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SUMMARY

The main theme of this thesis is the use of the branching property in the analysis of

random structures. The thesis consists of two self-contained parts.

In the first part, we study the long-term behaviour of supercritical superdi↵usions

and prove the strong law of large numbers. The key tools are spine and skeleton

decompositions, and the analysis of the corresponding di↵usions and branching particle

di↵usions.

In the second part, we consider preferential attachment networks and quantify their

vulnerability to targeted attacks. Despite the very involved global topology, locally the

network can be approximated by a multitype branching random walk with two killing

boundaries. Our arguments exploit this connection.
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INTRODUCTION

Branching processes are one of the fundamental objects studied in probability theory.

The reason is twofold: one is the striking beauty of the modern mathematical analysis

of these processes, the other is the fact that they appear naturally in the study of

many real-world phenomena. Examples range from population genetics, over large-

scale networks, to the search for the optimal route between two locations.

Historically, branching processes have been considered as stochastic population

models. At every given time, there is a family of individuals, and each individual

reproduces independently of all others, living or dead. The population is observed

either continuously at every time t � 0, or only at discrete time steps, t 2 N
0

, say.

The reproduction law and lifetime can depend on attributes of the individual that are

usually encoded by a type or spatial location. In the latter case, one may also consider

spatial movement during the lifetime of individuals.

The key characteristic of branching processes is the branching property that states

the following. If the population is split into two subpopulations at a fixed time t, then

the families descending from the members of the two subpopulations form independent

copies of the original process with initial distributions given by the respective config-

urations at time t. Starting from this property, a good understanding of branching

processes has been developed since the 1950s, and many key concepts like criticality

and the asymptotic behaviour of finite-type processes have been well understood for

some time now [83, 93, 7]. Recent advances led to deep structural insights, and made

branching processes once again one of the hot topics in probability theory; see [1] and

the references therein.

In this thesis we aim on the one hand to add to the theoretical understanding of

branching processes and, on the other, to highlight their strength in the analysis of

applied problems.
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Introduction

Motivation and perspective

This thesis consists of two self-contained parts. The first part is concerned with the

asymptotic behaviour of spatial branching processes; the second analyses the vulnera-

bility of large-scale networks to targeted attacks.

Part I. Superprocesses appeared first in work of Watanabe [122] as a high-density

limit of branching particle processes.

A branching particle process Y = (Yt)t�0

describes a cloud of particles that evolve

over time as follows1. Start with a finite number of particles in Rd. Each particle moves

according to the same distribution as a Markov process (⇠ = (⇠t)t�0

: (Px)x2Rd

), and

dies after an exponential time of rate q > 0. Upon its death, the particle gives birth

to a random number of o↵spring according to a distribution (pk)k2N0 . Each o↵spring

independently repeats the behaviour of its parent starting from its location of birth.

The configuration of particles at time t can be expressed as an integer-valued mea-

sure Yt =
P

i �⇠
i

(t), where ⇠i(t) denotes the location of the i-th particle at time t.

Write P⌫ for the distribution of Y when started with initial configuration ⌫, and

hf, µi =
R

f dµ for the integral of a function f with respect to a measure µ. The

branching property yields, for any bounded, nonnegative function f ,

PP
i

�
x

i

⇥

e�hf,Y
t

i⇤ =
Y

i

P�
x

i

⇥

e�hf,Y
t

i⇤ = exp
⇣

�
D

vf (·, t),
X

i

�x
i

E⌘

,

where vf (x, t) = � logP�
x

[e�hf,Y
t

i]. We denote by '(z) =
P1

k=0

pkzk, z 2 [0, 1], the

probability generating function of the o↵spring distribution. The function vf can be

characterised by splitting at the time where the first particle dies to obtain the integral

equation

e�v
f

(x,t) = Px

⇥

e�qte�f(⇠
t

)

⇤

+

Z t

0

Px

⇥

qe�qs'
�

e�v
f

(⇠
s

,t�s)
�⇤

ds. (⇤)

Here the first summand corresponds to the case that the initial particle survives at

least until time t. The second term accounts for the case that the initial particle dies

at time s 2 [0, t] in location ⇠s. With probability pk it then has k o↵spring that initialise

independent copies of Y that run for the remaining t� s time.

If ⇠ is a di↵usion with generator L (c.f. [110, 119]) and if suitable regularity con-

ditions are satisfied, then the unique solution u(x, t) = e�v
f

(x,t) to (⇤) is equal to the

unique, [0, 1]-valued solution to the di↵erential equation

@tu = Lu� q('(u)� u) on Rd ⇥ (0,1), (⇤⇤)
u(·, 0) = e�f on Rd;

1
We describe only a simple case here. Greater generality and more details can be found in Part I

of the thesis.
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Introduction

see, for example, Chapter 3 in [119] or Chapter 5 in [44]. This close relationship be-

tween branching particle processes and partial di↵erential equations (PDEs) facilitates

a spectacular interplay of probabilistic and analytic methods in the analysis of both,

stochastic processes and PDEs. See [10] for a good literature review in the case that ⇠

is a Brownian motion.

For small populations, a branching particle process is a suitable model that tracks

the evolution of types (recorded as a location in the above description). However,

for very large populations the concentration of particles can become extremely high,

and it is preferable to record the proportion of particles of a certain type instead

of absolute numbers. A continuous approximation then leads to a finite measure-

valued Markov process – a superprocess – that captures many of the key properties of

interest. Besides the motion ⇠, the main parameter of a superprocess is the branching

mechanism z 7!  (z) which plays the role of z 7! q('(z)�z) from (⇤⇤) in the continuum

limit [43, 59, 66]. If ⇠ is again a di↵usion with generator L, and if suitable regularity

assumptions hold, then the superprocess X = (Xt)t�0

satisfies

Pµ

⇥

e�hf,X
t

i⇤ = e�hu
f

(·,t),µi

for all initial configurations µ, and nonnegative, bounded, continuous test functions f ,

where (x, t) 7! uf (x, t) is the unique, nonnegative solution to

@tu = Lu�  (u) on Rd ⇥ (0,1),

u(·, 0) = f on Rd.

A simple example for a branching mechanism is given by the quadratic function  (z) =

��z+↵z2 with � 2 R and ↵ > 0. The particles in an approximating branching particle

process reproduce at rate n/c according to an o↵spring distribution with mean 1+c�/n

and variance roughly c↵, where c > 0 is a normalising constant and n ! 1 parametrises

the limiting procedure for the approximation. However, the range of possible branching

mechanisms goes far beyond quadratic functions or polynomials and therefore o↵ers a

probabilistic interpretation for PDEs not covered by (⇤⇤). In particular, superprocesses

with branching mechanism

 (z) = ��z + �zp, where p 2 (1, 2],

� 2 R, � > 0, received a lot of attention in the literature; see [67, 54, 41] and the

references therein.

Further motivation for the study of superprocesses comes from stochastic di↵erential

equations and statistical mechanics, and we refer the reader to Le Gall’s lecture notes

[100] for an excellent overview and some examples.

The first powerful tools for the analysis of superprocesses were developed by Dawson

[34]. Following his pioneering work, a large variety of techniques have been established

3
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by Dynkin, Kuznetsov, Perkins, Le Gall, Donnelly, Kurtz and many others; see [44,

108, 100, 66] for comprehensive overviews, detailed discussions, and further references.

Recent developments are reviewed in Part I of this thesis, and by Engländer in [53] and

the forthcoming book [56].

A fundamental question regarding spatial branching processes concerns how they

distribute mass in space. For a given set of types B ✓ Rd, the goal is to understand how

many particles are located in B, i.e. Yt(B), or what proportion of the population is of

a type in B, i.e. Xt(B) in the above notation. There is a substantial body of literature

analysing the asymptotic behaviour of the total mass assigned to compact sets B. The

results usually state that, for suitable starting measures µ and test functions f ,

hf,Xti ⇠ Pµ

⇥hf,Xti
⇤

W1 as t ! 1,

where W1 is a finite, non-trivial random variable, and at ⇠ bt if at/bt ! 1 in some

sense as t ! 1. (The statement for branching particle processes is analogous where

Xt is replaced by Yt.) However, establishing such a convergence almost surely for

superprocesses proved to be challenging [54]. Our approach to the problem is based on

the skeleton decomposition for supercritical superprocesses that constitutes a pathwise

representation of the superprocess as immigration along a branching particle process.

In Part I of this thesis, we exploit that representation, and carry results for particle

processes into the superprocess setup to establish the first strong law of large numbers

for superprocesses that covers many of the key processes studied in the literature.

This research exposes an intriguing view on the skeleton decomposition that turns

out to be the right approach to the study and understanding of the asymptotic be-

haviour of measure-valued processes. It would be of interest to extend the ideas to

study superprocesses based on discontinuous motions, branching mechanisms satisfy-

ing weaker moment assumptions, and to cover the so-called “non-ergodic case” (see

Section 1.4 and page 28 below for discussions in this direction). Moreover, it is de-

sirable to deepen the understanding of the relationship between the measure-valued

process and its skeleton, for example through a joint spine decomposition.

Part II Complex networks play a fundamental role in our everyday life. The In-

ternet, the power grid, protein interaction networks and social networks are only a

few examples. For the mathematical analysis, members of the network are interpreted

as vertices of a graph and links are modelled as edges. To deal with the presence of

uncertainty in the network formation, the edges are allocated in a probabilistic fashion.

The first and simplest random graph model was formalised and studied by Gilbert

[76], and Erdős and Rényi [63, 64]. It arises by taking n vertices and placing an edge

between each pair of vertices independently with a fixed probability p. The model was

named after Erdős and Rényi who showed that for p = c/n the largest component in

the network undergoes a phase transition at c = 1. In fact, asymptotically as n ! 1,

4
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if c < 1, the graph consists only of small components of order at most log n; if c > 1,

there is a giant component of order n; and if c = 1, then it has a largest component

with of order n2/3 vertices. This striking result caught the attention of scientists from

many fields and may be viewed as the starting point of the field of random graphs.

