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Summary

This thesis concerns on new developments of continuous-state branching processes. In particular,
we focus on two di↵erent topics on this subject. The first topic concerns continuous-state branch-
ing processes in a Lévy random environment. In order to define this class of processes, we study
the existence and uniqueness of strong solutions of a particular class of non-negative stochas-
tic di↵erential equations driven by Brownian motions and Poisson random measures which are
mutually independent. The long-term behaviours of absorption and explosion are also studied.

The second topic is related to multi-type continuous-state branching processes with a count-
able infinite number of types. We define this kind of processes as super Markov chains with both
local and non-local branching mechanisms. Special attention is given to extinction events; in
particular local and global extinction are studied.
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Introduction

In many biological systems, when the population size is large enough, many birth and death
events occur. Therefore, the dynamics of the population become di�cult to describe. Under this
scenario, continuous-state models are good approximations of these systems and sometimes they
can be simpler and computationally more tractable. Moreover, the qualitative behaviour of the
approximate models may be easier to understand.

The simplest branching model in continuous time and space is perhaps the so called continuous-
state branching process (or CB-process for short). They have been the subject of intensive study
since their introduction by Jǐrina [58]. This model arises as the limit of Galton-Watson processes;
where individuals behave independently one from each other and each individual gives birth to
a random number of o↵spring, with the same o↵spring distribution (see for instance Grimvall
[49], for a general background see Chapter 12 of [64] or Chapter 3 of [70]). More precisely, a
[0,1]-valued strong Markov process Y = (Yt, t � 0) with probabilities (Px, x � 0) is called a
continuous-state branching process if it has paths that are right-continuous with left limits and
its law observes the branching property: for all ✓ � 0 and x, y � 0,

Ex+y

h

e�✓Yt

i

= Ex

h

e�✓Yt

i

Ey

h

e�✓Yt

i

, t � 0.

Moreover, its law is completely characterized by the latter identity, i.e.

Ex

h

e��Yt

i

= e�xu
t

(�), t,� � 0, (1)

where u is a di↵erentiable function in t satisfying

@ut(�)

@t
= � (ut(�)), u0(�) = �, (2)

and  satisfies the celebrated Lévy-Khintchine formula, i.e.

 (�) = �q � a�+ �2�2 +

Z

(0,1)

�

e��x � 1 + �x1{x<1}
�

µ(dx), � � 0,

where a 2 R, q, � � 0 and µ is a measure concentrated on (0,1) such that
R

(0,1)

�

1 ^ x2
�

µ(dx)
is finite. The function  is convex and is known as the branching mechanism of Y .

Let
T0 = inf{t � 0 : Yt = 0} and T1 = inf{t � 0 : Yt = 1}

denote the absorption and explosion times, respectively. Then Yt = 0 for every t � T0 and
Yt = 1 for every t � T1. Plainly, equation (2) can be solved in terms of  , and this readily
yields the law of the absorption and extinction times ( see Grey [48]). More precisely, let ⌘ be the
largest root of the branching mechanism  , i.e. ⌘ = sup{✓ � 0 :  (✓) = 0}, (with 1 = sup{;}).
Then for every x > 0:
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i) if ⌘ = 0 or if
R

0+ d✓/| (✓)| = 1, we have Px(T1 < 1) = 0,

ii) if ⌘ > 0 and
R

0+ d✓/| (✓)| < 1, we define

g(t) = �
Z t

0

d✓

 (✓)
, t 2 (0, ⌘).

The mapping g : (0, ⌘) ! (0,1) is bijective, and we write � : (0,1) ! (0, ⌘) for its right-
continuous inverse. Thus

Px(T1 > t) = exp{�x�(t)}, x, t > 0.

iii) if  (1) < 0 or if
R1 d✓/ (✓) = 1, we have Px(T0 < 1) = 0,

iv) if  (1) = 1 and
R1 d✓/ (✓) < 1, we define

�(t) =

Z 1

t

d✓

 (✓)
, t 2 (⌘,1).

The mapping � : (⌘,1) ! (0,1) is bijective, we write ' : (0,1) ! (⌘,1) for its right-
continuous inverse. Thus

Px(T0 < t) = exp{�x'(t)}, x, t > 0.

From (ii), we get that Px(T1 < 1) = 1 � exp{�x⌘}. Hence from the latter and (i), we
deduce that a CB-process has a finite explosion time with positive probability if and only if

Z

0+

du

| (u)| < 1 and ⌘ > 0,

When ⌘ < 1, the condition ⌘ > 0 is equivalent to  0(0+) < 0.
Similarly from (iv), we deduce that Px(T0 < 1) = exp{�x⌘}. Hence, the latter identity and

(iii) imply that a CB-process has a finite absorption time a.s. if and only if

 (1) = 1,

Z 1 du

 (u)
< 1 and  0(0+) � 0.

We define the extinction event as {limt!1 Yt = 0}. When  (1) = 1, we have that for all x � 0,

Px

⇣

lim
t!1

Yt = 0
⌘

= exp{�x⌘}.

The value of  0(0+) also determines whether its associated CB-process will, on average,
decrease, remain constant or increase. More precisely, under the assumption that q = 0, we
observe that the first moment of a CB-process can be obtained by di↵erentiating (1) with respect
to �. In particular, we may deduce

Ex[Yt] = xe� 
0(0+)t, for x, t � 0.

Hence using the same terminology as for Bienaymé-Galton-Watson processes, in respective order,
a CB-process is called supercritical, critical or subcritical depending on the behaviour of its mean,
in other words on whether  0(0+) < 0,  0(0+) = 0 or  0(0+) > 0.
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A process in this class can also be defined as the unique non-negative strong solution of the
following stochastic di↵erential equation (SDE for short)

Yt =Y0 + a

Z t

0
Ysds+

Z t

0

p

2�2YsdBs

+

Z t

0

Z

(0,1)

Z Y
s�

0
z eN(ds, dz, du) +

Z t

0

Z

[1,1]

Z Y
s�

0
zN(ds, dz, du),

where B = (Bt, t � 0) is a standard Brownian motion, N(ds, dz, du) is a Poisson random measure
independent of B, with intensity ds⇤(dz)du where ⇤ is a measure on (0,1] defined as ⇤(dz) =
1(0,1)(z)µ(dz) + q�1(dz), and eN is the compensated measure of N , see for instance [45].

There has been some interest in extending CB-processes to other population models. By
analogy with multi-type Galton-Watson processes, a natural extension would be to consider a
multi-type Markov population model in continuous time which exhibits a branching property.
Multi-type CB-processes (MCBPs) should have the property that the continuum mass of each
type reproduces within its own population type in a way that is familiar to a CB-process, but
also allows for the migration and/or seeding of mass into other population types.
Recently in [12], the notion of a multi-type continuous-state branching process (with immigration)
having d-types was introduced as a solution to an d-dimensional vector-valued SDE with both
Gaussian and Poisson driving noises. Simultaneously, in [23], the pathwise construction of these
d-dimensional processes was given in terms of a multiparameter time change of Lévy processes
(see also [46]). Preceding that, work on a�ne processes, originally motivated by mathematical
finance, in [33] also showed the existence of such processes. Older work on multi-type continuous-
state branching processes is more sparse but includes [73] and [88] , where only two types are
considered.

In this thesis, we introduce multi-type continuous-state branching processes (MCBPs) as
super Markov chains with both local and non-local branching mechanisms. That is to say we
defined MCBPs as superprocesses whose associated underlying Markov movement generator is
that of a Markov chain. This allows us the possibility of working with a countably infinite number
of types. We are interested in particular in the event of extinction and growth rates. Lessons
learnt from the setting of super di↵usions tells us that, in the case that the number of types is
infinite, we should expect to see the possibility that the total mass may grow arbitrarily large
whilst the population of each type dies out; see for example the summary in Chapter 2 of [39].
This type of behaviour can be attributed to the notion of transient ‘mass transfer’ through the
di↵erent types and is only possible with an infinite number of types. In the case that the number
of types is finite, we know from the setting of multi-type Bienaymé–Galton–Watson processes
(MBGW) that all types grow at the same rate. Moreover, this rate is determined by a special
eigenvalue associated to the linear semigroup of the process. In our case, the so-called spectral
radius of the linear semigroup will have an important roll in the asymptotic behaviour of our
process, in particular, it will determine the phenomenon of local extinction. In order to study
this phenomenon, we develop some standard tools based around a spine decomposition.

Another natural extension of CB-processes is to include immigration, competition or depen-
dence on the environment. The interest in these new models comes from the fact that they arise
as limits of discrete population models where there are interactions between individuals or where
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the o↵spring distribution depends on the environment (see for instance Lambert [68], Kawasu
and Watanabe [60], Bansaye and Simatos [10]).

Recall that a CB-process with immigration (or CBI-process) is a strong Markov process taking
values in [0,1], where 0 is no longer an absorbing state. It is characterized by a branching
mechanism  and an immigration mechanism,

�(u) := du+

Z 1

0
(1� e�ut)⌫(dt), u � 0

where d � 0 and
Z 1

0
(1 ^ x)⌫(dx) < 1.

It is well-known that if (Yt, t � 0) is a process in this class, then its semi-group is characterized
by

Ex

h

e��Yt

i

= exp

⇢

�xut(�)�
Z t

0
�(us)ds

�

, for �, x, t � 0,

where ut solves (2).
According to Fu and Li [45], under the condition that

R

(0,1)(x ^ x2)µ(dx) is finite, a CBI-
process can be defined as the unique non-negative strong solution of the SDE

Yt = Y0+

Z t

0
(d+ aYs)ds+

Z t

0

p

2�2YsdBs

+

Z t

0

Z

(0,1)

Z Y
s�

0
z eN(ds, dz, du) +

Z t

0

Z

(0,1)
zM (im)(ds, dz),

where M (im)(ds, dz) is a Poisson random measure with intensity ds⌫(dz), independent of B and
N .

CB-processes with competition were first studied by Lambert [68], under the name of logistic
branching processes, and more recently studied by Ma [74] and Beresticky et al. [13]. Under
the assumptions that q = 0 and

R

(0,1)

�

x ^ x2
�

µ(dx) < 1, the CB-process with competition is
defined as the unique strong solution of the following SDE

Yt =Y0 + a

Z t

0
Ysds�

Z t

0
�(Ys)ds+

Z t

0

p

2�2YsdBs +

Z t

0

Z

(0,1)

Z Y
s�

0
z eN(ds, dz, du),

where � is a continuous non-decreasing function on [0,1) with �(0) = 0, which is called the com-
petition mechanism. The interpretation of the function � is the following: in a given population
of size z, an additional individual would be killed a rate �(z).

Smith and Wilkinson introduced and studied branching processes in random environment
(BPREs). Roughly speaking, BPREs are a generalization of Galton-Watson processes, where
at each generation the o↵spring distribution is picked randomly in an i.i.d manner. This type
of process has attracted considerable interest in the last decade, see for instance [2, 3, 8] and
the references therein. One of the reason is that BPREs are more realistic models than classical
branching processes. And, from the mathematical point of view, they have more interesting
features such as a phase transition in the subcritical regime. Scaling limits for BPREs have been
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studied by Kurtz [62] in the continuous case and more recently by Bansaye and Simatos [10] in
a more general setting.

CB-processes in random environment, the continuous analogue in time and state space of
BPREs, can be defined as a strong solution of a particular stochastic di↵erential equation. They
have been studied recently by several authors in di↵erent settings. More precisely, Böingho↵ and
Hutzenthaler [20] studied the case when the process possesses continuous paths. This process is
the strong solution of the following SDE

Zt = Z0 + a

Z t

0
Zsds+

Z t

0

p

2�2ZsdBs +

Z t

0
ZsdSs, (3)

where the process S = (St, t � 0) is a Brownian motion with drift which is independent of B.
Bansaye and Tran [11] studied a cell division model, where the cells are infected by parasites.
Informally, the quantity of parasites in a cell evolves as a Feller di↵usion. The cells divide in
continuous time at rate r(x), which may depend on the quantity of parasites x that they contain.
When a cell divides, a random fraction ✓ of parasites goes in the first daughter cell and the rest
in the second one. In each division, they only keep one cell and consider the quantity of parasites
inside. Assuming that the rate r is constant and ✓ is a r.v. in (0, 1) with distribution F , the
model follows a Feller di↵usion with multiplicative jumps of independent sizes distributed as F
and which occurs at rate r. In particular, the model can be described as in (3) with S satisfying

St = �r

Z t

0

Z

(0,1)
(1� ✓)M(ds, d✓)

where M is a Poisson random measure with intensity dsF (d✓). Inspired in this model, Bansaye
et al. [9] studied more general CB-processes in random environment which are driven by Lévy
processes whose paths are of bounded variation and their associated Lévy measure satisfies
R

(1,1) xµ(dx) < 1. They are know as CB-processes with catastrophes motivated by the fact
that the presence of a negative jump in the random environment represents that a proportion of
a population, following the dynamics of the CB-process, is killed. The process is defined as the
unique non negative strong solution of the SDE

Zt =Z0 + a

Z t

0
Zsds+

Z t

0

p

2�2ZsdBs +

Z t

0

Z

(0,1)

Z Z
s�

0
z eN(ds, dz, du) +

Z t

0
Zs�dSs,

where

St =

Z t

0

Z

(0,1)
(m� 1)M(ds, dm),

M is a Poisson random measure independent of N and B, with intensity ds⌫(dm) such that

⌫({0}) = 0 and 0 <

Z

(0,1)
(1 ^ |m� 1|)⌫(dm) < 1.

In all those works, the existence of such processes is given via a stochastic di↵erential equation.
Böingho↵ and Hutzenthaler computed the exact asymptotic behaviour of the survival probability
using a time change method and in consequence, they described the so called Q-process. This is
the process conditioned to be never absorbed. Similarly to the discrete case, the authors in [20]
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found a phase transition in the subcritical regime that depends on the parameters of the random
environment. Bansaye et al. also studied the survival probability but unlike the case studied in
[20], they used a martingale technique since the time change technique does not hold in general.
In the particular case where the branching mechanism is stable, the authors in [9] computed
the exact asymptotic behaviour of the survival probability and obtained similar results to those
found in [20].

In this thesis, one of our aims is to construct a continuous state branching processes with im-
migration in a Lévy random environment as a strong solution of a stochastic di↵erential equation.
In order to do so, we study a particular class of non-negative stochastic di↵erential equations
driven by Brownian motions and Poisson random measures which are mutually independent. The
existence and uniqueness of strong solutions are established under some general conditions that
allows us to consider the case when the strong solution explodes at a finite time. It is important
to note that this result is of particular interest on its own. We also study the long-term be-
haviour of these processes. And, in the particular case where the branching mechanism is stable,
i.e.  (�) = ��+1, with � 2 (�1, 0) [ (0, 1], we study the asymptotic behaviour of the absorption
and explosion probability. Up to our knowledge, the explosion case has never been studied before
even in the discrete setting.

A key tool is a fine development in the asymptotic behaviour of exponential functionals of
general Lévy processes. Recall that a one-dimensional Lévy process, ⇠ = (⇠t : t � 0), is a
stochastic process issued from the origin with stationary and independent increments and a.s.
cádlág paths. Its exponential functional is defined by

It(⇠) :=

Z t

0
e�⇠sds, t � 0. (4)

In recent years there has been a general recognition that exponential functionals of Lévy pro-
cesses play an important role in various domains of probability theory such as self-similar Markov
processes, generalized Ornstein-Uhlenbeck processes, random processes in random environment,
fragmentation processes, branching processes, mathematical finance, Brownian motion on hyper-
bolic spaces, insurance risk, queueing theory, to name but a few (see [19, 24, 67] and references
therein). There is a vast literature about exponential functionals of Lévy processes drifting to
+1 or killed at an independent exponential time eq with parameter q � 0, see for instance [5, 19].
Most of the known results on I1(⇠) and Ie

q

(⇠) are related to the knowledge of their densities or
the behaviour of their tail distributions. In particular, it is know from Theorem 1 in Bertoin and
Yor [19] that

a Lévy process ⇠ drifts to 1 if and only if I1(⇠) < 1 a.s. (5)

According to Theorem 3.9 in Bertoin et al. [16], there exists a density for I1(⇠), here denoted
by h. In the case when q > 0, the existence of the density of Ie

q

(⇠) appears in Pardo et al. [82].
Moreover, according to Theorem 2.2. in Kuznetsov et al. [63], under the assumption that
E[|⇠1|] < 1, the density h is completely determined by the following integral equation: for v > 0,

µ

Z 1

v
h(x)dx+

⇢2

2
vh(v) +

Z 1

v
⇧

(�) ⇣

ln
x

v

⌘

h(x)dx

+

Z v

0
⇧

(+) ⇣

ln
x

v

⌘

h(x)dx+

Z 1

v

h(x)

x
dx = 0,

(6)
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where

⇧
(+)

(x) =

Z 1

x

Z 1

y
⇧(dz)dy and ⇧

(�)
(x) =

Z 1

x

Z �y

�1
⇧(dz)dy.

We refer to [16, 63, 82], and the references therein, for more details about these facts. The case
when the exponential functional of a Lévy process does not converge has only been studied in a
few papers and not in its most general form, see for instance [9, 20].

One of our aims in this thesis is to study the asymptotic behaviour of

E
h

F
�

It(⇠)
�

i

as t ! 1,

where F is a non-increasing function with polynomial decay at infinity and under some exponen-
tial moment conditions on ⇠, and It(⇠) does not converge a.s. to a finite random variable, as t
goes to 1. In particular, we find five di↵erent regimes that depend on the shape of the Laplace
exponent of ⇠. These results will be applied for the particular functions such that

F (x) = x�p, F (x) = 1� ex
�p

, F (x) = e�x, or F (x) =
a

b+ x
for a, b, p, x > 0.

Exponential functionals also appear in the study of di↵usions in random potential, which
we now describe informally. Associated with a stochastic process V = (V (x), x 2 R) such that
V (0) = 0, a di↵usion XV = (XV (t), t � 0) in the random potential V is, loosely speaking, a
solution of the stochastic di↵erential equation

dXV (t) = d�t �
1

2
V 0(XV (t))dt, XV (0) = 0,

where (�t, t � 0) is a standard Brownian motion independent of V . More rigorously, the process
XV should be considered as a di↵usion whose conditional generator, given V , is:

1

2
exp(V (x))

d

dx

✓

e�V (x) d

dx

◆

.

Observe that from Feller’s construction of such di↵usions, the potential V does not need to
be di↵erentiable. Kawazu and Tanaka [59] studied the asymptotic behaviour of the tail of the
distribution of the maximum of a di↵usion in a drifted Brownian potential. Carmona et al. [24]
considered the case when the potential is a Lévy process whose jump structure is of bounded
variation. More precisely, they studied the following question: How fast does P(maxt�0XV (t) >
x) decay as x ! 1? From these works, we know that

P
✓

max
t�0

XV (t) > x

◆

= E


A

A+Bx

�

, x > 0

where

A =

Z 0

�1
eV (t)dt and Bx =

Z x

0
eV (t)dt, x > 0

are independent. As a consequence, exponential functionals play an essential role in this domain.
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Outline

We now give a detailed summary of the main body of this thesis.
Chapters 1-4 are dedicated to study Continuous-state branching processes in a Lévy random
environment with immigration and competition. They are based on the papers:

[79] S. PALAU and J.C. PARDO. Branching processes in a Lévy random environment. Preprint
arXiv:1512.07691, submitted (2015).
[80] S. PALAU and J.C. PARDO. Continuous state branching processes in random environment:
The Brownian case. Stochastic Processes and their Applications. (2016) 10.1016/j.spa.2016.07.006
[81] S. PALAU, J.C. PARDO and C.SMADI. Asymptotic behaviour of exponential function-
als of Lévy processes with applications to random processes in random environment. Preprint
arXiv:1601.03463, submitted (2016).

We want to remark that whilst writing [79] and [81], Hui He, Zenghu Li and Wei Xu inde-
pendently developed similar results in the following papers.

[51] H. HE, Z. LI and W. XU. Continuous-state branching processes in Lévy random environ-
ments. Preprint arXiv:1601.04808, (2016).
[72] Z. LI and W. XU. Asymptotic results for exponential functionals of Lévy processes. Preprint
arXiv:1601.02363, (2016).

One of our aims is to construct a continuous state branching processes with immigration in
a Lévy random environment as a strong solution of a stochastic di↵erential equation (SDE for
short). In order to do so, in Section 1.1, we study a particular class of non-negative stochastic
di↵erential equations driven by Brownian motions and Poisson random measures which are mu-
tually independent. The existence and uniqueness of strong solutions are established under some
general conditions that allows us to consider the case when the strong solution explodes at a finite
time. This result is of particular interest on its own. Section 1.2 is devoted to the construction of
CBI-processes with competition in a Lévy random environment. We end the section with some
examples.

The long-term behaviour of CB-processes in Lévy random environment is studied in Chapter
2. In particular, we discuss when the process is conservative and the explosion and extinction
events. We provide some examples where we can found explicitly the probability of such events.
In the second section, we study a competition model in a Lévy random environment. This process
can be seen as a population model that extends the competition model given in Evans et al. [44].
We provide the long term behavior of the process. When the random environment has no negative
jumps, we compute the Laplace transform of the first passage time from below a level.

In Chapter 3, we study the exponential functional of a Lévy process. In Section 3.1 we expose
the asymptotic behaviour of

E
h

F
�

It(⇠)
�

i

as t ! 1,

where It(⇠) is given by (4) and F is a non-increasing function with polynomial decay at infinity
and under some exponential moment conditions on ⇠. In particular, we find five di↵erent regimes
that depend on the shape of the Laplace exponent of ⇠. If the exponential moment conditions
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are not satisfied, we still can find the asymptotic behaviour of E
h

�

It(⇠)
��p
i

, for p 2 (0, 1], under

the so-called Spitzer’s condition. i.e. if there exists � 2 (0, 1] such that

lim
t!1

t�1
Z t

0
P (⇠s � 0) ds = �.

In Section 3.2 we apply the results to the following classes of processes in random environ-
ment: the competition model given en Section 2.2 and di↵usion processes whose dynamics are
perturbed by a Lévy random environment. For the competition model, we describe the asymp-
totic behaviour of its mean. For the di↵usion processes, we provide the asymptotic behaviour of
the tail probability of its global maximum. Finally, Section 3.3 is devoted to the proofs of the
main results of the Chapter. The proof under the exponential moment conditions on ⇠, relies on a
discretisation of the exponential functional It(⇠) and on the asymptotic behaviour of functionals
of semi-direct products of random variables which was described by Guivarc’h and Liu [50]. Li
and Xu in [72] obtained similar results by using fluctuation theory for Lévy processes and the
knowledge of Lévy processes conditioned to stay positive. The proof under Spitzer’s condition
relies in a factorisation of It(⇠) given by Arista and Rivero [5].

These results allow us to find the asymptotic behaviour of absorption and explosion pro-
babilities for stable continuous state branching processes in a Lévy random environment. The
speed of explosion is studied in Section 4.2. We find 3 di↵erent regimes: subcritical-explosion,
critical-explosion and supercritical explosion. The speed of explosion is studied in Section 4.2.
We find 3 di↵erent regimes: subcritical-explosion, critical-explosion and supercritical explosion.
The speed of absorption is studied in Section 4.3. As in the discrete case (time and space), we
find five di↵erent regimes: supercritical, critical, weakly subcritical, intermediately subcritical
and strongly subcritical. When the random environment is driven by a Brownian motion with
drift, the limiting coe�cients of the asymptotic behaviour of the absorption probability are
explicit and written in terms of the initial population. In a general Lévy environment, the latter
coe�cients are also explicit in 3 out of the 5 regimes (supercritical, intermediate subcritical and
strongly subcritical cases). This allows us to study two conditioned versions of the process: the
process conditioned to be never absorbed (or Q-process) and the process conditioned on eventual
absorption. Both processes are studied in Section 4.4.

Finally, Section 5 is devoted to Multi-type continuous-state branching processes (MCBPs).
It is based on the paper

[66] A. KYPRIANOU and S. PALAU. Extinction properties of multi-type continuous-state
branching processes. Preprint arXiv:1604.04129, submitted, (2016).

The main results and some open questions are presented in Section 5.1. We defined a multi-
type continuous-state branching process as a super Markov chain with both a local and a non-local
branching mechanism. This allows us the possibility of working with a countably infinite number
of types. In Section 5.2 we give the construction of MCBPs as a scaling limit of MBGW processes;
that is to say, in terms of branching Markov chains. The spectral radius of the associated linear
semigroup will have an important roll in the asymptotic behaviour of our process, in particular, it
will determine the phenomenon of local extinction. The properties of this semigroup are studied
in Section 5.3. In Sections 5.4 and 5.5 we develop some standard tools based around a spine
decomposition. In this setting, the spine is a Markov chain and we note in particular that the

xv



non-local nature of the branching mechanism induces a new additional phenomenon in which a
positive, random amount of mass immigrates o↵ the spine each time it jumps from one state to
another. Moreover, the distribution of the immigrating mass depends on where the spine jumped
from and where it jumped to. In Section 5.6, we give the proof of the main results. Finally in
Section 5.7, we provide examples to illustrate the local phenomenon property.
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Chapter 1

Branching processes in a Lévy
random environment

This chapter is based in paper [79] elaborated in collaboration with Juan Carlos Pardo. Here,
we introduce branching processes in a Lévy random environment. In order to define this class of
processes, we study a particular class of non-negative stochastic di↵erential equations driven by
Brownian motions and Poisson random measures which are mutually independent. The existence
and uniqueness of strong solutions are established under some general conditions that allows us
to consider the case when the strong solution explodes at a finite time. Section 1 is devoted to
prove the existence and uniqueness of a non-negative strong solution of a particular class of SDE.
In Section 2, we construct a branching model in continuous time and space that is a↵ected by
a random environment as the unique strong solution of a SDE that satisfies the conditions of
Section 1. This model has a branching part, an immigration part, a competition part, and the
random environment is driven by a general Lévy process. We provide the Laplace exponent of
the process given the environment. The chapter finishes with some examples where the Laplace
exponent can be computed explicitly.

1.1 Stochastic di↵erential equations

Stochastic di↵erential equations with jumps have been playing an ever more important role in
various domains of applied probability theory such as financial mathematics or mathematical
biology. Under Lipschitz conditions, the existence and uniqueness of strong solutions of SDEs
with jumps can be established by arguments based on Gronwall’s inequality and the results on
continuous-type equation, see for instance the monograph of Ikeda and Watanabe [57]. In view
of the results of Fu and Li [45], Dawson and Li [28] and Li and Pu [71] weaker conditions would
be su�cient for the existence and uniqueness of strong solutions for one-dimensional equations.

Fu and Li [45], motivated by describing CBI processes via SDEs, studied general SDEs that de-
scribes non-negative processes with jumps under general conditions. The authors in [45] (see also
[28, 71]) provided criteria for the existence and uniqueness of strong solutions of those equations.
The main idea of their criteria is to assume a monotonicity condition on the kernel associated
with the compensated noise so that the continuity conditions can be weaken. Nonetheless, their
criteria do not include the case where the branching mechanism of a CBI process has infinite
mean and also the possibility of including a general random environment. This excludes some
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interesting models that can be of particular interest for applications.
Our goal in this section is to describe a general one-dimensional SDE that may relax the

moment condition of Fu and Li [45] (see also [28] and [71]) and also include some extra randomness
that can help us to define branching processes in more general random environment that those
considered by Böingho↵ and Hutzenthaler [20] and Bansaye et al. [9].

For m, d, l � 1, we define the index sets I = {1, . . . ,m}, J = {1, . . . , l} and K = {1, . . . , d},
and take (Ui)i2I and (Vj)j2J separable topological spaces whose topologies can be defined by com-
plete metrics. Suppose that (µi)i2I and (⌫j)j2J are �-finite Borel measures such that each µi and
⌫j are defined on Ui and Vj , respectively. We say that the parameters (b, (�k)k2K , (hi)i2I , (gj)j2J)
are admissible if

i) b : R+ ! R is a continuous function such that b(0) � 0,

ii) for k 2 K, �k : R+ ! R+ is a continuous function such that �k(0) = 0,

iii) for i 2 I, let gi : R+ ⇥ Ui ! R be Borel functions such that gi(x, ui) + x � 0 for x � 0,
ui 2 Ui and i 2 I,

iv) for j 2 J , let hj : R+⇥Vj ! R be Borel functions such that hj(0, vj) = 0 and hj(x, vj)+x �
0 for x > 0, vj 2 Vj and j 2 J .

For each k 2 K, let B(k) = (B(k)
t , t � 0) be a standard Brownian motion. We also let (Mi)i2I and

(Nj)j2J be two sequences of Poisson random measures such that each Mi(ds, du) and Nj(ds, du)
are defined on R+ ⇥ Ui and R+ ⇥ Vj , respectively, and with intensities given by dsµi(du) and
ds⌫j(dv). We also suppose that (B(k))k2K , (Mi)i2I and (Nj)j2J are independent of each other.

The compensated measure of Nj is denoted by eNj .
For each i 2 I, let Wi be a subset in Ui such that µi(Ui \ Wi) < 1. For our purposes, we

consider the following conditions on the parameters (b, (�k)k2K , (hi)i2I , (gj)j2J):

a) For each n, there is a positive constant An such that

X

i2I

Z

W
i

|gi(x, ui) ^ 1|µi(dui)  An(1 + x), for every x 2 [0, n].

b) Let b(x) = b1(x)� b2(x), where b2 is a non-decreasing continuous function. For each n � 0,
there is a non-decreasing concave function z 7! rn(z) on R+ satisfying

R

0+ rn(z)�1dz = 1
and

|b1(x)� b1(y)|+
X

i2I

Z

W
i

|gi(x, ui) ^ n� gi(y, ui) ^ n|µi(dui)  rn(|x� y|)

for every 0  x, y  n.

c) For each n � 0 and (v1, · · · , vl) 2 V, the function x 7! x + hj(x, vj) is non-decreasing and
there is a positive constant Bn such that for every 0  x, y  n,

X

k2K
|�k(x)� �k(y)|2 +

X

j2J

Z

V
j

l2j (x, y, vj)⌫j(dvj)  Bn|x� y|

where lj(x, y, vj) = hj(x, vj) ^ n� hj(y, vj) ^ n.

2



A [0,1]-valued process Z = (Zt, t � 0) with càdlàg paths is called a solution of

Zt =Z0 +

Z t

0
b(Zs)ds+

X

k2K

Z t

0
�k(Zs)dB

(k)
s

+
X

i2I

Z t

0

Z

U
i

gi(Zs�, ui)Mi(ds, dui) +
X

j2J

Z t

0

Z

V
j

hj(Zs�, vj) eNj(ds, dvj),

(1.1)

if it satisfies the stochastic di↵erential equation (1.1) up to the time ⌧n := inf{t � 0 : Zt � n}
for all n � 1, and Zt = 1 for all t � ⌧ := limn!1 ⌧n. We say that Z is a strong solution if, in
addition, it is adapted to the augmented natural filtration generated by (B(k))k2K , (Mi)i2I and
(Nj)j2J .

Theorem 1. Suppose that (b, (�k)k2K , (hi)i2I , (gj)j2J) are admissible parameters satisfying con-
ditions a), b) and c). Then, the stochastic di↵erential equation (1.1) has a unique non-negative
strong solution. The process Z = (Zt, t � 0) is a Markov process and its infinitesimal generator
L satisfies, for every f 2 C2

b (R+),1

Lf(x) = b(x)f 0(x)+
1

2
f 00(x)

X

k2K
�2k(x) +

X

i2I

Z

U
i

⇣

f(x+ gi(x, ui))� f(x)
⌘

µi(dui)

+
X

j2J

Z

V
j

⇣

f(x+ hj(x, vj))� f(x)� f 0(x)hj(x, vj)
⌘

⌫j(dvj).
(1.2)

Proof. The proof of this theorem uses several Lemmas that can be found in the Appendix.
We can extend the functions b,�k, gi, hj to R in the way that b is continuous with b(x) � 0 for

all x  0, and �k(x) = gi(x, ui) = hj(x, vj) = 0 for all x  0 and ui 2 Ui, vj 2 Vj . As in the proof
of Proposition 2.1 in [45], if there exists ✏ > 0 such that P (⌧ := inf{t � 0 : Zt  �✏} < 1) > 0.
Then, by the assumptions iii) and iv), the process doesn’t jump to (�1,�✏]. Therefore on the
event {⌧ < 1}, Z⌧ = Z�⌧ = �✏ and ⌧ > & := sup{s > ⌧ : Zt � 0 for all s  t  ⌧}. Let r � 0
such that P (⌧ > r > &) > 0, the contradiction occurs by observing that Zt^⌧ is non-decreasing
in (r,1) and Zr > �✏. Then any solution of (1.1) is non-negative.

For each i 2 I and j 2 J , let {Wm
i : m 2 N} and {V m

j : m 2 N} be non-increasing sequences
of Borel subsets of Wi and Vj , such that

S

m2N
Wm

i = Wi and µi(Wm
i ) < 1;

S

m2N
V m
j = Vj and

⌫j(V m
j ) < 1, respectively.
By the results for continuous-type stochastic equation (see for example Ikeda and Watanabe

[57] Theorem IV.2.3), for each n,m 2 N, there is a non-negative weak solution to

Zt = Z0 +

Z t

0
b(Zs ^ n)ds�

X

j2J

Z t

0

Z

V m

j

�

hj(Zs ^ n, vj) ^ n
�

µj(dvj)ds

+
X

k2K

Z t

0
�k(Z

(n)
s ^ n)dB(k)

s .

