next we show that Ptf vanishes at ∂. Let C∗

0 (H0) be the
subclass of C0(H0) vanishing at 0. We observe that if a sequence {xn : n ≥ 1} ⊂ H
converges to either ∂ or 0 in the space H0

∂ , it also converges to � in the space
H�. So a function g in C∗

0 (H0) can be viewed as a function in C0(H) by setting
g(�) = 0. Thus by Lemma 6.2, for any H � xn → ∂ we have

(9.10) lim
n→+∞

Ptg(xn) = lim
n→+∞

Pxn
[g(Xt)] = 0

for all g ∈ C∗
0 (H0) and t > 0. If, in particular, we take xn = ernθ where (rn, θ) ∈

R × S and rn → +∞, then by the scaling property and the bounded convergence
theorem, we have

lim
n→+∞

Pth(xn) = lim
n→+∞

Pθ [h(e
rnXe−αrn t)] = 0
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for all h ∈ C0(H0) and t > 0. This combined with (9.10) implies that as xn → ∂
the distribution of (Xt,Pxn

) converges weakly to the Dirac measure at ∂. We use
B(0, δ) to denote the δ-neighborhood of 0. It follows that

(9.11) lim
H�x→∂

Px (Xt ∈ B(0, δ)) = 0 ∀δ > 0.

Note that for every x ∈ H and δ > 0,

|Ptf(x)| ≤ |Px [f(Xt);Xt ∈ B(0, δ)]|+ |Px [f(Xt);Xt �∈ B(0, δ)]|
≤ ‖f‖∞Px (Xt ∈ B(0, δ)) + sup

y∈H\B(0,δ)

|f(y)|.

In view of (9.11) and the fact that f vanishes at ∂, by letting x → ∂ and then
δ → +∞ in the above inequality, we get that limH�x→∂ |Ptf(x)| = 0. Hence
Ptf ∈ C0(H0). Therefore (X, {Pz, z ∈ H0}) is a Feller process.

Recall that ((Xt)t>0,P0) has the same transition rates as the ssMp (X, {Pz, z ∈
H}). Thus by the Markov property, to show that (X,P0) is self-similar, we only

need to show that (Xt,P0)
d
= (cXc−αt,P0) for every t > 0 and c > 0 , and this is

true since

(Xt,P0) = w- lim
H�z→0

(Xt,Pcz)
d
= w- lim

H�z→0
(cXc−αt,Pz) = (cXc−αt,P0).

Finally we show the uniqueness of P0. Suppose there exists another probability
measure P∗

0 for which the property (3) is satisfied. Using the Feller property twice
we get

P∗
0 (Xt ∈ ·) = w- lim

H�z→0
Pz (Xt ∈ ·) = P0 (Xt ∈ ·) for every t > 0.

Hence by the Markov property P∗
0 is equal to P0. Suppose now that, instead, P∗

0

satisfies the property (5). Then for any t > 0 and any bounded continuous function
h : S → R,

P∗
0 [h(Xt)] = lim

ε→0+
P∗
0 [h(Xt+ε)]

= lim
ε→0+

P∗
0 [PXε

[h(Xt)]]

= P0 [h(Xt)] .

We used in the first equality the fact that (X,P∗
0) is a right continuous process and

in the second equality the Markov property. The fact that limε→0+ Xε = 0 P∗
0-

a.s. and the Feller property of (X, {Pz, z ∈ H0}) imply that PXε
(Xt ∈ ·) converges

weakly to P0 (Xt ∈ ·) P∗
0-a.s. This is used in the third equality. The above equation

implies that P∗
0(Xt ∈ ·) = P0(Xt ∈ ·) for all t > 0, and therefore P∗

0 is equal to P0

again by the Markov property.
(C5): By the strong Markov property and the sphere-exterior regularity of

(X, {Pz, z ∈ H}), we have

P0

(
‖Xt‖ = δ for some t ∈ (0, τ�δ )

)
= P0

(
‖Xt‖ = δ for some t ∈ [τ�δ/2, τ

�
δ ), τ�δ/2 < τ�δ

)
= P0

[
PX

τ
�
δ/2

(
‖Xt‖ = δ for some t < τ�δ

)
; τ�δ/2 < τ�δ

]
= 0.
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In view of this and the fact that w-limH�z→0 Pz = P0 in the Skorokhod space, it
follows by the Skorokhod representation theorem and [57, Theorem 13.6.4] that(
(Xτ�

δ −, Xτ�
δ
),Pz

)
converges in distribution to

(
(Xτ�

δ −, Xτ�
δ
),P0

)
as z → 0. We

note that for any x > 0 and θ ∈ S,

Pθe−x

(
arg(Xτ�

1 −) ∈ dv, log ‖Xτ�
1 −‖ ∈ dy, arg(Xτ�

1
) ∈ dφ, log ‖Xτ�

1
‖ ∈ dz

)
= P−x,θ

(
Θτ+

0 − ∈ dv, ξτ+
0 − ∈ dy, Θτ+

0
∈ dφ, ξτ+

0
∈ dz

)
= P0,θ

(
Θτ+

x − ∈ dv, ξτ+
x − − x ∈ dy, Θτ+

x
∈ dφ, ξτ+

x
− x ∈ dz

)
.

By Proposition 5.4 the last distribution converges weakly to ρ(dv, dy, dφ, dz) as
x → +∞. Hence by the above argument we get

w- lim
H�z→0

Pz

(
arg(Xτ�

1 −)∈dv, log ‖Xτ�
1 −‖∈dy, arg(Xτ�

1
)∈dφ, log ‖Xτ�

1
‖∈dz

)
= P0

(
arg(Xτ�

1 −) ∈ dv, log ‖Xτ�
1 −‖ ∈ dy, arg(Xτ�

1
) ∈ dφ, log ‖Xτ�

1
‖ ∈ dz

)
= ρ(dv, dy, dφ, dz).

This completes the proof.
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[8] Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge Uni-
versity Press, Cambridge, 1996. MR1406564

[9] Jean Bertoin, Homogeneous multitype fragmentations, In and out of equilibrium. 2, Progr.
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Lévy processes, Ann. Appl. Probab. 20 (2010), no. 5, 1801–1830, DOI 10.1214/09-AAP673.
MR2724421
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