In the analysis of the Erdős–Rényi random graph (ERRG), a wide range of methods

have been developed [18, 89]. However, already in the earlier papers it was mentioned

that the model is too simplistic to describe real-world networks. The advancement of

modern data analysis in the last 15-20 years allowed scientists to get a more accurate

description of complex structures and led to the formulation of many new random

graph models.

One, by now, well-established feature of most real-world networks is that they are

scale-free, which means that their degree distribution does not depend on the network

size, and the proportion of nodes with degree k has a decay of order k�⌧ for a power law

exponent ⌧ > 1. A scale-free random graph model can be obtained as a variation of the

ERRG where edges are independent but the probability for the edge between vertices

i and j, denoted by pij , varies in i and j. Models of this type are called inhomogeneous

random graphs. For suitable choices of (pij : i, j 2 {1, . . . , n}) the network is scale-free

[20, 29, 85]. Another way to achieve an asymptotic degree distribution with a power

law is to construct the network so that it has a given degree sequence. This approach

leads to the configuration model [2, 106, 85]. One criticism of these models is that

the power law is introduced artificially by choosing the edge probabilities pij or degree

distributions.

In a highly influential publication, Barabási and Albert [9] argued that the main

topological structure of networks like the World Wide Web or social networks can

be explained by the fact that they are built dynamically, and new vertices prefer to

connect to vertices which already have a high degree. Models that obey these principles

are called preferential attachment models. Bollobás and Riordan [22] gave the first

mathematically rigorous formulation, insisting that new vertices come with a fixed

number of edges and that the probability for an edge between the new and an old

vertex are proportional to the degree of the old vertex. Jointly with Spencer and

Tusnády [24], they showed that the resulting model, called the LCD-model, is scale-

free with power law exponent ⌧ = 3. Van der Hofstad [85] demonstrated that any power

law exponent can be achieved when the edge probabilities are chosen proportional to

an a�ne function of the degree.

The analysis of preferential attachment models proved di�cult. Bollobás, Riordan

and co-authors developed highly technical tools to get a grip on the LCD-model [114,

23, 22]; van der Hofstad and co-authors used a wide range of techniques to characterise

the generalised version [85, 38]. However, the understanding of the configuration model

and certain inhomogeneous random graphs advanced much faster to an impressive level

of detail. The key to this deep understanding is a branching process approximation.

The use of branching processes in the analysis of networks is a long success story.

5



Introduction

It is based on two fundamental observations. Firstly, many global features of large-

scale complex networks are determined by the local neighbourhoods of the vertices, and

secondly, the local neighbourhood of a typical vertex is similar to a tree. How strong

these two features are depends crucially on the model. To see the connection between

a network and a branching process, one explores the neighbourhood of a vertex in the

graph step-by-step, and interprets the discovery of a new member of the cluster as the

birth of a new individual in the branching process. The stronger the inhomogeneity in

the graph, the more attributes of individuals have to be recorded to describe a suitable

o↵spring distribution. For example, the homogeneous ERRG with edge probability

p = c/n is approximated by a Poisson(c)-Galton–Watson process [85], which is a process

with indistinguishable individuals. By contrast, some sophisticated inhomogeneous

random graphs are approximated by branching processes with uncountably many types

[19].

To show a property of a random graph model using a branching process approxima-

tion, one must first establish a suitable coupling, and then study the relevant property

in the branching process. The simpler dependency structure and the detailed knowl-

edge of branching processes available make the second step often a much simpler task

than the original problem.

For preferential attachment models a branching process approximation was found

only recently by Dereich and Mörters [37]. Their model di↵ers from the previously

mentioned preferential attachment models in the sense that the number of edges a new

vertex attaches to existing vertices is not fixed. This is not only more desirable from

a modelling perspective, but also makes the model more tractable, whilst keeping all

the characteristic features popularised by Barabási and Albert. Quantitatively, the

model behaves in the same way as the LCD-model and its generalised version. The

approximating branching process is considerably more involved than previously found

approximations: it could be viewed as a multitype Galton–Watson process, but more

intuition can be drawn from an interpretation as a multitype branching random walk

with killing boundary (see Section 5.6 for a discussion). The discovery of the branching

process approximation opens up the path to a much deeper understanding of preferen-

tial attachment models, which has already led to Dereich and Mörters identifying the

exact location of the phase transition of the size of the largest component.

In Part II of this thesis, we continue that work and adapt the branching process

approximation to investigate the vulnerability of preferential attachment networks to

a targeted attack on highly-connected vertices. For power law exponent ⌧ 2 (2, 3),

the network is robust to the random removal of vertices but a targeted attack changes

its topology dramatically. Our analysis constitutes the first mathematically rigorous,

systematic study of this phenomenon.

The fascination behind the asymptotic power law degree distribution comes not only

from the fact that it has been observed experimentally in most real-world networks,

but also from the discovery that most key properties of random graphs are determined

6
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by the power law exponent ⌧ . While a di↵erent mathematical analysis may be required

for di↵erent models, the scalings agree when the power law exponents agree.

This folklore knowledge has been established over the last 10-15 years and has been

demonstrated for various models and properties; see [85] for an excellent overview. One

contribution of this thesis is to highlight qualitatively di↵erent behaviour of models that

have the same power law exponent.

We call models of rank one if the edge probabilities (roughly) factorise, i.e.,

pi,j ⇡ �(i)�(j) (⇤ ⇤ ⇤)

for some function �. Examples include the configuration model and inhomogeneous

random graphs that satisfy (⇤ ⇤ ⇤).
A comparison of the two model classes given by scale-free graphs with power law

exponent ⌧ that are either of rank one or preferential attachment networks shows the

following. In rank one models with power law exponent ⌧ 2 (2, 3), the shortest path

between two typical vertices consists of two paths that go through layers of increasingly

well-connected vertices and meet at a highly connected vertex. In contrast, typical

paths in preferential attachment models alternate between well-connected vertices and

ordinary vertices, and are therefore twice as long as the typical paths in rank one

models [107, 35]. In Part II of this thesis we show that this di↵erent behaviour leads

to di↵erent critical exponents for the question of vulnerability. The analysis exposes a

striking di↵erence between the model classes, structurally and quantitatively.

For power law exponents ⌧ > 3, the di↵erence is even more compelling. Consider

the supercritical regime where a positive fraction of all vertices lies in one component,

the giant component. While in rank one models the relative size of the giant component

experiences a polynomial decay close to criticality, the decay is exponentially fast in

preferential attachment models [52, 46, 114]. The analysis of this phenomenon o↵ers

another beautiful application of modern branching process techniques in the study of

complex networks.

Based on these results, it would be of great interest to explore the di↵erence be-

tween rank one and preferential attachment models further. A particularly interesting

property to study would be the size of the largest component in the subcritical regime,

where a remarkable di↵erence between the two model classes can be expected.

Another intriguing open problem for preferential attachment models would be to

understand the size of the giant component close to criticality in the regime where the

second moment of the asymptotic degree distribution is infinite.

Further applications The range of problems where branching processes play an

integral part is vast. Besides the fields of population genetics and random graphs,

computer sciences, epidemiology, and queuing theory are usually mentioned [26, 8, 92].

An example related to our study of random graphs is that of flows on networks:

7
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many real-world networks transport information, passengers or commodities, and links

require a certain time or have a certain economic cost attached to them. Mathe-

matically, these networks can be modelled by edge-weighted graphs. The aim is to

understand properties of the weight and length of the optimal path between two ver-

tices. For a more global picture, the topology of the graph consisting of the shortest

paths from one vertex to all other vertices, the smallest-weight graph, is of importance.

These questions lead to first passage percolation on random or deterministic graphs, a

field that has attracted considerable attention in recent years; c.f. Chapter 12 in [85].

Similar to the study of random graphs, the local neighbourhood of a vertex in the

smallest-weight graph can be approximated by a branching process. However, here the

edge weights should be interpreted as birth times of particles in the branching process,

leading to continuous-time instead of discrete-time processes [14]. For edge weight

distributions with a heavy tail at zero, the approximation leads to a continuous-time

branching process that depends crucially on the graph size. Consequently, a study of

the double asymptotics, large time and large graph, is required [48, 49].

This, and the discussed preferential attachment networks, are prime examples in

which the application of branching process theory paves the way to a deep understand-

ing of very involved structures. However, the discovered branching processes are very

sophisticated, and their analysis requires state-of-the-art techniques and new results.

The consequence is a fruitful interaction between the branching process community

and other fields that leads to the development of powerful methods and remarkable

insights.

Publication and collaboration details

Part I of this thesis is joint work with Andreas E. Kyprianou and Matthias Winkel.

It has been accepted for publication in the Annals of Probability, and forms reference

[50].

Part II is joint work with Peter Mörters. It has been published in the Electronic

Journal of Probability, and forms reference [51].

During my time as a PhD student in Bath I have worked on further projects that are

not included in this thesis. For completeness, I will mention that joint work with Jesse

Goodman, Remco van der Hofstad and Francesca Nardi on first passage percolation

has been published [47] and is being prepared for publication [48, 49]. Further work

on preferential attachment networks with Peter Mörters is currently being prepared for

publication [52].
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Part I

Spines, skeletons and the

strong law of large numbers

for superdi↵usions

Consider a supercritical superdi↵usion (Xt)t�0

on a domain D ✓ Rd

with branching mechanism

(x, z) 7! ��(x)z + ↵(x)z2 +

Z

(0,1)

�

e�zy � 1 + zy
�

⇧(x, dy).