(1.3)

By Hölder inequality and hypothesis c), the functions x 7!
R

V m

j

�

hj(x ^ n, vj) ^ n
�

⌫j(dvj) are

continuous for each j 2 J and m 2 N. Moreover b(x ^ n)�
P

j2J
R

V m

j

�

hj(x ^ n, vj) ^ n
�

⌫j(dvj)

1R+ = [0,1] and C

2
b

(R+) = {twice di↵erentiable functions such that f(1) = 0}
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is the di↵erence between the continuous function b1(x ^ n) +
P

j2J(x ^ n)⌫(V m
j ) and the non-

decreasing continuous function b2(x^ n) +
P

j2J
R

V m

j

[(x^ n) +
�

hj(x^ n, vj)^ n
�

]⌫j(dvj). Then,

by Lemma 10 (see the Appendix) the pathwise uniqueness holds for (1.3), so the equation has a
unique non-negative strong solution. (see Situ [87], p. 104).

Now, by applying lemma 11 (see the Appendix), we deduce that for each n,m 2 N, there is
a unique non-negative strong solution to

Z(n,m)
t = Z0 +

Z t

0
b(Z(n,m)

s ^ n)ds+
X

k2K

Z t

0
�k(Z

(n,m)
s ^ n)dB(k)

s

+
X

i2I

Z t

0

Z

Wm

i

�

gi(Z
(n,m)
s� ^ n, ui) ^ n

�

Mi(ds, dui)

+
X

j2J

Z t

0

Z

V m

j

�

hj(Z
(n,m)
s� ^ n, vj) ^ n

�

eNj(ds, dvj).

(1.4)

By Lemma 12 (in the Appendix), for each n 2 N, the sequence {Z(n,m)
t : m 2 N} is tight in

D([0,1),R+). Moreover, by Lemma 14 (see the Appendix) the weak limit point of the sequence
is a non-negative weak solution to

Z(n)
t = Z0 +

Z t

0
b(Z(n)

s ^ n)ds+
X

k2K

Z t

0
�k(Z

(n)
s ^ n)dB(k)

s

+
X

i2I

Z t

0

Z

W
i

�

gi(Z
(n)
s� ^ n, ui) ^ n

�

Mi(ds, dui)

+
X

j2J

Z t

0

Z

V
j

�

hj(Z
(n)
s� ^ n, vj) ^ n

�

eNj(ds, dvj).

(1.5)

By lemma 10 (in the Appendix) the pathwise uniqueness holds for (1.5). This guaranties that
there is a unique non-negative strong solution of (1.5). Next, we apply Lemma 11 (see the
Appendix) that allows us to replace the space Wi by Ui in the SDE (1.5). In other words we
deduce that for n � 0 there is a unique non-negative strong solution of

Z(n)
t = Z0 +

Z t

0
b(Z(n)

s ^ n)ds+
X

k2K

Z t

0
�k(Z

(n)
s ^ n)dB(k)

s

+
X

i2I

Z t

0

Z

U
i

�

gi(Z
(n)
s� ^ n, ui) ^ n

�

Mi(ds, dui)

+
X

j2J

Z t

0

Z

V
j

�

hj(Z
(n)
s� ^ n, vj) ^ n

�

eNj(ds, dvj).

(1.6)

Finally, we proceed to show that there is a unique non-negative strong solution to the SDE

(1.1). In order to do so, we first define ⌧m = inf{t � 0 : Z(m)
t � m}, for m � 0, and then we prove

that the sequence (⌧m,m � 0) is non-decreasing and that Z(m)
t = Z(n)

t for m  n and t < ⌧m.
Since the Poisson random measures are independent, they do not jump simultaneously. Therefore,

by using the fact that the trajectory t 7! Z(m)
t has no jumps larger than m on the interval [0, ⌧m),
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we obtain that for each i 2 I, j 2 J , and 0  t < ⌧m,

gi(Z
(m)
t , u)  m and hj(Z

(m)
t , v)  m, u 2 Ui, v 2 Vj .

This implies that Z(m)
t satisfies (1.1) on the interval [0, ⌧m). For 0  m  n, let (Y (n)

t , t � 0) be
the strong solution to

Y (n)
t = Z(m)

⌧
m

� +

Z t

0
b(Y (n)

s ^ n)ds+
X

k2K

Z t

0
�k(Y

(n)
s ^ n)dB(k)

⌧
m

+s

+
X

i2I

Z t

0

Z

U
i

�

gi(Y
(n)
s� ^ n, u) ^ n

�

Mi(⌧m + ds, du)

+
X

j2J

Z t

0

Z

V
j

�

hj(Y
(n)
s� ^ n, v) ^ n

�

eNj(⌧m + ds, dv).

We define Ỹ (n)
t = Z(m)

t for 0  t  ⌧m and Ỹ (n)
t = Y (n)

t�⌧
m

for t � ⌧m. Note that (eY (n)
t , t � 0) is

solution to (1.6). From the uniqueness, we deduce that Z(n)
t = eY (n)

t for all t � 0. In particular,

we have that Z(n)
t = Z(m)

t < m for 0  t < ⌧m. Consequently, the sequence (⌧m,m � 0) is
non-decreasing.

Next, we define the process Z = (Zt, t � 0) as

Zt =

(

Z(m)
t if t < ⌧m,
1 if t � lim

m!1
⌧m.

It is not di�cult to see that Z is a weak solution to (1.1). In order to prove our result, we
consider two solutions to (1.1), Z 0 and Z 00, and consider ⌧ 0m = inf{t � 0 : Z 0

t � m}, ⌧ 00m =
inf{t � 0 : Z 00

t � m} and ⌧m = ⌧ 0m ^ ⌧ 00m. Therefore Z 0 and Z 00 satisfy (1.6) on [0, ⌧m), implying
that they are indistinguishable on [0, ⌧m). If ⌧1 = lim

m!1
⌧m < 1, we have two possibilities

either Z 0
⌧1� = Z 00

⌧1� = 1 or one of them has a jump of infinity size at ⌧1. In the latter case,
this jump comes from an atom of one of the Poisson random measures (Mi)i2I or (Nj)j2J , so
both processes have it. Since after this time both processes are equal to 1, we obtain that Z 0

and Z 00 are indistinguishable. In other words, there is a unique strong solution to (1.1). The
strong Markov property is due to the fact that we have a strong solution, the integrators are
Lévy processes and the integrand functions doesn’t depend on the time. (See Theorem V.32 in
Protter [83], where the Lipschitz continuity is just to guarantee the existence and uniqueness of
the solution) and by Itô’s formula it is easy to show that the infinitesimal generator of (Zt, t � 0)
is given by (1.2).

1.2 CBI-processes with competition in a Lévy random environ-
ment

In this section, we construct a branching model in continuous time and space that is a↵ected
by a random environment as the unique strong solution of a SDE that satisfies the conditions
of Theorem 1. In this model, the random environment is driven by a general Lévy process.
In order to define CBI-processes in a Lévy random environment (CBILRE for short), we first
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introduce the objects that are involved in the branching, immigration and environmental parts.

For the branching part, we introduce B(b) = (B(b)
t , t � 0) a standard Brownian motion and

N (b)(ds, dz, du) a Poisson random measure independent of B(b), with intensity ds⇤(dz)du where
⇤(dz) = µ(dz) + q�1(dz), for q � 0. We denote by eN (b) for the compensated measure of N (b)

and recall that the measure µ is concentrated on (0,1) and satisfies
Z

(0,1)
(1 ^ z2)µ(dz) < 1.

The immigration term is given by a Poisson random measure M(ds, dz) with intensity ds⌫(dz)
where the measure ⌫ is supported in (0,1) and satisfies

Z

(0,1)
(1 ^ z)⌫(dz) < 1.

Finally, for the environmental term, we introduce B(e) = (B(e)
t , t � 0) a standard Brownian

motion and N (e)(ds, dz) a Poisson random measure in R+⇥R independent of B(e) with intensity
ds⇡(dy), eN (e) its compensated version and ⇡ is a measure concentrated on R \ {0} such that

Z

R
(1 ^ z2)⇡(dz) < 1.

We will assume that all the objects involve in the branching, immigration and environmental
terms are mutually independent.

A CB-processes in a Lévy random environment with immigration and competition is defined
as the solution of the stochastic di↵erential equation

Zt =Z0 +

Z t

0

�

d+ aZs

�

ds+

Z t

0

p

2�2ZsdB
(b)
s

�
Z t

0
�(Zs)ds+

Z t

0

Z

(0,1)
zM (im)(ds, dz) +

Z t

0
Zs�dSs

+

Z t

0

Z

(0,1)

Z Z
s�

0
z eN (b)(ds, dz, du) +

Z t

0

Z

[1,1)

Z Z
s�

0
zN (b)(ds, dz, du),

(1.7)

where a 2 R, d, � � 0, � is a continuous non-decreasing function on [0,1) with �(0) = 0,

St = ↵t+ �B(e)
t +

Z t

0

Z

(�1,1)
(ez � 1) eN (e)(ds, dz) +

Z t

0

Z

R\(�1,1)
(ez � 1)N (e)(ds, dz), (1.8)

with ↵ 2 R and � � 0.

Corollary 1. The stochastic di↵erential equation (1.7) has a unique non-negative strong solution.
The CBLRE Z = (Zt, t � 0) is a Markov process and its infinitesimal generator A satisfies, for
every f 2 C2

b (R+),

Af(x) =
⇣

ax+ ↵x� �(x) + d
⌘

f 0(x) +

Z

(0,1)

⇣

f(x+ z)� f(x)
⌘

⌫(dz)

+

✓

�2x+
�2

2
x2
◆

f 00(x) + x

Z

(0,1)

⇣

f(x+ z)� f(x)� zf 0(x)1{z<1}

⌘

⇤(dz)

+

Z

R

⇣

f(xez)� f(x)� x(ez � 1)f 0(x)1{|z|<1}

⌘

⇡(dz).

(1.9)

6



Proof. The proof of this result is a straightforward application of Theorem 1. Take the set of
index K = J = {1, 2} and I = {1, 2, 3}; the spaces

U1 = W1 = [1,1)⇥ R+, U2 =R \ (�1, 1), W2 = (�1,�1],

U3 = W3 = R+, V1 =(0, 1)⇥ R+, V2 = (�1, 1),

with associated Poisson random measures M1 = N (b),M2 = N (e),M3 = M (im), N1 = N (b) and
N2 = N (e), respectively; and standard Brownian motions B(1) = B(b) and B(2) = B(e). We also
take the functions

b(x) = ax� �(x) + d, �1(x) =
p

2�2x, �2(x) = �x,

g1(x, z, u) = z1{ux}, g2(x, z) = x(ez � 1), g3(x, z) = z,

h1(x, z, u) = z1{ux}, h2(x, z) = x(ez � 1),

which are admissible and verify conditions a), b) and c).

Similarly to the results of Bansaye et al. [9], we can compute the Laplace transform of a
reweighted version of Z given the environment and under the assumption that q = 0 and � ⌘ 0.
In order to do so, we define the following hypothesis

Z

[1,1)
xµ(dx) < 1. (H1)

It is important to note that conditionally on the environment K, the process Z satisfies the
branching property. This property is inherited from the branching property of the original CBI
process and the fact that the additional jumps are multiplicative.

Recall that the associated branching mechanism  satisfies the celebrated Lévy-Khintchine
formula, i.e.

 (�) = �a�+ �2�2 +

Z

(0,1)

�

e��x � 1 + �x1{x<1}
�

µ(dx), � � 0

and observe that from our assumption, | 0(0+)| < 1 and

 0(0+) = �a�
Z

[1,1)
xµ(dx).

We also recall that the immigration mechanism is given by

�(u) = du+

Z 1

0
(1� e�ut)⌫(dt), u � 0.

When (H1) holds, we define the auxiliary process

K(0)
t = mt+ �B(e)

t +

Z t

0

Z

(�1,1)

v eN (e)(ds, dv) +

Z t

0

Z

R\(�1,1)
vN (e)(ds, dv), (1.10)

where

m = ↵�  0(0+)� �2

2
�

Z

(�1,1)

(ev � 1� v)⇡(dv).
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Proposition 1. Suppose that (H1) holds. Then for every z,�, t > 0,

Ez

h

exp
n

��Zte
�K

(0)
t

o

�

�K(0)
i

= exp

⇢

�zvt(0,�,K
(0))�

Z t

0
�
⇣

vt(r,�,K
(0))e�K

(0)
r

⌘

dr

�

a.s.,
(1.11)

where for every t,� � 0, the function (vt(s,�,K(0)), s  t) is the a.s. unique solution of the
backward di↵erential equation

@

@s
vt(s,�,K

(0)) = eK
(0)
s  0(vt(s,�,K

(0))e�K
(0)
s ), vt(t,�,K

(0)) = �, (1.12)

and

 0(�) =  (�)� � 0(0) = �2�2 +

Z

(0,1)

�

e��x � 1 + �x
�

µ(dx) � � 0.

Proof. The first part of the proof follows similar arguments as those used in Bansaye et al. [9].
The main problem in proving our result is finding the a.s. unique solution of the backward
di↵erential equation (1.12) in the general case. In order to do so, we need an approximation
technique based on the Lévy-Itô decomposition of the Lévy process K(0). The proof of the latter
can be found in the appendix in Lemma 15.

For sake of completeness, we provide the main steps of the proof which are similar as those

used in [9]. We first define eZt = Zte�K
(0)
t , for t � 0, and choose

F (s, x) = exp

⇢

�xvt(s,�,K
(0))�

Z t

s
�(vt(r,�,K

(0))e�K
(0)
r )dr

�

, s  t, 0  x

where vt(s,�,K(0)) is di↵erentiable with respect to the variable s, non-negative and such that
vt(t,�,K(0)) = � for all � � 0. We observe that conditionally on K(0), that (F (s, eZs), s 2 [0, t])
is a martingale (using Itô’s formula) if and only if

@

@s
vt(s,�,K

(0)) =�2vt(s,�,K
(0))2e�K

(0)
s

+ eK
(0)
s

Z 1

0

✓

e�e�K

(0)
s v

t

(s,�,K(0))z � 1 + e�K
(0)
s vt(s,�,K

(0))z

◆

µ(dz).

That is vt(s,�,K(0)) solves (1.12). Provided that vt(s,�,K(0)) exist a.s., we get that the process
⇣

exp
n

� eZsvt(s,�,K(0))
o

, 0  s  t
⌘

conditionally on K is a martingale, and hence

Ez

h

exp
n

��fZt

o

�

�K(0)
i

= exp

⇢

�zvt(0,�,K
(0))�

Z t

0
�(vt(r,�,K

(0))e�K
(0)
r )dr

�

.

Remark 1. When | 0(0+)| = 1, the auxiliary process can be taken as follows

Kt = nt+ �B(e)
t +

Z t

0

Z

(�1,1)

v eN (e)(ds, dv) +

Z t

0

Z

R\(�1,1)
vN (e)(ds, dv), (1.13)
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where

n = ↵� �2

2
�

Z

(�1,1)

(ev � 1� v)⇡(dv).

Suppose that there is a unique a.s. solution vt(s,�,K) to the backward di↵erential equation

@

@s
vt(s,�,K) = eKs (vt(s,�,K)e�K

s), vt(t,�,K) = �, (1.14)

In this case, by following the same arguments as in the last part of the proof of the previous
proposition, the process Z conditioned on K satisfies that for every z,�, t > 0,

Ez

⇥

exp
�

��Zte
�K

t

 

�

�K
⇤

= exp

⇢

�zvt(0,�,K)�
Z t

0
�
⇣

vt(r,�,K)e�K
r

⌘

dr

�

a.s.
(1.15)

Before we continue with the exposition of this manuscript, we would like to provide some
examples where we can compute explicitly the Laplace exponent of the CB-process in a Lévy
random environment without immigration (� ⌘ 0).

Example 1 (Neveu case). The Neveu branching process in a Lévy random environment has
branching mechanism given by

 (u) = u log(u) = cu+

Z

(0,1)

�

e�ux � 1 + ux1{x<1}
�

x�2dx, u > 0,

where c 2 R is a suitable constant. In this particular case the backward di↵erential equation
(1.14) satisfies

@

@s
vt(s,�,K) = vt(s,�, �) log(e

�K
svt(s,�,K)), vt(t,�,K) = �.

One can solve the above equation and deduce

vt(s,�,K) = exp

⇢

es
✓

Z t

s
e�uKudu+ log(�)e�t

◆�

, for s  t.

Hence, from identity (1.15) for all z,�, t > 0

Ez

h

exp
n

� �Zte
�K

t

o

�

�

�

K
i

= exp

⇢

�z�e
�t

exp

⇢

Z t

0
e�sKsds

��

a.s. (1.16)

Observe that
Z t

0
e�sKsds = �e�tKt +

Z t

0
e�sdKs.

According to Sato ( [84], Chapter 17),
R t
0 e

�sdKs is an infinitely divisible random variable with
characteristic exponent

 (�) =

Z t

0
 K(�e�s)ds, � � 0,

where  K is the characteristic exponent of K.
In particular, when K has continuous paths, the r.v.

R t
0 e

�sKsds, is normal distributed with

mean (↵ � �2

2 )(1 � e�t � te�t) and variance �2

2 (1 + 4e�t � 3e�2t), for t � 0. In other words,
the Laplace transform of Zte�K

t can be determined by the Laplace transform of a log-normal
distribution which we know exists but there is not an explicit form of it.
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Example 2 (Feller case). Assume that a = µ(0,1) = 0, and the environment is a Brownian
motion with drift. Thus the CB-process in a Brownian random environment (1.7) is reduced to
the following SDE

Zt = Z0 + ↵

Z t

0
Zsds+ �

Z t

0
ZsdB

(e)
s +

Z t

0

p

2�2ZsdBs,

where the random environment is given by St = ↵t+�B(e)
t . This SDE is equivalent to the strong

solution of the SDE

dZt =
�2

2
Ztdt+ ZtdKt +

p

2�2ZsdBs,

dKt =a0dt+ �dB(e)
t ,

where a0 = ↵��2/2, which is the branching di↵usion in random environment studied by Böingho↵
and Hutzenthaler [20].

Observe that in this case  0(0+) = 0. Hence K = K(0) and the backward di↵erential equation
(1.14) satisfies

@

@s
vt(s,�,K) = �2v2t (s,�,K)e�K

s , vt(t,�,K) = �.

The above equation can be solved and after some computations one can deduce

vt(s,�,K) =

✓

��1 + �2
Z t

s
e�K

udu

◆�1

for s  t.

Hence, from identity (1.15) we get

Ez

h

exp
n

� �Zte
�K

t

o

�

�

�

K
i

= exp

(

�z

✓

��1 + �2
Z t

0
e�K

udu

◆�1
)

a.s. (1.17)

Example 3 (Stable case). Now, we assume that the branching mechanism is of the form

 (�) = c��+1, � � 0,

for some � 2 (�1, 0) [ (0, 1] and c is such that

⇢

c < 0 if � 2 (�1, 0),
c > 0 if � 2 (0, 1].

Under this assumption, the process Z satisfies the following stochastic di↵erential equation

Zt =Z0 + 1{�=1}

Z t

0

p

2cZsdBs + 1{� 6=1}

Z t

0

Z 1

0

Z Z
s�

0
z bN(ds, dz, du) +

Z t

0
Zs�dSs, (1.18)

where the process S is defined as in (1.8), B = (Bt, t � 0) is a standard Brownian motion, N is
a Poisson random measure with intensity

c�(� + 1)

�(1� �)

1

z2+�
dsdzdu,

10



eN is its compensated version, and

bN(ds, dz, du) =

⇢

N(ds, dz, du) if � 2 (�1, 0),
eN(ds, dz, du) if � 2 (0, 1),

Note that

 0(0+) =

⇢

�1 if � 2 (�1, 0),
0 if � 2 (0, 1].

Hence, when � 2 (0, 1], we have K(0)
t = Kt, for t � 0. In both cases, we use the backward

di↵erential equation (1.14),

@

@s
vt(s,�,K) = �cv�+1

t (s,�,K)e��Ks vt(t,�,K) = �.

Similarly to the Feller case, we can solve the above equation and get

vt(s,�,K) =

✓

��� + �c

Z t

s
e��Kudu

◆�1/�

for s  t.

Hence, from (1.15) we get the following a.s. identity

Ez

h

exp
n

� �Zte
�K

t

o

�

�

�

K
i

= exp

(

�z

✓

��� + �c�

Z t

0
e��Kudu

◆�1/�
)

, (1.19)

Our last example is a stable CBI in a Lévy random environment. In this case, the branching
and immigration mechanisms are �-stable.

Example 4 (Stable case with immigration). Here we assume that the branching and im-
migration mechanisms are of the form  (�) = c��+1 and �(�) = d�� , where � 2 (0, 1], c, d > 0.
Hence, the stable CBILRE-process is given as the unique non-negative strong solution of the
stochastic di↵erential equation

Zt =Z0 + 1{�=1}

✓

Z t

0

p

2c�ZsdBs + dt

◆

+

Z t

0
Zs�dSs

+ 1{� 6=1}

✓

Z t

0

Z 1

0

Z Z
s�

0
z eN(ds, dz, du) +

Z t

0

Z 1

0
zM(ds, dz)

◆

,

where the process S is defined as in (1.8), B = (Bt, t � 0) is a standard Brownian motion, and
N and M are two independent Poisson random measures with intensities

c�(� + 1)

�(1� �)

1

z2+�
dsdzdu and

d�

�(1� �)

1

z1+�
dsdz.

Observe that  0(0+) = 0 and K = K(0). From (1.12) we get the following a.s. identity

Ez

⇥

exp
�

��Zte
�K

t

 

�

�K
⇤

=exp

(

�z

✓

�c

Z t

0
e��Ksds+ ���

◆�1/�
)

⇥ exp

⇢

� d

�c
ln

✓

�c��
Z t

0
e��Ksds+ 1

◆�

.

(1.20)

If we take limits as z # 0, we deduce that the entrance law at 0 of the process (Zte�K
t , t � 0)

satisfies

E0
⇥

exp
�

��Zte
�K

t

 

�

�K
⇤

= exp

⇢

� d

�c
ln

✓

�c��
Z t

0
e��Ksds+ 1

◆�

.
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Chapter 2

Long term behavior

This chapter is based in paper [79] elaborated in collaboration with Juan Carlos Pardo. We
study the long-term behavior of the two classes of processes; CB-processes in a Lévy random
environment and a competition model in a Lévy random environment. In the first section we
study general CB-processes in a Lévy random environment. In particular, we discuss when the
process is conservative and explosion and extinction events. We provide some examples where we
can find explicitly the probability of such events. In the second section, we study the competition
model in a Lévy random environment. This process can be seen as a population model that
extends the competition model given in Evans et al. [44]. We provide the long term behavior of
the process and in the case when the random environment has no negative jumps, we compute
the Laplace transform of the first passage time below a level.

2.1 CB-processes in a Lévy random environment

In the sequel, we exclude from the model defined by (1.7), the competition mechanism � and the
immigration term M (im). Let  be a branching mechanism, i.e.

 (�) = �q � a�+ �2�2 +

Z

(0,1)

�

e��x � 1 + �x1{x<1}
�

µ(dx), � � 0,

where a 2 R, q, � � 0 and µ is a measure concentrated on (0,1) such that
R

(0,1)

�

1 ^ x2
�

µ(dx)

is finite. Recall that a CB-processes in a Lévy random environment (CBLRE) with branching
mechanism  , is defined as the solution of the stochastic di↵erential equation

Zt =Z0 +

Z t

0
aZsds+

Z t

0

p

2�2ZsdB
(b)
s +

Z t

0
Zs�dSs

+

Z t

0

Z

(0,1)

Z Z
s�

0
z eN (b)(ds, dz, du) +

Z t

0

Z

[1,1)

Z Z
s�

0
zN (b)(ds, dz, du),

(2.1)

where B(b) = (B(b)
t , t � 0) is a standard Brownian motion, N (b)(ds, dz, du) is a Poisson random

measure with intensity ds⇤(dz)du where ⇤(dz) = µ(dz) + q�1(dz), and St is the environment
given by (1.8), i.e.

St = ↵t+ �B(e)
t +

Z t

0

Z

(�1,1)
(ez � 1) eN (e)(ds, dz) +

Z t

0

Z

R\(�1,1)
(ez � 1)N (e)(ds, dz),
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with ↵ 2 R, � � 0, B(e) = (B(e)
t , t � 0) a standard Brownian motion and N (e)(ds, dz) a Poisson

random measure in R+⇥R with intensity ds⇡(dy). Additionally, all the process are independent
of each other.

In this section, we are interested in determining the long term behaviour of CB-processes in
a Lévy random environment. Similarly to the CB-processes case, there are three events which
are of immediate concern for the process Z, explosion, absorption and extinction. Recall that the
event of explosion at fixed time t, is given by {Zt = 1}. When Pz(Zt < 1) = 1, for all t > 0 and
z > 0, we say the process is conservative. In the second event, we observe from the definition of
Z that if Zt = 0 for some t > 0, then Zt+s = 0 for all s � 0, which makes 0 an absorbing state.
As Zt is to be thought of as the size of a given population at time t, the event {limt!1 Zt = 0}
is referred as extinction.

To the best knowledge of the author, explosion has never been studied before for branching
processes in random environment even in the discrete setting. Most of the results that appear
in the literature are related to extinction. In this section, we first provide a su�cient condition
under which the process Z is conservative and an example where we can determine explicitly
the probability of explosion. Under the condition that the process is conservative, we study the
probability of extinction under the influence of the random environment.

Without presence of environment, it is completely characterized when a CB-process presents
explosion or extinction a.s. Moreover, the explosion and extinction probabilities are known. If
the environment is a↵ecting the process, it is not easy to deduce these probabilities. In the next
chapter, we provide an example under which both events can be computed explicitly, as well as
their asymptotic behaviour when time increases. In order to find this behaviour, first, we study
the exponential functional of a Lévy processes.

Recall that  0(0+) 2 [�1,1), and that whenever | 0(0+)| < 1, we write

m = ↵�  0(0+)� �2

2
�

Z

(�1,1)

(ev � 1� v)⇡(dv),

and

 0(�) =  (�)� � 0(0+), � � 0.

The following proposition provides necessary conditions under which the process Z is conservative.

Proposition 2. Assume that q = 0 and | 0(0+)| < 1, then a CBLRE with branching mechanism
 is conservative.

Proof. Under our assumption, the auxiliary process (1.10) takes the form

K(0)
t = mt+ �B(e)

t +

Z t

0

Z

(�1,1)

v eN (e)(ds, dv) +

Z t

0

Z

R\(�1,1)
vN (e)(ds, dv),

and vt(s,�,K(0)) is the unique solution to the backward di↵erential equation (1.12). From identity
(1.11), we know that for z,�, t > 0

Ez

h

exp
n

� �Zte
�K

(0)
t

oi

= E
h

exp
n

� zvt(0,�,K
(0))
oi

.
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Thus if we take limits as � # 0, we deduce

Pz

�

Zt < 1
�

= lim
�#0

Ez

h

exp
n

� �Zte
�K

(0)
t

oi

= E


exp

⇢

�zlim
�#0

vt(0,�,K
(0))

��

, z, t > 0,

where the limits are justified by monotonicity and dominated convergence. This implies that a
CBLRE is conservative if and only if

lim
�#0

vt(0,�,K
(0)) = 0.

Let us introduce the function �(�) = ��1 0(�), � > 0 and observe that �(0) =  0
0(0+) = 0.

Since  0 is convex, we deduce that � is increasing. Finally, solving the equation (1.12) with
 0(�) = ��(�), we get

vt(s,�,K
(0)) = � exp

⇢

�
Z t

s
�(e�K

(0)
r vt(r,�,K

(0)))dr

�

.

Therefore, since � is increasing and �(0) = 0, we have

0  lim
�!0

vt(0,�,K
(0)) = lim

�!0
� exp

⇢

�
Z t

0
�(e�K

rvt(r,�,K
(0)))dr

�

 lim
�!0

� = 0,

implying that Z is conservative.

Recall that in the case when there is no random environment, i.e. S = 0, we know that a
CB-process with branching mechanism  is conservative if and only if

Z

0+

du

| (u)| = 1. (2.2)

The key part of the proof was observing that for all � > 0, the solution to (1.14) can be uniquely
identified by the relation

t =

Z t

0

@
@svt(s,�, 0)

 (vt(s,�, 0))
ds =

Z �

v
t

(0,�,0)

d✏

 (✏)
.

And therefore, it is easy to see that lim�#0 vt(0,�,K(0)) = 0 if and only if (2.2) holds. In the case
when the random environment is present, it is not so clear how to get a necessary and su�cient
condition in terms of the branching mechanism. The reason is that it is not enough to do a
change of variable in the integral

t =

Z t

0

e�K
s

@
@svt(s,�,K)

 (e�K
svt(s,�,K))

ds.

To expose the diverse behaviours that may arise, we now provide two interesting examples in
the case when  0(0+) = �1.
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Example 5 (Neveu case). In this case, recall that  (u) = u log u. In particular

 0(0+) = �1 and

Z

0+

du

|u log u| = 1.

By taking limits as � # 0 in (1.16), one can see that the process is conservative conditionally on
the environment, i.e.

Pz

�

Zt < 1
�

�K
�

= 1,

for all t 2 (0,1) and z 2 [0,1).

Example 6 (Stable case with � 2 (�1,0)). Here  (u) = cu�+1, where a 2 R and c is a
negative constant. From straightforward computations, we get

 0(0+) = �1, and

Z

0+

du

| (u)| < 1,

Moreover, by taking limits as � # 0 in (1.19), deduce that for z, t > 0

Pz

⇣

Zt < 1
�

�

�

K
⌘

= exp

(

�z

✓

�c

Z t

0
e��Kudu

◆�1/�
)

a.s.,

implying

Pz

⇣

Zt = 1
�

�

�

K
⌘

= 1� exp

(

�z

✓

�c

Z t

0
e��Kudu

◆�1/�
)

> 0.

In other words the stable CBLRE with � 2 (�1, 0) explodes with positive probability for any
t > 0. Moreover, if the process (Ku, u � 0) does not drift to �1, from (5) we deduce that

lim
t!1

Zt = 1, a.s.

On the other hand, if the process (Ku, u � 0) drifts to �1, we have an interesting long-term
behaviour of the process Z. In fact, we deduce from the Dominated Convergence Theorem

Pz

⇣

Z1 = 1
⌘

= 1� E
"

exp

(

�z

✓

�c

Z 1

0
e��Kudu

◆�1/�
)#

, z > 0.

By (5), the above probability is positive. In this particular case, we will discuss the asymptotic
behaviour of the probability of explosion in Chapter 3.

As before we denote by � the function �(�) = ��1 0(�), for � � 0, and we introduce

A(x) = m+ ⇡((1,1)) +

Z x

1
⇡((y,1))dy, for x > 0.

Proposition 3. Assume that
R

[1,1) xµ(dx) < 1. Let (Zt, t � 0) be a CBLRE with branching
mechanism given by  and z � 0.

i) If the process K(0) drifts to �1, then Pz

⇣

lim
t!1

Zt = 0
�

�

�

K(0)
⌘

= 1, a.s.
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ii) If the process K(0) oscillates, then Pz

⇣

lim inf
t!1

Zt = 0
�

�

�

K(0)
⌘

= 1, a.s. Moreover if � > 0

then
Pz

⇣

lim
t!1

Zt = 0
�

�

�

K(0)
⌘

= 1, a.s.

iii) If the process K(0) drifts to +1, so that A(x) > 0 for all x large enough. Then if
Z

(a,1)

x

A(x)

�

�d�(e�x)
�

� < 1 for some a > 0, (2.3)

we have Pz

⇣

lim inf
t!1

Zt > 0
�

�

�

K(0)
⌘

> 0 a.s., for all z > 0, and there exists a non-negative

finite r.v. W such that

Zte
�K

(0)
t �!

t!1
W, a.s and

�

W = 0
 

=
n

lim
t!1

Zt = 0
o

.

In particular, if 0 < E[K(0)
1 ] < 1 then the above integral condition is equivalent to

Z 1
x log(x)µ(dx) < 1.

iv) Assume that K(0) has continuous paths and drifts to infinite, i.e. K(0)
t = mt+ �B(e)

t with
m = ↵+  0(0+)� �2/2 > 0, and that

� > 0 and  :=

Z 1

1
x2µ(dx) < 1.

Then, for z > 0,

✓

1 +
z�2

2�2

◆� 2m
�

2

 Pz

⇣

lim
t!1

Zt = 0
⌘


✓

1 +
1

2

z�2

�2 + 

◆� 2m
�

2

.

Proof. Recall that under our assumption, the function vt(s,�,K(0)) satisfies the backward di↵er-
ential equation (1.12). Similarly to the last part of the proof of Proposition 2, one can prove that

Zte�K
(0)
t is a non-negative local martingale. Therefore Zte�K

(0)
t is a non-negative supermartin-

gale and it converges a.s. to a non-negative finite random variable, here denoted by W . This
implies the statement of part (i) and the first statement of part (ii).

In order to prove the second statement of part (ii), we observe that if � > 0, then the solution
to (1.12) also satisfies

@

@s
vt(s,�,K

(0)) � �2vt(s,�,K
(0))2e�K

(0)
s .