The skeleton decomposition provides a pathwise description of the

process in terms of immigration along a branching particle di↵usion.

We use this decomposition to derive the strong law of large numbers

(SLLN) for a wide class of superdi↵usions from the corresponding

result for branching particle di↵usions. That is, we show that, for

suitable test functions f and starting measures µ,

hf,Xti
Pµ[hf,Xti] ! W1 Pµ-almost surely as t ! 1,

where W1 is a finite, non-trivial random variable characterised as a

martingale limit. Our method is based on skeleton and spine tech-

niques and o↵ers structural insights into the driving force behind the

SLLN for superdi↵usions. The result covers many of the key examples

of interest and, in particular, proves a conjecture by Fleischmann and

Swart [74] for the super-Wright–Fisher di↵usion.
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CHAPTER 1

INTRODUCTION

The asymptotic behaviour of the total mass assigned to a compact set by a superprocess

was first characterised by Pinsky [111] at the level of the first moment. Motivated by

this study, Engländer and Turaev [61] proved weak convergence of the ratio of the total

mass in a compact set and its expectation. Others have further improved the mode of

convergence; specifically, several authors conjectured an almost sure convergence result

for a wide class of superprocesses [54, 62, 74, 102]. However, up to now it has not

been possible to deal with many of the classical examples of interest. In the existing

literature, for almost sure convergence, either motion and branching mechanism have

to obey restrictive conditions [27] or the domain is assumed to be of finite Lebesgue

measure [102]. In this thesis, we make a significant step towards closing the gap and

establish the strong law of large numbers (SLLN) for a large class of superdi↵usions on

arbitrary domains. In particular, we prove a conjecture by Fleischmann and Swart for

the super-Wright–Fisher di↵usion.

Methodologically, previous results concerned with almost sure limit behaviour of

superprocesses relied on Fourier analysis, functional analytic arguments or used the

martingale formulation for superprocesses combined with stochastic analysis. We take

a di↵erent approach. The core of our proof is the skeleton decomposition that repre-

sents the superprocess as an immigration process along a branching particle process,

called the skeleton, where immigration occurs in a Poissonian way along the space-time

trajectories and at the branch points of the skeleton. The skeleton may be interpreted

as immortal particles that determine the long-term behaviour of the process. We ex-

ploit this fact and carry the SLLN from the skeleton over to the superprocess. Apart

from the result itself, this approach provides insights into the driving force behind the

law of large numbers for superprocesses.

A more detailed literature review and discussion of the ideas of proof is deferred to

Sections 1.4 and 1.5. Before, we introduce the model in Section 1.1, our assumptions

are stated in Section 1.2, and the main results are collected in Section 1.3.

10



Chapter 1. Introduction

1.1 Model and notation

Let d 2 N and let D ✓ Rd be a nonempty domain. For k 2 N
0

, ⌘ > 0, we write Ck,⌘(D)

for the space of real-valued functions on D, whose k-th order partial derivatives are

locally ⌘-Hölder continuous, C⌘(D) := C0,⌘(D). We denote by B(D) the Borel �-

algebra on D. The notation B ⇢⇢ D means that B 2 B(D) is bounded and there is an

open set B
1

such that B ✓ B
1

✓ B
1

✓ D. The Lebesgue measure on B(D) is denoted

by `; the set of finite (and compactly supported) measures on B(D) is denoted by

Mf (D) (and Mc(D) resp.). When µ is a measure on B(D) and f : D ! R measurable,

let hf, µi := R

D f(x)µ(dx), whenever the right-hand side makes sense. If µ has a density

⇢ with respect to `, we write hf, ⇢i = hf, µi. For any metric space E, we denote by

p(E) and b(E) the sets of Borel measurable functions on E that are nonnegative and

bounded, respectively. Let bp(E) = b(E) \ p(E).

Let (⇠ = (⇠t)t�0

; (Px)x2D) be a di↵usion process on D with generator

L(x) =
1

2
r · a(x)r+ b(x) ·r on D.

The di↵usion matrix a : D ! Rd⇥d takes values in the set of symmetric, positive definite

matrices. Moreover, all components of a and b : D ! Rd belong to C1,⌘(D) for some

⌘ 2 (0, 1] (the parameter ⌘ remains fixed throughout Part I of this thesis). In other

words, ⇠ denotes the unique solution to the generalised martingale problem associated

with L on D [ {†}, the one-point compactification of D with cemetery state †; see

Chapter I in [110]. We write ⌧D = inf{t � 0: ⇠t 62 D}.

Let � 2 C⌘(D) be bounded and

 
0

(x, z) := ↵(x)z2 +

Z

(0,1)

�

e�zy � 1 + zy
�

⇧(x, dy), (1.1)

where ↵ 2 bp(D) and⇧ is a kernel fromD to (0,1) such that x 7! R

(0,1)

(y^y2)⇧(x, dy)
belongs to bp(D). The function  �(x, z) := ��(x)z +  

0

(x, z) is called the branching

mechanism. If ⇧ ⌘ 0, we say that the branching mechanism is quadratic. In Section 4.2,

we explain that our results carry over to a class of quadratic branching mechanisms

with unbounded ↵ and �.

The main process of interest is the (L, � ;D)-superdi↵usion, which we denote by

X = (Xt)t�0

. Its distribution is denoted by Pµ if the process is started in µ 2 Mf (D).

That is, X is an Mf (D)-valued time-homogeneous Markov process such that, for all

µ 2 Mf (D), f 2 bp(D) and t � 0,

Pµ[e
�hf,X

t

i] = e�hu
f

(·,t),µi, (1.2)

11



Chapter 1. Introduction

where uf is the unique nonnegative solution to the mild equation

u(x, t) = Stf(x)�
Z t

0

Ss[ 0

(·, u(·, t� s))](x) ds for all (x, t) 2 D ⇥ [0,1). (1.3)

Here Stg(x) := Px[e
R
t

0 �(⇠
s

) dsg(⇠t) {t<⌧
D

}] for all g 2 p(D), i.e. (St)t�0

denotes the

semigroup of the di↵erential operator L + �. Every function g on D is automatically

extended to D [ {†} by g(†) := 0. Hence,

Stg(x) = Px

⇥

e
R
t

0 �(⇠
s

) dsg(⇠t)
⇤

.

We refer to ⇠ as the underlying motion or just the motion in the space D. Informally,

the Mf (D)-valued process X = (Xt)t�0

describes a cloud of infinitesimal particles in-

dependently evolving according to the motion ⇠ and branching in a spatially dependent

way according to the branching mechanism  � . The existence of the superprocess X

is guaranteed by [43, 72], and it satisfies the branching property (see (1.1) in [72] for

a definition). By Theorem 3.1 in [42] or Theorem 2.11 in [72], there is a version of X

such that t 7! hf,Xti is almost surely right-continuous for all continuous f 2 bp(D).

We will always work with this version. In most texts the mild equation (1.3) is written

in a slightly di↵erent form: instead of (St)t�0

, the semigroup of L is used and  
0

is

replaced by  � . However, since the first moment of the superprocess is determined by

(St)t�0

, while  
0

influences only higher moments (c.f. (2.11) below), the mild equation

in form (1.3) leads to simpler moment estimates. Moreover, (1.3) has a unique nonneg-

ative solution even when � is only bounded from above, not necessarily from below;

see Appendix B and the discussion around (2.7). Using Feynman–Kac arguments (see

Lemma A.1 (i) in the appendix below) and Gronwall’s lemma, one easily checks that

(for bounded �) the two representations are equivalent.

Our main goal is to determine the large-time behaviour of

hf,Xti
Pµ[hf,Xti] (1.4)

for suitable test functions f and starting measures µ. We say that X satisfies the

strong law of large numbers (SLLN) if, for all test functions f 2 C+

c (D), f 6= 0, the

ratio in (1.4) converges to a finite, non-trivial random variable which is independent

of f . Here C+

c (D) denotes the space of nonnegative, continuous functions of compact

support, and 0 is the constant function with value 0.

1.2 Statement of assumptions

A probabilistic view on supercritical superprocesses is o↵ered by the skeleton decompo-

sition. This, by now classical [70, 59, 40, 13, 11, 98], decomposition has been studied

under a variety of names. It provides a pathwise representation of the superprocess

12



Chapter 1. Introduction

as an immigration process along a supercritical branching particle process that we call

the skeleton. The skeleton captures the global behaviour of the superprocess and its

discrete nature makes it much more tractable than the superprocess itself. We exploit

these facts to establish the SLLN for superdi↵usions. Specifically, our fundamental aim

it to show that the SLLN for superdi↵usions follows as soon as an appropriate SLLN

holds for its skeleton. Given the existing knowledge for branching particle processes,

this will lead us to a large class of superprocesses for which the SLLN can be stated.

Classically, the skeleton was constructed using the event E
fin

= {9t � 0: Xt(D) = 0}
of extinction after finite time to guide the branching particle process into regions where

extinction of the superprocess is unlikely. The key property of E
fin

exploited in the

skeleton decomposition is that the function x 7! w(x) = � logP�
x

(E
fin

) gives rise to the

multiplicative martingale ((e�hw,X
t

i)t�0

;Pµ). In the more general setup of this thesis,

we assume only the existence of such a martingale function w.

Assumption 1 (Skeleton assumption). There exists a function w 2 p(D) that satisfies

w(x) > 0 for all x 2 D,

sup
x2B

w(x) < 1 for all B ⇢⇢ D, (1.5)

Pµ

⇥

e�hw,X
t

i⇤ = e�hw,µi for all µ 2 Mc(D), t � 0. (1.6)

The martingale function w allows us to define the skeleton as a branching particle

di↵usion Z, where the spatial movement of each particle is equal in distribution to

(⇠ = (⇠t)t�0

; (Pw
x )x2D) with

dPw
x

dPx

�

�

�

�

�(⇠
s

: s2[0,t])
=

w(⇠t)

w(x)
exp

⇣

�
Z t

0

 �(⇠s, w(⇠s))

w(⇠s)
ds
⌘

on {t < ⌧D} (1.7)

for all t � 0. We will see in Lemma 2.2 that Pw
x is well-defined. Each particle dies at

spatially dependent rate q 2 p(D) and is replaced by a random number of o↵spring

with distribution (pk(x))k�2

, where x is the location of its death. The branching rate

q and the o↵spring distribution (pk)k�2

are uniquely identified by

G(x, s) := q(x)
1
X

k=2

pk(x)(s
k�s) =

1

w(x)

⇣

 
0

�

x,w(x)(1�s)
��(1�s) 

0

�

x,w(x)
�

⌘

(1.8)

for all s 2 [0, 1] and x 2 D. The fact that q and (pk)k�2

are well-defined by (1.8) is

contained in Theorem 2.3 (i) below. In Section 2.1.1, we define Z on a rich probability

space with probability measures Pµ, µ 2 Mf (D), where the initial configuration of Z

under Pµ is given by a Poisson random measure with intensity w(x)µ(dx).

As noted earlier, we are interested in the situation where the skeleton itself satisfies

a SLLN. There is a substantial body of literature available that analyses the long-term

behaviour of branching particle di↵usions. To delimit the regime we want to study,

we make two regularity assumptions. A detailed discussion of all assumptions can be

13



Chapter 1. Introduction

found in Section 2.1. The first condition ensures that the semigroup (St)t�0

of L + �

grows precisely exponentially on compactly supported, continuous functions.

Assumption 2 (Criticality assumption).

(i) The second order di↵erential operator L + � has positive generalised principal

eigenvalue

�c := �c(L+�) := inf
�

� 2 R : 9u 2 C2,⌘(D), u > 0, (L+���)u = 0
 

> 0. (1.9)

(ii) The operator L+���c is critical, that is, it does not possess a Green’s function

but there exists � 2 C2,⌘(D), � > 0, such that (L+ � � �c)� = 0.

Given (ii), � is unique up to constant multiples and is called the ground state. With

L + � � �c also its formal adjoint is critical and the corresponding ground state is

denoted by e�.

(iii) L+���c is product L1-critical, i.e. h�, e�i < 1. We normalize to obtain h�, e�i = 1.

Corollary 2.7 below shows that under Assumptions 1 and 2, the process

W �/w
t (Z) = e��

c

th�/w,Zti, t � 0,

is a nonnegative Pµ-martingale for all µ 2 M�
f (D) := {µ 2 Mf (D) : h�, µi < 1}, and

(W �/w
t (Z))t�0

has an almost sure limit. To have the notation everywhere, we define

W �/w
1 (Z) := lim inft!1W �/w

t (Z).

Our second regularity assumption consists essentially of moment conditions.

Assumption 3 (Moment assumption). There exists p 2 (1, 2] such that

sup
x2D

�(x)↵(x) < 1, (1.10)

sup
x2D

�(x)

Z

(0,1]
y2⇧(x, dy) < 1, (1.11)

sup
x2D

�(x)p�1

Z

(1,1)

yp⇧(x, dy) < 1, (1.12)

h�p�1,�e�i < 1, (1.13)
D

Z

(1,1)

y2e�w(·)y ⇧(·, dy),�e�
E

< 1. (1.14)

The parameter p remains fixed throughout Part I of this thesis. Assumption 3 is

satisfied, for example, when � is bounded and supx2D
R

(1,1)

y2⇧(x, dy) < 1. These

second moment conditions appeared in the literature (cf. Section 2.1.3), and we will

see several examples in Chapter 4. However, our results are valid under the weaker

conditions of Assumption 3. In Sections 2.1.3 and 4.2, we explain that in the case of a

quadratic branching mechanism only (1.10) is needed.
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Chapter 1. Introduction

The SLLN has been proved for a large class of branching particle di↵usions. Where

it has not been established, yet, we assume a SLLN for the skeleton Z. It will be

su�cient to assume convergence along lattice times.

Assumption 4 (Strong law assumption). For all µ 2 Mc(D), � > 0 and continuous

f 2 p(D) with fw/� bounded,

lim
n!1

e��
c

n�hf, Zn�i = hf, we�iW �/w
1 (Z) Pµ-almost surely.

At first, Assumption 4 may look like a strong assumption. However, given Assump-

tions 1–3, the SLLN for the skeleton has been proved under two additional conditions.

The first condition controls the spread of the support of the skeleton when started

from a single particle; the second condition is a uniformity assumption on the conver-

gence of an associated ergodic motion (the “spine”) to its stationary distribution. See

Theorem 2.13 for details. These conditions hold for a wide class of processes, and we

demonstrate this for several key examples in Chapter 4.

1.3 Statement of the main results

Before stating the SLLN for superdi↵usion X, we relate the limiting random variable

of (1.4) to the limit that appears in Assumption 4. In Corollary 2.7 below, we show

that under Assumption 2 the process

W �
t (X) = e��

c

th�, Xti, t � 0,

is a nonnegative Pµ-martingale for all µ 2 M�
f (D) = {µ 2 Mf (D) : h�, µi < 1}, and

(W �
t (X))t�0

has an almost sure limit. To have the notation everywhere, we define

W �
1(X) := lim inft!1W �

t (X).

Proposition 1.1. Suppose Assumptions 1, 2, (1.10)–(1.12) hold. For all µ 2 M�
f (D),

the martingales (W �
t (X))t�0

and (W �/w
t (Z))t�0

are bounded in Lp(Pµ), and

W �
1(X) = W �/w

1 (Z) Pµ-almost surely. (1.15)

Recall that ` denotes the Lebesgue measure on the domain D. Our main theorem

is the following.

Theorem 1.2. Suppose Assumptions 1–4 hold. For every µ 2 M�
f (D), there exists

a measurable set ⌦
0

such that Pµ(⌦0

) = 1 and, on ⌦
0

, for all `-almost everywhere

continuous functions f 2 p(D) with f/� bounded,

lim
t!1

e��
c

thf,Xti = hf, e�iW �
1(X). (1.16)

The convergence in (1.16) also holds in L1(Pµ). In particular, Pµ[W
�
1(X)] = h�, µi.
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Even though our main interest is almost sure convergence, Theorem 1.2 gives also

new results for convergence in probability; see the examples in Chapter 4. We record

the following corollary of Theorem 1.2 to present the result in possibly more familiar

terms.

Corollary 1.3. Suppose Assumptions 1–4 hold. In the vague topology, e��
c

tXt !
W �

1(X)e�` Pµ-almost surely as t ! 1. If, in addition, � is bounded away from zero,

then the convergence holds in the weak topology Pµ-almost surely.

Finally, we present the SLLN as announced in (1.4). This makes the comparison

between hf,Xti and its mean explicit.

Corollary 1.4. Suppose that Assumptions 1–4 hold. For all µ 2 M�
f (D), µ 6⌘ 0,

f 2 C+

c (D), f 6= 0,

lim
t!1

hf,Xti
Pµ[hf,Xti] =

1

h�, µiW
�
1(X) Pµ-almost surely and in L1(Pµ).

The weak law of large numbers (WLLN), and even the L1-convergence in (1.16), can

be obtained without assuming the SLLN for the skeleton as the next theorem reveals.

Theorem 1.5. Suppose Assumptions 1, 2, (1.10)–(1.13) hold. For all µ 2 M�
f (D) and

f 2 p(D) with f/� bounded, the convergence in (1.16) holds in L1(Pµ).

1.4 Literature review

Terminology in the literature is not always consistent, so let us clarify that we refer to

branching particle processes and superprocesses as branching di↵usions and superdif-

fusions, respectively, if the underlying motion is a di↵usion. Similar wording is used

for other classes of underlying motions.

The limit theory of supercritical branching processes has been studied since the

1960s when sharp statements were established for classical finite-type processes [93, 6].

The first result for branching di↵usions was due to Watanabe [121] in 1967, who proved

an almost sure convergence result for branching Brownian motion and certain one-

dimensional motions. The key ingredient to the proof was Fourier analysis, a technique

recently used by Wang [120] and Kouritzin and Ren [95] to establish the SLLN for

super-Brownian motion. Super-Brownian motion on Rd with a spatially independent

branching mechanism does not fall into the framework of this thesis since L + � � �c

is not product L1-critical in that case. Rather, � = e� = 1, where 1 denotes the

constant function with value 1, and e��
c

tPµ[hf,Xti] converges to zero for all f 2
C+

c (D). The missing scaling factor is td/2 and Pµ[hf,Xti] ⇠ (2⇡t)�d/2e�c

thf,1iµ(Rd)

for µ 2 Mc(Rd). Wang’s [120] SLLN for super-Brownian motion takes the form

lim
t!1

hf,Xti
Pµ[hf,Xti] =

W �
1(X)

µ(Rd)
Pµ-almost surely
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for all nontrivial nonnegative continuous functions f with compact support, for all

µ = �x, x 2 Rd, and with martingale limit W �
1(X) = limt!1 e��

c

th1, Xti. Watan-

abe’s argument is thought to be incomplete because the regularity for his argument is

not proven; see [120]. Biggins [16] developed a method to show uniform convergence

of martingales for branching random walks. Wang combined these arguments with

the compact support property of super-Brownian motion started from µ 2 Mc(D).

Kouritzin and Ren [95] proved the SLLN for super-stable processes of index ↵ 2 (0, 2]

with spatially independent quadratic branching mechanism. The correct scaling fac-

tor in this case is td/↵e��
c

t. The authors allow any finite starting measure with finite

mean and a class of continuous test functions that decrease su�ciently fast at infinity.