Therefore

vt(s,�,K
(0)) 

✓

1

�
+ �2

Z t

s
e�K

(0)
s ds

◆�1

,

which implies the following inequality,

Pz(Zt = 0|K(0)) � exp

(

�z

✓

�2
Z t

0
e�K

(0)
s ds

◆�1
)

. (2.4)
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By (5), we have

Pz

⇣

lim
t!1

Zt = 0
�

�

�

K(0)
⌘

= 1 a.s.

Now, we prove part (iii). From the non-negative property of  0, it follows that vt(·,�,K(0)),
the a.s. solution to (1.12), is non-decreasing on [0, t]. Thus for all s 2 [0, t], vt(s,�,K(0))  �.
Since  0 is convex and �(0) =  0

0(0+) = 0, we dedude that � is increasing. Hence

@

@s
vt(s,�,K

(0)) = vt(s,�,K
(0))�(vt(s,�,K

(0))e�K
(0)
s )  vt(s,�,K

(0))�(�e�K
(0)
s ).

Therefore, for every s  t, we have

vt(s,�,K
(0)) � � exp

⇢

�
Z t

s
�(�e�K

(0)
s )ds

�

.

In particular,

lim inf
t!1

vt(0,�,K
(0)) � � exp

⇢

�
Z 1

0
�(�e�K

(0)
s )ds

�

.

If the integral on the right-hand side is a.s. finite, then

lim inf
t!1

vt(0,�,K
(0)) � � exp

⇢

�
Z 1

0
�(�e�K

(0)
s )ds

�

> 0, a.s.,

implying that for z > 0

Ez

h

e��W
�

�

�

K(0)
i

 exp

⇢

�z � exp

⇢

�
Z 1

0
�(�e�K

(0)
s )ds

��

< 1, a.s.

and in particular Pz

⇣

lim inf
t!1

Zt > 0
�

�

�

K(0)
⌘

> 0 a.s. Next, we use Lemma 20 in [9] and the branching

property of Z, to deduce

{W = 0} =
n

lim
t!1

Zt = 0
o

.

In order to finish our proof, we show that the integral condition (2.3) implies

Z 1

0
�(�e�K

(0)
s )ds < 1 a.s.

We first introduce & = sup{t � 0 : K(0)
t  0} and observe

Z 1

0
�(�e�K

(0)
s )ds =

Z &

0
�(�e�K

(0)
s )ds+

Z 1

&
�(�e�K

(0)
s )ds (2.5)

Since & < 1 a.s., the first integral of the right-hand side is a.s. finite. For the second integral,
we use Theorem 1 in Erickson and Maller [42] which ensures us that

Z 1

&
�(�e�K

(0)
s )ds < 1, a.s.,

if the integral condition (2.3) holds.
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Now, we assume that 0  E[K(0)
1 ] < 1 and observe that limx!1A(x) is finite. In particular,

this implies that the integral condition (2.3) is equivalent to
Z 1

0
�(�e�y)dy < 1.

Moreover, we have
Z 1

0
�(�e�y)dy =

Z �

0

�(✓)

✓
d✓

= �2�+

Z �

0

d✓

✓2

Z

(0,1)
(e�✓x � 1 + ✓x)µ(dx)

= �2�+

Z

(0,1)
µ(dx)

Z �

0
(e�✓x � 1 + ✓x)

d✓

✓2

= �2�+

Z

(0,1)
x

✓

Z �x

0
(e�y � 1 + y)

dy

y2

◆

µ(dx).

Since the function

g�(x) =

Z �x

0
(e�y � 1 + y)

dy

y2
,

is equivalent to �x/2 as x ! 0 and equivalent to lnx as x ! 1. Using the integrability condition
R

(0,1)(x ^ x2)µ(dx) < 1, we deduce that

Z 1

0
�(�e�y)dy < 1 if and only if

Z 1
x log(x)µ(dx) < 1.

Finally, we prove part (iv). From inequality (2.4) and the Dominate Convergence Theorem,
we deduce

Pz

⇣

lim
t!1

Zt = 0
�

�

�

K(0)
⌘

� exp

(

�z

✓

�2
Z 1

0
e�K

(0)
s ds

◆�1
)

a.s.

According to Dufresne [34], when K(0)
t = mt+ �B(e)

t and m > 0,
Z 1

0
e�K

(0)
s ds has the same law as

⇣

2� 2m
�

2

⌘�1
, (2.6)

where �v is Gamma variable with shape parameter v, i.e. of density:

P (�v 2 dx) =
xv�1

�(v)
e�x1{x>0}.

After straightforward computations, we deduce that for z > 0

Pz

⇣

lim
t!1

Zt = 0
⌘

�
✓

1 +
z�2

�2

◆� 2m
�

2

.

In a similar way, the upper bound follows from the a.s. inequality

@

@s
vt(s,�,K

(0))  (�2 + )vt(s,�,K
(0))2e�K

(0)
s .
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Now, we derive a central limit theorem in the supercritical regime which follows from Theorem
3.5 in Doney and Maller [31] and similar arguments as those used in Corollary 3 in [9], so we skip
its proof.

For x > 0 let

T (x) = ⇡((x,1)) + ⇡((�1,�x)) and U(x) = �2 +

Z x

0
yT (y)dy

Corollary 2. Assume that K(0) drifts to +1, T (x) > 0 for all x > 0, and (2.3) is satisfied.
There are two measurable functions a(t), b(t) > 0 such that , conditionally on {W > 0},

log(Zt)� a(t)

b(t)
d���!

t!1
N (0, 1),

if and only if
U(x)

x2T (x)
! 1 as x ! 1,

where
d�! means convergence in distribution and N (0, 1) denotes a centred Gaussian random

variable with variance equals 1.

It is important to note that if
R

{|x|>1} x
2⇡(dx) < 1, then for t > 0,

a(t) :=

 

m+

Z

{|x|�1}
x⇡(dx)

!

t and b2(t) :=

✓

�2 +

Z

R
x2⇡(dx)

◆

t,

which is similar to the result obtained in Corollary 3 in [9].

We finish this section with 3 examples where we find explicitly the probabilities that we
studied before. In the Neveu example, we show that the process survives a.s. and it has positive
extinction probability.

Example 7 (Stable case with � 2 (0,1]). When the branching mechanism is of the form
 (u) = cu�+1 for � 2 (0, 1], � ⌘ 0 and m > 0, one can deduce directly from (1.19) by taking �
and t to 1, and (5) that for z � 0

Pz

⇣

lim
t!1

Zt = 0
�

�K
⌘

= exp

(

�z

✓

�c�

Z 1

0
e��Kudu

◆�1/�
)

, a.s.,

and in particular

P
⇣

W = 0
⌘

= Pz

⇣

lim
t!1

Zt = 0
⌘

= Ez

"

exp

(

�z

✓

�c�

Z 1

0
e��Kudu

◆�1/�
)#

.

Example 8 (Stable case with immigration). Now, we assume that the branching and im-
migration mechanisms are of the form  (�) = c��+1 and �(�) = d�� , where � 2 (0, 1], c, d > 0
and a 2 R. If we take limits as � " 1 in (1.20), we obtain

Pz

⇣

Zt > 0
�

�

�

K
⌘

= 1, for z > 0.
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Similarly if we take limits as � # 0 in (1.20), we deduce

Pz

⇣

Zt < 1
�

�

�

K
⌘

= 1, for z � 0.

In other words, the stable CBLRE with immigration is conservative and positive at finite time
a.s.

An interesting question is to study the long-term behaviour of the stable CBILRE. Now, if
we take limits as t " 1 in (1.20), we deduce that when m > 0,

Ez

h

exp
n

�� lim
t!1

Zte
�K

t

oi

=E
"

exp

(

�z

✓

�c

Z 1

0
e��Ksds+ ���

◆�1/�
)

⇥ exp

⇢

� d

�c
ln

✓

�c��
Z 1

0
e��Ksds+ 1

◆�

#

,

where we recall that by (5),
R1
0 e��Ksds < 1 a.s. In other words, Zte�K

t converges in distribu-
tion to a r.v. whose Laplace transform is given by the previous identity.

If m  0, we deduce

lim
t!1

Zte
�K

t = 1, Pz � a.s. z > 0

We observe that when m = 0, the process K oscillates implying that

lim
t!1

Zt = 1, Pz � a.s., z > 0

Example 9 (Neveu case). According to (1.16), for z,�, t > 0

Ez

h

exp
n

� �Zte
�K

t

o

�

�

�

K
i

= exp

⇢

�z�e
�t

exp

⇢

Z t

0
e�sKsds

��

a.s. (2.7)

If we take limits as � " 1, in (2.7), we obtain that the Neveu CBLRE survives conditionally on
the environment, in other words

Pz

�

Zt > 0
�

�K
�

= 1,

for all t 2 (0,1) and z 2 (0,1). Moreover since the process has càdlàg paths, we deduce the
Neveu CBLRE survives a.s., i.e.

Pz

⇣

Zt > 0, for all t � 0
⌘

= 1, z > 0.

On the one hand, using integration by parts we obtain

Z t

0
e�sKsds = �e�tKt +

Z t

0
e�sdKs.

Let  K be the characteristic exponent of K and ⇢ its Lévy measure. According to Theorem 17.5
in Sato [84], if ⇢ satisfies

Z

|x|>2
log |x|⇢(dx) < 1,
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the law of
R t
0 e

�sdKs converges to a self-decomposable law, denoted by
R1
0 e�sdKs, as t goes to

1. Moreover, the characteristic exponent of
R1
0 e�sdKs is given by

 K(�) =

Z 1

0
 K(�e�s)ds � � 0.

In particular, if E [|K1|] < 1, then
R

|x|>2 log |x|⇢(dx) < 1 and by the Strong Law of Large

Numbers, e�tKt ! 0 as t goes to 1. Hence, if we take limits as t " 1 in (2.7), we observe

Ez

h

exp
n

� � lim
t!1

Zte
�K

t

o

�

�

�

K
i

L
= exp

⇢

�z exp

⇢

Z 1

0
e�sdKs

��

, z,� > 0.

Since the right-hand side of the above identity does not depend on �, this implies that

Pz

⇣

lim
t!1

Zte
�K

t = 0
�

�

�

K
⌘

L
= exp

⇢

�z exp

⇢

Z 1

0
e�sdKs

��

, z > 0

and taking expectations in the above identity, we deduce

Pz

⇣

lim
t!1

Zte
�K

t = 0
⌘

= E


exp

⇢

�z exp

⇢

Z 1

0
e�sdKs

���

, z > 0.

In conclusion, the Neveu process in Lévy random environment is conservative and survives a.s.
But when E [K1] < 0, the extinction probability is given by the previous expression. In addition,
when the random environment is continuous and ↵ < �2/2, the extinction probability is given
by the Laplace transform of a log-normal distribution with mean ↵� �2/2 and variance �2/2.

2.2 Competition model in a Lévy random environment

We now study an extension of the competition model given in Evans et al. [44]. In this model,
we exclude the immigration term and take the branching and competition mechanisms as follows

�(x) = kx2 and  (�) = a�, for x,� � 0

where k is a positive constant. Hence, we define a competition model in a Lévy random environ-
ment process (Zt, t � 0) as the solution of the SDE

Zt = Z0 +

Z t

0
Zs(a� kZs)ds+

Z t

0
Zs�dSs (2.8)

where the environment is given by the Lévy process described in (1.8).
From Corollary 1, there is a unique non negative strong solution of (2.8) satisfying the Markov

property. Moreover, we have the following result, which that in particular tells us that the process
Z is the inverse of a generalised Ornstein-Uhlenbeck process.

Proposition 4. Suposse that (Zt, t � 0) is the unique strong solution of (2.8). Then, it satisfies

Zt =
Z0eKt

1 + kZ0

Z t

0
eKsds

, t � 0, (2.9)

where K is the Lévy process defined in (1.10). Moreover, if Z0 = z > 0 then, Zt > 0 for all t � 0
a.s. and it has the following asymptotic behaviour:
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i) If the process K drifts to �1, then limt!1 Zt = 0 a.s.

ii) If the process K oscillates, then lim inft!1 Zt = 0 a.s.

iii) If the process K drifts to 1, then (Zt, t � 0) has a stationary distribution whose density
satisfies for z > 0,

Pz(Z1 2 dx) = h

✓

1

kx

◆

dx

x2
, x > 0,

where
Z 1

t
h(x)dx =

Z

R
h(te�y)U(dy), a.e. t on (0,1),

and U denotes the potential measure associated to K, i.e.

U(dx) =

Z 1

0
P(Ks 2 dx)ds x 2 R.

Moreover, if 0 < E [K1] < 1, then

lim
t!1

1

t

Z t

0
Zsds =

1

k
E [K1] , a.s.

and for every measure function f : R+ ! R+ we have

lim
t!1

1

t

Z t

0
f(Zs)ds = E



f

✓

1

kI1(�K)

◆�

, a.s.

where I1(�K) =
R1
0 eKsds.

Proof. By Itô’s formula, we see that the process Z satisfies (2.9). Moreover, since the Lévy
process K has infinite lifetime, then we necessarily have Zt > 0 a.s. Part (i) follows directly from
(5) and (2.9). Next, we prove part (ii). Assume that the process K oscillates. On the one hand,
we have

Zt =
Z0

e�K
t + kZ0e�K

t

Z t

0
eKsds

 1

ke�K
t

Z t

0
eKsds

.

On the other hand, the Duality Lemma (see for instance Lemma 3.4 in [64]) tells us that
{K(t�s)� � Kt : 0  s  t} and {�Ks : 0  s  t} have the same law under P. Then, we
deduce

✓

Kt, e
�K

t

Z t

0
eKsds

◆

is equal in law to

✓

Kt,

Z t

0
e�K

sds

◆

.

From (5) and our assumption, we have that the exponential functional of K goes to 1 as t ! 1.
This implies that limt!1 Zt = 0 in distribution and therefore,

lim inf
t!1

Zt = 0, a.s.

Finally, we assume that the process K drifts to 1. Then, from the previous observation, we have
the following identity in law

Zt
L
=

Z0

e�K
t + kZ0

Z t

0
e�K

sds

.
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Using (5), we have that Zt converges in distribution to

✓

k

Z 1

0
e�K

sds

◆�1

.

The form of the density follows from Theorem 1 of Arista and Rivero [5].
Now, observe that

Z t

0
Zsds =

1

k
ln

✓

1 + kZ0

Z t

0
eKsds

◆

. (2.10)

Therefore if 0 < E [K1] < 1, a simple application of the Law of Large Numbers allow us to
deduce (see also Proposition 4.1 in Carmona et al. [24])

lim
t!1

1

t

Z t

0
Zsds = lim

t!1

1

kt
ln

✓

Z t

0
eKsds

◆

=
1

k
E [K1] , a.s.. (2.11)

In order to prove the last assertion of our proposition, let us introduce X(x) = (X(x)
t , t � 0)

the positive self-similar Markov process associated to K via the Lamperti transform with scaling
index 1. That is to say, for all x > 0

X(x)
t = xeK⌧(tx�1) , t � 0,

where the time change ⌧ is defined as follows

⌧(t) = inf

⇢

s � 0 :

Z s

0
eKrdr > t

�

.

This process satisfies the scaling property, i.e. for a > 0, the following identity in law follows
⇣

aX(x)
t , t � 0

⌘

L
=
⇣

X(ax)
at , t � 0

⌘

.

Next, we define the process Y as follows

Y (x)
t := e�ktX(x)

(ekt�1)/k
, t � 0,

By the scaling property, it turns out to have the same law as
⇣

X(xe�kt)
(1�e�kt)/k

, t � 0
⌘

.

Since 0 < E [K1] < 1, Theorem 1 of Bertoin and Yor in [18] tells us that for all x > 0,

Y (x)
t ! X(0)

1/k as t ! 1, and for any measurable function f : R+ �! R+

E
h

f(X(0)
1/k)

i

:=

Z

(0,1)
f(x)µ(dx) =

1

E [K1]
E


f

✓

1

kI1(�K)

◆

1

I1(�K)

�

, (2.12)

where I1(�K) =
R1
0 e�K

sds. Then, Y is a Markov process with invariant distribution µ.
Moreover, by the Ergodic Theorem

lim
t!1

1

t

Z t

0
f(Y (x)

s )ds =

Z

(0,1)
f(x)µ(dx). (2.13)
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In one hand, observe that by the definition of Y and ⌧ ,

Y (Z0)
t = Z0e

�kte
K
⌧((ekt�1)/(kZ0)) =

Z0eKv

1 + kZ0
R v
0 eKsds

�

�

�

�

v=⌧((ekt�1)/(kZ0))

= Z⌧((ekt�1)/(kZ0)).

On the other hand, by identity (2.10), we deduce for all t � 0

⌧

✓

ekt � 1

kZ0

◆

= inf

⇢

s > 0 :

Z s

0
Zrdr > t

�

.

This implies

Z t

0
f(Zs)ds =

Z ⌧

✓
e

kt�1
kZ0

◆

0
f

✓

Z
⌧
⇣

e

ks�1
kZ0

⌘
◆

1

Z
⌧
⇣

e

ks�1
kZ0

⌘ds =

Z ⌧

✓
e

kt�1
kZ0

◆

0
f
⇣

Y (Z0)
s

⌘ 1

Y (Z0)
s

ds. (2.14)

By taking f(x) = x in the previous equality, we get

lim
t!1

⌧
⇣

ekt�1
kZ0

⌘

t
= lim

t!1

1

t

Z t

0
Zsds.

Putting all the pieces together, i.e. by (2.11), (2.12), (2.13) and (2.14), we have

lim
t!1

1

t

Z t

0
f(Zs)ds = E



f

✓

1

kI1(�K)

◆�

, a.s.

This completes the proof.

We finish this section with two important observations in two particular cases. We first
assume that the process K drifts to +1 and that satisfies

Z

[1,1)
eqx⇡(dx) < 1 for every q > 0,

i.e. that has exponential moments of all positive orders. Let us denote by  K the characteristic
exponent of the Lévy process K, i.e.

 K(✓) = � logE[ei✓K1 ] for ✓ 2 R.

In this situation, the characteristic exponent  k(✓) has an analytic extension to the half-plane
with negative imaginary part, and one has

E[eqKt ] = et K

(q) < 1, t, q � 0,

where  K(q) = � K(�iq) for q � 0. Hence, according to Theorem 3 in Bertoin and Yor [19] the
stationary distribution has positive moments and satisfies, for z > 0 and n � 1,

Ez

h

Zn
1

i

=  0
K(0+)

 K(1) · · · K(n� 1)

(n� 1)!
.
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Finally, we assume that the process K drifts to �1 and has no negative jumps. Observe that
the process Z inherited the latter property and we let Z0 = z > 0. Under this assumption, we
can compute the Laplace transform of the first passage time from below a level z > b > 0 of the
process Z, i.e.

�b = inf{s � 0 : Zs  b}.

In this case,  k has an analytic extension to the half-plane with positive imaginary part, and

E[e�qK
t ] = et ̂K

(q) < 1, t, q � 0,

where  ̂K(q) = � K(iq) for q � 0. Define, for all t � 0, Ft = �(Ks : s  t) and consider the
exponential change of measure

dP(�)
dP

�

�

�

�

F
t

= e�(�)Kt

��t, for � � 0, (2.15)

where (�) is the largest solution to  ̂K(u) = �. Under P(�), the process K is still a spectrally
positive and its Laplace exponent,  ̂(�) satisfies the relation

 ̂(�)(u) =  ̂K((�) + u)� �, for u � 0.

See for example Chapter 8 of [64] for further details on the above remarks. Note in particular
that it is easy to verify that  ̂0

(�)(0+) > 0 and hence the process K under P(�) drifts to �1.

According to earlier discussion, this guarantees that also under P(�), the process Z goes to 0 as
t ! 1.

Lemma 1. Suppose that � � 0 and that (�) > 1, then for all 0 < b  z,

Ez

h

e���b
i

=
E(�)

h

(1 + kzI1(K))(�)
i

E(�)
h

(zb�1 + kzI1(K))(�)
i ,

where

I1(K) =

Z 1

0
eKsds.

Proof. From the absence of negative jumps we have Z�
b

= b on the event {�b < 1} and in
particular

b =
zeK�

b

1 + kz

Z �
b

0
eKsds

.

On the other hand, from the Markov property and the above identity, we have

1 + kzI1(K) = 1 + kz

Z �
b

0
eKsds+ kzeK�

b

Z 1

0
eK�

b

+s

�K
�

bds = eK�

b

⇣z

b
+ zkI 01

⌘

,

where I 01 is an independent copy of I1(K).
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The latter identity and the Escheer transform imply that for � � 0

Ez

h

e���b
i

= E(�)
h

e(�)K�

b

i

=
E(�)

h

(1 + kzI1(K))(�)
i

E(�)


⇣z

b
+ zkI1(K)

⌘(�)
� ,

provided the quantity E(�)[(a+ kzI1(K))(�)] is finite, for a > 0.
Observe that for s � 1,

E(�)
h

(a+ I1(K))s
i

 2s�1
⇣

as + E(�)[I1(K)s]
⌘

,

hence it su�ces to investigate the finiteness of E(�)[Is1]. According to Lemma 2.1 in Maulik
and Zwart [76] the expectation E(�)[I1(K)s] is finite for all s � 0 such that � ̂(�)(�s) > 0.

Since  ̂(�)(�s) is well defined for (�)�s � 0, then a straightforward computation gives us that

E(�)[I1(K)s] < 1 for s 2 [0,(�)].
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Chapter 3

Asymptotic behaviour of exponential
functionals of Lévy processes

This chapter is based in paper [81] elaborated in collaboration with Juan Carlos Pardo and
Charline Smadi. Here, we study The exponential functional of a Lévy process is the main topic
of this chapter. We study the asymptotic behaviour of

E
h

F
�

It(⇠)
�

i

as t ! 1,

where It(⇠) is given by (4) and F is a non-increasing function with polynomial decay at infinity
and under some exponential moment conditions on ⇠. If the exponential moment conditions are

not satisfied, we still can find the asymptotic behaviour of E
h

�

It(⇠)
��p
i

, for p 2 (0, 1], under

Spitzer’s condition. We describe the main results of the chapter in Section 3.1. In the next
section we apply the results to the following classes of processes in random environment: the
competition model given in Section 2.2 and di↵usion processes whose dynamics are perturbed by
a Lévy random environment. For the competition model, we describe the asymptotic behaviour of
its mean. For the di↵usion processes, we provide the asymptotic behaviour of the tail probability
of its global maximum. Finally, Section 3.3 is devoted to the proofs of the main results of the
Chapter. The proof under the exponential moment conditions on ⇠ relies on a discretisation of
the exponential functional It(⇠) and is closely related to the behaviour of functionals of semi-
direct products of random variables. The proof under Spitzer’s condition relies in a factorisation
of It(⇠) given by Arista and Rivero [5].

3.1 Introduction and main results

Let ⇠ = (⇠t : t � 0) be a Lévy process with characteristic triplet (↵,�,⇧) where ↵ 2 R, � 2 R+

and ⇧ is a measure on R\{0} satisfying the integrability condition
R

R(1^ x2)⇧(dx) < 1. Recall
that for all z 2 R

E[eiz⇠t ] = et (iz),

where the Laplace exponent  (z) is given by the Lévy-Khintchine formula

 (z) = ↵z +
1

2
�2z2 +

Z

R
(ezx � 1� zxh(x))⇧(dx), z 2 R.
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Here, h(x) is the cuto↵ function which is usually taken to be h(x) ⌘ 1{|x|<1}. Whenever the
process ⇠ has finite mean, we will take h(x) ⌘ 1.

In this chapter, we are interested in studying the exponential functional of ⇠, defined by

It(⇠) :=

Z t

0
e�⇠sds, t � 0.

More precisely, one of our aims is to study the asymptotic behaviour of

E
h

F
�

It(⇠)
�

i

as t ! 1,

where F is a non-increasing function with polynomial decay at infinity and under some expo-
nential moment conditions on ⇠. In particular, we find five di↵erent regimes that depend on the
shape of  (z), whenever it is well-defined. Let us now state our main results. Assume that

✓+ = sup {� > 0 :  (�) < 1} (3.1)

exists and is positive. In other words, the Laplace exponent of the Lévy process ⇠ can be defined
on [0, ✓+), see for instance Lemma 26.4 in Sato [84]. Besides,  satisfies

 (�) = logE
h

e�⇠1
i

, � 2 [0, ✓+).

From Theorem 25.3 in [84],  (�) < 1 is equivalent to
Z

{|x|>1}
e�x⇧(dx) < 1. (3.2)

Moreover  belongs to C1((0, ✓+)) with  (0) = 0,  0(0+) 2 [�1,1) and  00(�) > 0, for
� 2 (0, ✓+) (see Lemma 26.4 in [84]). Hence, the Laplace exponent  is a convex function on
[0, ✓+) implying that either it is positive or it may have another root in (0, ✓+). In the latter
scenario,  has at most one global minimum on (0, ✓+). Whenever such a global minimum exists,
we denote by ⌧ the position where it is reached. As we will see below, this parameter is relevant
to determine the asymptotic behaviour of E [It(⇠)�p], for 0 < p < ✓+.

Let us introduce the exponential change of measure known as the Esscher transform. Accord-
ing to Theorem 3.9 in Kyprianou [64], for any � such that (3.2) is satisfied, we can perform the
following change of measure

dP(�)

dP

�

�

�

�

F
t

= e�⇠t� (�)t, t � 0 (3.3)

where (Ft)t�0 is the natural filtration generated by ⇠ which is naturally completed. Moreover,
under P(�) the process ⇠ is still a Lévy process with Laplace exponent given by

 �(z) =  (�+ z)�  (�), z 2 R.

Theorem 2. Assume that 0 < p < ✓+.

i) If  0(0+) > 0, then
lim
t!1

E
⇥

It(⇠)
�p
⇤

= E
⇥

I1(⇠)�p
⇤

> 0.
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ii) If  0(0+) = 0 and  00(0+) < 1, then there exists a positive constant c1 such that

lim
t!1

p
tE
⇥

It(⇠)
�p
⇤

= c1.

iii) Assume that  0(0+) < 0

a) if  0(p) < 0, then

lim
t!1

e�t (p)E
⇥

It(⇠)
�p
⇤

= E(p)[I1(�⇠)�p]> 0.

b) if  0(p) = 0, then there exists a positive constant c2 such that

lim
t!1

p
te�t (p)E

⇥

It(⇠)
�p
⇤

= c2.

c)  0(p) > 0, then
E
⇥

It(⇠)
�p
⇤

= o(t�1/2et (⌧)), as t ! 1,

where ⌧ is the position where the global minimum is reached. Moreover if we also
assume that ⇠ is non-arithmetic (or non-lattice) then

E
⇥

It(⇠)
�p
⇤

= O(t�3/2et (⌧)), as t ! 1.

It is important to note that for any q > 0 satisfying (3.2), we necessarily have that E [It(⇠)�q]
is finite for all t > 0. Indeed, since (eq⇠t�t (q), t � 0) is a positive martingale, we deduce from
L1-Doob’s inequality (see for instance [1]) and the Esscher transform (3.3), that the following
series of inequalities hold: for t  1,

E
⇥

It(⇠)
�q
⇤

 t�qE


sup
0u1

eq⇠u
�

 t�qe (q)_0E


sup
0u1

eq⇠u�u (q)

�

 t�q e
1+ (q)_0

e� 1

⇣

1 + E(q)
h

q⇠1 �  (q)
i⌘

= t�q e
1+ (q)_0

e� 1
[1 + q 0(q)�  (q)],

(3.4)

which is finite. The finiteness for t > 1 follows from the fact that It(⇠) is non-decreasing.
We are now interested in extending the above result for a class of functions which have

polynomial decay and are non-increasing at 1. As we will see below such extension is not
straightforward and need more conditions on the exponential moments of the Lévy process ⇠.

For simplicity, we write
EF (t) := E [F (It(⇠))] ,

where F belongs to a particular class of continuous functions on R+ that we will introduce below.
We assume that the Laplace exponent  of ⇠ is well defined on the interval (✓�, ✓+), where

✓� := inf{� < 0 :  (�) < 1},

and ✓+ is defined as in (3.1). Recall that  is a convex function that belongs to C1((✓�, ✓+))
with  (0) = 0,  0(0+) 2 [�1,1) and  00(�) > 0, for � 2 (✓�, ✓+). Also recall that ⌧ 2 [0, ✓+)
is the position where the minimum of  is reached.

Let k be a positive constant. We will consider functions F satisfying one of the following
conditions: There exists x0 � 0 such that F (x) is non-increasing for x � x0, and
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(A1) F satisfies

F (x) = k(x+ 1)�p
h

1 + (1 + x)�&h(x)
i

, for all x > 0,

where 0 < p  ⌧ , & � 1 and h is a Lipschitz function which is bounded.

(A2) F is an Hölder function with index ↵ > 0 satisfying

F (x)  k(x+ 1)�p, for all x > 0,

with p > ⌧.

Theorem 3. Assume that 0 < p < ✓+. We have the following five regimes for the asymptotic
behaviour of EF (t) for large t.

i) If  0(0+) > 0 and F is a positive and continuous function which is bounded, then

lim
t!1

EF (t) = EF (1).

ii) If  0(0+) = 0, F satisfies (A2) and ✓� < 0, then there exists a positive constant c3 such
that

lim
t!1

p
tEF (t) = c3.

iii) Suppose that  0(0+) < 0:

a) If F satisfies (A1) and  0(p) < 0, then,

lim
t!1

e�t (p)EF (t) = lim
t!1

e�t (p)kE
⇥

It(⇠)
�p
⇤

=kE(p)
⇥

I1(�⇠)�p
⇤

.

b) If F satisfies (A1) and  0(p) = 0, then,

lim
t!1

p
te�t (p)EF (t) = lim

t!1

p
te�t (p)kE

⇥

It(⇠)
�p
⇤

=kc2,

where c2 has been defined in point iii) b) of Theorem 2.

c) If F satisfies (A2),  0(p) > 0 and ⌧ + p < ✓+, then there exists a positive constant c4
such that

lim
t!1

t3/2e�t (⌧)EF (t) = c4.

If ✓+ does not exits, we can still provide the asymptotic behaviour of EF (t), for F (x) = x�p

with p 2 (0, 1], under the so-called Spitzer’s condition; i.e. if there exists � 2 (0, 1] such that

lim
t!1

t�1
Z t

0
P (⇠s � 0) ds = �. (3.5)

Theorem 4. Let p 2 (0, 1] and suppose that ⇠ satisfies Spitzer’s condition (3.5) with � 2 (0, 1].
Then, there exists a constant c(p) that depends on p such that

lim
t!1

t1��E
"

✓

Z t

0
e�⇠sds

◆�p
#

= c(p).

In particular if ⇠ satisfies Spitzer’s condition with � 2 (0, 1) and 0 < ✓+, we necessary have
 0(0+) = E [⇠1] = 0 and � = 1/2. Therefore, ⇠ is under the regimen of Theorem 2 part (ii).
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3.2 Applications

Now, we provide two examples where we can apply the main results of this chapter. Both are
processes perturbed by Lévy random environments.

3.2.1 Competition model in a Lévy random environment

We now study the asymptotic behaviour of the population model given in Section 2.2. Recall
that the competition model in a Lévy random environment, (Zt, t � 0), is the unique strong
solution of the SDE

Zt = Z0 +

Z t

0
Zs(a� kZs)ds+

Z t

0
Zs�dSs

where a > 0 is the drift, k > 0 is the competition, and the environment is given by the Lévy
process defined in (1.8). Moreover, the process Z satisfies the Markov property and we have

Zt =
Z0eKt

1 + kZ0

Z t

0
eKsds

, t � 0,

where K is the Lévy process defined in (1.10).
The following result studies the asymptotic behaviour of Ez[Zt], where Pz denotes the law of

Z starting from z. Before stating our result, let us introduce the Laplace transform of the Lévy
process K by

e(✓) = E[e✓K1 ], ✓ 2 R,
when it exists (see discussion on page 30). We assume that the Laplace exponent  of K is well
defined on the interval (✓�K , ✓+K), where

✓�K := inf{� < 0 : (�) < 1} and ✓+K := sup{� > 0 : (�) < 1}.

Let ⌧ be the position of the global minimum in (0, ✓+K), and denote by m = 0(0) and m1 = 0(1).

Proposition 5. Assume that 1 < ✓+K . For z > 0, we have the following five regimes for the
asymptotic behaviour of Ez[Zt].

i) If m > 0, then for every z > 0

lim
t!1

Ez[Zt] =
1

k
E


1

I1(K)

�

> 0.

ii) If m = 0, then
Ez[Zt] = O(t�1/2).

iii) Suppose that m < 0:

a) If m1 < 0, then,

lim
t!1

e�t(1)Ez[Zt] = E(1)



z

1 + zkI1(�K)

�

> 0,

where E(1) denotes the Esscher transform (3.3) of K with � = 1.
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b) If m1 = 0, then there exists a positive constant c(z, k) that depends on z and k such
that

lim
t!1

p
te�t(1)Ez[Zt] = c(z, k).

c) If m1 > 0 and ⌧ + 1 < ✓+ then there exists a positive constant c1(z, k) that depends
on z and k such that

lim
t!1

t3/2e�t(⌧)Ez[Zt] = c1(z, k).

Proof. We first recall that the time reversal process (Kt �K(t�s)� , 0  s  t) has the same law
as (Ks, 0  s  t), (see Lemma II.2 in [14]). Then, for all t � 0

e�K
tIt(�K) = e�K

t

Z t

0
eKt�sds =

Z t

0
e�(K

t

�K
t�s

)ds
L
=

Z t

0
e�K

sds = It(K), (3.6)

implying

(e�K
t , e�K

tIt(�K))
L
= (e�K

t , It(K)).