Fourier-analytic methods were also used by Grummt and Kolb [79] to prove the SLLN

for the two-dimensional super-Brownian motion with a single point source (see [73] for

the definition and a proof of existence of this process). Earlier, Engländer [55] estab-

lished convergence in probability for a class of superdi↵usions that do not necessarily

satisfy Assumption 2 using a time-dependent h-transform developed in [62].

In the product L1-critical case, the dominant method to prove almost sure limit

theorems is due to Asmussen and Hering [5]. (Kaplan and Asmussen use a similar

method in [90].) The main idea is as follows. For s, t � 0, write Ft = �(Xr : r  t) and

e��
c

(s+t)hf,Xs+ti
= e��

c

tPµ[e
��

c

shf,Xs+ti|Ft] +
⇣

e��
c

(s+t)hf,Xs+ti � e��
c

tPµ[e
��

c

shf,Xs+ti|Ft]
⌘

= CEf (s, t) + Df (s, t).

Here CE stands for “conditional expectation” and D for “di↵erence”. The first step

is to show that Df (s, t) ! 0 as t ! 1. This is usually done via a Borel–Cantelli

argument, and therefore, requires a restriction to lattice times t = n�. The second step

is to show that CEf (s, t) behaves like the desired limit for s and t large. This is the

hardest part of the proof and usually causes most of the assumptions. The third and

last step is to extend the result from lattice to continuous time.

Asmussen and Hering control CEf (s, t) for branching particle processes by a uniform

Perron–Frobenius condition on the semigroup (St)t�0

. Passage to continuous time

is obtained under additional continuity assumptions on process and test functions.

Recently, their method was generalised by Engländer et al. [57] to establish the SLLN

for a class of branching di↵usions on arbitrary domains. The authors control CEf (s, t)

by an assumption that restricts the speed at which particles spread in space and a

condition on the rate at which a certain ergodic motion (the “spine”) converges to its

stationary distribution.

While Asmussen and Hering’s idea for the proof of SLLNs along lattice times is

rather robust and (under certain assumptions) feasible also for superprocesses, the

argument used for the transition from lattice to continuous time relies heavily on the

17



Chapter 1. Introduction

finite number of particles in the branching di↵usion.

A new approach to almost sure limit theorems for branching processes was intro-

duced by Chen and Shiozawa [28] in the setup of branching symmetric Hunt processes.

Amongst other assumptions, a spectral gap condition was used to obtain a Poincaré in-

equality which constitutes the main ingredient in the proof along lattice times. For the

transition to continuous times the argument from Asmussen and Hering was adapted.

Chen et al. [27] proved the first SLLN for superprocesses and relied on the same Poincaré

inequality and functional analytic methods for the result along lattice times. For the

transition to continuous time, Perkins’ Itô formula for superprocesses [108] was used.

Even though their SLLN holds on the full domain Rd, the assumptions on motion

and branching mechanism are restrictive in the following way: the motion has to be

symmetric (and in the di↵usive case must have a uniformly elliptic generator) and the

coe�cients of the branching mechanism have to satisfy a strict Kato class condition.

The idea to use stochastic analysis was brought much further by Liu et al. [102].

The authors gave a proof which is based entirely on the martingale problem for su-

perprocesses, and decomposed the process into three martingale measures. Moreover,

they introduced a new technique for the transition from lattice to continuous times

based on the resolvent operator and estimates for the hitting probabilities of di↵usions.

The proof by Liu et al. follows again the three steps of Asmussen and Hering. To

control the conditional expectation CEf (s, t), they assume that the transition density

of the underlying motion is intrinsically ultracontractive and that the domain D is of

finite Lebesgue measure. This assumption excludes most of the classical examples; see

Chapter 4.

To complete our review, we mention that the first law of large numbers for su-

perdi↵usions was proven by Engländer and Turaev [61] on the domain D = Rd. The

authors use analytic tools from the theory of dynamical systems, in particular prop-

erties of invariant curves, to show the convergence in distribution. Besides classical

superdi↵usions, the 1-dimensional super-Brownian motion with a single point source is

studied.

1.5 Outline of the proof of Theorem 1.2

The key to our argument is the skeleton decomposition for the supercritical superpro-

cess X. Intuitively, this representation result states that the superprocess is a cloud of

subcritical superdi↵usive mass immigrating o↵ a supercritical branching di↵usion, the

skeleton, which governs the large-time behaviour of X. It is important to note that we

use the skeleton to make a connection between the asymptotic behaviour of a branching

di↵usion and of the superdi↵usion, and we do not use any classical approximation of

the superprocess by branching particle systems in a high-density limit regime.

Broadly speaking, our proof of Theorem 1.2 follows the three steps of Asmussen
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and Hering outlined in Section 1.4. However, instead of the full process X we consider

only the immigration occurring after time t in the decomposition into conditional ex-

pectation CEf and di↵erence Df . This immigration is a subprocess of X and we show

that the stated convergence for the full process follows when the subprocess converges

to the claimed limit.

Using the tree structure of the skeleton, we can split the immigration that occurs

after time t according to the di↵erent branches of the skeleton at time t. This fact

allows us to appeal to discrete techniques for the analysis of the immigration process.

To analyse the conditional expectation CEf for the immigration after time t, we use

the SLLN for the skeleton. After exponential rescaling, the immigration along di↵erent

branches up to a fixed time s is of constant order and the SLLN for the skeleton

describes the asymptotic behaviour for large t. Taking the observed time frame s

to infinity then adjusts only the constants. To replace the limiting random variable

W �/w
1 (Z), coming from the SLLN for the skeleton, by W �

1(X), we can, as it turns

out, reverse the order in which these limits are taken. Taking first the observed time

horizon s to infinity for test function �, we recover the martingale for the skeleton as a

consequence of the same invariance property of � that makes (W �
t (X))t�0

a martingale.

The analysis of Df for the immigration after time t is fairly standard, and for the

transition from lattice to continuous times we adapt the argument by Liu et al. [102]

relying again on the skeleton decomposition. The moment estimates needed for our

analysis are obtained using a spine decomposition for the superprocess.

1.6 Overview

The outline of Part I of this thesis is as follows. We start in Section 2.1.1 with an

analysis of the skeleton assumption (Assumption 1) and give a detailed description of

the skeleton decomposition. In the remainder of Section 2.1, we discuss further basic

properties of superprocesses and our other three main assumptions, and we compare

them to conditions that appeared in the literature. Section 2.2 contains a spine de-

composition for the superprocess X and the proof that the martingale (W �
t (X))t�0

is

bounded in Lp.

The proofs of the main results are collected in Chapter 3. First, in Section 3.1,

we reduce the SLLN to a statement that focuses on the main technical di�culty. In

Section 3.2, we show that the martingale limits for superprocess and skeleton agree, and

in Section 3.3, we prove the WLLN stated in Theorem 1.5. The asymptotic behaviour

of the immigration process is studied in Section 3.4, and the SLLN along lattice times is

established. The transition from lattice to continuous times is performed in Section 3.5,

and we conclude our main results.

In Chapter 4 we provide several examples to illustrate our results. Spatially in-

dependent branching mechanisms are discussed in Section 4.1; quadratic branching
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mechanisms are considered in Section 4.2. In Section 4.3 we study the super-Wright–

Fisher di↵usion and prove a conjecture by Fleischmann and Swart [74].

Some minor statements needed along the way are proved in the appendix: Ap-

pendix A contains Feynman–Kac-type arguments, and Appendix B discusses a gener-

alised version of the mild equation (1.3) and monotonicity of its solution in domain and

test function.
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CHAPTER 2

PRELIMINARIES

This chapter is split into two parts. In the first part, we discuss our four main assump-

tions; in the second, we prove that the martingale (W �
t (X))t�0

converges in Lp.

2.1 Basic properties

2.1.1 Skeleton decomposition

In this section, we work under Assumption 1. The skeleton decomposition for super-

critical superprocesses o↵ers a pathwise description of the superprocess in terms of a

supercritical branching particle process dressed with an immigration process. Heuristi-

cally, one can think of the skeleton as the prolific individuals of the branching process,

i.e. individuals belonging to infinite lines of descent. The martingale function w assigns

a small value to regions that prolific individuals should avoid. If w(x) = � logP�
x

(E)
for some event E , then the skeleton particles avoid the behaviour specified by E . Clas-
sical examples are the event of extinction in finite time E

fin

= {9t � 0: h1, Xti = 0}, cf.
[70, 59], and the event of weak extinction E

lim

= {limt!1h1, Xti = 0}; cf. [13, 11]. In

Chapter 4, we discuss classes of superprocesses where these two events give a suitable

martingale function. To allow for other events that may be more suitable for a certain

process of interest, we assume only Assumption 1.

We proceed by deriving properties of w from Assumption 1. For f 2 p(D), let
ef(x, t) = f(x) for all (x, t) 2 D ⇥ [0,1). Dynkin [43] derives the superprocess X from

exit measures that describe the evolution of mass not only in time but also in space. He

showed that, for any domain B ✓ D and t � 0, there exists a random, finite measure
eXB
t on D ⇥ [0,1) such that for all µ 2 Mf (D) and f 2 bp(D),

Pµ

⇥

e�h ef, eXB

t

i⇤ = e�heuB

f

(·,t),µi, (2.1)
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where euBf is the unique, nonnegative solution to the integral equation

u(x, t) = Px

⇥

f(⇠t^⌧
B

)
⇤� Px

h

Z t^⌧
B

0

 �(⇠s, u(⇠s, t� s)) ds
i

(2.2)

for all (x, t) 2 D ⇥ [0,1) and ⌧B = inf{t � 0: ⇠t 62 B}. For f 2 p(D), there exists

a sequence of functions fk 2 bp(D) such that fk " f pointwise. By (2.1), euBf
k

(x, t) is

monotonically increasing in k, and we denote the limit by euBf (x, t) 2 [0,1]. With this

notation, the monotone convergence theorem implies that (2.1) is valid for all f 2 p(D).