The above implies that

Ez[Zt] = zE
"

✓

e�K
t + kze�K

t

Z t

0
eKsds

◆�1
#

= zE
h

�

e�K
t + kzIt(K)

��1
i

. (3.7)

Let us now prove part i). Assume that m > 0, then K drifts to 1 and e�K
t converges to 0 as

t goes to 1. By Theorem 1 in [19], It(K) converges a.s. to I1(K), a non-negative and finite
limit as t goes to 1. We observe that the result follows from identity (2.8) and the Monotone
Convergence Theorem.

Part ii) follows from the inequality

Ez[Zt] = zE
h

�

e�K
t + kzIt(K)

��1
i

 E
h

(kIt(K))�1
i

,

and Theorem 2 part (ii).
Finally, we prove part iii). Observe by applying the Esscher transform (3.3) with � = 1 that

Ez[Zt] = ze(1)tE(1)

"

✓

1 + kz

Z t

0
eKsds

◆�1
#

.

Part iii)-a) follows by observing that under the probability measure P(1), the process K is a Lévy
process with mean E(1)[K1] = 0(1) 2 (�1, 0). We then conclude as in the proof of part i) by
showing that E(1)[(1 + kzIt(�K))�1], converges to E(1)[(1 + kzI1(�K))�1], as t increases.

Finally parts iii)-b) and c) follows from a direct application of Theorem (3) parts iii)-b) and
c), respectively, with the function F : x 2 R+ 7! z(1 + kzx)�1.

3.2.2 Di↵usion processes in a Lévy random environment

Let (V (x), x 2 R) be a stochastic process defined on R such that V (0) = 0. As presented in
the introduction of this thesis (on page xiii), a di↵usion process X = (X(t), t � 0) in a random
potential V is a di↵usion whose conditional generator given V is

1

2
eV (x) d

dx

✓

e�V (x) d

dx

◆

.
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It is well known that X may be constructed from a Brownian motion through suitable changes
of scale and time, see Brox [22].

Kawazu and Tanaka [59] studied the asymptotic behaviour of the tail of the distribution of
the maximum of a di↵usion in a drifted Brownian potential. Carmona et al. [24] considered
the case when the potential is a Lévy process whose discontinuous part is of bounded variation.
The problem is the following: How fast does P(maxt�0X(t) > x) decay as x ! 1? From these
works, we know that

P
✓

max
t�0

X(t) > x

◆

= E


A

A+Bx

�

where

A =

Z 0

�1
eV (t)dt and Bx =

Z x

0
eV (t)dt

are independent. In order to make our analysis more tractable, we consider (⇠t, t � 0) and
(⌘t, t � 0) two independent Lévy processes, and we define

V (x) =

⇢

�⇠x if x � 0
�⌘�x if x  0.

We want to determine the asymptotic behaviour of

P
✓

max
s�0

X(s) > t

◆

= E


I1(⌘)

I1(⌘) + It(⇠)

�

.

We assume that ⌘ drifts to 1, and recall the notations in the introduction of this chapter for the
Laplace exponent  of ⇠, and for ✓�, ✓+ and ⌧ .

Proposition 6. Assume that 1 < ✓+.

i) If  0(0+) > 0, then

lim
t!1

P
✓

max
s�0

X(s) > t

◆

= E


I1(⌘)

I1(⌘) + I1(⇠)

�

> 0.

ii) If  0(0+) = 0, then there exists a positive constant C1 that depends on the law of I1(⌘)
such that

lim
t!1

p
tP
✓

max
s�0

X(s) > t

◆

= C1.

iii) Suppose that  0(0+) < 0:

a) If  0(1) < 0, then there exists a positive constant C2 that depends on the law of I1(⌘)
such that,

lim
t!1

e�t (1)P
✓

max
s�0

X(s) > t

◆

= C2.

b) If  0(1) = 0, then there exists a positive constant C3 that depends on the law of I1(⌘)
such that

lim
t!1

p
te�t (1)P

✓

max
s�0

X(s) > t

◆

= C3.
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c) If  0(1) > 0, and ⌧ + 1 < ✓+, then

lim
t!1

P
✓

max
s�0

X(s) > t

◆

= o(t�1/2e�t (⌧)).

Moreover, if the process ⇠ is non-arithmetic (or non-lattice) then there exists a positive
constant C4 that depends on the law of I1(⌘) such that

lim
t!1

t3/2e�t (⌧)P
✓

max
s�0

X(s) > t

◆

= C4.

Furthermore, if there exists a positive " such that

E[I1(⌘)1+"] < 1,

then
Ci = ciE[I1(⌘)], i 2 {2, 3},

where (ci, i 2 {2, 3}) do not depend on the law of I1(⌘).

Proof. Since ⌘ and ⇠ are independent, we have

P
✓

max
s�0

X(s) > t

◆

= E [I1(⌘)f(I1(⌘), t)] , t > 0

where
f(a, t) = E

⇥

(a+ It(⇠))
�1
⇤

, a, t > 0.

The result follows from an application of Theorems 2 and 3 with the function

F : x 2 R+ 7! z(a+ x)�1.

We only prove case ii), as the others are analogous. By Theorem 3 there exists c1(a) > 0 such
that

lim
t!1

t1/2f(a, t) = c1(a).

Moreover, by Theorem 2, there exists c1 such that

lim
t!1

t1/2f(0, t) = c1.

Let us define Gt(a) = at1/2f(a, t), and G0
t (a) = at1/2f(0, t). Observe that

Gt(a)  G0
t (a), for all t, a � 0

and
lim
t!1

E
⇥

G0
t (I1(⌘))

⇤

= c1E [I1(⌘)] .

Then, by the Dominated Convergence Theorem (see for instance [32] problem 12 p. 145),

lim
t!1

p
tP
✓

max
s�0

X(s) > t

◆

= lim
t!1

E [Gt(I1(⌘))] = E [I1(⌘)c1(I1(⌘))] .
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We complete the proof for the existence of the limits by observing that

0 < C1 = E [I1(⌘)c1(I1(⌘))]  c1E [I1(⌘)] < 1.

The last part of the proof consists in justifying the form of the constants C2 and C3 under the
additional condition E[I1(⌘)1+"] < 1 for a positive ". For every 0  "  1, we have

I1(⌘)

It(⇠)
� I1(⌘)

I1(⌘) + It(⇠)
=

I1(⌘)

It(⇠)

I1(⌘)

I1(⌘) + It(⇠)
 I1(⌘)

It(⇠)

✓

I1(⌘)

I1(⌘) + It(⇠)

◆"


✓

I1(⌘)

It(⇠)

◆1+"

Hence

0  E


I1(⌘)

It(⇠)
� I1(⌘)

I1(⌘) + It(⇠)

�

 E[(I1(⌘))1+"]E


1

(It(⇠))1+"

�

.

But from point iii)-c) of Theorem 2 and Equation (3.17) in the proof of Theorem 3, we know
that in the cases iii)-a) and iii)-b),

E
h

It(⇠)
�(1+")

i

= o
�

E
⇥

It(⇠)
�1
⇤�

.

This ends the proof.

3.3 Proofs of Theorems 2, 3 and 4.

This section is dedicated to the proofs of the main results of this chapter. We first prove Theorem
2. The proof of part ii) is based on the following approximation technique.

Let (N (q)
t , t � 0) be a Poisson process with intensity q > 0, which is independent of the Lévy

process ⇠, and denote by (⌧ qn)n�0 its sequence of jump times with the convention that ⌧ q0 = 0.
For simplicity, we also introduce for n � 0,

⇠(n)t = ⇠⌧q
n

+t � ⇠⌧q
n

, t � 0.

For n � 0, we define the following random variables

S(q)
n := ⇠⌧q

n

, M (q)
n := sup

⌧q
n

t<⌧q
n+1

⇠t and I(q)n := inf
⌧q
n

t<⌧q
n+1

⇠t.

Observe that (S(q)
n , n � 0) is a random walk with step distribution given by ⇠⌧q1 and that ⌧ q1 is an

exponential r.v. with parameter q which is independent of ⇠.
Similarly for the process ⇠(n), we also introduce

m(q)
n := sup

t<⌧q
n+1�⌧

q

n

⇠(n)t and i(q)n := inf
t<⌧q

n+1�⌧
q

n

⇠(n)t .

Lemma 2. Using the above notation we have,

M (q)
n = S(+,q)

n +m(q)
0 , I(q)n = S(�,q)

n + i(q)0

where each of the processes S(+,q) = (S(+,q)
n , n � 0) and S(�,q) = (S(�,q)

n , n � 0) are random walks

with the same distribution as S(q). Moreover S(+,q) and m(q)
0 are independent, as are S(�,q) and

i(q)0 .
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The proof of this lemma is based on the Wiener-Hopf factorisation (see Equations (4.3.3) and
(4.3.4) in [30]). It follows from similar arguments as those used in the proof of Theorem IV.13
in [30], which considers the case when the exponential random variables are jump times of the
process ⇠ restricted to R \ [�⌘, ⌘], for ⌘ > 0. So, we omit it for the sake of brevity.

Recall that ⌧ q1 goes to 0, in probability, as q increases and that ⇠ has càdlàg paths. Hence,
there exists an increasing sequence (qn)n�0 such that qn ! 1 and

e�i
(q

n

)
0 �!

n!1
1, a.s. (3.8)

We also recall the following form of the Wiener-Hopf factorisation, for q >  (�)

q

q �  (�)
= E

h

e�i
(q)
0

i

E
h

e�m
(q)
0

i

. (3.9)

From the Dominated Convergence Theorem and identity (3.9), it follows that for " 2 (0, 1), there
exists N 2 N such that for all n � N

1� "  E
h

e�i
(q

n

)
0

i

 E
h

e�m
(q

n

)
0

i

 1 + ". (3.10)

Next, we introduce the compound Poisson process

Y (q)
t := S(q)

N
(q)
t

, t � 0,

whose Laplace exponent satisfies

 (q)(�) := logE
h

e�Y
(q)
1

i

=
q (�)

q �  (�)
,

which is well defined for � such that q >  (�). Similarly, we define

eI(q)t = I(q)
N

(q)
t

, fM (q)
t = M (q)

N
(q)
t

, Y (+,q)
t = S(+,q)

N
(q)
t

, and Y (�,q)
t = S(�,q)

N
(q)
t

.

We observe from the definitions of fM (q) and eI(q), and Lemma 2, that for all t � 0, the following
inequalities are satisfied

e�m
(q)
0

Z t

0
e�Y

(+,q)
s ds 

Z t

0
e�⇠sds  e�i

(q)
0

Z t

0
e�Y

(�,q)
s ds. (3.11)

We have now all the tools needed to prove Theorem 2.

Proof of Theorem 2. i) Assume that  0(0+) > 0. According to Theorem 1 in [19], It(⇠) converges
a.s. to I1(⇠), a non-negative and finite limit as t goes to 1. Then, we observe that the result
follows from the Monotone Convergence Theorem.

We now prove part ii). In order to do so, we use the approximation and notation that we
introduced at the beginning of this section. Let (qn)n�1 be a sequence defined as in (3.8) and
observe that for n � 1, we have  (q

n

)(0) = 0,  0(q
n

)(0+) = 0 and  00(q
n

)(0+) < 1. We also
observe that the processes Y (+,q

n

) and Y (�,q
n

) have bounded variation paths.
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We take ` � N and 0 < " < 1. Hence from Lemmas 13 and 14 in Bansaye et al. [9], we
observe that there exists a positive constant c1(`) such that

(1� ")c1(`)t
�1/2  E

"

✓

Z t

0
e�Y

(±,q

`

)
s ds

◆�p
#

 (1 + ")c1(`)t
�1/2, as t ! 1.

Therefore using (3.10) and (3.11) in the previous inequality, we obtain

(1� ")2c1(`)t
�1/2  E[It(⇠)�p]  (1 + ")2c1(`)t

�1/2, as t ! 1. (3.12)

Next, we take n,m � N and observe that the previous inequalities imply

✓

1� "

1 + "

◆2

c1(n)  c1(m) 
✓

1 + "

1� "

◆2

c1(n), for all n,m � N.

Thus, we deduce that (c1(n))n�1 is a Cauchy sequence. Let us denote c1 its limit which, by the
previous inequalities is positive. Let k � N such that

(1� ")c1  c1(k)  (1 + ")c1.

Using this inequality and (3.12), we observe

(1� ")3c1t
�1/2  E[It(⇠)�p]  (1 + ")3c1t

�1/2, as t ! 1.

This completes the proof of part ii).
Now, we prove part iii)-a). Recalling (3.6) yields that

It(⇠)
L
= e�⇠tIt(�⇠), t � 0. (3.13)

Hence using the Esscher transform (3.3), with � = p, we have

E
⇥

It(⇠)
�p
⇤

= E
h

ep⇠tIt(�⇠)�p
i

= et (p)E(p)
⇥

It(�⇠)�p
⇤

, t � 0. (3.14)

The inequality (3.4) with q = p and the previous identity imply that the decreasing function
t 7! E(p)[It(�⇠)�p] is finite for all t > 0. Recall that under the probability measure P(p), the
process ⇠ is a Lévy process with mean E(p)[⇠1] =  0(p) 2 (�1, 0). Then, as in the proof of part
i), E(p)[It(�⇠)�p] converges to E(p)[I1(�⇠)�p], as t increases.

Part iii)-b) follows from part ii) and the Esscher transform (3.3). More precisely, we apply
the Esscher transform with � = p and observe that the Laplace transform of the process ⇠ under
the probability measure P(p), satisfies  0

p(0+) =  0(p) = 0 and  00
p(0+) =  00(p) < 1. Therefore

by applying part ii) and identity (3.14), we get the existence of a constant c2 > 0 such that

E
⇥

It(⇠)
�p
⇤

= et (p)E(p)[It(�⇠)�p] ⇠ c2t
�1/2et�(p).

Finally we prove part iii)-c). Again from the Esscher transform with � = ⌧ , we see

E
⇥

It(⇠)
�p
⇤

= et (⌧)E(⌧)[e(p�⌧)⇠tIt(�⇠)�p], t > 0.
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On the one hand, for t > 0,

E(⌧)[e(p�⌧)⇠tIt(�⇠)�p] = E(⌧)

"

e(p�⌧)(⇠t�⇠t/2)
(e�⇠t/2It/2(�⇠) +

R t
t/2 e

⇠
u

�⇠
t/2du)�(p�⌧)

(It/2(�⇠) + e⇠t/2
R t
t/2 e

⇠
u

�⇠
t/2du)⌧

#

 E(⌧)

"

e(p�⌧)(⇠t�⇠t/2)
(
R t/2
0 e⇠s+t/2�⇠t/2ds)�(p�⌧)

It/2(�⇠)⌧

#

= E(⌧)
h

e(p�⌧)(⇠t/2)It/2(�⇠)�(p�⌧)
i

E(⌧)
⇥

It/2(�⇠)�⌧
⇤

,

where we have used in the last identity the fact that (⇠u+t/2 � ⇠t/2, u � 0) is independent of
(⇠u, 0  u  t/2) and with the same law as (⇠u, u � 0).

On the other hand, from (3.13) we deduce

E(⌧)
h

e(p�⌧)(⇠t/2)It/2(�⇠)�(p�⌧)
i

= E(⌧)
h

It/2(⇠)
�(p�⌧)

i

, t > 0.

Putting all the pieces together, we get

E(⌧)[e(p�⌧)⇠tIt(�⇠)�p]  E(⌧)
h

It/2(⇠)
�(p�⌧)

i

E(⌧)
⇥

It/2(�⇠)�⌧
⇤

, t > 0

implying

E
⇥

It(⇠)
�p
⇤

 et (⌧)E(⌧)
h

It/2(⇠)
�(p�⌧)

i

E(⌧)
⇥

It/2(�⇠)�⌧
⇤

, t > 0.

Since  0(⌧) = 0, we have E(⌧)[⇠1] = 0 and the process ⇠ oscillates under P(⌧). Moreover since
 00(⌧) < 1, we deduce that  00

⌧ (0+) < 1. The latter condition implies from part ii) that there
exists a constant c1(⌧) > 0 such that

E(⌧)[It(⇠)
�(p�⌧)] ⇠ c1(⌧)t

�1/2 as t ! 1.

Since the process ⇠ oscillates under P(⌧), the dual �⇠ also oscillates. This implies that It(�⇠)
goes to 1 and therefore E(⌧)[It(�⇠)�(p�⌧)] goes to 0, as t increases. In other words, we have

E
⇥

It(⇠)
�p
⇤

= o(t�1/2et (⌧)), as t ! 1,

as expected.
We now assume that ⇠ is non-arithmetic, our arguments are similar to those used in [9]. We

will prove
lim sup
t!1

t3/2e�t (⌧)E
⇥

It(⇠)
�p
⇤

< 1.

In order to prove it, we take t > 0 and observe

Ibtc(⇠) =

btc�1
X

k=0

e�⇠k
Z 1

0
e�(⇠

k+u

�⇠
k

)du.

Therefore

E
⇥

Ibtc(⇠)
�p
⇤

 E
"

min
kbtc�1

ep⇠k
✓

Z 1

0
e�(⇠

k+u

�⇠
k

)du

◆�p
#

.
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Conditioning on the value when the minimum is attained, let say k0, and observing that ep⇠k0

is independent of
⇣

R 1
0 e�(⇠

k

0+u

�⇠
k

0 )du
⌘�p

and the latter has the same law as
⇣

R 1
0 e�⇠udu

⌘�p
, we

deduce

E
⇥

Ibtc(⇠)
�p
⇤

 E


min
kbtc�1

ep⇠k
�

E
"

✓

Z 1

0
e�⇠udu

◆�p
#

.

Finally, by Lemma 7 in [52], there exists a C > 0 such that

E


min
kbtc�1

ep⇠k
�

⇠ Cbtc�3/2ebtc (⌧), for t large.

The claim follows from the monotonicity of E
⇥

Ibtc(⇠)
�p
⇤

and the fact that t 2 (btc, btc+ 1).

The idea of the proof of Theorem 3 is to study the asymptotic behaviour of EF (n/q) for q
fixed and large n, and then to use the monotonicity of F to deduce the asymptotic behaviour of
EF (t) when t goes to infinity. In order to do so, we use a key result due to Guivarc’h and Liu
(see Theorem 2.1 in [50]) that we state here for the sake of completeness.

Theorem 5 (Giuvarc’h, Liu 01). Let (an, bn)n�0 be a R2
+-valued sequence of i.i.d. random

variables such that E[ln a0] = 0. Assume that b0/(1� a0) is not constant a.s. and define

A0 := 1, An :=
n�1
Y

k=0

ak and Bn :=
n�1
X

k=0

Akbk, for n � 1.

Let ⌘,,# be three positive numbers such that  < #, and �̃ and  ̃ be two positive continuous
functions on R+ such that they do not vanish and for a constant C > 0 and for every a > 0,
b � 0, b0 � 0, we have

�̃(a)  Ca,  ̃(b)  C

(1 + b)#
, and | ̃(b)�  ̃(b0)|  C|b� b0|⌘.

Moreover, assume that

E
⇥

a0
⇤

< 1, E
⇥

a�⌘0

⇤

< 1, E
⇥

b⌘0
⇤

< 1 and E
⇥

a�⌘0 b�#0

⇤

< 1.

Then, there exist two positive constants c(�̃,  ̃) and c( ̃) such that

lim
n!1

n3/2E
h

�̃(An) ̃(Bn)
i

= c(�̃,  ̃) and lim
n!1

n1/2E
h

 ̃(Bn)
i

= c( ̃).

Let q > 0 and define the sequence qn = n/q, for n � 0. For k � 0, we also define

e⇠(k)u = ⇠q
k

+u � ⇠q
k

, for u � 0,

and

ak = e
�e⇠(k)

q

k+1�q

k and bk =

Z q
k+1�q

k

0
e�

e⇠(k)
u du. (3.15)

Hence, (ak, bk) is a R2
+-valued sequence of i.i.d. random variables. Also observe that

a0 = e
�⇠ 1

q and
b0

1� a0
=

I 1
q

(⇠)

1� e
�⇠ 1

q

,
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which are not constant a.s. as required by Theorem 5. Moreover, we have

Z q
i+1

q
i

e�⇠udu = e�⇠qi bi =
i�1
Y

k=0

akbi = Aibi,

where Ak is defined as in Theorem 5. The latter identity implies

Iq
n

(⇠) =
n�1
X

i=0

Z q
i+1

q
i

e�⇠udu =
n�1
X

i=0

Aibi := Bn.

In other words, we have all the objects required to apply Theorem 5.

Proof of Theorem 3. i) The proof uses similar arguments as those used in the proof of Theorem
2-i).

ii) We now assume that  0(0+) = 0. We define the sequence (ak, bk)k�0 as in (3.15) and
follow the same notation as in Theorem 5. We take 0 < ⌘ < ↵ and dp > 1 such that �✓�/dp < p
and ✓� < �⌘ < ⌘ + p < ✓+, and let

(⌘,,#) =

✓

⌘,
�✓�

dp
, p

◆

.

Next, we verify the moment conditions of Theorem 5 for the couple (a0, b0). From the definition
of (a0, b0), it is clear

E [ln a0] =
 0(0+)

q
= 0, E [a0 ] = e (�)/q and E

h

a�⌘0

i

= e (⌘)/q,

which are well defined. Similarly as in (3.4), by L1-Doob’s inequality (see [1]) and the Esscher
transform (3.3)

E [b⌘0]  q⌘E
"

sup
0u1/q

e�⌘⇠u

#

 e

e� 1
q⌘e

 (�⌘)
q

�

1� ⌘ 0(�⌘)�  (�⌘)
�

< 1,

and

E
h

a�⌘0 b�#0

i

 q#E
"

e
⌘⇠ 1

q sup
0u1/q

e#⇠u

#

 q#E
"

sup
0u1/q

e(⌘+#)⇠u

#

< 1.

Therefore the asymptotic behaviour of EF (qn) for large n, follows from a direct application of
Theorem 5. In other words, there exists a positive constant c(q) such that

p
nEF (qn) ⇠ c(q), as n ! 1.

In order to get our result, we take t to be a positive real number. Since the mapping s 7! EF (s)
is non-increasing, we get

p
tEF (t) 

p
tEF (bqtc/q) =

s

t

bqtc
p

bqtcEF (bqtc/q).
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Similarly

p
tEF (t) �

p
tEF ((bqtc+ 1)/q) =

s

t

bqtc+ 1

p

bqtc+ 1EF ((bqtc+ 1)/q).

Therefore p
tEF (t)⇠c(q)q�1/2, as t ! 1.

Moreover, we deduce that c(q)q�1/2 is positive and does not depend on q. Hence we denote this
constant by c1. This concludes the proof of point ii).

iii) For the rest of the proof, we assume that  0(0) < 0. We first prove part a). Since
 0(p) < 0, from Theorem 2 part iii)-a) we know that

E
⇥

It(⇠)
�p
⇤

⇠ et (p)E(p)[I1(�⇠)�p], as t ! 1.

Hence the asymptotic behaviour is proven if we show that

EF (t) ⇠ kE
⇥

It(⇠)
�p
⇤

, as t ! 1.

Since  0(p) < 0, there is " > 0 such that p(1 + ") < ✓+,  (p(1 + ")) <  (p) and  0((1 + ")p) < 0.
Hence, from Lemma 2 (see the Appendix), we deduce that there is a constant M such that

�

�F (It(⇠))� kIt(⇠)
�p
�

�  MIt(⇠)
�(1+")p. (3.16)

In other words, it is enough to prove

E
h

It(⇠)
�(1+")p

i

= o(et (p)), as t ! 1. (3.17)

From the Esscher transform (3.3) with � = (1 + ")p, we deduce

E
h

It(⇠)
�(1+")p

i

= E
h

ep(1+")⇠sIt(�⇠)�(1+")p
i

= et (p)et p

("p)E((1+")p)
h

It(�⇠)�(1+")p
i

.

This and Equation (3.4) with � = (1 + ")p imply that E((1+")p)[It(�⇠)�(1+")p] is finite for all
t > 0. Similarly as in the proof of Theorem 2 iii)-a), we can deduce that E((1+")p)[It(�⇠)�(1+")p]
has a finite limit, as t goes to 1. We conclude by observing that  p("p) is negative implying that
(3.17) holds. We complete the proof of point iii)-a) by observing that (3.16) and (3.17) yield

E[F (It(⇠))] ⇠ kE[It(⇠)�p], t ! 1.

We now prove part b). Since  0(p) = 0 and  00(p) < 1, from Theorem 2 part iii)-b) we know
that there exists a positive constant c2 such that

E
⇥

It(⇠)
�p
⇤

⇠ c2t
�1/2et (p), as t ! 1.

Similarly as in the proof of part a), the asymptotic behaviour is proven if we show that

EF (t) ⇠ kE
⇥

It(⇠)
�p
⇤

, as t ! 1,
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which amounts to showing that

E
h

It(⇠)
�(1+")p

i

= o(t�1/2et (p)), as t ! 1

for " small enough. The latter follows from of Theorem 2 iii)-c).

Finally, we prove part c). Similarly as in the proof of part ii), we define the sequence (ak, bk)k�0

as in (3.15) and follow the same notation as in Theorem 5. Let us choose 0 < ⌘ < ↵ such that
0 < ⌧ � ⌘ < ⌧ + p+ ⌘ < ✓+ and take

(⌘,,#) = (⌘, ⌧, p) .

Next, we apply the Esscher transform (3.3) with � = ⌧ and observe

E[F (I(qn))]e
�q

n

 (⌧) = E(⌧)[e�⌧⇠qnF (I(qn))] = E(⌧)[A⌧nF (Bn)]. (3.18)

Hence in order to apply Theorem 5, we need the moment conditions on (a0, b0) to be satisfied
under the probability measure P(⌧). We first observe,

E(⌧)[ln a0] = E(⌧)[⇠1/q] = e� (⌧)/qE[⇠1/qe⌧⇠1/q ] =
 0(⌧)

q
= 0.

Similarly, we get

E(⌧) [a0 ] = E(⌧)[e�⇠1/q ] = e� (⌧)/q and E(⌧)
h

a�⌘0

i

= E(⌧)[e⌘⇠1/q ] = e ⌧ (⌘)/q,

where  ⌧ (�) =  (⌧ + �)�  (⌧). From our assumptions both expectations are finite.
Again, we use similar arguments as those used in (3.4) to deduce

E(⌧) [b⌘0]  q�⌘E(⌧)

"

sup
0u1/q

e�⌘⇠u

#

 q�⌘e� (⌧)/qE


sup
0u1

e(⌧�⌘)⇠u
�

< 1,

and

E(⌧)
h

a�⌘0 b�p
0

i

 qpE(⌧)

"

e
⌘⇠ 1

q sup
0u1/q

ep⇠u

#

 qpe� (⌧)/qE


sup
0u1

e(⌧+⌘+p)⇠
u

�

< 1.

Therefore the asymptotic behaviour of E(⌧)[A⌧nF (Bn)] follows from a direct application of The-
orem 5 with the functions  ̃(x) = F (x) and �̃(x) = x⌧ . In other words, we conclude that there
exists a positive constant c(q) such that

n3/2E(⌧)[A⌧nF (Bn)] ⇠ c(q), n ! 1.

In particular from (3.18), we deduce

EF (qn) ⇠ c(q)e�n (⌧)/qn�3/2, n ! 1.

Then using the monotonicity of F as in the proof of part ii), we get that for n large enough,

c(q)q�3/2e� (⌧)/q  n3/2en (⌧)EF (n)  c(q)q�3/2. (3.19)

A direct application of Lemma 17 then yields the existence of a nonnegative constant c4 such
that

lim
q!1

c(q)q�3/2 = c4.

Moreover, (3.19) yields that c4 is positive. This ends the proof.
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Now, we proceed with the proof of Theorem 4.

Proof of Theorem 4. We first define the functions

f(t) := E
"

✓

Z t

0
e�⇠sds

◆�p
#

, t � 0,

and

g(q) =

Z 1

0
e�qtf(t)dt, q � 0.

According to the Tauberian Theorem and the monotone density Theorem (see for instance [14]),
f is regularly varying at 1 with index �� 1 if and only if g is regularly varying at 0+ with index
��. Therefore, a natural way to analyse the asymptotic behaviour of f is via the asymptotic
behaviour of its Laplace transform. In order to do so, we observe from Fubini’s Theorem

g(q) =

Z 1

0
e�qtE

"

✓

Z t

0
e�⇠sds

◆�p
#

dt =
1

q
E
"

✓

Z e
q

0
e�⇠sds

◆�p
#

=
1

q
E
h

�

Ie
q

(⇠)
��p
i

,

where eq is an independent exponential random variable of parameter q. Note that we can
identified Ie

q

(⇠) as the exponential functional at 1 of a Lévy process ⇠ killed at an independent
exponential time with parameter q > 0.

Let denote by {(L�1
t , Ht), t � 0} and {(bL�1

t , bHt), t � 0}, for the ascending and descending
ladder processes associated to ⇠ (see [64], Chapter 6 for a proper definition of these processes).
The Laplace exponent of both of them will be denoted by k(↵,�) and bk(↵,�), respectively. In
other words,

k(↵,�) = � logE
h

e�↵L
�1
1 ��H1

i

, and bk(↵,�) = � logE
h

e�↵
bL�1
1 �� bH1

i

.

If H(q) is the ascending ladder height process associated with the Lévy process ⇠ killed at an
independent exponential time of parameter q, then, its Laplace exponent is k(q, ·). This follow
from the following identity,

E
h

ei�⇠s1{s<e
q

}

i

= E
h

eqsei�⇠s
i

,

and by evaluating in s = L�1
1 and � = �i�, i.e.

E
h

e��H
(q)
1

i

= E
h

eqL
�1
1 e��H1

i

= e�k(q,�).

A similar identity holds for the descending ladder height process bH(q), which is associated
with the killed Lévy process. From Proposition 1 in [17], there exists a random variable Rq

independent of I1(� bH(q)), whose law is determined by its entire moments and satisfies the
recurrent relation

E
h

R�
q

i

= bk(q,�)E
h

R��1
q

i

, � > 0.

Moreover, we have

RqI1(� bH(q))
L
= e1, (3.20)
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where e1 is an exponential random variable with parameter 1. According to Arista and Rivero
([5], Theorem 2), there exist a random variable Jq whose law is defined by

P (Jq 2 dy) = bk(q, 0)yP
✓

1

Rq
2 dy

◆

, y � 0,

and such that
Ie

q

(⇠)
L
= JqI1(�H(q)). (3.21)

Therefore, by identities (3.20) and (3.21), we deduce

g(q) =
bk(q, 0)

q
E
h

I1(�H(q))�p
i

E
h

ep�1
1

i

E
h

I1(� bH(q))p�1
i�1

. (3.22)

On the other hand, we observe

E
h

I1(�H(q))�p
i

q!1�! E
⇥

I1(�H)�p
⇤

and E
h

I1(� bH(q))p�1
i

q!1�! E
h

I1(� bH)p�1
i

.

By Lemma 2.1 in [76], we also observe

0 < E
⇥

I1(�H)�p
⇤

E
h

I1(� bH)p�1
i

< 1.

Now, we use Theorem VI.3.14 in [14], that assure that Spitzer’s condition (3.5) is equivalent
to bk(·, 0) being a regularly varying function at 0+ with index 1� �. Therefore, by identity (3.22),
g is regularly varying at 0+ with index �� implying that f is regularly varying at 1 with index
� � 1 as expected, in other words

lim
t!1

t1��E
"

✓

Z t

0
e�⇠sds

◆�p
#

= c(p),

where c(p) is a constant that depends on p.
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Chapter 4

Stable CBLRE

This chapter is based in papers [80] and [81] elaborated in collaboration with Juan Carlos Pardo
and Charline Smadi. We study the asymptotic behaviour of the absorption and explosion proba-
bilities for stable continuous state branching processes in a Lévy random environment. The speed
of explosion is studied in Section 4.2. We find 3 di↵erent regimes: subcritical-explosion, critical-
explosion and supercritical explosion. The speed of absorption is studied in Section 4.3. As in
the discrete case (time and space), we find five di↵erent regimes: supercritical, critical, weakly
subcritical, intermediately subcritical and strongly subcritical. When the random environment is
driven by a Brownian motion with drift, the limiting coe�cients of the asymptotic behaviour of
the absorption probability are explicit and written in terms of the initial population. In a general
Lévy environment, the latter coe�cients are also explicit in 3 out of the 5 regimes (supercritical,
intermediate subcritical and strongly subcritical cases). This allows us to study two conditioned
versions of the process: the process conditioned to be never absorbed (or Q-process) and the
process conditioned on eventual absorption. Both processes are studied in Section 4.4.

4.1 Introduction

The stable case is perhaps one of the most interesting examples of CB-processes. One of the
advantages of this class of CB-processes is that we can perform explicit computations of many
functionals, see for instance [15, 67, 69], and that they appear in many other areas of probability
such as coalescent theory, fragmentation theory, Lévy trees, self-similar Markov process to name
but a few. As we will see below, we can also perform many explicit computations when the
stable CB-process is a↵ected by a Lévy random environment. For example, by using Theorem 3,
we can find the precise asymptotic behaviour of the explosion and survival probabilities. When
the environment is driven by a Brownian motion, by another technique, we can even obtain the
constants in a closed form. When the limiting coe�cients are explicit and in terms of the initial
position, we find two conditioned version of the process: the process conditioned to be never
absorbed (or Q-process) and the process conditioned on eventual absorption. We deduce them
by using Doob h-transformation.