The same argument shows that (1.2) holds for all f 2 p(D), and (1.6) implies uw = w.

Hence, (1.6) holds for all µ 2 Mf (D). The superprocess Xt is obtained as a projection

of eXD
t restricted to D⇥{t}. Writing ew(x, t) = w(x) for (x, t) 2 D⇥ [0,1), the Markov

property (cf. Theorem I.1.3 [43]) and (1.6) yield, for all µ 2 Mf (D) and all domains

B ✓ D,

Pµ

⇥

e�h ew, eXB

t

i⇤ = Pµ

⇥

e�hw,X
t

i⇤ = e�hw,µi. (2.3)

Comparing (2.3) to (2.1), we deduce that euBw = ew. Now let B ⇢⇢ D. If the support

of µ, supp(µ), is a subset of B, then eXB
t is supported on the boundary of B ⇥ [0, t); if

supp(µ) ✓ D \B, then eXB
t = µ almost surely (cf. Theorem I.1.2 in [43]). In particular,

(1.5) implies that, for µ = �x, x 2 D, ew in h ew, eXB
t i can be interpreted as a bounded

function. We combine (2.3) and (2.2) to obtain for all (x, t) 2 B ⇥ [0,1),

w(x) = Px

⇥

w(⇠t^⌧
B

)
⇤� Px

h

Z t^⌧
B

0

 �(⇠s, w(⇠s)) ds
i

. (2.4)

Since w is bounded on B, the continuity of the di↵usion ⇠ yields that w is continuous

on B (see the argument in the last paragraph of page 708 in [59]). Because B was

arbitrary, we conclude:

Lemma 2.1. The martingale function w is continuous on D.

Lemma A.1 (i) in the appendix shows that (2.4) can be transformed into

w(x) = Px

h

w(⇠t^⌧
B

) exp
⇣

�
Z t^⌧

B

0

 �(⇠s, w(⇠s))

w(⇠s)
ds
⌘i

for all (x, t) 2 B ⇥ [0,1).

Hence, for any domain B ⇢⇢ D, x 2 B,

w(⇠t^⌧
B

) exp
⇣

�
Z t^⌧

B

0

 �(⇠s, w(⇠s))

w(⇠s)
ds
⌘

, t � 0, is a Px-martingale. (2.5)

Since every nonnegative local martingale is a supermartingale, we conclude that for all

x 2 D,

w(⇠t)

w(x)
exp

⇣

�
Z t

0

 �(⇠s, w(⇠s))

w(⇠s)
ds
⌘

, t � 0, is a Px-supermartingale.
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In particular, the definition of Pw
x in (1.7) is valid:

Lemma 2.2. For every x 2 D, Pw
x is a well-defined (sub-)probability measure and (⇠ =

(⇠t)t�0

; (Pw
x )x2D) is a (possibly non-conservative) Markov process, which we consider

as a Markov process in D [ {†}.
If w is bounded, the argument leading to (2.5) is valid for B = D, and (⇠;Pw) is

conservative.

To give a description of the skeleton decomposition, we construct an auxiliary

Mf (D)-valued Markov process using the martingale function w. Let for all x 2 D,

z � 0 and f 2 p(D), ⇧⇤(x, dy) := e�w(x)y ⇧(x, dy),

�⇤(x) := �(x)� 2↵(x)w(x)�
Z

(0,1)

(1� e�w(x)y)y⇧(x, dy),

 ⇤
0

(x, z) := ↵(x)z2 +

Z

(0,1)

(e�zy � 1 + zy)⇧⇤(x, dy).

Since �⇤(x)  �(x) for all x 2 D, �⇤ is bounded from above. However, it is not

clear whether �⇤ is bounded from below. Hence, the branching mechanism  ⇤
�⇤(x, z) =

��⇤(x)z +  ⇤
0

(x, z) might not satisfy the assumptions from Section 1.1. To overcome

this problem, set �⇤
+

= max{�⇤, 0} and �⇤� = max{��⇤, 0} so that �⇤ = �⇤
+

� �⇤� with

�⇤
+

bounded and �⇤� nonnegative. We write for all f 2 p(D),

S⇤
t f(x) := Px

⇥

e�
R
t

0 �⇤
�(⇠

s

) dse
R
t

0 �⇤
+(⇠

s

) dsf(⇠t)
⇤

= Px

⇥

e
R
t

0 �⇤
(⇠

s

) dsf(⇠t)
⇤

, (2.6)

where (⇠, (Px)x2D) is the original di↵usion process on D with generator L defined in

Section 1.1. Dynkin [43, Theorem I.1.1] proved the existence and uniqueness of the

superprocess X⇤ = (X⇤
t )t�0

whose motion is given by the di↵usion with generator L

killed at spatially dependent rate �⇤�, branching mechanism  ⇤
�⇤
+
(x, z) = ��⇤

+

(x)z +

 ⇤
0

(x, z) and domain D. In particular, X⇤ is an Mf (D)-valued, time-homogeneous

Markov process such that, for all µ 2 Mf (D), f 2 bp(D) and t � 0,

Pµ

⇥

e�hf,X⇤
t

i⇤ = e�hu⇤
f

(·,t),µi,

where u⇤f is the unique nonnegative solution to

u(x, t) = S⇤
t f(x)�

Z t

0

S⇤
s [ 

⇤
0

(·, u(·, t� s))](x) ds for all (x, t) 2 D ⇥ [0,1). (2.7)

Comparing (2.7) and (1.3), we refer to X⇤ as the (L, ⇤
�⇤ ;D)-superprocess. In Ap-

pendix B, we show that, alternatively, X⇤ can be obtained as a monotone, distribu-

tional limit of superprocesses whose motion is given by the di↵usion with generator L

and no additional killing. If w(x) = � logP�
x

(E) for a tail event E with Pµ(E) = e�hw,µi

for all µ 2 Mf (D), then X⇤ can be obtained from X by conditioning on E , i.e., the
distribution of X⇤

t is given by Pµ(Xt 2 · | E); cf. [70, 59, 11, 98]. For our analysis it
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will be enough to know that on compactly supported, continuous functions the semi-

group (S⇤
t )t�0

grows more slowly than the semigroup (St)t�0

, and we prove this fact in

Lemma 3.5.

The following theorem is a concise version of the skeleton decomposition at the level

of detail that is useful to us. It is based on a result from Kyprianou et al. [98]. We

denote by Mloc

a the set of locally finite integer-valued measures on B(D).

Theorem 2.3 (Kyprianou et al. [98]). There exists a probability space with proba-

bility measures Pµ,⌫ , µ 2 Mf (D), ⌫ 2 Mloc

a (D), that carries the following processes:

(i) (Z = (Zt)t�0

;Pµ,⌫) is a branching di↵usion with motion (⇠;Pw) defined in (1.7),

and branching rate q, and o↵spring distribution (pk)k�2

defined by (1.8), and

Pµ,⌫(Z0

= ⌫) = 1.

(ii) (X⇤ = (X⇤
t )t�0

;Pµ,⌫) is an Mf (D)-valued time-homogeneous Markov process

such that, for every µ 2 Mf (D), f 2 bp(D) and t � 0,

Pµ,⌫

⇥

e�hf,X⇤
t

i⇤ = e�hu⇤
f

(·,t),µi,

where u⇤f is the unique solution to (2.7). Moreover, X⇤ is independent of Z under

Pµ,⌫ .

(iii) (I = (It)t�0

;Pµ,⌫) is an Mf (D)-valued process such that:

(a) Pµ,
P

i

�
x

i

[e�hf,I
t

i]=
Q

iPµ,�
x

i

⇥

e�hf,I
t

i⇤ for all µ 2 Mf (D), xi 2 D, f 2 p(D).

Moreover, Pµ,⌫(I 2 ·) does not depend on µ, Pµ,⌫(I0 = 0) = 1, and, under

Pµ,⌫ , (Z, I) is independent of X⇤.

(b) ((X,Z) := (X⇤ + I, Z);Pµ,⌫) is a Markov process.

(c) (X = X⇤ + I;Pµ) is equal in distribution to (X;Pµ), where Pµ denotes the

measure Pµ,⌫ with ⌫ replaced by a Poisson random measure with intensity

w(x)µ(dx).

(d) Under Pµ, conditionally given Xt, the measure Zt is a Poisson random

measure with intensity w(x)Xt(dx).

We call the probability space from Theorem 2.3 the skeleton space. The process I

is called immigration process or simply immigration. As the processes (X;Pµ) on the

skeleton space and (X;Pµ) on the generic space have the same distribution, we may,

without loss of generality, work on the skeleton space whenever it is convenient. Since

the distributions of X⇤ and I under Pµ,⌫ do not depend on ⌫ and µ, respectively, we

sometimes write Pµ,• or P•,⌫ .

Kyprianou et al. [98] identify the immigration process explicitly. We need only the

properties listed in Theorem 2.3, but for definiteness, we now give a full characterisation

of the immigration process.
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Dynkin and Kuznetsov [45] showed that on the canonical space of measure-valued

càdlàg functions, D([0,1),Mf (D)), for every x 2 D, there is a unique measure Nx

such that, for all f 2 bp(D), t � 0,

� logP�
x

[e�hf,X
t

i] = Nx[1� e�hf,X
t

i]. (2.8)

The corresponding measures associated with the superprocess X⇤ are denoted by N⇤
x,

x 2 D.