Let
 (�) = c��+1, � � 0,

for some � 2 (�1, 0)[ (0, 1] and c such that c� > 0. As we said in example 3, a stable continuous
state branching processes in a Lévy random environment (SCBLRE) with branching mechanism
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 is the process Z that satisfies the following stochastic di↵erential equation

Zt =Z0 + 1{�=1}

Z t

0

p

2cZsdBs + 1{� 6=1}

Z t

0

Z 1

0

Z Z
s�

0
z bN(ds, dz, du) +

Z t

0
Zs�dSs, (4.1)

where B = (Bt, t � 0) is a standard Brownian motion, N is a Poisson random measure with
intensity

c�(� + 1)

�(1� �)

1

z2+�
dsdzdu,

eN is its compensated version,

bN(ds, dz, du) =

⇢

N(ds, dz, du) if � 2 (�1, 0),
eN(ds, dz, du) if � 2 (0, 1),

and the process S is defined as in (1.8), i.e.

St = ↵t+ �B(e)
t +

Z t

0

Z

(�1,1)
(ez � 1) eN (e)(ds, dz) +

Z t

0

Z

R\(�1,1)
(ez � 1)N (e)(ds, dz). (4.2)

Recall that the random environment was defined as

Kt = nt+ �B(e)
t +

Z t

0

Z

(�1,1)

v eN (e)(ds, dv) +

Z t

0

Z

R\(�1,1)
vN (e)(ds, dv),

where

n = ↵� �2

2
�

Z

(�1,1)

(ev � 1� v)⇡(dv).

According to example 3,

Ez

h

exp
n

� �Zte
�K

t

o

�

�

�

K
i

= exp

(

�z

✓

��� + �c�

Z t

0
e��Kudu

◆�1/�
)

, a.s.

If we take limits as � " 1, in the above identity we obtain that for all z, t > 0 , the non-explosion
probability is given by

Pz

⇣

Zt < 1
�

�

�

K
⌘

= 1{�>0} + 1{�<0} exp

(

�z

✓

�c

Z t

0
e��Kudu

◆�1/�
)

, a.s. z � 0 (4.3)

On the other hand, if we take limits as � # 0, we deduce that the survival probability satisfies

Pz

⇣

Zt > 0
�

�

�

K
⌘

= 1� 1{�>0} exp

(

�z

✓

�c

Z t

0
e��Kudu

◆�1/�
)

, a.s. z � 0 (4.4)

It is then clear that if � 2 (�1, 0), then the survival probability is equal to 1, for all t � 0.
If � 2 (0, 1], then the process is conservative. In this chapter, we determine the asymptotic
behaviour of the missing cases. First, we work with a Brownian environment. We use a time
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change method similar to the work of Böingho↵ and Hutzenthaler [20]. And in consequence,
we obtain explicitly the limiting coe�cients of the asymptotic behaviour of the absorption and
explosion probabilities. These coe�cients are written in terms of the initial population. The
main results in Chapter 3 allows us to find the latter coe�cients when the environment is driven
by a Lévy process. Unfortunately, with this technique we know that the constants are in terms
of the initial population but we don’t know the explicit relation. In their recent work, Li and Xu
[72] obtained the same behaviour for the absorption probability. The key of their results was the
observation that the asymptotics only depends on the sample paths of the Lévy process with local
infimum decreasing slowly. Their coe�cients are represented in terms of some transformations
based on the renewal functions associated with the ladder process of K and its dual. However,
despite the fact that the constants given in [72] are written in terms of the initial population,
their explicit form still is hard to compute.

4.2 Speed of explosion of SCBLRE

Let us first study the event of explosion for stable branching processes in a Lévy random envi-
ronment. Let us focus on � 2 (�1, 0). We recall that when the environment is constant, a stable
CB-process explodes at time t with probability 1 � exp {�z�ct}. When a random environment
a↵ects the stable CB-process, it also explodes with positive probability, since

Pz

⇣

Zt = 1
�

�

�

K
⌘

= 1� exp

(

�z

✓

�c�

Z t

0
e��(Ku

+au)du

◆�1/�
)

> 0,

but three di↵erent regimes appear for the asymptotic behaviour of the non-explosion probability
that depend on the parameters of the random environment. Up to our knowledge, this behaviour
was never observed or studied before, even in the discrete case. We call these regimes subcritical-
explosion, critical-explosion or supercritical-explosion depending on whether this probability stays
positive, converges to zero polynomially fast or converges to zero exponentially fast.
Before stating this result, let us introduce the Laplace transform of the Lévy process K by

e K

(✓) = E[e✓K1 ], (4.5)

when it exists (see discussion in page 30). We assume that the Laplace exponent  k of K is well
defined on an interval (✓�K , ✓+K), where

✓�K := inf{� < 0 :  K(�) < 1} and ✓+K := sup{� > 0 :  K(�) < 1}.

As we will see in Propositions 7 and 8, the asymptotic behaviour of the probability of explosion
depends on the sign of

m =  0
K(0+).

First, we work in the Brownian environment case; i.e. when St = ↵t + �B(e)
t . Then, the

auxiliary process is Kt = (↵ � �2

2 )t + �B(e)
t and m = ↵ � �2

2 . In order to simplify notation, we

will denote by I(⌘)t for the exponential functional of a Brownian motion with drift ⌘ 2 R, in other
words

I(⌘)t :=

Z t

0
exp

n

2(⌘s+Bs)
o

ds, t 2 [0,1).
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Let

⌘ := � 2

��2
m and k =

✓

��2

2c

◆1/�

,

and define
g(x) := exp

n

�kx1/�
o

, for x � 0.

From identity (4.3) and the scaling property, we deduce for � 2 (�1, 0),

Pz (Zt < 1) = E

2

4g

0

@

z�

2I(⌘)
�2�2t/4

1

A

3

5 =

Z 1

0
g(z�v)pt�2

e

/4,⌘(v)dv, (4.6)

where p⌫,⌘ denotes the density function of 1/2I(⌘)⌫ which according to Matsumoto and Yor [75],
satisfies

p⌫,⌘(x) =
e�⌘

2⌫/2e⇡
2/2⌫

p
2⇡2

p
⌫

�

✓

⌘ + 2

2

◆

e�xx�(⌘+1)/2
Z 1

0

Z 1

0
e⇠

2/2⌫s(⌘�1)/2e�xs (4.7)

⇥ sinh(⇠) cosh(⇠) sin(⇡⇠/⌫)

(s+ cosh(⇠)2)
⌘+2
2

d⇠ds.

We also denote

L⌘,�(✓) = E
h

e�✓�
1/�
�⌘
i

, for ✓ � 0.

Note, that in the Brownian environment case, we can find explicitly the limiting coe�cients.

Proposition 7. Let (Zt, t � 0) be a SCBBRE with index � 2 (�1, 0) defined by the SDE (4.1)

with Z0 = z > 0 and environment St = ↵t+ �B(e)
t .

i) Subcritical-explosion. If m < 0, then

lim
t!1

Pz (Zt < 1) = L⌘,� (zk) . (4.8)

ii) Critical-explosion. If m = 0, then

lim
t!1

p
t Pz (Zt < 1) = �

p
2p

⇡��

Z 1

0
e�zkx1/��xdx

x
. (4.9)

iii) Supercritical-explosion. If m > 0, then

lim
t!1

t
3
2 e

m2
t

2�2 Pz (Zt < 1) = � 8

�3�3

Z 1

0
g(z�v)�⌘(v)dv, (4.10)

where

�⌘(v) =

Z 1

0

Z 1

0

1p
2⇡
�

✓

⌘ + 2

2

◆

e�vv�⌘/2u(⌘�1)/2e�u sinh(⇠) cosh(⇠)⇠

(u+ v cosh(⇠)2)
⌘+2
2

d⇠du.
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Proof. Our arguments follow similar reasoning as in the proof of Theorem 1.1 in Böingho↵ and
Hutzenthaler [20]. For this reason, following the same notation as in [20], we just provide the
fundamental ideas of the proof.

The subcritical-explosion case (i) follows from the identity in law by Dufresne (2.6). More
precisely, from (2.6), (4.6) and the Dominated Convergence Theorem, we deduce

lim
t!1

Pz (Zt < 1) = E
h

exp
n

�zk�1/��⌘

oi

= L⌘,� (zk) .

In order to prove the critical-explosion case (ii), we use Lemma 4.4 in [20]. From identity (4.6)
and applying Lemma 4.4 in [20] to

g(z�x) = exp
n

�zkx1/�
o

 x�1/�

zk
, for x � 0, (4.11)

we get

lim
t!1

p
t Pz (Zt < 1) = � 2

��
lim
t!1

r

t�2�2

4
E

2

4g

0

@

z�

2I(⌘)
�2�2t/4

1

A

3

5

= �
p
2p

⇡��

Z 1

0
e�zkx1/��xdx

x
,

which is finite since the inequality (4.11) holds.
We now consider the supercritical-explosion case (iii). Observe that for all n � 0,

g(z�x) = exp
n

�zkx1/�
o

 x�n/�

n!(zk)n
, for x � 0.

Therefore using the above inequality for a fixed n, Lemma 4.5 in [20] and identity (4.6), we obtain
that for 0 < m < n�2/2, the following limit holds

lim
t!1

t3/2 em
2t/2�2Pz (Zt > 0) = lim

t!1
t3/2 e⌘

2�2�2t/8E

2

4g

0

@

z�

2I(⌘)
�2�2t/4

1

A

3

5

= � 8

�3�3

Z 1

0
e�zkv1/��⌘(v)dv,

where �⌘ is defined as in the statement of the proposition. Since this limit holds for any n � 1,
we deduce that it must hold for m > 0. This completes the proof.

Now, we study the asymptotic behaviour for a general Lévy environment. The proof of the
following proposition is based in the work developed in Chapter 3. We know that the limiting
coe�cient are in terms of the initial position but in contrast with the continuous environment,
in the critical and supercritical explosion cases we don’t know the explicit relation. Here, ⌧ is
the position where  0

K(⌧) = 0, and it satisfies ⌧ 2 (✓�K , 0].

Proposition 8. Let (Zt, t � 0) be the SCBLRE with index � 2 (�1, 0) defined by the SDE (4.1)
with Z0 = z > 0, and recall the definition of the random environment K in (4.2).

51



i) Subcritical-explosion. If m < 0, then, for every z > 0

lim
t!1

Pz

⇣

Zt < 1
⌘

= E
"

exp

(

�z

✓

�c�

Z 1

0
e��Kudu

◆�1/�
)#

> 0.

ii) Critical-explosion. If m = 0, then for every z > 0 there exists c1(z) > 0 such that

lim
t!1

p
tPz

⇣

Zt < 1
⌘

= c1(z).

iii) Supercritical-explosion. If m > 0. Then for every z > 0 there exists c2(z) > 0 such that

lim
t!1

t
3
2 e�t 

K

(⌧)Pz

⇣

Zt < 1
⌘

= c2(z).

Proof. Observe that for a fixed z > 0, the function

F : x 2 R+ 7! exp(�z(�cx)�1/�)

is non-increasing, continuous, bounded, and satisfies the hypothesis from Theorem 3. Hence
Proposition 8 is a direct application of Theorem 3 with (⇠t, t � 0) = (�Kt, t � 0). (recall that
� < 0).

4.3 Speed of absorption of SCBLRE

Throughout this section, we assume that � 2 (0, 1]. One of the aims of this section is to compute
the asymptotic behaviour of the survival probability and we will see that it depends on the value
of m. We find five di↵erent regimes as in the discrete case (time and space) [see e.g. [3, 47, 50]];
in the Feller case (see for instance Theorem 1.1 in [20]); and CB processes with catastrophes
(see for instance Proposition 5 in [9]). Recall that in the classical theory of branching processes,
the survival probability stays positive, converges to zero polynomially fast or converges to zero
exponentially fast, depending of whether the process is supercritical (m > 0), critical (m = 0) or
subcritical (m < 0), respectively. When a random environment is acting in the process, there is
another phase transition in the subcritical regime. This phase transition depends on the second
parameter m1 :=  0

K(1). Since  K is a convex function, we recall that m  m1. We say that
the SCBLRE is strongly subcritical if m1 < 0, intermediately subcritical if m1 = 0 and weakly
subcritical if m1 > 0.

We start this section with the case where the environment is driven by a Brownian motion.
Here,

m = ↵� �2

2
and m1 = ↵+

�2

2
.

Recall that

⌘ := � 2

��2
m and k =

✓

��2

2c

◆1/�

,

and define
f(x) := 1� exp

n

�kx1/�
o

, for x � 0.
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From identity (4.4) and the scaling property, we deduce for � > 0,

Pz (Zt > 0) = E

2

4f

0

@

z�

2I(⌘)
�2�2t/4

1

A

3

5 =

Z 1

0
f(z�v)p�2�2t/4,⌘(v)dv, (4.12)

where p⌫,⌘ denotes the density function of 1/2I(⌘)⌫ and is given in (4.7). As in the proof of
Proposition 7, and following the same notation as in [20], we just provide the fundamental ideas
of the proof.

Proposition 9. Let (Zt, t � 0) be the SCBBRE with index � 2 (0, 1], Brownian environment
and Z0 = z > 0.

i) Supercritical. If m > 0, then

lim
t!1

Pz (Zt > 0) = 1�
1
X

n=0

(�zk)n

n!

�(n� � ⌘)

�(�⌘) . (4.13)

ii) Critical. If m = 0, then

lim
t!1

p
t Pz (Zt > 0) = �

p
2p

⇡��

1
X

n=1

(�zk)n

n!
�

✓

n

�

◆

. (4.14)

iii) Weakly subcritical. If m 2 (��2, 0), then

lim
t!1

t
3
2 e

m2
t

2�2 Pz (Zt > 0) =
8

�3�3

Z 1

0
f(z�v)�⌘(v)dv, (4.15)

where

�⌘(v) =

Z 1

0

Z 1

0

1p
2⇡
�

✓

⌘ + 2

2

◆

e�vv�⌘/2u(⌘�1)/2e�u sinh(⇠) cosh(⇠)⇠

(u+ v cosh(⇠)2)
⌘+2
2

d⇠du.

iv) Intermediately subcritical. If m = ��2, then

lim
t!1

p
te�

2t/2Pz (Zt > 0) = z

p
2p

⇡��
k�

✓

1

�

◆

. (4.16)

v) Strongly subcritical. If m < ��2, then

lim
t!1

e�
1
2 (2m+�2)tPz (Zt > 0) = zk

�(⌘ � 1/�)

�(⌘ � 2/�)
. (4.17)

Proof. The supercritical case (i) follows from the identity in law by Dufresne (2.6). More precisely,
from (2.6), (4.12) and the Dominated Convergence Theorem, we deduce

lim
t!1

Pz (Zt > 0) = E
h

1� exp
n

�zk�1/��⌘

oi

= 1�
1
X

n=0

(�zk)n
�(n� � ⌘)

n!�(�⌘) .
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In order to prove the critical case (ii), we use Lemma 4.4 in [20]. From identity (4.12) and
applying Lemma 4.4 in [20] to

f(x) = 1� exp
n

�zkx1/�
o

 zkx1/� , x � 0, (4.18)

we get

lim
t!1

p
t Pz (Zt > 0) =

2

��
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t!1

r

t�2�2

4
E


1� exp

⇢

�zk
⇣

2I(⌘)
�2�2t/4

⌘�1/�
��

=

p
2p

⇡��

Z 1

0

⇣

1� exp
n

�zkx1/�
o⌘e�x

x
dx.

By Fubini’s theorem, it is easy to show that, for all q � 0
Z 1

0

⇣

1� e�qx1/�
⌘ e�x

x
dx = �

1
X

n=1

(�1)n

n!
�

✓

n

�

◆

qn,

which implies (4.14).
We now consider the weakly subcritical case (iii). Recall that inequality (4.18) still holds,

then using Lemma 4.5 in [20] and identity (4.12), we obtain

lim
t!1

t3/2 em
2t/2�2Pz (Zt > 0) = lim

t!1
t3/2 e⌘

2�2�2t/8E

2

4f

0

@

z�

2I(⌘)
�2�2t/4
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A

3

5

=
8

�3�3

Z 1

0

⇣

1� exp
n

�zkv1/�
o⌘

�⌘(v)dv,

where �⌘ is defined as in the statement of the Theorem.
In the remaining two cases we will use Lemma 4.1 in [20] and Lemma 18 in the Appendix.

For the intermediately subcritical case (iv), we observe that ⌘ = 2/�. Hence, applying Lemma
18 in the Appendix with p = 1/�, we get

E


⇣

I(⌘)t

⌘�1/�
�

= e
� 2
�

2 tE


⇣

I(0)t
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⇣
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 e
� 2
�

2 tE


⇣

I(0)t/2

⌘�1/�
�2

.

Now, applying Lemma 4.4 in [20], we deduce
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p
t E


⇣
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,

and
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p
t E
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⇣

2I(⌘)t

⌘�2/�
�

= 0.

Therefore, we can apply Lemma 4.1 in [20] with ct =
p
t e2t and Yt =

⇣

2I(⌘)t

⌘�1/�
, and obtain
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p
te�
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Finally for the strongly subcritical case, we use again Lemma 18 in the Appendix with p = 1/�.
First observe that ⌘ � 2/� > 0. Thus, the Monotone Convergence Theorem and the identity of
Dufresne (2.6) yield

lim
t!1

E


⇣

2I(�(⌘�2/�))
t/2

⌘�1/�
�

= E


⇣

2I(�(⌘�2/�))
1

⌘�1/�
�

= E
h

(�⌘�2/�)
1/�
i

=
�(⌘ � 1/�)

�(⌘ � 2/�)
.

Since I(⌘�2/�)
t " 1 as t increases, from the Monotone Convergence Theorem, we get

lim
t!1

E


⇣

2I(⌘�2/�)
t/2

⌘�1/�
�

= 0.

Hence by applying Lemma 4.1 in [20] with ct = e�(2/�2�2⌘/�)t and Yt =
⇣

2I(⌘)t

⌘�1/�
we obtain

that

lim
t!1

e�
1
2 (2m+�2)tPz (Zt > 0) = lim

t!1
c�2�2t/4E



1� exp

⇢

�k
⇣

2I(⌘)
�2�2t/4

⌘�1/�
��

= zk
�(⌘ � 1/�)

�(⌘ � 2/�)
.

This completes the proof.

We finish this section with the asymptotic behaviour in the general case. We recall that as
in the previous section, some of the limiting constants depends on the initial population but we
don’t provide the explicitly relation. (See [72] for the ”explicit” relation). Here, ⌧ 2 (0, ✓+K) is
the position where  0

K(⌧) = 0.

Proposition 10. Let (Zt, t � 0) be a SCBLRE with index � 2 (0, 1] defined by the SDE (4.1)
with Z0 = z > 0, and recall the definition of the random environment K in (4.2). Assume that
1 < ✓+K .

i) Supercritical. If m > 0, then for every z > 0

lim
t!1

Pz

⇣

Zt > 0
⌘

= E
"

1� exp

(

�z

✓

�c�

Z 1

0
e��Kudu

◆�1/�
)#

> 0.

ii) Critical. If m = 0, then for every z > 0, there exists c3(z) > 0 such that

lim
t!1

p
tPz(Zt > 0) = c3(z).

iii) Subcritical. Assume that m < 0 , then

a) Weakly subcritical. If m1 < 0, then there exists c1 > 0 such that for every z > 0,

lim
t!1

e�t 
K

(1)Pz(Zt > 0) = c1z,

b) Intermediate subcritical. If m1 = 0, then there exists c2 > 0 such that for every z > 0,

lim
t!1

p
te�t 

K

(1)Pz(Zt > 0) = c2z,
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c) Strongly subcritical. If m1 > 0, then for every z > 0, there exists c4(z) > 0 such that

lim
t!1

t3/2e�t 
K

(⌧)Pz(Zt > 0) = c4(z).

Proof. This is a direct application of Theorem 3, with (⇠t, t � 0) = (�Kt, t � 0) and F (x) =
1� exp(�z(�cx)�1/�).

In the intermediate and strongly subcritical cases b) and c), E[Zt] provides the exponential
decay factor of the survival probability which is given by  K(1), and the probability of survival
is proportional to the initial state z of the population. In the weakly subcritical case a), the
survival probability decays exponentially with rate  K(⌧), which is strictly smaller than  K(1),
and c2 may not be proportional to z (it is also the case for c1). We refer to [7] for a result in this
vein for discrete branching processes in random environment.

4.4 Conditioned processes

Here, we are interested in studying two conditioned versions of the processes: the process condi-
tioned to be never absorbed (or Q-process) and the process conditioned on eventual absorption.
Our methodology follows similar arguments as those used in Lambert [69] and extend the results
obtained by Böingho↵ and Hutzenthaler [20] and Hutzenthaler [53]. In order to apply it, we need
to know the explicit relation between the limiting constants and the initial value. This means
that we can obtain both processes when the environment is driven by a Brownian motion with
drift. But, when the environment is a Lévy process, we just know the conditional processes in
the supercritical, intermediate subcritical and strongly subcritical cases.

4.4.1 The process conditioned to be never absorbed

In order to study the SCBLRE conditioned to be never absorbed, we need the following lemma.

Lemma 3. For every t � 0, Zt is integrable.

Proof. Di↵erentiating the Laplace transform (1.19) of Zt in � and taking limits as � # 0, on both
sides, we deduce

Ez

⇥

Zt

�

�K
⇤

= zeKt ,

which is an integrable random variable since by hypothesis 1 < ✓+K .

Now, we will focus in the Brownian environment case. Recall that

⌘ := � 2

��2
m and k =

✓

��2

2c

◆1/�

.
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We now define the function U : [0,1) ! (0,1) as follows

U(z) =

8
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>

>
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>

>

>

>

>

>

>
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if m = 0,

8
�3�3
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0

⇣

1� e�zkv1/�
⌘

�⌘(v)dv if m 2 (��2, 0),

z

p
2p

⇡��
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if m = ��2,

zk
�(⌘ � 1/�)

�(⌘ � 2/�)
if m < ��2,

where the function �⌘ is given as in Proposition 9. We also introduce

✓ := ✓(m,�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if m = 0,
m2

2�2
if m 2 (��2, 0),

�2m+ �2

2
if m  ��2.

Let (Ft)t�0 be the natural filtration generated by Z and T0 = inf{t � 0 : Zt = 0} be the
absorption time of the process Z. The next proposition states, in the critical and subcritical
cases, the existence of the Q-process.

Proposition 11. Let (Zt, t � 0) be the SCBBRE (Brownian environment) with index � 2 (0, 1]
and Z0 = z > 0. Then for m  0:

i) The conditional laws Pz (· | T0 > t+ s) converge as s ! 1 to a limit denoted by P\z, in the
sense that for any t � 0 and ⇤ 2 Ft,

lim
s!1

Pz (⇤ | T0 > t+ s) = P\z (⇤) .

ii) The probability measure P\ can be expressed as an h-transform of P based on the martingale

Dt = e✓tU(Zt),

in the sense that

dP\z
�

�

F
t

=
Dt

U(z)
dPz

�

�

F
t

.

Proof. We first prove part (i). Let z, s, t > 0, and ⇤ 2 Ft. From the Markov property, we observe

Pz (⇤ | T0 > t+ s) =
Pz

⇣

⇤;T0 > t+ s
⌘

Pz (T0 > t+ s)
= Ez



PZ
t

(Zs > 0)

Pz (Zt+s > 0)
;⇤, T0 > t

�

. (4.19)
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Since the mapping t 7! I(⌘)t is increasing and the function f(x) = 1�exp
�

�kx1/�
 

is decreasing,
we deduce from (4.12) and the Markov property that for any z, y > 0,

0  Py (Zs > 0)

Pz (Zt+s > 0)
=

E


1� exp
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�yk
⇣

2I(⌘)
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E

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⇢

�zk
⇣
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�� .

Moreover, since I(⌘)t diverge as t " 1, we have

1

2
zkE



⇣

2I(⌘)
�2�2s/4

⌘�1/�
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 E


1� exp

⇢

�zk
⇣

2I(⌘)
�2�2s/4

⌘�1/�
��

 zkE


⇣

2I(⌘)
�2�2s/4

⌘�1/�
�

,

for s su�ciently large. Then for any s greater than some bound chosen independently of Zt, we
necessarily have

0  PZ
t

(Zs > 0)

Pz (Zt+s > 0)
 2

z
Zt.

Now, from the asymptotic behaviour (4.14), (4.15), (4.16) and (4.17), we get

lim
s!1

PZ
t

(Zs > 0)

Pz (Zt+s > 0)
=

e✓tU(Zt)

U(z)
.

Hence, Dominated Convergence and identity (4.19) imply

lim
s!1

Pz (⇤ | T0 > t+ s) = Ez



e✓tU(Zt)

U(z)
,⇤

�

. (4.20)

Next, we prove part (ii). In order to do so, we use (4.20) with ⇤ = ⌦ to deduce

Ez

h

e✓tU(Zt)
i

= U(z).

Therefore from the Markov property, we obtain

Ez

h

e✓(t+s)U(Zt+s)
�

�

�

Fs

i

= e✓sEZ
s

h

e✓tU(Zt)
i

= e✓sU(Zs),

implying that D is a martingale.

Example 10 (SCBBRE Q-process). Here, we assume m  ��2. Recall that

⌘ := � 2

��2
m and k =

✓

��2

2c

◆1/�

.
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Let L be the infinitesimal generator of the SCBBRE process. From Proposition 11, we deduce
that the form of the infinitesimal generator of the SCBBRE Q-process, here denoted by L\,
satisfies for f 2 Dom(L)

L\f(x) = Lf(x) + (1{�=1}cx+ x2�2)f 0(x)
U 0(x)

U(x)

+ 1{� 6=1}
c�(� + 1)

�(1� �)

x

U(x)

Z 1

0

⇣

f(x+ y)� f(x)
⌘⇣

U(x+ y)� U(x)
⌘ dy

y2+�
,

with

U(z) =
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if m = ��2,

zk
�(⌘ � 1/�)

�(⌘ � 2/�)
if m < ��2.

Replacing the form of U in the infinitesimal generator L\ in both cases, we get

L\f(x) = 1

2
�2x2f 00(x) + (a+ ↵+ �2)xf 0(x) + 1{�=1}c

�

2f 0(x) + xf 00(x)
�

+1{� 6=1}
c�(� + 1)

�(1� �)

✓

Z 1

0
(f(x+ y)� f(x))

dy

y1+�
+ x

Z 1

0

�

f(x+ y)� f(x)� yf 0(x)
� dy

y2+�

◆

From the form of the infinitesimal generator of the stable CBIBRE (4), we deduce that the stable
CBBRE Q-process is a stable CBIBRE with branching and immigration mechanisms given by

 \(�) = c�1+� and �\(�) = c(� + 1)�� ,

and the random environment S
\

t = (↵+ �2)t+ �B(e)
t .

Now, we will focus in a general Lévy environment. Recall that in the intermediate and
strongly subcritical regimes, the limiting coe�cients are written in terms of the initial position.
In this case, by following the previous steps, we can obtain the CBLRE conditioned to be never
extinct. Let introduce ✓ = � K(1). According to Proposition 10, there exist two constants
c3, c4 > 0 such that c3z and c4z are the limiting coe�cients in the intermediate and strongly
subcritical regimes. We define the function U : [0,1) ! (0,1) as follows

U(z) =

8

<

:

c3z if m < 0 and m1 = 0,

c4z if m < 0 and m1 < 0.

Proposition 12. Let (Zt, t � 0) be the SCBLRE with index � 2 (0, 1] and Z0 = z > 0. Then
for m < 0 and m1  0:

i) The conditional laws Pz (· | T0 > t+ s) converge as s ! 1 to a limit denoted by P\z, in the
sense that for any t � 0 and ⇤ 2 Ft,

lim
s!1

Pz (⇤ | T0 > t+ s) = P\z (⇤) .
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ii) The probability measure P\ can be expressed as an h-transform of P based on the martingale

Dt = e✓tU(Zt),

in the sense that

dP\z
�

�

F
t

=
Dt

U(z)
dPz

�

�

F
t

.

iii) Its infinitesimal generator satisfies, for every f 2 Dom(A).

L\f(x) = �2

2
x2f 00(x) + (↵+ �2)xf 0(x) + 1{�=1}c

�

2f 0(x) + xf 00(x)
�

+1{� 6=1}
c�(� + 1)
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✓
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0
(f(x+ y)� f(x))

dy

y1+�
+ x

Z 1

0

�

f(x+ y)� f(x)� yf 0(x)
� dy
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◆

+

Z

R

⇣

f(xez)� f(x)� x(ez � 1)f 0(x)1{|z|<1}

⌘

ez⇡(dz) + xf 0(x)

Z

(�1,1)
(ez � 1)2⇡(dz).

iv) Moreover, the stable CBLRE Q-process is a stable CBILRE with branching and immigration
mechanisms given by

 \(�) = c�1+� and �\(�) = c(� + 1)�� ,

and random environment

S\t =

 

↵+ �2 +

Z

(�1,1)
(ez � 1)2⇡(dz)

!

t+ �B(e)
t

+

Z t

0

Z

(�1,1)
(ez � 1) eN (e),\(ds, dz) +

Z t

0

Z

R\(�1,1)
(ez � 1)N (e),\(ds, dz),

where N (e),\(ds, dz) is a Poisson random measure in R+⇥R with intensity ezds⇡(dz). (By
hypothesis 1 < ✓+K , then

R

R(1 ^ z2)ez⇡(dz) < 1 and therefore, the random environment is
well defined.)

Proof. The proof of i) and ii) is analogous to the proof in Proposition 11, so we omitted. By ii)

L\f(x) = L(fU)(x)

U(x)
+ ✓f(x). (4.21)

Since Dt is a martingale,
LU(x) + ✓U(x) = 0.

By replacing the value of U , the form of L and the previous observation in (4.21), we get iii). iv)
follows from iii).

4.4.2 The process conditioned on eventual absorption

In the supercritical case we are interested in the process conditioned on eventual absorption.
Assume that m > 0 and define for z > 0
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U⇤(z) := E
"

exp

(

�z
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�c

Z 1

0
e��Kudu

◆�1/�
)#

.

Observe that if the random environment is a Brownian motion, U⇤(z) has the form

U⇤(z) =
1
X

n=0

(�zk)n

n!

�(n/� � ⌘)

�(�⌘) .

Proposition 13. Let (Zt, t � 0) be the SCBLRE with index � 2 (0, 1] and Z0 = z > 0. Then
for m > 0, the conditional law

P⇤
z(·) = Pz (· | T0 < 1) ,

satisfies for any t � 0,

dP⇤
z

�

�

F
t

=
U⇤(Zt)

U⇤(z)
dPz

�

�

F
t

.

Moreover, (U⇤(Zt), t � 0) is a martingale.

Proof. Let z, t � 0 and ⇤ 2 Ft, then

Pz

⇣

⇤
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T0 < 1
⌘

=
Pz (⇤, T0 < 1)

Pz (T0 < 1)
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s!1

Pz (⇤, Zt+s = 0)

U⇤(z)
.

On the other hand, the Markov property implies

Pz (⇤, Zt+s = 0) = Ez

h
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PZ
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,⇤
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.

Therefore using the Dominated Convergence Theorem, we deduce

Pz

⇣

⇤
�
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T0 < 1
⌘

= lim
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PZ
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,⇤
i

U⇤(z)
=

Ez

h

U⇤(Zt),⇤
i

U⇤(z)
.

The proof that (U⇤(Zt), t � 0) is a martingale follows from the same argument as in the proof of
part (ii) of Proposition 11.

Observe that P⇤
z(Zt > 0) goes to 0 as t ! 1. Hence a natural problem to study is the rates

of convergence of the survival probability of the SCBLRE conditioned on eventual extinction.
We were able to study them only in the Brownian environment case, so in the last part of the
chapter we will assume that K has continuous paths. Here, we obtain a phase transition which
is similar to the subcritical regime.

It is important to note that the arguments that we will use below also provides the rate of
convergence of the inverse of exponential functionals of a Brownian motion with drift towards
its limit, the Gamma random variable. The latter comes from the following observation. Since
U⇤(Zt) is a martingale, we deduce

P⇤
z(Zt > 0) =Pz (Zt > 0 | T0 < 1) =

1

U⇤(z)
(U⇤(z)� Pz (Zt = 0))

=
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.
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Another important identity that we will use in our arguments is the following identity in law

(

1

I(⌘)t

, t > 0

)

L
=

(

1

I(�⌘)t

+ 2��⌘, t > 0

)

,

where ��⌘ and I(�⌘)t are independent (see for instance identity (1.1) in Matsumoto and Yor [75]).
We also introduce

h(x, y) = exp
n

�kx1/�
o

� exp
n

�k (x+ y)1/�
o

, x, y � 0.

Then

P⇤
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U⇤(z)
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@z���⌘,
z�

2I(�⌘)
�2�2t/4

1

A

3

5 , (4.22)

where ��⌘ and I(�⌘)t are independent.

Proposition 14. Let (Zt, t � 0) be a supercritical stable CBBRE (Brownian environment) with
index � 2 (0, 1) and Z0 = z > 0.

i) Weakly supercritical. If m 2 (0,��2), then
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d⇠du.

ii) Intermediately supercritical. If m = ��2, then
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p
2

�2�
p
⇡U⇤(z)

1
X

n=0

(�zk)n

n!
�

✓

n+ 1

�
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◆

iii) Strongly supercritical. If m > ��2, then

lim
t!1

e
�

2 (2m���2)tP⇤
z(Zt > 0) =

�zk(⌘ + 2)

�U⇤(z)�(�⌘)

1
X

n=0

(�zk)n
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�

✓
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�
� ⌘ � 1

◆

Proof. Similarly as in the proof of Propositions 7 and 9, and following the same notation as in
[20], we just provide the fundamental ideas of the proof.

We first consider the weakly supercritical case (i). Note that for each x, y > 0

h(x, y)  k

�
x1/��1(y _ y1/�).
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Since ��⌘ and I(�⌘)t are independent, we deduce

E

2

4h

0

@z���⌘,
z�

2I(�⌘)
�2�2t/4

1

A

3

5 = E

2

4g

0

@

z�

2I(�⌘)
�2�2t/4

1

A

3

5 ,

where g(u) := E
⇥

h
�

z���⌘, u
�⇤

. From the inequality of above, we get g(u)  C(u _ u1/�) for
C > 0 that depends on k,� and ⌘.

Following step by step the proof of Lemma 4.5 in [20], we can deduce that the statement also
holds for our function g with b = 1. Actually in the proof of Lemma 4.5 in [20], the authors use
the inequality on their statement in order to apply the Dominated Convergence Theorem and
they split the integral in (4.24) in [20] into two integrals, one over [0, 1] and another over (1,1).
In our case, we can take on the integral over [0, 1] the function Cu and on the integral over (1,1)
the function Cu1/� and the result will not change. Therefore

lim
t!1

t3/2 em
2t/2�2P⇤

z(Zt > 0) = lim
t!1

t3/2 e⌘
2�2�2t/8

U⇤(z)
E
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4g

0

@

z�

2I(�⌘)
�2�2t/4
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A
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5

=
8

�3�3�(|⌘|)U⇤(z)

Z 1

0

Z 1

0
h(z�x, z�y)�|⌘|(y)x

�⌘�1e�xdxdy,

where �|⌘| is defined as in the statement of the Proposition.
In the remaining two cases we use the following inequalities, which hold by the Mean Value

Theorem. Let ✏ > 0 then, for each x, y � 0

k

�
e�kx1/�

x1/��1y  h(x, y)  k

�
e�kx1/�

✓

(x+ ✏)1/��1y +
⇣x

✏
+ 1
⌘1/��1

y1/�
◆

. (4.23)

For the intermediately supercritical case (ii), we note that �⌘ = 2. From Lemma 18 (with p = 1)
and Lemma 4.4 in [20] we deduce

lim
t!1

p
te2tE

"

1

2I(2)t

#

=
1p
2⇡

.

On the other hand, from Lemma 4.5 in [20] with g(u) = u1/� , we have

lim
t!1

t3/2e2tE
"

1

(2I(2)t )1/�

#

=

Z t

0
g(u)�2(u)du,

where �2 is defined as in the statement of the Theorem. Therefore by the previous limits, the

independence between �2 and I(2)t , identity (4.22) and inequalities (4.23), we have that for ✏ > 0
the following inequalities hold
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.
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Thus our claim holds true by taking limits as ✏ goes to 0.
Finally, we use similar arguments for the strongly supercritical case (iii). Observe from Lemma

18 and the identity in law by Dufresne (2.6) that

lim
t!1

e�2(1+⌘)tE
"

1

2I(�⌘)t

#

= E
⇥

��(⌘+2)

⇤

, (4.24)

where ��(⌘+2) is a Gamma r.v. with parameter �(⌘+ 2). If �⌘ < 2/�, Lemma 4.5 in [20] imply

lim
t!1

t3/2e⌘
2t/2E

"

1

(2I(�⌘)t )1/�

#

=

Z 1

0
y1/��|⌘|(y)dy, (4.25)

where �|⌘| is defined as in the statement of the Proposition. If �⌘ = 2/�, from Lemma 18 and
Lemma 4.4 in [20], we get
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t!1

p
te2t/�

2E
"

1

(2I(�⌘)t )1/�

#

=
�(1/�)p

2⇡
. (4.26)

Next, if �⌘ > 2/�, from Lemma 18 and the identity in law by Dufresne (??) we get

lim
t!1

e�2t(1/�+⌘)/�E
"

1

(2I(�⌘)t )1/�

#

= E
h

�1/��(⌘+2/�)

i

, (4.27)

where ��(⌘+2/�) is a Gamma r.v. with parameter �(⌘+2/�). Therefore, from the independence

between ��⌘ and I(�⌘)t , inequalities (4.23) and the limits in (4.24), (4.25),(4.26) and (4.27), we
deduce that for ✏ > 0, we have
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.

The proof is completed once we take limits as ✏ goes to 0.
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Chapter 5

Multi-type continuous-state
branching processes

This chapter is based in paper [66] elaborated in collaboration with Andreas Kyprianou. We
define a multi-type continuous-state branching process (MCBP) as a super Markov chain with
both local and non-local branching mechanism. This allows us the possibility of working with a
countably infinite number of types. The main results and some open questions are presented in
Section 5.1. In Section 5.2 we give the construction of MCBPs as a scaling limit of multi-type
Bienayme-Galton Watson processes. The spectral radius of the associated linear semigroup will
have an important roll in the asymptotic behaviour of our process, in particular, it will determine
the phenomenon of local extinction. The properties of this semigroup are studied in Section 5.3.
In Sections 5.4 and 5.5 we develop some standard tools based around a spine decomposition. In
Section 5.6, we give the proof of the main results. Finally in Section 5.7, we provide examples to
illustrate the local phenomenon property.

5.1 Introduction and main results

Continuous state branching processes (CB-processes) can be seen as high density limits of Bien-
aymé-Galton-Watson (BGW) processes. By analogy with multi-type BGW processes, a natural
extension would be to consider a multi-type Markov population model in continuous time which
exhibits a branching property. Indeed, in whatever sense they can be defined, multi-type CB-
processes (MCBPs) should have the property that the continuum mass of each type reproduces
within its own population type in a way that is familiar to a CB-process, but also allows for the
migration and/or seeding of mass into other population types.

Recently in [12], the notion of a multi-type continuous-state branching process (with immigra-
tion) having d-types was introduced as a solution to an d-dimensional vector-valued SDE with
both Gaussian and Poisson driving noises. Simultaneously, in [23], the pathwise construction
of these d-dimensional processes was given in terms of a multiparameter time change of Lévy
processes (see also [33, 46, 73, 88], all with a finite number of types).

Our first main result is to identify the existence of multi-type continuous-state branching
processes, allowing for up to a countable infinity of types. Denote by N = {1, 2, · · · } the natural
numbers. Let B(N) be the space of bounded measurable functions on N. Thinking of a member
of B(N), say f , as a vector we will write its entries by f(i), i 2 N. Write M(N) the space of finite
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Borel measures on N, let B+(N) the subset of bounded positive functions. The next theorem
shows the existence of our process, a [0,1)N-valued strong Markov process that satisfies the
branching property with local mechanism given by  and non-local mechanism �.

Theorem 6. Suppose that

 (i, z) = b(i)z + c(i)z2 +

Z 1

0
(e�zu � 1 + zu)`(i, du), i 2 N, z � 0, (5.1)

where b 2 B(N), c 2 B+(N) and, for each i 2 N, (u ^ u2)`(i, du) is a bounded kernel from N to
(0,1). Suppose further that

�(i, f) = ��(i)


d(i)hf, ⇡ii+
Z 1

0
(1� e�uhf,⇡

i

i)n(i, du)

�

, i 2 N, f 2 B+(N), (5.2)

where d,� 2 B+(N), ⇡i is a probability distribution on N\{i} (specifically ⇡i(i) = 0, i 2 N) and,
for i 2 N, un(i, du) is a bounded kernel from N to (0,1) with

d(i) +

Z 1

0
un(i, du)  1.

Then there exists an [0,1)N-valued strong Markov process X := (Xt, t � 0), where Xt =
(Xt(1), Xt(2), · · · ), t � 0, with probabilities {Pµ, µ 2 M(N)} such that

Eµ[e
�hf,X

t

i] = exp {�hVtf, µi} , µ 2 M(N), f 2 B+(N), (5.3)

where, for i 2 N,

Vtf(i) = f(i)�
Z t

0

h

 (i, Vsf(i)) + �(i, Vsf)
i

ds, t � 0. (5.4)

In the above theorem, for f 2 B+(N) and µ 2 M(N), we us the notation

hf, µi :=
X

i�1

f(i)µ(i).

Equation (5.3) tells us that X satisfies the branching property: for µ1, µ2 2 M(N),

Eµ1+µ2 [e
�hf,X

t

i] = Eµ1 [e
�hf,X

t

i]Eµ2 [e
�hf,X

t

i], t � 0.

That is to say, (X,Pµ1+µ2) is equal in law to the sum of independent copies of (X,Pµ1) and
(X,Pµ2). We can also understand the process X to be the natural multi-type generalisation of
a CB-process as, for each type i 2 N, X(i) evolves, in part from a local contribution which is
that of a CB-process with mechanism  (i, z), but also from a non-local contribution from other
types. The mechanism �(i, ·) dictates how this occurs. Roughly speaking, each type i 2 N seeds
an infinitesimally small mass continuously at rate �(i)d(i)⇡i(j) on to sites j 6= i (recall ⇡i(i) = 0,
i 2 N). Moreover, it seeds an amount of mass u > 0 at rate �(i)n(i, du) to sites j 6= i in
proportion given by ⇡i(j). We refer to the processes described in the above theorem as ( ,�)
multi-type continuous-state branching processes, or ( ,�)-MCBPs for short.
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Our main results concern how the di↵erent types of extinction occur for a MCBP X as defined
above. As alluded to in the introduction, we must distinguish local extinction at a finite number
of sites A ⇢ N, that is,

LA := { lim
t!1

h1A, Xti = 0},

from global extinction of the process X, i.e. the event

E := { lim
t!1

h1, Xti = 0}.

The distinction between these two has been dealt with in the setting of super di↵usions by [40].
In this article, we use techniques adapted from that paper to understand local extinction in the
setting here. The case of global extinction can be dealt with in a familiar way. To this end,
denote by �i the atomic measure consisting of a unit mass concentrated at point i 2 N.

Lemma 4. For each i 2 N, let w be the vector with entries w(i) := � logP�
i

(E), i 2 N. Then w
is a non-negative solution to

 (i, w(i)) + �(i, w) = 0, i 2 N. (5.5)

For the case of local extinction, a more sophisticated notation is needed. First we must
introduce the notion of the linear semigroup. For each f 2 B(f), define the linear semigroup
(Mt, t � 0) by

Mtf(i) := E�
i

[hf,Xti], t � 0.

Define the matrix M(t) by
M(t)ij := E�

i

[Xt(j)], t � 0,

and observe that Mt[f ](i) = [M(t)f ](i), for t � 0 and f 2 B(N). The linear semigroup and its
spectral properties play a crucial role in determining the limit behavior of the MCBP. In what
follows, we need to assume that M(t) is irreducible in the sense that, for any i, j 2 N, there exists
t > 0 such that M(t)ij > 0. To this end, we make the following global assumption throughout
the paper, which ensures irreducibility of M(t), t � 0.

(A): The matrix ⇡i(j), i, j 2 N, is the transition matrix of an irreducible Markov chain.

For each i, j 2 N, and � 2 R we define the matrix H(�) by

Hij(�) :=

Z 1

0
e�tM(t)ijdt.

The following result is the analogue of a result proved for linear semigroups of MBGW processes;
see e.g. Niemi and Nummelin ([78], Proposition 2.1) or Lemma 1 of [77]. We provide a proof in
the appendix.

Lemma 5. If, for some �, Hij(�) < 1 for a pair i, j, then Hij(�) < 1 for all i, j 2 N. In
particular, the parameter

⇤ij = sup{� � �1 : Hij(�) < 1},

does not depend on i and j. The common value, ⇤ = ⇤ij, is called the spectral radius of M .
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In contrast to Lemma 4, which shows that global extinction depends on the initial configu-
ration of the MCBP through the non-linear functional fixed point equation (5.5), case of local
extinction on any finite number of states depends only on the spectral radius ⇤. In particular
local extinction for finite sets is not a phenomenon that is set-dependent.

Theorem 7 (Local extinction dichotomy). Fix µ 2 M(N) such that sup{n : µ(n) > 0} < 1.
Moreover suppose that

Z 1

1
(x log x)`(i, dx) +

Z 1

1
(x log x)n(i, dx) < 1, for all i 2 N, (5.6)

holds.

(i) For any finite set of states A ✓ N, Pµ(LA) = 1 if and only if ⇤ � 0.

(ii) For any finite set of states A ✓ N, let vA be the vector with entries vA(i) = � logP�
i

(LA),
i 2 N, Then vA is a solution to (5.5), and vA(i)  w(i) for all i 2 N.

As we will see in the proof, if ⇤ � 0, then the process has local extinction a.s. even if (5.6) is not
satisfied.

This results open up a number of questions for the MCBPs which are motivated by similar
issues that emerge in the setting of CB-processes and super di↵usions. For example, by analogy
with the setting for super di↵usions, under the assumption (5.6), we would expect that when ⇤ <
0, the quantity �⇤ characterises the growth rate of individual types. Specifically we conjecture
that, when local extinction fails, exp{⇤t}Xi(t) converges almost surely to a non-trivial limit as
t ! 1, for each i 2 N. Moreover, if the number of types is finite, then �⇤ is also the growth
rate of the total mass. That is to say exp{⇤t}h1, Xti converges almost surely to a non-trivial
limit as t ! 1. If the total number of types is infinite then one may look for a discrepancy
between the global growth rate and local growth rate. In the setting of super di↵usions, [41]
have made some progress in this direction. Further still, referring back to classical theory for
CB-processes. It is unclear how the event of extinction occurs, both locally and globally. Does
extinction occur as a result of mass limiting to zero but remaining positive for all time, or does
mass finally disappear after an almost surely finite amount of time? Moreover, how does the way
that extinction occur for one type relate to that of another type? An irreducibility property of
the type space, e.g. assumption (A), is likely to ensure that mass in all states will experience
extinction in a similar way with regard to the two types of extinction described before, but this
will not necessarily guarantee that global extinction behaves in the same way as local extinction.
We hope to address some of these questions in future work.

We complete this section by giving an overview of the remainder of the chapter. In the next
section we give the construction of MCBPs as a scaling limit of MBGW processes; that is to say,
in terms of branching Markov chains. We define the linear semigroup associated to the MCBP.
The so-called spectral radius of this linear semigroup will have an important roll in the asymptotic
behaviour of our process, in particular, it will determine the phenomenon of local extinction. The
properties of this semigroup are studied in Section 5.3. In Sections 5.4 and 5.5 we develop some
standard tools based around a spine decomposition. In this setting, the spine is a Markov chain
and we note in particular that the non-local nature of the branching mechanism induces a new
additional phenomenon in which a positive, random amount of mass immigrates o↵ the spine
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each time it jumps from one state to another. Moreover, the distribution of the immigrating
mass depends on where the spine jumped from and where it jumped to. Concurrently to our
work we learnt that this phenomenon was also observed recently by Chen, Ren and Song [25].
In Section 5.6, we give the proof of the main results. We note that the main agenda for the
proof has heavily influenced by the proof of local extinction in [40] for super di↵usions. Finally
in Section 5.7, we provide examples to illustrate the local phenomenon property.

5.2 MCBPs as a superprocess

Our objective in this section is to prove Theorem 6. The proof is not novel as we do this by
showing that MCBPs can be seen in, in the spirit of the theory of superprocesses, as the scaling
limits of MBGW processes with type space N (or just {1, · · · , n} for some n 2 N in the case of
finite types).

To this end, let � 2 B+(N) and let F (i, d⌫) be a Markov kernel from N to I(N), the space of
finite integer-valued measures, such that

sup
i2N

Z

I(N)
⌫(1)F (i, d⌫) < 1.

A branching particle system is described by the following properties:

1. For a particle of type i 2 N, which is alive at time r � 0, the conditional probability of
survival during the time interval [r, t) is ⇢i(r, t) := exp{��(i)(t� r)}, t � r.

2. When a particle of type i dies, it gives birth to a random number of o↵spring in N according
to the probability kernel F (i, d⌫).

We also assume that the lifetime and the branching of di↵erent particles are independent.
Let Xt(B) denote the number of particles in B 2 B(N) that are alive at time t � 0 and assume
X0(N) < 1. With a slight abuse of notation, we take X0 := µ, where µ 2 I(N). Then
{Xt : t � 0} is a Markov process with state space I(N), which will be referred as a branching
Markov chain or multi-type BGW with parameters (�, F ). For µ 2 I(N), let Pµ denote the law
of {Xt : t � 0} given X0 = µ. In the special case that X is issued with a single particle of type
i, we write its law by P�

i

. For f 2 B+(N), t � 0, i 2 N, put

ut(i) := ut(i, f) = � logE�
i

[exp {�hf,Xti}].

The independence hypothesis implies that

Eµ[exp {�hf,Xti}] = exp {�hut, µi} , µ 2 I(N), f 2 B+(N), t � 0. (5.7)

Moreover, by conditioning on the first branching event, ut is determined by the renewal equation

e�u
t

(i) = ⇢i(0, t)e
�f(i) +

Z t

0
⇢i(0, s)�(i)

Z

I(N)
e�hu

t�s

, ⌫iF (i, d⌫)ds.

By a standard argument (see for example Lemma 1.2 in Chapter 4 of in [37]) one sees that the
last equation is equivalent to

e�u
t

(i) =e�f(i) �
Z t

0
�(i)e�u

t�s

(i)ds+

Z t

0
�(i)

Z

I(N)
e�hu

t�s

, ⌫iF (i, d⌫)ds. (5.8)

69



See, for example, Asmussen and Hering [6] or Ikeda et al. [54, 55, 56] for similar constructions.
In preparation for our scaling limit, it is convenient to treat the o↵spring that start their

motion from the death sites of their parents separately from others. To this end, we introduce
some additional parameters. Let ↵ and � 2 B+(N) such that � = ↵ + �. For each i 2 N, let ⇡i
be a probability distribution in N \ {i} and let g, h be two positive measurable functions from
N⇥ [�1, 1] to R such that, for each i 2 N,

g(i, z) =
1
X

n=0

pn(i)z
n, h(i, z) =

1
X

n=0

qn(i)z
n |z|  1,

are probability generating functions with supi g
0
z(i, 1�) < 1 and supi h

0
z(i, 1�) < 1. Next,

define the probability kernels F0(i, d⌫) and F1(i, d⌫) from N to I(N) by
Z

I(N)
e�hf, ⌫iF0(i, d⌫) = g(i, e�f(i))

and
Z

I(N)
e�hf, ⌫iF1(i, d⌫) = h(i, he�f ,⇡ii).

We replace the role of F (i, d⌫) by

��1(i) [↵(i)F0(i, d⌫) + �(i)F1(i, d⌫)] , i 2 N, ⌫ 2 I(N).

Intuitively, when a particle of type i 2 N splits, the branching is of local type with probability
↵(i)/�(i) and is of non-local type with probability �(i)/�(i). If branching is of a local type,
the distribution of the o↵spring number is {pn(i)}. If branching is of a non-local type, the
particle gives birth to a random number of o↵spring according to the distribution {qn(i)}, and
those o↵spring choose their locations in N \ {i} independently of each other according to the
distribution ⇡i(·). Therefore, ut is determined by the renewal equation

e�u
t

(i) = e�f(i) +

Z t

0
↵(i)

h

g(i, e�u
t�s

(i))� e�u
t�s

(i)
i

ds

+

Z t

0
�(i)

h

h(i, he�u
t�s ,⇡ii)� e�u

t�s

(i)
i

ds.

(5.9)

For the forthcoming analysis, it is more convenient to work with

vt(i) := 1� exp{�ut(i)}, t � 0, i 2 N.

In that case,

vt(i) = Ei

h

1� ef(i)
i

�
Z t

0
[ (i, vt�s(i)) + �(i, vt�s)] ds,

where
 (i, z) = ↵(i)[g(i, 1� z)� (1� z)] + �(i)z

and
�(i, f) = �(i) [h(i, 1� hf,⇡ii)� 1] .
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Next, we take a scaling limit of the MBGW process. We treat the limit as a superprocess
with local and non-local branching mechanism. For each k 2 N, let {Y (k)(t), t � 0} be a sequence
of branching particle system determined by (↵k(·),�k(·), gk(·), hk(·),⇡·). Then, for each k,

{X(k)(t) = k�1Y (k)(t), t � 0}

defines a Markov process in Nk(N) := {k�1�,� 2 N(N)}. For 0  z  k and f 2 B(N), let

 k(i, z) = k↵k(i)[gk(i, 1� z/k)� (1� z/k)] + �k(i)z

and
�k(i, f) = �k(i)k[hk(i, 1� k�1hf,⇡ii)� 1].

Under certain conditions, Dawson et. al [27] obtained the convergence of {X(k)(t), t � 0} to some
process {X(t), t � 0}. Let B(N) the subset B(N) with entries uniformly bounded from above and
below. We re-word their result for our particular setting here.

Theorem 8. Suppose that
1
X

n=0

nqkn(i)  1,

that �k ! � 2 B+(N) uniformly, �k(i, f) ! �(i, f) uniformly on N⇥B(N), and  (i, z) !  (i, z)
locally uniformly. Then

i) The function  (i, z) has representation

 (i, z) = b(i)z + c(i)z2 +

Z 1

0
(e�zu � 1 + zu)`(i, du), i 2 N, z � 0, (5.10)

where b 2 B(N), c 2 B+(N) and (u ^ u2)`(i, du) is a bounded kernel from N to (0,1).

ii) The function �(i, f) can be represented as

�(i, f) = ��(i)


d(i)hf, ⇡ii+
Z 1

0
(1� e�uhf,⇡

i

i)n(i, du)

�

, (5.11)

where d 2 B+(N), and un(i, du) is a bounded kernel from N to (0,1) with

d(i) +

Z 1

0
un(i, du)  1.

iii) To each function  and � satisfying (5.10) and (5.11) there correspond a sequence of �k,
 k and �k.

v) For each a � 0, the functions vkt (i, f) and ku(k)t (i, f) converge boundedly and uniformly on
[0, a]⇥ N⇥ B(N), to the unique bounded positive solution Vtf(i) to the evolution equation

Vtf(i) = f(i)�
Z t

0

h

 (i, Vt�sf(i)) + �(i, Vt�sf)
i

ds, t � 0. (5.12)
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Moreover, there exists a Markov process {Xt : t � 0} with probabilities {Pµ, µ 2 M(N)} such
that

Eµ[e
�hf,X

t

i] = exp {�hVtf, µi} , µ 2 M(N), f 2 B+(N),

and the cumulant semigroup Vtf is given by (5.12).

Theorem 6 now follows directly as a corollary of the above result. Intuitively,  (i, ·) describes
the rate at which a branching event amongst current mass of type i 2 N, produces further mass
of type i. Moreover, �(i, ·) describes the rate at which a branching event amongst current mass
of type i 2 N, produces further mass of other types N\{i}.

Remark 1. The non-local branching mechanism is not the most general form that can be as-
sumed in the limit. Indeed, taking account of the class of non-local branching mechanisms that
can be developed in [27], [36] and [70], we may do the same here. Nonetheless, we keep to this
less-general class for the sake of mathematical convenience.

5.3 Spectral properties of the moment semigroup

Let (Xt,Pµ) be a MCBP and define its linear semigroup (Mt, t � 0) by

Mt[f ](i) := E�
i

[hf,Xti], i 2 N, f 2 B+(N), t � 0. (5.13)

Replacing f in (5.3) and (5.4), it is easily verified that

Mt[f ](i) = f(i) +

Z t

0
K[Ms[f ]](i)ds�

Z t

0
b(i)Ms[f ](i)ds, i 2 N, f 2 B+(N), t � 0,

where

K[g](i) = �(i)

✓

d(i) +

Z 1

0
un(i, du)

◆

hg, ⇡ii.

In addition, Mt has formal matrix generator L given by

L = ��b +K, (5.14)

where the matrices ��b and K are given by

(��b)ij = �b(i)1i=j , and Kij = �(i)

✓

d(i) +

Z 1

0
un(i, du)

◆

⇡i(j).

Define the matrix M(t) by
M(t)ij := E�

i

[Xt(j)],

and observe that
Mt[f ](i) = [M(t)f ](i). (5.15)

The linear semigroup will play an important role in the proof of Theorem 7, in particular,
its spectral properties are of concern to us. Thanks to (5.15), it su�ces to study the spectral
properties of the matrix M(t). In the forthcoming theory, we will need to assume that M :=
{M(t) : t � 0}, is irreducible in the sense that for any i, j 2 N there exists t > 0 such that
M(t)ij > 0. The following lemma ensures this is the case.
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Lemma 6. Suppose that ⇡i(j), i, j 2 N is the transition matrix of an irreducible Markov chain,
then M is irreducible.

Proof. Let a(i) = �(i)
�

d(i) +
R1
0 un(i, du)

�

, for i2 N. Define the matrices Q and �a�b

Qij = a(i)(⇡i(j)� 1{i=j}) and (�a�b)ij = (a(i)� b(i))1{i=j}.

By hypothesis, Q is the Q-matrix of an irreducible Markov chain (⇠t,Pi). In particular, for each
i, j 2 N and t > 0, Pi(⇠t = j) > 0. Observe in (5.14) that L = Q + �a�b which is the formal
generator of the semigroup given by

Tt[f ](i) = Ei



f(⇠t) exp

⇢

Z t

0
(a� b)(⇠s)ds

��

i 2 N, f 2 B+(N), t � 0. (5.16)

By uniqueness of the semigroups, Mtf(i) = Tt[f ](i), t � 0, i 2 N. In particular, for � the Dirac
function, we have M(t)ij = Tt[�j ](i) > 0. And therefore M is irreducible.

Recall that, for each i, j 2 N and � 2 R, we defined the matrix H(�) by

Hij(�) :=

Z 1

0
e�tM(t)ijdt.

and that the spectral radius

⇤ := sup{� � �1 : Hij(�) < 1},

does not depend on i and j.

Definition 1. A non-negative vector x with entries x(i), i 2 N, is called right (resp. left)
subinvariant �-vector, if for all t � 0,

M(t)x  e��tx, (resp. xTM(t)  e��tx).

If the equality holds, the vector is call a right (resp. left) invariant �-vector.

In the next proposition, we appeal to standard techniques (cf. [77] or [86]) and provide su�cient
conditions for the existence of subinvariant �-vectors.

Proposition 15. If H(�) < 1, then there exists a positive1 right subinvariant �-vector, x, and
a positive left subinvariant �-vector, y. There exists no left or right subinvariant �-vector for
� > ⇤.

Proof. Fix j 2 N and define x and y as follows

x(i) = Hij(�) and y(i) = Hji(�).

Since the function t 7! M(t) is continuous and M is irreducible, x(i)y(k) > 0 for all i, k 2 N. Let
s � 0, by Fubini’s Theorem,

[yTM(s)](i) =
X

k2N

Z 1

0
e�tM(t)jkdt M(s)ki =

Z 1

0
e�t
X

k2N
M(t)jkM(s)kidt.

1
Recall that a vector x is positive if its entries, x(i), are strictly positive for all i.
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The semigroup property implies that

[yTM(s)](i) =

Z 1

0
e�tM(s+ t)jidt = e��s

Z 1

s
e�tM(t)jidt  e��sy(i).

Therefore, y is a left subinvariant �-vector. A similar computation shows that x is a right
subinvariant �-vector.

Suppose x is a right subinvariant �-vector. Let ↵ 2 (⇤,�), then, for each i 2 N,
Z 1

0
e↵t[M(t)x](i)dt 

Z 1

0
e↵te��tx(i)dt = x(i)(� � ↵)�1.

Let j 2 N such that x(j) > 0, then
Z 1

0
e↵tM(t)ijdt 

x(i)

x(j)
(� � ↵)�1 < 1,

which is a contradiction with the definition of ⇤. In an analogous way, there is no left subinvariant
�-vector.

When Hij(⇤) = 1, Niemi and Nummelin ([78],Theorem 4) proved that there exists unique
left and right invariant ⇤-vectors as follows.

Proposition 16. Assume that Hij(⇤) = 1 for some i, j 2 N. Then,

i) There exists a unique (up to scalar multiplication) positive left invariant ⇤-vector.

ii) There exists a unique (up to scalar multiplication) positive right invariant ⇤-vector. More-
over, any right subinvariant ⇤-vector is a right invariant vector.

From the previous propositions, there exists at least a positive left (right) subinvariant ⇤-
vector. One of the reasons we are interested in right (sub)invariant vector, is that we can associate
to it a (super)martingale, which will be of use later on in our analysis.

Proposition 17. Let x be a right subinvariant �-vector. Then

Wt := e�thx,Xti, t � 0,

is a supermartingale. If x is also an invariant vector, then (Wt, t � 0) is a martingale.

Proof. Let t, s � 0. By the Markov property and the branching property

E
h

e�(t+s)hx,Xt+si
�

�

�

Fs

i

= e�(t+s)EX
s

[hx,Xti] = e�(t+s)
X

i2N
Xs(i)E�

i

[hx,Xti] .

Since x is a right subinvariant �-vector,

E�
i

[hx,Xti] = [M(t)x](i)  e��tx(i),

therefore, we have that

E [Wt+s| Fs] = e�(t+s)
X

i2N
Xs(i)[M(t)x](i)  e�s

X

i2N
x(i)Xs(i) = Ws.

In the invariant case, inequalities become equalities.
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Let [n] = {1, · · · , n} and let X [n] := {X [n]
t : t � 0} be a branching process with the same

mechanism as Xt but we kill mass that is is created outside of [n]. To be more precise, X [n] has
the same local branching mechanisms  (i, ·) and �(i, ·), for i = 1, · · · , n, albeit that, now, ⇡i(j),
j 2 N\{i} is replaced by ⇡i(j)1(jn), j 2 N\{i}. Finally  (i, ·) and �(i, ·) are set to be zero for
i � n.
Let M [n](t) be the matrix associated to the linear semigroup of X [n]. Then the infinitesimal
generator of M [n](t) is given by

L[n] = [��b +K]
�

�

�

[n]
.

In order to apply Perron-Froebenius theory to the matrix M [n](t), we need irreducibility. By
Lemma 6, it is enough that ⇡i(j), i, j  n is irreducible. There exist simple examples of infinite
irreducible matrices such that their upper left square n-corner truncations are not irreducible for
all n � 1. However, according to Seneta ([85], Theorem 3), the irreducibility of ⇡ implies that
there exists a simultaneous rearrangement of the rows and columns of ⇡, denoted by ⇡̃, and a
sequence of integers kn tending to infinity, such that the truncation of ⇡̃ to [kn] is irreducible for
all n. Observe that the type space, N, is used as a labelled set and not as an ordered set. It
therefore follows that we can assume without loss of generality, that we start with ⇡̃ (The vectors
b, c, d,�, ` and n will require the same rearrangement). In the rest of the paper, when requiring
finite truncations to the state space, whilst preserving irreducibility, it is enough to work with the
truncations on [kn]. In order to simplify the notation, we will assume without loss of generality
that kn = n for all n.

Perron-Froebenius theory tells us there exist two positive vectors x[n] = {x[n](i) : i = 1, · · · , n}
and y[n] = {y[n](i) : i = 1, · · · , n}, and a real number ⇤[n] = sup{� � �1 : H [n]

ij (�) < 1}, such
that

M [n](t)x[n] = e�⇤[n]tx[n] and (y[n])TM [n](t) = e�⇤[n]ty[n].

By construction of X [n]
t , we have the inequalities

M [n]
ij (t)  M [n+1]

ij (t)  Mij(t),

which naturally leads to the hierarchy of eigenvalues

⇤  ⇤[n+1]  ⇤[n]. (5.17)

Lemma 7.

i) ⇤1 := lim n!1 ⇤[n] = ⇤.

ii) Let x[n] be a right invariant ⇤[n]-vector for M [n], such that x[n](1) = 1. Then, the vector
{x⇤(j) : j 2 N} given by x⇤(j) = lim infn!1 x[n](j) is a positive right ⇤-subinvariant vector.
Moreover, it Hij(⇤) = 1, then {x⇤(j) : j 2 N} is the unique positive right invariant ⇤-
vector of M with x⇤(1) = 1.

Proof. By inequality (5.17),
⇤  ⇤1 = lim

n!1
⇤[n].

For any n 2 N, let x[n] be a M [n] right invariant vector, such that x[n](1) = 1 for all n 2 N, this
implies

L[n]x[n] = �⇤[n]x[n].
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Let x⇤(j) = lim infn!1 x[n](j), by Fatou’s Lemma

Lx⇤  �⇤1x⇤.

Using the fact that M(t) is a non negative matrix and

d

dt
[M(t)x⇤](i) = [M(t)Lx⇤](i), i 2 N,

we find that
[M(t)x⇤](i)  e�⇤1tx⇤(i), i 2 N.

Since x⇤(1) = 1, x⇤ is a right ⇤1-subinvariant vector. By applying Proposition 15 we have that
⇤1  ⇤ and therefore x⇤ is a right ⇤-subinvariant vector. The last part of the claim is true due
to Proposition 16.

Any vector x 2 Rn can be extended to a vector u 2 RN by the natural inclusion map u(i) =
x(i)1{in}. Since it will be clear in which space we intend to use the vector, we make an abuse
of notation, and in the future we will denote both with x.