To describe the immigration processes, we use the classical Ulam–Harris notation

to uniquely refer to individuals in the genealogical tree T of Z (see for example page

290 in [80]). For each individual u 2 T , we write bu and du for its birth and death

times, respectively, and {zu(r) : r 2 [bu, du]} for its spatial trajectory. The skeleton

space carries the following processes:

(iii.1) (a;Pµ,⌫) is a random measure, such that conditional on Z, a is a Poisson ran-

dom measure that issues, for every u 2 T , Mf (D)-valued processes Xa,u,r =

(Xa,u,r
t )t�0

along the space-time trajectory {(zu(r), r) : r 2 (bu, du]} with rate

dr ⇥
⇣

2↵(zu(r))dN⇤
z
u

(r) +

Z

(0,1)

⇧(zu(r), dy) ye
�w(z

u

(r))y ⇥ dP ⇤
y�

z

u

(r)

⌘

,

where P ⇤
µ denotes the distribution of X⇤ started in µ. Since at most countably

many processes Xa,u,r are not equal to the constant zero measure, immigration

at time t that occurred in the form of processes Xa,u,r until time t can be written

as

Iat =
X

u2T

X

b
u

<rd
u

^t
Xa,u,r

t�r .

The processes (Xa,u,r : u 2 T , bu < r  du) are independent given Z and inde-

pendent of X⇤.

(iii.2) (b;Pµ,⌫) is a random measure, such that conditional on Z, b issues, for every

u 2 T , at space-time point (zu(du), du) process Xb,u with law P ⇤
Y
u

�
z

u

(d
u

)
. Given

that u is replaced by k particles at its death time du, the independent random

variable Yu is distributed according to the measure

1

q(x)w(x)pk(x)

⇣

↵(x)w(x)2�
0

(dy) {k=2} + w(x)k
yk

k!
e�w(x)y ⇧(x, dy)

⌘

�

�

�

x=z
u

(d
u

)

.

The immigration at time t that occurred in the form of processes Xb,u until time

t is denoted by

Ibt =
X

u2T
{d

u

t}X
b,u
t�d

u

.

The processes (Xb,u : u 2 T ) are independent of X⇤ and, given Z, are mutually

independent and independent of a.
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The full immigration process is given by I = Ia + Ib.

Proof of Theorem 2.3. Theorem 2.3 generalises Corollary 6.2 in [98] in three ways.

First, the authors choose w(x) = � logP�
x

(E
fin

) but after defining Z and X⇤ this

choice is not used anymore and their argument goes through without any changes for

a general martingale function w satisfying Assumption 1. Second, the authors assume

that w is locally bounded away from zero. Since w is continuous by Lemma 2.1,

this condition is automatically satisfied. Finally, Kyprianou et al. enforce additional

regularity conditions on the underlying motion to use a comparison principle from the

literature in the proof of their Lemma 6.1 (see also their Footnote 1). The comparison

principle allows them to conclude that the solution euBf to (2.2) is increasing in the

domain B when the support of f is a subset of B. Lemmas A.1 (i) and B.5 below show

that this monotonicity holds in the more general setup of this thesis, too.

We introduce notation to refer to the di↵erent parts of the skeleton decomposition.

Notation 2.4 (Notation for Z). For t � 0, we write Zt =
PN

t

i=1

�⇠
i

(t), where Nt denotes

the number of skeleton particles at time t and (⇠i(t) : i = 1, . . . , Nt) their (conveniently

ordered) locations. Given Z
0

, (Zi,0 : i = 1, . . . , N
0

) denote the independent subtrees of

the skeleton obtained by splitting Z according to the ancestors at time 0. The Markov

property implies that Zi,0 follows the same distribution as (Z;P•,�
⇠

i

(0)
), i = 1, . . . , N

0

.

Under Pµ with µ 2 Mc(D), N
0

= h1, Z
0

i is a Poisson random variable with mean

hw, µi.

For t � 0, let F t denote the �-algebra generated by the processes X⇤, Z and I up

to time t. Using the characterisation of the immigration process from Theorem 2.3, we

obtain, for all µ 2 Mf (D), ⌫ 2 Mloc

a (D), f 2 p(D) and s, t � 0,

Pµ,⌫

⇥

e�hf,X
s+t

i�
�F t

⇤

(b)

= PX
t

,Z
t

⇥

e�hf,X
s

i⇤ (b)

= PX
t

,Z
t

⇥

e�hf,X⇤
s

+I
s

i⇤

(a)

= PX
t

,•
⇥

e�hf,X⇤
s

i⇤
N

t

Y

i=1

P•,�
⇠

i

(t)

⇥

e�hf,I
s

i⇤
(2.9)

Pµ,⌫-almost surely. By (d), under Pµ and given Xt, Zt is a Poisson random measure

with intensity w(x)Xt(dx). Hence, (2.9) holds Pµ-almost surely when Pµ,⌫ on the left-

hand side is replaced by Pµ. To make use of this identity, we split the immigration

process according to the immigration that occurred before time t and the immigration

that occurred along di↵erent branches of Z after time t.

Notation 2.5 (Notation for I). For t � 0, denote by I⇤,ts the immigration at time

s + t that occurred along the skeleton before time t; I⇤,t = (I⇤,ts )s�0

. In addition,

for i 2 {1, . . . , Nt}, let Ii,ts denote the immigration at time s + t that occurred along

the subtree of the skeleton rooted at the i-th particle at time t with location ⇠i(t);
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Ii,t = (Ii,ts )s�0

. We have

Xs+t = X⇤
s+t + I⇤,ts +

N
t

X

i=1

Ii,ts for all s, t � 0. (2.10)

According to (2.9) and by the Markov property, given F t, (X⇤
s+t + I⇤,ts )s�0

follows the

same distribution as (X⇤,PX
t

), and Ii,t follows the same distribution as (I;P•,�
⇠

i

(t)
),

i = 1, . . . , Nt. Moreover, given F t, the processes (Ii,t : i = 1, . . . , Nt) are independent

and independent of I⇤,t.

We end this section with a note on terminology. Several di↵erent phrases have been

used in the literature to refer to the skeleton decomposition. Evans and O’Connell [70]

proved the first skeleton decomposition for supercritical superprocesses in the case of a

conservative motion (not necessarily a di↵usion) and a quadratic, spatially independent

branching mechanism with ↵,� 2 (0,1), and call the result “representation theorem”.

Their study was motivated by the “immortal particle representation” derived by Evans

[69] for critical superprocesses conditioned on non-extinction. This representation is

in terms of a single “immortal particle” that throws o↵ pieces of mass. Evans’ article

is part of a cluster of papers that study conditioned superprocesses. Salisbury and

Verzani [116] condition the exit measure of a super-Brownian motion to hit n fixed,

distinct points on the boundary of a bounded smooth domain. The authors show that

the resulting process can be described as the sum of a tree with n leaves that throws

o↵ mass in a Poissonian way and of a copy of the unconditioned process, and call this

decomposition “backbone representation”. In a follow-up article [117] they consider

di↵erent conditionings and derive an “immortal particle description” where the guid-

ing object is a tree with possibly infinitely many branches that they call “backbone” or

“branching backbone”. Salisbury and Sezer [115] describe the super-Brownian motion

conditioned on boundary statistics in terms of a “branching backbone” or “branch-

ing backbone system”. Etheridge and Williams [67] represent a critical superprocess

with infinite variance conditioned to survive until a fixed time as immigration along

a Poisson number of “immortal trees”. An overview of decompositions of conditioned

superprocesses was o↵ered by Etheridge [66] using the names “skeleton” and “immor-

tal skeleton”. Back in our setup of supercritical superprocesses, Engländer and Pinsky

[59] speak about a “decomposition with immigration”, and Fleischmann and Swart [75]

construct a “trimmed tree”. For the analysis of continuous-state branching processes,

Duquesne and Winkel [40] find a “Galton–Watson forest”. In the corresponding su-

perprocess setup, Berestycki et al. [11] identify the “prolific backbone” and call the

representation itself a “backbone decomposition”. The latter phrase has been used

several times since [99, 98, 104, 112].

We decided to use the term “skeleton decomposition” for the following reasons.

Since the words “backbone” and “spine” are used interchangeably in spoken English,

using these two words to mean di↵erent things might cause confusion. Furthermore,
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spine/backbone describes one key, supporting element of an object and does not branch.

In contrast, a skeleton carries the entire structure and determines the main features of

an object. This is the correct intuition for the spine decomposition and the skeleton

decomposition of branching processes as well as the distinction between them.

2.1.2 Product L1-criticality

The first two moments of the superprocess can be expressed in terms of the underlying

motion and the branching mechanism. That is, (see, for example, Proposition 2.7 in

[72]) for all µ 2 Mf (D) and f 2 bp(D),

Pµ[hf,Xti] = hStf, µi, (2.11)

Varµ
�hf,Xti

�

=

Z t

0

⌦

Ss

h

�

2↵+

Z

(0,1)

y2⇧(·, dy)�(St�sf)
2

i

, µ
↵

ds. (2.12)

Here Varµ(hf,Xti) denotes the variance of hf,Xti under Pµ. By the monotone con-

vergence theorem, the boundedness of f in (2.11) is unnecessary, and (2.12) holds for

f 2 p(D) as soon as hStf, µi < 1. Similarly, under Assumption 1 and for µ 2 Mf (D),

f 2 bp(D), the first two moments of hf,X⇤
t i (see the discussion around (2.6) for the

definitions) can be expressed as

Pµ[hf,X⇤
t i] = hS⇤

t f, µi, (2.13)

Varµ
�hf,X⇤

t i
�

=

Z t

0

⌦

S⇤
s

h

�

2↵+

Z

(0,1)

y2⇧⇤(·, dy)�(S⇤
t�sf)

2

i

, µ
↵

ds. (2.14)

The main purpose of this section is to discuss Assumption 2, that enforces conditions on

the operator L+� and consequently on its semigroup (St)t�0

which is the expectation

semigroup of X by (2.11). Throughout the section, we suppose that Assumptions 1 and

2 hold. Key features of the local behaviour of the superdi↵usion X are determined by

the generalised principal eigenvalue �c = �c(L+ �). If ↵ and ⇧ are su�ciently smooth

and �c  0, then the superdi↵usion exhibits weak local extinction, i.e. the total mass

assigned to a compact set by the superprocess tends to zero. For quadratic branching

mechanisms this was shown by Pinsky [111, Theorem 6]; for general branching mecha-

nisms the proof of Theorem 3 (i) in [58] gives the result. This is the reason to assume

�c > 0.