5.4 Spine decomposition

According to Dynkin’s theory of exit measures [35] it is possible to describe the mass of X as it
first exits the growing family of domains [0, t) ⇥ [n] as a sequence of random measures, known
as branching Markov exit measures, which we denote by {X [n],t : t � 0}. We recover here some
of its basic properties. First, X [n],t has support on ({t} ⇥ [n]) [ ([0, t] ⇥ [n]c). Moreover, under
{t}⇥ [n],

X [n],t({t}⇥B) = X [n]
t (B),

for each B ⇢ [n]. We use the obvious notation that for all f 2 B+([0, t]⇥ N),

hf,X [n],ti =
X

i2[n]

f(t, i)X [n],t({t}, i) +
X

i2[n]c

Z t

0
f(s, i)X [n],t(ds, i).

We have that for all µ 2 M([0, t]⇥ N), and f 2 B+([0, t]⇥ N)

Eµ[e
�hf,X[n],ti] = exp{�hV [n],t

0 f, µi}, (5.18)

where, for t � r � 0, V [n],t
r f : [n] ! [0,1) is the unique non-negative solution to

V [n],t
r f(i) =

8

<

:

f(t, i)�
R t
r

⇥

 (i, V [n],t
s f(i)) + �(i, V [n],t

s f)
⇤

ds if i  n

f(r, i) if i > n.

(5.19)

An important observation for later is that temporal homogeneity implies that

V [n],t
r f = V [n],t�r

0 f, (5.20)

for all f 2 B+([0, t] ⇥ N). Moreover, as a process in time, X [n],· = {X [n],t : t � 0} is a MCBP
with local mechanism  [n] =  (i, z)1{in} and non-local mechanism �[n] = �(i, f)1{in}.
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Any function g : N ! [0,1) can be extended to a function ḡ : [0,1)⇥N ! [0,1) such that
ḡ(s, i) = g(i). Let x be a ⇤[n] right invariant vector of M [n]. (Note, in order to keep notation to
a minimum, we prefer x in place of the more appropriate notation x[n].) By splitting the integral
between {t}⇥ [n] and [0, t]⇥ [n]c, it is easy to show that

hx̄, X [n],ti = hx,X [n]
t i.

Using the Markov property of exit measures, the last equality, and Proposition 17, standard
computations tell us that

Y [n]
t := e⇤

[n]t hx̄, X [n],ti
hx, µi = e⇤

[n]t hx,X
[n]
t i

hx, µi , t � 0,

is a mean one Pµ-martingale. For µ 2 I(N) such that µ(N\[n]) = 0, define eP[n]
µ by the martingale

change of measure

deP[n]
µ

dPµ

�

�

�

F
t

= Y [n]
t .

Theorem 9. Let µ a finite measure with support in [n] and g 2 B+(N). Introduce the Markov
chain (⌘,Px

· ) on [n] with infinitesimal matrix, L̃[n] 2 Mn⇥n, given by

L̃[n]
ij =

1

x(i)

⇣

��b +Kij + 1{i=j}⇤
[n]
⌘

x(j).

If X is a MCBP, then

eE[n]
µ

"

e�hf,X[n],ti hx̄ � ḡ, X [n],ti
hx̄, X [n],ti

#

= Eµ

h

e�hf,X[n],ti
i

⇥

Ex
xµ

"

exp

⇢

�
Z t

0

✓

2c(⌘s)V
[n],t�s
0 f(⌘s) +

Z 1

0
u(1� e�uV

[n],t�s

0 f(⌘
s

))`(⌘s, du)

◆

ds

�

⇥

g(⌘t)
Y

st

⇥[n],t�s
⌘
s�,⌘

s

#

, (5.21)

where the matrices {⇥[n],s : s � 0}, are given by

⇥[n],t
i,j =

⇡i(j)�(i)

[��b +K + ⇤[n]I]i,j

Z 1

0
u(e�uhV [n],t

0 f,⇡
i

i � 1)n(i, du) + 1

and

Px
xµ(·) =

X

i2[n]

x(i)µ(i)

hx, µi Px
i (·),

with an obviously associated expectation operator Ex
xµ(·).
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Proof. We start by noting that

eE[n]
µ

"

e�hf,X[n],ti hx̄ � ḡ, X [n],ti
hx̄, X [n],ti

#

=
e⇤

[n]t

hx, µiEµ

h

hx̄ � ḡ, X [n],tie�hf,X[n],ti
i

.

Replacing f by f + �x̄ � ḡ in (5.18) and (5.19) and di↵erentiating with respect to � and then
setting � = 0, we obtain

eE[n]
µ

"

e�hf,X[n],ti hx̄ � ḡ, X [n],ti
hx̄, X [n],ti

#

= Eµ

h

e�hf,X[n],ti
i h✓t0, x � µi

hx, µi

= Eµ

h

e�hf,X[n],ti
i

X

in

x(i)µi

hx, µi ✓
t
0(i),

(5.22)

where � denotes element wise multiplication of vectors and, for t � r � 0, ✓tr is the vector with
entries

✓tr(i) :=
1

x(i)
e⇤

[n](t�r) @

@�
V [n],t
r [f + �x̄ � ḡ](i)

�

�

�

�

�=0

, i 2 [n].

So that, in particular, ✓tt(i) = g(i), i 2 [n], and additionally, ✓tr(i) = 0 for i > n and r  t. Note
that the temporal homogeneity property (5.20) implies that ✓tr(i) = ✓t�r

0 (i), i 2 [n], t � r � 0.
Moreover, ✓tr(i), i 2 [n], is also the unique solution to

✓tr(i) = g(i)�
Z t

r
✓ts(i)



2c(i)V [n],t�s
0 f(i) +

Z 1

0
u(1� eV

[n],t�s

0 f(i))`(i, du)

�

ds

+ x(i)�1
Z t

r

⇥

(��b +K + ⇤[n]I)x � ✓ts
⇤

(i)ds

+

Z t

r
h✓ts, ⇡xi i�(i)

Z 1

0
u(e�uhV [n],t�s

0 f,⇡
i

i � 1)n(i, du)ds,

where

⇡xi (j) :=
x(j)

x(i)
⇡i(j), , i, j 2 [n].

A straightforward integration by parts now ensures that

[e
eL[n]r✓tr](i) =[e

eL[n]tg](i)

�
Z t

r
e
eL[n]s



✓ts �


2c(·)V [n],t�s
0 f(·) +

Z 1

0
u(1� eV

[n],t�s

0 f(·))`(·, du)
��

(i)ds

+

Z t

r
e
eL[n]s



h✓ts, ⇡x· i�(·)
Z 1

0
u(e�uhV [n],t�s

0 f,⇡·i � 1)n(·, du)ds
�

(i)ds.

Then appealing to temporal homogeneity, and the fact that {eeL[n]t : t � 0} is the semigroup
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of (⌘,Px
· ),

✓t0(i) = Ex
i [g(⌘t)]� Ex

i

h

R t
0 ✓

t�s
0 (⌘s)

h

2c(⌘s)V
[n],t�s
0 f(⌘s) +

R1
0 u(1� eV

[n],t�s

0 f(⌘
s

))`(⌘s, du)
i

ds
i

+Ex
i

h

R t
0 h✓

t�s
0 , ⇡x⌘

s

i�(⌘s)
R1
0 u(e�uhV [n],t�s

0 f,⇡
⌘

s

i � 1)n(⌘s, du)ds
i

= Ex
i [g(⌘t)]� Ex

i

h

R t
0 ✓

t�s
0 (⌘s)

h

2c(⌘s)V
[n],t�s
0 f(⌘s) +

R1
0 u(1� eV

[n],t�s

0 f(⌘
s

))`(⌘s, du)
i

ds
i

+Ex
i



R t
0

P

j 1(eL[n]
⌘

s

,j

6=0)
✓t�s
0 (j)

✓

⇡x

⌘

s

(j)�(⌘
s

)

eL[n]
⌘

s

,j

R1
0 u(e�uhV [n],t�s

0 f,⇡
⌘

s

i � 1)n(⌘s, du)

◆

eL[n]
⌘
s

,jds

�

(Note, in the last equality, we have used that eL[n]
⌘
s

,j = 0 if and only if ⇡⌘
s

(j) = 0). We now see
from Lemma 19 in the appendix that

✓t0(i) =Ex

i

2

4exp

⇢

�
Z

t

0

✓

2c(⌘
s

)V [n],t�s

0 f(⌘
s

) +

Z 1

0
u(1� e�uV

[n],t�s
0 f(⌘s))`(⌘

s

, du)

◆

ds

�

Y

st

⇥[n],t�s

⌘s�,⌘s

3

5 ,

as required.

Fix µ as a finite measure with support in [n]. Proposition 9 suggests that the process
(X [n],·, ePµ) is equal in law to a process {�t : t � 0}, whose law is henceforth denoted by Pµ,
where

�t = X 0
t +

X

st:c

Xc,s
t�s +

X

st:d

Xd,s
t�s +

X

st:j

X j,s
t�s, t � 0, (5.23)

such that X 0 is an independent copy of (X [n],·,Pµ) and the processes Xc,s
· , Xd,s

· and X j,s
· are

defined through a process of immigration as follows: Given the path of the Markov chain (⌘,Px
xµ),

[continuous immigration] in a Poissonian way an ( [n],�[n])-MCBP Xc,s
· is immigrated at

(s, ⌘s) with rate ds⇥ 2c(⌘s)dN⌘
s

,

[discontinuous immigration] in a Poissonian way an ( [n],�[n])-MCBP Xd,s
· is immigrated at

(s, ⌘s) with rate ds⇥
R1
0 u`(⌘s, du)Pu�

⌘

s

[jump immigration] at each jump time s of ⌘, an ( [n],�[n])-MCBP X j,s
· is immigrated at

(s, ⌘s) with law
R1
0 ⌫⌘

s�,⌘
s

(du)Pu⇡
⌘

s�
, where, for i, j in the range of ⌘,

⌫i,j(du) =
[��b + I⇤[n]]i,j+�(i)d(i)⇡i(j)

[��b +K + I⇤[n]]i,j
�0(du) +

⇡i(j)�(i)

[��b +K + I⇤[n]]i,j
un(i, du).

Given ⌘, all the processes are independent.

We remark that we suppressed the dependence on n of the processes X 0, Xc,s
· , Xd,s

· , X j,s
· and

� in order to have a nicer notation. Moreover, in the above description, the quantity Ni is the
excursion measure of the ( [n],�[n])-MCBP corresponding toP�

i

. To be more precise, Dynkin and
Kuznetsov ([38]) showed that associated to the laws {P�

i

: i 2 N} are the measures {Ni : i 2 N},
defined on the same measurable space, which satisfy

Ni(1� e�hf,X[n],ti) = � logE�
i

(e�hf,X[n],ti),
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for all non-negative bounded function f on N and t � 0. A particular feature of Ni that we shall
use later is that

Ni(hf,X [n],ti) = E�
i

[hf,X [n],ti]. (5.24)

Observe that the processes Xc, Xd and Xj are initially zero valued, therefore, if �0 = µ then
X 0

0 = µ. Moreover (⌘, Pµ) is equal in distribution to (⌘,Px
xµ). The following result corresponds

to a classical spine decomposition, albeit now for the setting of an ( [n],�[n])-MCBP. Note, we
henceforth refer to the process ⌘ as the spine.

Remark 2. The inclusion of the immigration process indexed by j appears to be a new feature
not seen before in previous spine decompositions and is a consequence of non-local branching.
Simultaneously to our work, we learnt that a similar phenomenon has been observed by Chen,
Ren and Song [25].

Theorem 10 (Spine decomposition). Suppose that µ as a finite measure with support in [n].
Then (�,Pµ) is equal in law to (X [n],·, ePµ).

Proof. The proof is designed in two steps. First we show that � is a Markov process. Secondly
we show that ⇤ has the same semigroup as X [n],·. In fact the latter follows immediately from
Proposition 9 and hence we focus our attention on the first part of the proof. Observe that
((�t, ⌘t),Pµ) is a Markov process. By the same argument that appeared on Theorem 5.2 in [65],
if we prove

Eµ[⌘t = i | �t] =
x(i)�t(i)

hx̄,�ti
, i  n, (5.25)

then, (�t,Pµ) is a Markov process. By conditioning over ⌘, using the definition of �, the equation

5.21 and the fact that (�t,Pµ) is equal in law to (Xt, ePµ), for each t, we obtain

Eµ

h

e�hf,�
t

ig(⌘t)
i

= Eµ



e�hf,�
t

i hx̄ � ḡ,�ti
hx,�ti

�

, for all f, g measubles.

The definition of conditional expectation implies (5.25).

5.5 Martingale convergence

An important consequence of the spine decomposition in Theorem 10 is that we can establish an

absolute continuity between the measures Pµ and eP[n]
µ .

Theorem 11. Fix n 2 N and µ 2 M(N) such that sup{k : µ(k) > 0}  n. The martingale Y [n]

converges almost surely and in L1(Pµ) if and only if ⇤[n] < 0 and that

X

i2[n]

Z 1

1
(x log x)`(i, dx) +

X

i2[n]

Z 1

1
(x log x)n(i, dx) < 1, (5.26)

Moreover, when these conditions fail, Pµ(limt!1 Y [n]
t = 0) = 1.
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Proof. We follow a well established line of reasoning. Firstly we establish su�cient conditions.

We know that 1/Y [n]
t is a positive eP[n]

µ -supermartingale and hence limt!1 Y [n]
t exists eP[n]

µ -almost

surely. The statement of the theorem follows as soon as we prove that eP[n]
µ (limt!1 Y [n]

t < 1) = 1.
To this end, consider the spine decomposition in Theorem 10. Suppose, given the trajectory

of the spine ⌘, that we write (s,�d
s ,�

j
s), s � 0, for the process of immigrated mass along the

spine, so that (s,�d
s ) has intensity ds⇥u`(⌘s, du) and, at s such that ⌘s� 6= ⌘s, �

j
s is distributed

according to ⌫⌘
s�,⌘

s

.

Let S = �(⌘, (s,�d
s ,�

j
s), s � 0) be the sigma algebra which informs the location of the spine

and the volume of mass issued at each immigration time along the time and write

Z [n]
t = e⇤

[n]t hx̄,�ti
hx, µi .

Our objective now is to use Fatou’s Lemma and show that

Eµ[ lim
t!1

Z [n]
t |S]  lim inf

t!1
Eµ[Z

[n]
t |S] < 1.

Given that (�,Pµ) is equal in law to (X [n],·, ePµ), this ensures that eP[n]
µ (limt!1 Y [n]

t < 1) = 1,
thereby completing the proof.

It therefore remains to show that lim inft!1 Eµ[Z
[n]
t |S] < 1. Taking advantage of the spine

decomposition, we have, with the help of (5.24) and the fact that Eµ[Y
[n]
t ] = 1, for t � 0 and µ

such µ 2 M(N) such that sup{k : µ(k) > 0}  n,

lim inf
t!1

Eµ[Z
[n]
t |S] =hx, µi+

Z 1

0
2c(⌘s)e

⇤[n]s x⌘
s

hx, µids

+
X

s>0

e⇤
[n]s�d

s

x⌘
s

hx, µi +
X

s>0

e⇤
[n]s�j

s

hx,⇡⌘
s

�i
hx, µi .

Recalling that ⇤[n] < 0 and that ⌘ lives on [n], the first integral on the right-hand side above can
be bounded above by a constant. The two sums on the right-hand side above can be dealt with
almost identically.

It su�ces to check that
X

s>0

e⇤
[n]s1(�d

s

<1)�
d
s +

X

s>0

e⇤
[n]s1(�j

s

<1)�
j
s

+
X

s>0

e⇤
[n]s1(�d

s

�1)�
d
s +

X

s>0

e⇤
[n]s1(�j

s

�1)�
j
s < 1.

(5.27)

We first note that

Eµ

"

X

s>0

e⇤
[n]s1(�d

s

<1)�
d
s +

X

s>0

e⇤
[n]s1(�j

s

<1)�
j
s

#

= Eµ

"

Z 1

0
e⇤

[n]s

Z

(0,1)
u2`(⌘s, du)ds

#

+ Eµ

"

Z 1

0
e⇤

[n]s

Z

(0,1)
u2L[n]

⌘
s�,⌘

s

⌫⌘
s�,⌘

s

(du)ds

#


Z 1

0
e⇤

[n]sds

(

sup
i2[n]

Z

(0,1)
u2`(i, du)ds+ sup

i,j2[n]
⇡xi (j)

Z

(0,1)
u2n(i, du)ds

)

< 1.
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Next, note that the condition (5.26) ensures that, Pµ almost surely,

lim sup
s!1

s�11(�d
s

�1) log�
d
s + lim sup

s!1
s�11(�d

s

�1) log�
j
s = 0,

so that both sequences�d
s and�

j
s in the last two sums of (5.27) grow subexponentially. (Note that

both of the aforesaid sequences are indexed by a discrete set of times when we insist {�d
s � 1}.)

Hence the second term in (5.27) converges.
To establish necessary conditions, let us suppose that ⌧ is the set of times at which the mass

(s,�d
s ,�

j
s), s � 0, immigrates along the spine. We note that for t 2 ⌧ ,

Z [n]
t � e⇤

[n]t�d
t

x⌘
t

hx, µi + e⇤
[n]t�j

t

hx,⇡⌘
t

�i
hx, µi . (5.28)

If ⇤[n] > 0 and (5.26) holds then

ePµ(lim sup
t!1

Y [n]
t = 1) = Pµ(lim sup

t!1
Z [n]
t = 1) = 1 (5.29)

on account of the term e⇤
[n]t, the remaining terms on the righ-hand side of (5.28) grow subexpo-

nentially. If ⇤[n] = 0 and (5.26) holds then, although there is subexponential growth of (�j
t,�

d
t ),

t � 0,
lim sup
t!1

1(�d
s

�1)�
d
s + lim sup

s!1
1(�d

s

�1)�
j
s = 1

nonetheless. This again informs us that (5.29) holds. Finally if ⇤[n] < 0 but (5.26) fails, then
there exists an i 2 [n] such that

R1
1 (x log x)`(i, dx) = 1 or

R1
1 (x log x)n(i, dx) = 1. Suppose it

is the latter. Recalling that ⌘ is ergodic, another straightforward Borel-Cantelli Lemma tells us
that

lim sup
s!1

s�11(⌘
s�=i,�d

s

�1) log�
j
s > c,

for all c > 0, which implies superexponential growth. In turn, (5.29) holds. The proof of the
theorem is now complete as soon as we recall that (5.29) implies that Pµ and ePµ are singular

and hence ePµ(limt!1 Y [n]
t = 0) = 1.

5.6 Local and global extinction

Lemma 8. For any finite A ⇢ N and any µ,

Pµ

✓

lim sup
t!1

h1A, Xti 2 {0,1}
◆

= 1.

Proof. It is enough to prove the lemma for A = {i}. The branching property implies that X1(i) is
an infinitely divisible random variable and consequently, its distribution has unbounded support
on R+, (see Chapter 2 in Sato [84]). Therefore, for all ✏ > 0,

P✏�
i

(X1(i) > K) > 0. (5.30)

Let us denote by ⌦0 the event lim supt�1Xt(i) > 0 and, for each ✏ > 0, denote by ⌦✏ the event
lim supt�1Xt(i) > ✏. Define the sequence of stopping times as follows. On ⌦✏, let T0 = inf{t >
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0 : Xt(i) � ✏} and Tn+1 = inf{t > Tn + 1 : Xt(i) � ✏} and for ⌦c
✏ extend Tn in a way such

that the Tn’s are bounded stopping times. Fix K > 0 and let An = ⌦✏ \ {XT
n

+1(i)  K} and
⌦1 = {! : ! 2 An i.o.}. Thus by (5.30) and the strong Markov property,

1
X

n=1

Pµ(An | XT1 , · · ·XT
n

) = 1 Pµ-a.s. on ⌦✏.

By the extended Borel-Cantelli lemma [see Corollary 5.29 in [21]], Pµ-a.s. ⌦✏ ⇢ ⌦1. Observe that
⌦✏ " ⌦0 as ✏ # 0. Therefore, for K arbitrary large, lim supt!1Xt(i) � K, Pµ-a.s. on ⌦0, and the
claim is true.

Recall that we say that X under Pµ exhibits local extinction for the finite set A ⇢ N if

Pµ

✓

lim
t"1

h1A, Xti = 0

◆

= 1.

Now, we have all the preliminary results needed for the Proof of Theorem 7

Proof of Theorem 7. (i) Let 0  ⇤. By Propositions 15 and 16, there exists x a positive right
subinvariant ⇤-vector. Proposition 17 yields that Wt = e⇤thx,Xi is a non-negative supermartin-
gale. By Doob’s convergence theorem, there is a non-negative finite random variable W such
that a.s.

Wt �! W as t ! 1.

When ⇤ > 0, since e⇤t ! 1 as t ! 1, and x(i) > 0 for any i 2 N, we have that Pµ-a.s.
limt!1Xt(i) = 0, and hence, Pµ-a.s., limt!1h1A, Xti = 0. When ⇤ = 0, Lemma 8 yields the
claim.

(ii) Now suppose that ⇤ < 0, using Lemma 7 there exits n � i such that ⇤[n] < 0. Next,
consider the conclusion of Theorem 10. Let 1 be n-dimensional vector whose entries are all 1
and let 0 be similarly defined. Note that eL[n]1 = 0 and hence, together with irreducibility of
⇡|[n], it follows that (⌘,Px

· ) is ergodic. As a consequence, of the spine decomposition (5.23), we

now see that, eP[n]
µ -almost surely, mass is deposited by ⌘ infinitely often in state i. Thanks to the

assumption (5.6) and Theorem 11, we have that eP[n]
µ ⌧ Pµ and hence there is no local extinction.

Next, recall that for a finite set of types A ⇢ N

vA(i) = � logP�
i

(LA).

It is a trivial consequence of the fact that E ✓ LA that vA(i)  w(i), i 2 N. By independence, it
follows that, for all finite µ 2 M(N),

Pµ(LA) = exp {�hvA, µi} , t � 0.

By conditioning the event LA on Ft, we obtain that for all t � 0,

Eµ(e
�hv

A

,X
t

i) = exp{�hvA, µi}. (5.31)

Now recalling (5.4), vA must satisfy the semigroup evolution, see

 (i, vA(i)) + �(i, vA) = 0.
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Formally speaking, to pursue the reasoning, we need vA to be a bounded vector, but this is not
necessarily the case. To get round this problem, we can define vKA (i) = K ^ vA(i), i 2 N, and
observe by monotonicity and continuity that VtvKA (i) " vA(i), i 2 N, t � 0, as K " 1. When
seen in the context of (5.4) (also using continuity and monotonicity), the desired reasoning can
be applied.

Proof of Lemma 4. The proof that w solves (5.5) is the same as the proof of (5.31).

5.7 Examples

This section is devoted to some examples, where we find explicitly the global and local extinction
probabilities. First we start with a remark of Kingman (see [61]).

Proposition 18. Let Pij(t) be the transition probabilities of an irreducible continuous-time
Markov chain on the countable state space E. Then there exists  � 0 such that for each i, j 2 E,

t�1 log(Pij(t)) ! �.

Moreover, for each i 2 E and t > 0
Pii(t)  e�t

and there exist finite constants Kij such that

Pij(t)  Kije
�t, for all i, j 2 E, t > 0.

If Q = (qij) is the associated Q-matrix, then

  � sup{qii : i 2 E}.

Observe that if the Markov chain is recurrent then  = 0. When it is transient,  could
be greater than 0. In this case, we will say that the chain is geometrically transient with  its
decay parameter. Kingman provided a random walk example where  > 0. The example is the
following. Let ⇠ a random walk with Q-matrix given by

qi,i=1 = p, qii = �1, qi,i�1 = q = 1� p,

where p 2 (0, 1). Then, ⇠ is an irreducible process with decay parameter  = 1 � 2
p
pq. In

particular, the process is geometrically transient except when p = 1/2.

Now, we can provide some examples.

Example 11. When  and � don’t depend on the underlying type, it is easy to show that
(h1, Xti, t � 0) is a CBP with branching mechanism given by

e (z) =

✓

b� �d� �

Z 1

0
un(du)

◆

z + cz2 +

Z 1

0
(e�zu � 1 + zu)(`+ �n)(du), z � 0.

In this case, the global extinction probability is given by

P�
i

(E) = e�
e�(0),
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where e�(0) = sup{z  0 : e (z) = 0}.
Define a = �d + �

R1
0 un(du), then, our process X has global extinction a.s. if and only if

b� a � 0. On the other hand, let (⇠,Pi) be an irreducible chain with Q-matrix given by

Qij = a(⇡(j)� �i=j).

Then, by equation (5.16), the linear semigroup of X is

Mtf(i) = Ei



f(⇠t) exp

⇢

Z t

0
(a� b)(⇠s)ds

��

.

In particular,

Hij(�) =

Z 1

0
e(�+a�b)tPij(t)dt.

If (⇠,Pi) is geometrically transient, then  2 (0, a) and � < b � a +  implies Hij(�) < 1. In
particular if a �  < b, the spectral radius of M satisfies ⇤ > 0 and, by Theorem 7, X presents
local extinction a.s.
In summary, if a�  < b < a then the process presents local extinction a.s. but global extintion
with probability less than one.

Example 12. Define a(i) = �(i)d(i) + �(i)
R1
0 un(i, du). Suppose that there exists a constant

c > 0 such that b(i)� a(i) � c > 0. Let (⇠,Pi) the associated irreducible chain in Lemma 6. Let
0  � < c. By equation (5.16) we have

Hij(�) =

Z 1

0
e�tEi



�j(⇠t) exp

⇢

Z t

0
(a� b)(⇠s)ds

��

dt 
Z 1

0
e(��c)tdt < 1.

Then, ⇤ > 0 and the process presents local extinction a.s.

Example 13. Suppose now that there exists a constant c > 0 such that b(i) � a(i)  �c < 0
and (⇠,Pi) is a recurrent Markov chain. Then, for �c < � < 0,

Hij(�) =

Z 1

0
e�tEi



�j(⇠t) exp

⇢

Z t

0
(a� b)(⇠s)ds

��

dt �
Z 1

0
Pij(t)dt = 1.

It follows that ⇤ < 0. If

sup
i2N

Z 1

1
(x log x)`(i, dx) + sup

i2N

Z 1

1
(x log x)n(i, dx) < 1,

then the process presents local extinction in each bounded subset of N with probability less than
one.
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Appendix A

A.1 Lemmas of Chapter 1

The following theory and lemmas will be useful in the proof of Theorem 1.
Given a di↵erentiable function f , we write

�xf(a) = f(x+ a)� f(a) and Dxf(a) = �xf(a)� f 0(a)x.

Let (am, n � 1) a sequence of positive real numbers such that a0 = 1, am # 0 and

Z a
m�1

a
m

zdz = m

for each m 2 N. Let x 7! m(x) be a non-negative continuous function supported on (am, am�1)
such that m(x)  2(mx)�1 for every x > 0, and

R a
m�1

a
m

m(x)dx = 1. For m � 0, let us define

fm(z) =

Z |z|

0
dy

Z y

0
m(x)dx, z 2 R.

Observe that fm is a non-decreasing sequence of functions that converges to the function x 7! |x|
as m " 1. For all a, x 2 R, we have |f 0

m(a)|  1 and |fm(a + x) � fm(a)|  |x|. Moreover, by
Taylor’s expansion, we get

�

�

�

Dxfm(a)
�

�

�

 x2
Z 1

0
m(|a+ xu|)(1� u)du  2

m
x2
Z 1

0

(1� u)

|a+ xu|du.

The proof of the following lemma can be found in [71] (Lemma 3.1)

Lemma 9. Suppose that x 7! x+ h(x, v) is non-decreasing for v 2 V. Then, for any x 6= y 2 R,

Dl(x,y,v)fm(x� y)  2

m

Z 1

0

l(x, y, u)2(1� u)

|x� y = tl(x, y, v)|ddu  2l(x, y, v)2

m|x� y| ,

where l(x, y, v) = h(x, v)� h(y, v).

Pathwise uniqueness.

Suppose that the parameters (b, (�k)k2K , (hi)i2I , (gj)j2J) are admissible and satisfies conditions
a), b) and c).
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Lemma 10. The pathwise uniqueness holds for the positive solutions of

Z(n)
t = Z0 +

Z t

0
b(Z(n)

s ^ n)ds+
X

k2K

Z t

0
�k(Z

(n)
s ^ n)dB(k)

s

+
X

i2I

Z t

0

Z

W
i

�

gi(Z
(n)
s� ^ n, ui) ^ n

�

Mi(ds, dui)

+
X

j2J

Z t

0

Z

V
j

�

hj(Z
(n)
s� ^ n, vj) ^ n

�

eNj(ds, dvj),

(A.1)

for every n 2 N.

Proof. We consider Zt and Z 0
t two solutions of (A.1) and let Yt = Zt �Z 0

t. Therefore, Yt satisfies
the SDE

Yt =Y0 +

Z t

0

⇣

b(Zs ^ n)� b(Z 0
s ^ n)

⌘

ds+
X

k2K

Z t

0

⇣

�k(Zs ^ n)� �k(Z
0
s ^ n)

⌘

dB(k)
s

+
X

i2I

Z t

0

Z

W
i

eg(n)i (Zs�, Z
0
s�, ui)Mi(ds, dui) +

X

j2J

Z t

0

Z

V
j

eh(n)j (Zs�, Z
0
s�, vj) ^ n

⌘

eNj(ds, dvj),

with

eg(n)i (x, y, ui) = gi(x, ui) ^ n� gi(y ^ n, ui) ^ n,

eh(n)j (x, y, vj) = hj(x ^ n, vj) ^ n� hj(y ^ n, vj) ^ n.

By applying Itô’s formula to the functions defined at the beginning of this section, we deduce

fm(Yt) = fm(Y0) +Mt +

Z t

0
f 0
m(Ys)

⇣

b(Zs ^ n)� b(Z 0
s ^ n)

⌘

ds

+
X

k2K

1

2

Z t

0
f 00
m(Ys)

⇣

�k(Zs ^ n)� �k(Z
0
s ^ n)

⌘2
ds

+
X

i2I

Z t

0

Z

W
i

⇣

fm(Ys� + eg(n)i (Zs�, Z
0
s�, ui))� fm(Ys�)

⌘

µi(dui)ds

+
X

j2J

Z t

0

Z

V
j

⇣

fm(Ys� + eh(n)i (Zs�, Z
0
s�, ui))� fm(Ys�)

� f 0
m(Ys�)eh

(n)
i (Zs�, Z

0
s�, ui)

⌘

⌫j(dvj)ds,

(A.2)

where Mt is a martingale term. Using that b = b1 � b2 with b2 a non-decreasing function and
condition (b), we have for

|f 0
m(x� y)||b(x ^ n)� b(y ^ n)|  |b1(x ^ n)� b1(y ^ n)|  rn(|x� y| ^ n), (A.3)

and

X

i2I

Z t

0

Z

W
i

�eg(n)
i

(x,y,u
i

)
fm(x� y)µi(dui) 

X

i2I

Z

W
i

|eg(n)i (x, y, ui)|µi(dui)  rn(|x� y| ^ n).

(A.4)
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Since x 7! x+ hj(x^ n, v)^ n is non decreasing for all j 2 J , by Lemma 9 and condition (c), we
have

X

j2J

Z t

0

Z

V
j

Deh(n)
j

(x,y,v
j

)
fm(x� y)⌫j(dvj) 

X

j2J

Z t

0

Z

V
j

2lj(x, y, v)2

m|x� y| ⌫j(dvj) 
2Bn

m
, (A.5)

and

X

k2K
f 00
m(x� y)(�k(x)� �k(y))

2 
X

k2K
m(x� y)|�k(x)2 � �k(y)

2|  2Bn

m
, (A.6)

Next, we take expectation in equation (A.2), by (A.3, A.4, A.5 and A.6) we obtain

E [fm(Yt)] E [fm(Y0)] + 2

Z t

0
E [rn(|Ys| ^ n)] ds+ 4m�1Bn.

Since fm(z) ! |z| increasingly as m ! 1, we have

E [|Yt|]  E [|Y0|] + 2

Z t

0
E [rn(|Ys| ^ n)] ds.

Finally from Gronwall’s inequality, we can deduce that pathwise uniqueness holds for the positive
solutions of (A.1) for every n 2 N.

Growth spaces

Suppose that the parameters (b, (�k)k2K , (hi)i2I , (gj)j2J) are admissible and satisfies conditions
a), b) and c). Additionally suppose that µi(Ui \Wi) < 1, for all i 2 I. Our next result shows
that if there is a unique strong solution to (A.1), we can replace the spaces (Wi)i2I by (Ui)i2I
on the SDE and the unique strong solution still exists for the extended SDE. Its proof follows
from similar arguments as those used in Proposition 2.2 in [45] but we provide its proof for sake
of completeness.

Lemma 11. If there is a unique strong solution to (A.1) and µi(Ui \Wi) < 1 for all i 2 I, then
there is also a strong solution to

Z(n)
t = Z0 +

Z t

0
b(Z(n)

s ^ n)ds+
X

k2K

Z t

0
�k(Z

(n)
s ^ n)dB(k)

s

+
X

i2I

Z t

0

Z

U
i

�

gi(Z
(n)
s� ^ n, ui) ^ n

�

Mi(ds, dui)

+
X

j2J

Z t

0

Z

V
j

�

hj(Z
(n)
s� ^ n, vj) ^ n

�

eNj(ds, dvj).

(A.7)

Proof. It is enough to prove the result when 0 <
P

i2I
µi(Ui \Wi) < 1. Suppose that (A.1) has a

strong solution (X0(t), t � 0). Let (Sr)r�1 be the set of jump times of the Poisson process

t 7!
X

i2I

Z t

0

Z

U
i

\W
i

Mi(ds, dui).
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Note that Sr ! 1 as r ! 1. By induction, we define the following process: for 0  t < S1, let
Yt = X0(t). Suppose that Yt has been defined for 0  t < Sr and let

A = YS
r

� +
X

i2I

Z

{S
r

}

Z

U
i

\W
i

�

gi(YS
r

� ^ n, ui) ^ n
�

Mi(ds, dui). (A.8)

By our assumptions, there is also a strong solution (Xr(t), t � 0) to

Xr(t) = A+

Z t

0
b(Xr(s) ^ n)ds+

X

k2K

Z t

0
�k(Xr(s) ^ n)dB(k)

S
r

+s

+
X

i2I

Z t

0

Z

W
i

�

gi(Xr(s�) ^ n, ui) ^ n
�

Mi(Sr + ds, dui)

+
X

j2J

Z t

0

Z

V
j

�

hj(Xr(s�) ^ n, vj) ^ n
�

eNj(Sr + ds, dvj).

(A.9)

For Sr  t < Sr+1 we set Yt = Xr(t� Sr). Then, Yt is a strong solution to (A.7). On the other
hand, if (Yt, t � 0) is a solution of (A.7), then it satisfies (A.1) for 0  t < S1 and the process
(YS

k

+t, t � 0) satisfies (A.9) for 0  t < Sr+1 � Sr with A given by (A.8). Then, the uniqueness
for (A.7) follows from the uniqueness for (A.1) and (A.9).

Tight sequence

Recall that for each n,m 2 N, the process Z(n,m)
t was defined as the unique non-negative strong

solution to

Z(n,m)
t = Z0 +

Z t

0
b(Z(n,m)

s ^ n)ds+
X

k2K

Z t

0
�k(Z

(n,m)
s ^ n)dB(k)

s

+
X

i2I

Z t

0

Z

Wm

i

�

gi(Z
(n,m)
s� ^ n, ui) ^ n

�

Mi(ds, dui)

+
X

j2J

Z t

0

Z

V m

j

�

hj(Z
(n,m)
s� ^ n, vj) ^ n

�

eNj(ds, dvj).

(A.10)

Following the proof of Lemma 4.3 in [45] we will prove that for each n 2 N, the sequence
{Zn,m

t : t � 0} is tight in D([0,1),R+).

Lemma 12. For each n 2 N the sequence
n

Z(n,m)
t : t � 0

o

given by (A.10) is tight in the

Skorokhod space D([0,1),R+).

Proof. First observe that since b is a continuous function in [0, n] and by hypothesis b) and c),
there exist a constant Kn > 0 such that for each x  n

b(x) +
X

i2I

Z

W
i

|gi(x, ui) ^ n|µi(dui) +
X

i2I

Z

W
i

|gi(x, ui) ^ n|2µi(dui)

+
X

k2K
�2k(x) +

X

j2J

Z

V
j

|hj(x, vj) ^ n|2⌫j(dvj)  Kn.
(A.11)
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Note that if Cn is the maximum of b in [0, n], then Kn = Cn + nBn + (n+ 1)rn(n). By applying
Doob’s inequality to the martingale terms in (A.10), we have

E


sup
st

(Z(n,m)
s )2

�

(2 + 2|I|+ |J |+ |K|)2
 

(Z0)
2 + E

"

✓

Z t

0
b(Z(n,m)

s ^ n)ds

◆2
#

+
X

i2I
E
"

✓

Z t

0

Z

W
i

|g(Z(n,m)
s ^ n, ui) ^ n|µi(dui)

◆2
#

+ 4

 

X

k2K

Z t

0
�2k(Z

(n,m)
s ^ n)ds+

X

i2I

Z t

0

Z

W
i

|gi(Z(n,m)
s ^ n, ui) ^ n|2µi(dui)

+
X

j2J

Z t

0

Z

V
j

|hj(Z(n,m)
s ^ n, vj) ^ n|2⌫j(duj)

1

A

1

A .

By (A.11), we obtain that

t 7! sup
m�1

E


sup
st

(Z(n,m)
s )2

�

 (2 + 2|I|+ |J |+ |K|)2
�

(Z0)
2 + (1 + |I|)K2

nt
2 + 4Knt

�

is a function locally bounded. Then for every fixed t � 0 the sequence of random variables Z(n,m)
t

is tight. In a similar way, if {⌧m : m � 1} is a sequence of stopping times bounded above by
T � 0, we have

E
h

|Z(n,m)
⌧
m

+t � Z(n,m)
⌧
m

|2
i

 (2 + 2|I|+ |J |+ |K|)2
�

(1 + |I|)K2
nt

2 + 4Knt
�

Consequently, as t ! 0

sup
m�1

E
h

|Z(n,m)
⌧
m

+t � Z(n,m)
⌧
m

|2
i

! 0.

By Aldous’ criterion [4], for all n 2 N,
n

Z(n,m)
t : t � 0

o

is tight in the Skorokhod spaceD([0,1),R+).

Martingale problem

For each n,m 2 N, x � 0 and f 2 C2(R) we define

L(n)f(x) =b(x ^ n)f 0(x) +
1

2
f 00(x)

X

k2K
�2k(x ^ n) +

X

i2I

Z

W
i

⇣

f(x+ gi(x ^ n, ui) ^ n)� f(x)
⌘

µi(dui)

+
X

j2J

Z

V
j

⇣

f(x+ hj(x ^ n, vj) ^ n)� f(x)� f 0(x)(hj(x ^ n, vj) ^ n)
⌘

⌫j(dvj).

(A.12)

and

L(n,m)f(x) =f 0(x)b(x ^ n) +
1

2
f 00(x)

X

k2K
�2k(x ^ n) +

X

i2I

Z

Wm

i

⇣

f(x+ gi(x ^ n, ui) ^ n)� f(x)
⌘

µi(dui)

+
X

j2J

Z

V m

j

⇣

f(x+ hj(x ^ n, vj) ^ n)� f(x)� f 0(x)(hj(x ^ n, vj) ^ n)
⌘

⌫j(dvj).

(A.13)
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In this section we prove the existence of the weak solution of a SDE by considering the
corresponding martingale problem.

Lemma 13. A cádlág process {Z(n)
t : t � 0} is a weak solution of (A.1) if and only if for every

f 2 C2(R),

f(Z(n)
t )� f(Z(n)

0 )�
Z t

0
L(n)f(Z(n)

s )ds (A.14)

is a locally bounded martingale. And a cádlág process {Z(n,m)
t : t � 0} is a weak solution of

(A.10) if and only if for every f 2 C2(R),

f(Z(n,m)
t )� f(Z(n,m)

0 )�
Z t

0
L(n,m)f(Z(n,m)

s )ds (A.15)

is a locally bounded martingale.

Proof. We will just prove the first statement. The second one is analogous. If {Zt : t � 0}
is a solution of (A.1), by Itô’s formula we can see that (A.14) is a locally bounded martingale.
Conversely, suppose that (A.14) is is a locally bounded martingale for every f 2 C2(R). By a
stopping time argument, we have

Zt = Z0 +

Z t

0
b(Zt ^ n)ds+

X

i2I

Z t

0

Z

W
i

(gi(Zs� ^ n, ui) ^ n)µi(dui)ds+Mt (A.16)

for a square-integrable martingale {Mt : t � 0}. Let N(ds, dz) be the optional random measure
on [0,1)⇥ R defines by

N(ds, dz) =
X

s>0

1{�Z
s

6=0}�(s,�Z
s

)(ds, dz),

with �Zs = Zs�Zs�. Denote by N̂ its predictable compensator and Ñ the compensated random
variable. Then

Zt = Z0 +

Z t

0
b(Zt ^ n)ds+

X

i2I

Z t

0

Z

W
i

(gi(Zs� ^ n, ui) ^ n)µi(dui)ds+M c
t +Md

t (A.17)

where {M c
t : t � 0} is a continuous martingale and

Md
t =

Z t

0

Z

R
zÑ(ds, dz)

is a purely discontinuous martingale. (See [29] p. 276). Let denote by Ct the quadratic variation
process of M c

t . By Itô’s formula in the previous equation, we have

f(Zt) =f(Z0) +

Z t

0
f 0(Zs)b(Zt ^ n)ds+

X

i2I

Z t

0

Z

W
i

f 0(Zs)(gi(Zs� ^ n, ui) ^ n)µi(dui)ds

+
1

2

Z t

0
f 00(x)dCs +

Z t

0

Z

R
Dzf(Zs�)N̂(ds, dz) + martingale

(A.18)
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The uniqueness of the canonical decomposition of semi-martingales, equations (A.14) and (A.18)
implies dCs = �

k2K
2

k
(Zs ^ n)ds and

Z t

0

Z

R
F (s, z)N̂(ds, dz) =

X

i2I

Z t

0

Z

W
i

F (s, gi(Zs� ^ n, ui) ^ n), ui)µi(dui)ds

+
X

j2J

Z t

0

Z

V
j

F (s, hj(Zs� ^ n, vj) ^ n), vj)⌫j(dvj)ds

for any non-negative Borel function F on R+ ⇥ R. Then we obtain A.1 by applying martingale
representation theorems to (A.17). (See [57], Section II.7)

Weak solutions

By lemma12,
n

Z(n,m)
t : t � 0

o

is tight in the Skorokhod space D([0,1),R+). Then, there exists

a subsequence
n

Z(n,m
k

)
t : t � 0

o

that converges to some process {Z(n)
t : t � 0} in the Skorokhod

sense. By the Skorokhod representation theorem, we may assume those processes defined in

the same probability space and
n

Z(n,m
k

)
t : t � 0

o

converges to {Z(n)
t : t � 0} almost surely in

D([0,1),R). Let D(Z(n)) =
n

t > 0 : P
⇣

Z(n)
t� = Z(n)

t

⌘

= 1
o

. Then, [0,1) \D(Z(n)) is at most

numerable and limk!1 Z(n,m
k

)
t = Z(n)

t almost surely for every t 2 D(Zn). (see [43] p. 131).

Therefore, in order to prove that the weak limit point {Z(n)
t ; t � 0} is a weak solution of (A.1) it

is enough to prove

Lemma 14. If Zm ! Z as m ! 1, then L(n,m)f(Zm) ! L(n)f(Z) as m ! 1, for every

f 2 C2
b (R+). In particular, if {Z(n)

t : t � 0} is the weak limit point of
n

Z(n,m
k

)
t : t � 0

o

, then

{Z(n)
t : t � 0} is a weak solution of (A.1). (or (1.5)).

Proof. Let M > 0 a constant such that |Z|, |Zm|  M , for all m 2 N. By condition b) and c).
We have that for each k, the function

x 7!
X

i2i

Z

W
i

\Wk

i

(gi(x ^ n, ui) ^ n)µi(dui) +
X

j2J

Z

V
j

\V k

j

(hj(x ^ n, vj) ^ n)2⌫j(dvj)

is continuous. By Dini’s theorem, we know that, as k ! 1,

✏k := sup
|x|M

Z

W
i

\Wk

i

(gi(x ^ n, ui) ^ n)2µi(dui) +
X

j2J

Z

V
j

\V k

j

(hj(x ^ n, vj) ^ n)⌫j(dvj) ! 0.

Just in this proof and in order to simplify the notation, for a f 2 C(R), we will denote

kfk := max{|f(x)| : |x|  n+M}.

By continuity, kfk < 1. Observe that this norm depends on n and M but it doesn’t a↵ect the
result of the proof.
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For m � k and j 2 J , by applying the Mean Value Theorem several times we have
�

�

�

�

�

Z

V
j

Dh(Z^n,v
j

)^nf(Z)⌫j(dvj) �
Z

V m

j

Dh(Z
m

^n,v
j

)^nf(Zm)⌫j(dvj)

�

�

�

�

�

kf 00k✏k +
Z

V k

j

|Dh(Z^n,v
j

)^nf(Z)�Dh(Z
m

^n,v
j

)^nf(Zm)|⌫j(dvj)

kf 00k✏k +
Z

V k

j

|f(Z)� f(Zm)|⌫j(dvj)

+

Z

V k

j

|f(Z + h(Z ^ n, vj) ^ n)� f(Zm + h(Zm ^ n, vj) ^ n)|⌫j(dvj)

+

Z

V k

j

|f 0(Z)(h(Z ^ n, vj) ^ n))� f 0(Zm)(h(Zm ^ n, vj) ^ n)|⌫j(dvj)

kf 00k✏k +
Z

V k

j

|f(Z)� f(Zm)|⌫j(dvj)

+ kf 0k
Z

V k

j

|Z + (h(Z ^ n, vj) ^ n)� Zm � (h(Zm ^ n, vj) ^ n)|⌫j(dvj)

+ kf 0k
Z

V k

j

|(h(Z ^ n, vj) ^ n))� (h(Zm ^ n, vj) ^ n)|⌫j(dvj)

+

Z

V k

j

|f 0(Z)� f 0(Zm)|h(Z ^ n, vj) ^ n|⌫j(dvj).

Then, by Hölder inequality we have
�

�

�

�

�

Z

V
j

Dh(Z^n,v
j

)^nf(Z)⌫j(dvj) �
Z

V m

j

Dh(Z
m

^n,v
j

)^nf(Zm)⌫j(dvj)

�

�

�

�

�

kf 00k✏k + |f(Z)� f(Zm)|⌫j(V k
j ) + kf 0k|Z � Zm|⌫j(V k

j )

+ 2kf 0k
Z

V k

j

|(h(Z ^ n, vj) ^ n)� (h(Zm ^ n, vj) ^ n)|⌫j(dvj)

+ |f 0(Z)� f 0(Zm)|
 

Z

V
j

|h(Z ^ n, vj) ^ n|2⌫j(dvj)⌫j(V k
j )

!1/2

.

By letting m ! 1 and m ! 1, and using hypothesis c), we can prove

lim
m!1

Z

V m

j

Dh
j

(Z
m

^n,v
j

)^nf(Zm)⌫j(dvj) =

Z

V
j

Dh
j

(Z^n,v
j

)^nf(Z)⌫j(dvj), for j 2 J. (A.19)

In a similar way, for each m � k and i 2 J
�

�

�

�

Z

W
i

�g
i

(Z^n,u
i

)^nf(Z)µi(dui) �
Z

Wm

i

�g
i

(Z
m

^n,u
i

)^nf(Zm)µi(dui)

�

�

�

�

�

2kf 0k✏k + kf 0k
Z

W
i

|(gi(Z ^ n, ui) ^ n)� (gi(Zm ^ n, ui) ^ n)|µi(dui)

+ µi(W
k
i )(kf 0k|Zm � Z|+ |f(Zm)� f(z)|).

94



Now, by hypothesis b), when m ! 1 and k ! 1, we have

lim
m!1

Z

Wm

i

�g
i

(Z
m

^n,u
i

)^nf(Zm)µi(dui) =

Z

W
i

�g
i

(Z^n,u
i

)^nf(Z)µi(dui), for i 2 I. (A.20)

Therefore, by (A.19) and (A.20) it follows that L(n,m)f(Zm) ! L(n)f(Z) as m ! 1.

Finally, if {Z(n,m)
t : t � 0} is a weak solution of (A.10). We know, by Lemma 13, that (A.15)

is a locally bounded martingale. Since L(n,m)f(Zm) ! L(n)f(Z) as m ! 1, by Dominate
Convergence Theorem, (A.14) is a locally bounded martingale. By applying again Lemma 13,

we obtain that {Z(n)
t : t � 0} is a weak solution of (A.1).

Backward di↵erential equation

The following result shows the a.s. existence and uniqueness of a solution of (1.12) and it is
needed for the proof of Proposition 1.

Lemma 15. Suppose that
R

[1,1) xµ(dx) < 1 and let K = (Kt � 0) be a Lévy process. Then for

every � � 0, vt : s 2 [0, t] 7! vt(s,�,K) is the a.s. unique solution of the backward di↵erential
equation,

@

@s
vt(s,�,K) = eKs 0(vt(s,�,K)e��s), vt(t,�,K) = �, (A.21)

where

 0(✓) =  (✓)� ✓ 0(0) = �2✓2 +

Z

(0,1)

�

e�✓x � 1 + ✓x
�

µ(dx), ✓ � 0.

Proof. Our proof will use a convergence argument for Lévy processes. Let K be a Lévy process
with characteristic (↵,�,⇡) where ↵ 2 R is the drift term, � � 0 is the Gaussian part and ⇡ is
the so-called Lévy measure satisfying

Z

R\{0}
(1 ^ z2)⇡(dz) < 1.

From the Lévy-Itô decomposition (see for instance [64]), the process K can be decomposed as the
sum of three independent Lévy processes X(1) a Brownian motion with drift, X(2) a compound
Poisson process and X(3) a square-integrable martingale with an a.s. countable number of jumps
on each finite time interval with magnitude less than unity.

Let B✏ = (�1,�✏)[ (�✏, 1) and M be a Poison random measure with characteristic measure
dt⇡(dx). Observe that the process

X(3,✏)
t =

Z

[0,t]

Z

B
✏

xM(ds, dx)� t

Z

B
✏

x⇡(dx), t � 0

is a martingale. According to Theorem 2.10 in [64], for any fixed t � 0, there exists a deterministic
subsequence (✏n)n2N such that (X3,✏

n

s , 0  s  t) converges uniformly to (X3
s , 0  s  t) with

probability one. We now define

K(n)
s = X(1)

s +X(2)
s +X(3,✏

n

)
s , s  t.
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In the sequel, we work on the space e⌦ such that K(n) converges uniformly to K on [0, t].
Note that  0 is locally Lipschitz and K(n) is a piecewise continuous function with a finite number
of discontinuities. Hence from the Cauchy-Lipschitz Theorem, we can define a unique solution
vnt (·,�,K(n)) of the backward di↵erential equation:

@

@s
vnt (s,�,K

(n)) = eK
(n)
s  0(v

n
t (s,�,K

(n))e�K
(n)
s ), vnt (t,�,K

(n)) = �.

In order to prove our result, we show that the sequence (vn(s) := vnt (s,�,K
(n)), s  t)n2N

converges to a unique solution of (A.21) on e⌦. With this purpose in mind, we define

S = sup
s2[0,t], n2N

n

eK
(n)
s , e�K

(n)
s , eKs , e�K

s

o

, (A.22)

which turns out to be finite from the uniform convergence of K(n) to K. Since  0 � 0, we
necessarily have that vn is increasing and moreover for every n 2 N,

vn(s)  � for s  t. (A.23)

On the other hand, since  0 is a convex and increasing, we deduce that for any 0  ⇣  ⌘  �S,
the following inequality holds

0   0(⌘)�  0(⇣)

⌘ � ⇣
  0

0(⌘)   0
0(�S) =: C. (A.24)

For simplicity, we denote for all v � 0,

 n(s, v) = eK
(n)
s  0(ve

�K
(n)
s ) and  1(s, v) = eKs 0(ve

�K
s).

We then observe that for any 0  s  t and n,m 2 N, we get

|vn(s)� vm(s)| =
�

�

�

�

Z t

s
 n(u, vn(u))du�

Z t

s
 m(u, vm(u))du

�

�

�

�


Z t

s
(Rn(u) +Rm(u))du+

Z t

s
| 1(u, vn(u))�  1(u, vm(u))|du,

where for any u 2 [0, t],

Rn(u) :=| n(u, vn(u))�  1(u, vn(u))|

 eK
(n)
u | 0(v

n(u)e�K
(n)
u )�  0(v

n(u)e�K
u)|+  0(v

n(u)e�K
u)|eK

(n)
u � eKu |.

Next, using (A.22), (A.23) and (A.24), we deduce

Rn(u)  SC�|e�K
(n)
u � e�K

u |+  0(S�)|eK
(n)
u � eKu |

 (SC�+ S 0(S�)) sup
u2[0,t]

n

|eK
(n)
u � eKu |, |e�K

(n)
u � e�K

u |
o

=: sn.

From similar arguments, we obtain

| 1(u, vn(u))�  1(u, vm(u))|  C|vn(u)� vm(u)|.
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Therefore,

|vn(s)� vm(s)|  Rn,m(s) + C

Z t

s
|vn(u)� vm(u)|du,

where

Rn,m(s) =

Z t

s
(Rn(u) +Rm(u))du.

Gronwall’s lemma yields that for all 0  s  t,

|vn(s)� vm(s)|  Rn,m(s) + C

Z t

s
Rn,m(u)eC(u�s)du.

Now, recalling that Rn(u)  sn and Rn,m(u)  (sn + sm)t, we get that for every N 2 N,

sup
n,m�N,s2[0,t]

|vn(s)� vm(s)|  tet sup
n,m�N

(sn + sm).

Moreover since sn ! 0, we deduce that (vn(s), s  t)n2N is a Cauchy sequence under the uniform
norm on e⌦. In other words, for any ! 2 e⌦ there exists a continuous function v⇤ on [0, t] such
that vn ! v⇤ as n goes to 1. We define the function v : ⌦⇥ [0, t] ! [0,1] as follows

v(s) =

⇢

v⇤(s) if ! 2 e⌦,
0 elsewhere.

The following argument proves that v in e⌦ is solution to (A.21). More precisely, let s 2 [0, t] and
n 2 N, then

�

�

�

�

v(s)�
Z t

s
 1(s, v(s))ds� �

�

�

�

�

|v(s)� vn(s)|+
Z t

s
| n(s, v(s))�  n(s, vn(s))|ds

+

Z t

s
| 1(s, v(s))�  n(s, v(s))|ds

(1 + Ct) sup
s2[0,t]

{|v(s)� vn(s)|}+ tsn.

By letting n ! 1, we obtain our claim. The uniqueness of the solution of (A.21) follows from
Gronwall’s lemma. The proof is now complete.

A.2 Lemmas of Chapter 3

Now, we recall two technical Lemmas whose proof can be found in [9]:

Lemma 16. Assume that F satisfies one of the Assumptions (A1) or (A2). Then there exist
two positive finite constants ⌘ and M such that for all (x, y) in R2

+ and " in [0, ⌘],

�

�

�

F (x)�Ax�p
�

�

�

 Mx�(1+")p,
�

�

�

F (x)� F (y)
�

�

�

 M
�

�

�

x�p � y�p
�

�

�

.
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Lemma 17. Assume that the non-negative sequences (an,q)(n,q)2N2, (a0n,q)(n,q)2N2 and (bn)n2N
satisfy for every (n, q) 2 N2:

an,q  bn  a0n,q,

and that there exist three sequences (a(q))q2N, (c�(q))q2N and (c+(q)q2N such that

lim
n!1

an,q = c�(q)a(q), lim
n!1

a0n,q = c+(q)a(q), and lim
q!1

c�(q) = lim
q!1

c+(q) = 1.

Then there exists a non-negative constant a such that

lim
q!1

a(q) = lim
n!1

bn = a.

A.3 Lemmas of Chapter 4

Lemma 18. Let ⌘ 2 R and p � 0. Then for every t > 0, we have

i) E


⇣

I(⌘)t

⌘�p
�

= e(2p
2�2p⌘)tE



⇣

I(�(⌘�2p))
t

⌘�p
�

,

ii) E


⇣

I(⌘)t

⌘�2p
�

 e(2p
2�2p⌘)tE



⇣

I(�(⌘�2p))
t/2

⌘�p
�

E


⇣

I((⌘�2p))
t/2

⌘�p
�

.

Proof. Using the time reversal property for Brownian motion, we observe that the process (⌘t+
Bt � ⌘(t� s)�Bt�s, 0  s  t) has the same law as (⌘s+Bs, 0  s  t). Then, we deduce that

Z t

0
e2(⌘s+B

s

)ds has the same law as e2(⌘t+B
t

)
Z t

0
e�2(⌘s+B

s

)ds.

Recall that the Esscher transform 3.3 for a Brownian motion is given by

dP(�)

dP

�

�

�

�

F
t

= e�Bt

��

2

2 t, for � 2 R,

And, that under P(�), the process B is a Brownian motion with drift �. Hence, taking � = �2p,
we deduce

E
"

✓

Z t

0
e2(⌘s+B

s

)ds

◆�p
#

= E
"

e�2p(⌘t+B
t

)

✓

Z t

0
e�2(⌘s+B

s

)ds

◆�p
#

= e�2p⌘te2p
2tE(�2p)

"

✓

Z t

0
e�2(⌘s+B

s

)ds

◆�p
#

= e�2p⌘te2p
2tE
"

✓

Z t

0
e�2((⌘�2p)s+B

s

)ds

◆�p
#

,

which implies the first identity, thanks to the symmetry property of Brownian motion.
In order to get the second identity, we observe

Z t

0
e2(⌘s+B

s

)ds =

Z t/2

0
e2(⌘s+B

s

)ds + e⌘t+2B
t/2

Z t/2

0
e2(⌘s+B̃

s

)ds,
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where B̃s = Bs+t/2�Bt/2, s � 0, is a Brownian motion which is independent of (Bu, 0  u  t/2).
Therefore, using part (i), we deduce

E
"

✓

Z t

0
e2(⌘s+B

s

)ds

◆�2p
#

 E
" 

e⌘t+2B
t/2

Z t/2

0
e2(⌘s+B

s

)ds

!�p#

E
" 

Z t/2

0
e2(⌘s+B

s

)ds

!�p#

 e(p
2�⌘p)tE

" 

e⌘t+2B
t/2

Z t/2

0
e2(⌘s+B

s

)ds

!�p#

E


⇣

I(�(⌘�2p))
t/2

⌘�p
�

.

On the other hand from the Esscher transform with � = �2p, we get

E
" 

e⌘t+2B
t/2

Z t/2

0
e2(⌘s+B

s

)ds

!�p#

= e�p⌘tep
2tE(�2p)

" 

Z t/2

0
e2(⌘s+B

s

)ds

!�p#

= e�p⌘tep
2tE
" 

Z t/2

0
e2((⌘�2p)s+B

s

)ds

!�p#

.

Putting all the pieces together, we deduce

E
"

✓

Z t

0
e2(⌘s+B

s

)ds

◆�2p
#

 e(2p
2�⌘2p)tE



⇣

I((⌘�2p))
t/2

⌘�p
�

E


⇣

I(�(⌘�2p))
t/2

⌘�p
�

.

This completes the proof.

A.4 Lemmas of Chapter 5

Lemma 5 is the analogue of a result proved for linear semigroups of MGW processes. Now, we
provide a proof.

Lemma 5. If, for some �, Hij(�) < 1 for a pair i, j, then Hij(�) < 1 for all i, j 2 N. In
particular, the parameter

⇤ij = sup{� � 1 : Hij(�) < 1},

does not depend on i and j. The common value, ⇤ = ⇤ij, is called the spectral radius of M .

Proof. Since M(t) is irreducible, for each i, j 2 N there exists t0 and t1 such that M(t0)ij and
M(t1)ji are positive. By applying the semigroup property, we get that

M(t+ t0)ij � M(t0)ijM(t)jj ,

M(t+ t1)jj � M(t0)ijM(t)jj .

The first inequality implies that
⇤ij  ⇤jj ,

while the second implies
⇤jj  ⇤ij .

Thus we have that ⇤ij = ⇤jj for all i, j 2 N. In a similar way we can prove that ⇤ij = ⇤ii for all
i, j 2 N.
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We provide here a technical lemma pertaining to an extended version of the Feynman-Kac
formula that is used in the main body of Chapter 5. Note that similar formulae have previously
appeared in the literature e.g. in the work of Chen and Song [26].

Lemma 19. Let (⇠t,P) be a Markov chain on a finite state space E with Q matrix Q = (qij)i,j2E.
Let v : E ⇥ R+ ! R be a measurable function and F : E ⇥ E ⇥ R+ ! R be a Borel function
vanishing on the diagonal of E. For i 2 E and t � 0 and f : E ! R, define

h(i, t) := Tt[f ](i) = Ei

2

4f(⇠t)E


Z t

0
v(⇠s, t� s)ds

�

E

2

4

X

st

F (⇠s�, ⇠s, t� s)

3

5

3

5 .

Then Tt is a semigroup and for each (i, t) 2 E ⇥ R+, h satisfies

h(i, t) =Ei [f(⇠t)] + Ei



Z t

0
h(⇠s, t� s)v(⇠s, t� s)ds

�

+ Ei

2

4

Z t

0

X

j2E
h(j, t� s)(eF (⇠

s

,j,t�s) � 1)q⇠
s

,jds

3

5 .

(A.25)

Moreover, if v and F do not depend on t, the semigroup has infinitesimal matrix P given by,

pij = qije
F (i,j) + v(i)1{i=j}. (A.26)

Proof. The Markov property implies the semigroup property. For each 0  s  t define

As,t :=

Z t

s
v(⇠r, t� r)dr

X

s<rt

F (⇠r�, ⇠r, t� r).

Then,

eA0,t � eAt,t =

Z t

0
v(⇠s, t� s)eAs,tds+

X

st

eAs�,t(eF (⇠
s�,⇠

s

,t�s) � 1).

This implies,

h(i, t) = Ei [f(⇠t)] + Ei



Z t

0
f(⇠t)v(⇠s, t� s)eAs,tds

�

+ Ei

2

4

X

st

f(⇠t)e
A

s�,t(eF (⇠
s�,⇠

s

,t�s) � 1)

3

5 .

By the Markov property

h(i, t) = Ei [f(⇠t)] + Ei



Z t

0
v(⇠s, t� s)h(⇠s, t� s)ds

�

+ Ei

2

4

X

st

h(⇠s, t� s)(eF (⇠
s�,⇠

s

,t�s) � 1)

3

5 .

The Lévy formula says that for any non-negative Borel function G on E ⇥E ⇥R+ vanishing on
the diagonal and any i 2 E,

Ei

2

4

X

st

G(⇠s�, ⇠s, s)

3

5 = Ei

2

4

Z t

0

X

y2E
G(⇠s, y, s)q⇠

s

,yds

3

5 .

Therefore, h satisfies (A.25). Using this expression, we can obtain the infinitesimal matrix.
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[33] Duffie, D., Filipović, D., and Schachermayer, W. A�ne processes and applications
in finance. Ann. Appl. Probab. 13, 3 (2003), 984–1053.

[34] Dufresne, D. The distribution of a perpetuity, with applications to risk theory and pension
funding. Scand. Actuar. J., 1-2 (1990), 39–79.

[35] Dynkin, E. B. Superprocesses and partial di↵erential equations. Ann. Probab. 21, 3 (1993),
1185–1262.

[36] Dynkin, E. B. An introduction to branching measure-valued processes, vol. 6 of CRM
Monograph Series. American Mathematical Society, Providence, RI, 1994.

[37] Dynkin, E. B. Di↵usions, superdi↵usions and partial di↵erential equations, vol. 50 of
American Mathematical Society Colloquium Publications. American Mathematical Society,
Providence, RI, 2002.

[38] Dynkin, E. B., and Kuznetsov, S. E. N-measures for branching exit Markov systems
and their applications to di↵erential equations. Probab. Theory Related Fields 130, 1 (2004),
135–150.

[39] Engländer, J. Spatial branching in random environments and with interaction. Advanced
Series on Statistical Science & Applied Probability, 20. World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2015.

[40] Engländer, J., and Kyprianou, A. E. Local extinction versus local exponential growth
for spatial branching processes. Ann. Probab. 32, 1A (2004), 78–99.

[41] Engländer, J., Ren, Y.-X., and Song, R. Weak extinction versus global exponential
growth of total mass for superdi↵usions. Ann. Inst. Henri Poincaré Probab. Stat. 52, 1
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[84] Sato, K.-i. Lévy processes and infinitely divisible distributions, vol. 68 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

[85] Seneta, E. Finite approximations to infinite non-negative matrices. II. Refinements and
applications. Proc. Cambridge Philos. Soc. 64 (1968), 465–470.

[86] Seneta, E. Non-negative matrices and Markov chains. Springer Series in Statistics.
Springer, New York, 2006. Second edition.

[87] Situ, R. Theory of stochastic di↵erential equations with jumps and applications. Mathe-
matical and Analytical Techniques with Applications to Engineering. Springer, New York,
2005.

[88] Watanabe, S. On two dimensional Markov processes with branching property. Trans.
Amer. Math. Soc. 136 (1969), 447–466.

106


	Summary
	Acknowledgements
	Introduction
	Outline

	Branching processes in a Lévy random environment
	Stochastic differential equations
	CBI-processes with competition in a Lévy random environment

	Long term behavior
	CB-processes in a Lévy random environment
	Competition model in a Lévy random environment

	Asymptotic behaviour of exponential functionals of Lévy processes
	Introduction and main results
	Applications
	Competition model in a Lévy random environment
	Diffusion processes in a Lévy random environment

	Proofs of Theorems 2, 3 and 4.

	Stable CBLRE
	Introduction
	Speed of explosion of SCBLRE
	Speed of absorption of SCBLRE
	Conditioned processes
	The process conditioned to be never absorbed
	The process conditioned on eventual absorption


	Multi-type continuous-state branching processes
	Introduction and main results
	MCBPs as a superprocess
	Spectral properties of the moment semigroup
	Spine decomposition
	Martingale convergence
	Local and global extinction
	Examples

	 
	Lemmas of Chapter 1
	Lemmas of Chapter 3
	Lemmas of Chapter 4
	Lemmas of Chapter 5