The assumption of product L1-criticality restricts this thesis to the situation where

the expectation semigroup (St)t�0

scales precisely exponentially on compactly sup-

ported, continuous functions. In general, writing Stf(x) = e�c

t!f,x(t), the limit

!f,x := limt!1 !f,x(t) exists for all f 2 C+

c (D), x 2 D. Product L1-criticality is

equivalent to !f,x > 0 for all f 6= 0. The alternative is !f,x = 0 for all f and x (cf.

Theorem 7 in [111] and Appendix A in [62]). Some of the relevant literature for this

regime was discussed in Section 1.4. The notion of product L1-criticality comes from
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the criticality theory of second order elliptic operators; see Appendix B of [59] for a

good summary and Chapter 4 in [110] for a comprehensive treatment.

By Theorem 4.8.6 in [110], criticality implies that the ground state � is an invariant

function of e��
c

tSt, that is e��
c

tSt� = �, and we define a conservative di↵usion (⇠ =

(⇠t)t�0

; (P�
x)x2D) by

dP�
x

dPx

�

�

�

�

�(⇠
s

: st)

=
�(⇠t)

�(x)
e
R
t

0 (�(⇠s)��
c

) ds on {t < ⌧D}, (2.15)

P�
x[g(⇠t)] = �(x)�1e��

c

tSt[�g](x), (2.16)

for all x 2 D, t � 0, g 2 p(D). Product L1-criticality is equivalent to positive recurrence

of the di↵usion (⇠ = (⇠t)t�0

; (P�
x)x2D) with stationary distribution �(x)e�(x) dx, c.f.

[110, Theorems 4.9.5 and 4.9.6], and we call it the ergodic motion or the spine (as we

explain in Section 2.2 below). In particular, see Theorems 4.3.3 and 4.8.6 in [110],

hP�
· [g(⇠t)],�e�i = hg,�e�i for all g 2 p(D), (2.17)

and, for every probability measure ⇡ on D and g 2 bp(D),

hP�
· [g(⇠t)],⇡i ! hg,�e�i as t ! 1. (2.18)

If, in addition, the initial distribution ⇡ is of compact support, then (2.18) holds for

all g 2 p(D) with hg,�e�i < 1. Indeed, for g bounded, (2.18) follows from Theorem

4.9.9 in [110] and the dominated convergence theorem. If the support of ⇡, supp(⇡), is

compactly embedded in D, choose a domain B ⇢⇢ D with supp(⇡) ✓ B. There exists

a constant C > 0 such that

p�(x, y, t)  C�(y)e�(y) for all x 2 B, y 2 D, t > 1, (2.19)

where p�(x, y, t) denotes the transition density of (⇠,P�) and limt!1 p�(x, y, t) =

�(y)e�(y) for every x, y 2 D; cf. Pinchover [109, (2.12) and Theorem 1.3 (ii)]. Hence,

(2.18), for ⇡ 2 Mc(D) and g 2 p(D) with hg,�e�i < 1, follows from the dominated

convergence theorem.

Lemma 2.6 (Many-to-one lemma for X and Z). For all µ 2 Mf (D), ⌫ 2 Mloc

a (D)

and g 2 p(D),

e��
c

tPµ[h�g,Xti] = hP�
· [g(⇠t)],�µi, (2.20)

e��
c

tP•,⌫
hD �

w
g,Zt

Ei

=
D

P�
· [g(⇠t)],

�

w
⌫
E

(2.21)

e��
c

tPµ

hD �

w
g,Zt

Ei

=
⌦

P�
· [g(⇠t)],�µ

↵

. (2.22)

Proof. Identity (2.20) follows immediately from (2.11) and (2.16). For (2.21), notice
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that by (1.8) the local growth rate of Z is given by

�Z(x) := q(x)
⇣

1
X

k=2

kpk(x)� 1
⌘

= @sG(x, s)
�

�

s=1

=
 
0

(x,w(x))

w(x)
for all x 2 D.

Using the definition of Pw
x in (1.7), we obtain for all x 2 D,

Pw
x

h

e
R
t

0 �Z

(⇠
s

) ds �(⇠t)

w(⇠t)
g(⇠t)

i

= w(x)�1Px

h

exp
⇣

Z t

0

�

�Z(⇠s)�  �(⇠s, w(⇠s))

w(⇠s)

�

ds
⌘

�(⇠t)g(⇠t)
i

= w(x)�1St[�g](x)
(2.16)

=
�(x)

w(x)
e�c

tP�
x[g(⇠t)].

Hence, the first moment formula for branching di↵usions (see, for example, Theorem

8.5 in [80]) yields

e��
c

tP•,⌫
hD �

w
g,Zt

Ei

= e��
c

t
D

Pw
·

h

e
R
t

0 �Z

(⇠
s

) ds �(⇠t)

w(⇠t)
g(⇠t)

i

, ⌫
E

=
D

P�
· [g(⇠t)],

�

w
⌫
E

.

Since, under Pµ, the initial configuration of Z is given by a Poisson random measure

with intensity w(x)µ(dx), (2.22) follows from (2.21).

We record the following consequence of Lemma 2.6.

Corollary 2.7. For all µ 2 M�
f (D), ((W �

t (X))t�0

;Pµ) and ((W �/w
t (Z))t�0

;Pµ) are

martingales with

Pµ

⇥

W �
t (X)

⇤

= Pµ

⇥

W �/w
t (Z)

⇤

= h�, µi for all t � 0.

Proof. Since (⇠,P�
x) is conservative, the identity for the expectations follows immedi-

ately from (2.20) and (2.22). The Markov property of X combined with (2.20) gives

the claim for X. The Markov property of Z and (2.21) imply that (W �/w
t (Z))t�0

is

a P•,⌫-martingale for all ⌫ 2 Mloc

a (D) with h�/w, ⌫i < 1. Replacing ⌫ by a Poisson

random measure with intensity w(x)µ(dx) completes the proof.

Let µ 2 M�
f (D), µ 6⌘ 0. After dividing the right-hand side of (2.20) by h�, µi, the

expression can be interpreted as the expectation of g(⇠t), where ⇠ is the ergodic motion

with starting point randomised according to the probability distribution �µ
h�,µi . With

this motivation, we define, for all measurable sets A,

P�
�µ(A) :=

1

h�, µi
⌦

P�
· (A),�µ

↵

. (2.23)

We end this section with a remark for the case that the superprocess is deterministic.

Remark 2.8. If `({x 2 D : ↵(x) + ⇧(x, (0,1)) > 0}) = 0, then (2.11)–(2.12) imply

that hf,Xti = hStf, µi for all t � 0, Pµ-almost surely, for all continuous f 2 bp(D).
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Hence, Assumption 1 cannot be satisfied. However, under Assumption 2, (2.16) and

(2.18) imply that for continuous f 2 bp(D) with f/� bounded,

e��
c

thf,Xti = e��
c

thStf, µi = hP�
· [f(⇠t)/�(⇠t)],�µi ! hf/�,�e�ih�, µi = hf, e�iW �

1(X)

Pµ-almost surely, as t ! 1. Now a standard approximation argument shows that the

conclusion of Theorem 1.2 holds.

2.1.3 Moment conditions

In this section, we discuss Assumption 3 and compare it to the conditions used in the

literature. We work under Assumptions 1 and 2. While Assumption 3 seems to be the

most useful set of conditions, we prove our results under the following weaker moment

assumption.

Assumption 3’. There exists p 2 (1, 2], '
1

,'
2

2 p(D), �
1

,�
2

,�
3

2 [p, 2] and j
1

, j
2

2
{0, 1} such that,

sup
x2D

�(x)�1�1↵(x) < 1, (2.24)

sup
x2D

�(x)�2�1

Z

(0,'1(x)]
y�2 ⇧(x, dy) < 1, (2.25)

sup
x2D

�(x)�3�1

Z

('1(x),1)

y�3 ⇧(x, dy) < 1, (2.26)

h�p�1,�e�i < 1, (2.27)
D

�j1
Z

(0,'2(·)]
y2e�w(·)y ⇧(·, dy),�e�

E

< 1, (2.28)

D

�j2
Z

('2(·),1)

y2e�w(·)y ⇧(·, dy),�e�
E

< 1. (2.29)

Assumption 3 is the special case '
1

= '
2

= 1, �
1

= �
2

= 2, �
3

= p and j
1

=

j
2

= 0 of Assumption 3’. Notice that with this choice, Condition (2.28) trivially

holds since h�, e�i < 1 and x 7! R

(0,1] y
2⇧(x, dy) is a bounded function by the model

assumptions in Section 1.1. Therefore, the following theorem generalises Proposition 1.1

and Theorems 1.2 and 1.5.

Theorem 2.9. Suppose Assumptions 1, 2, (2.24)–(2.26) hold and µ 2 M�
f (D).

(i) The martingales (W �
t (X))t�0

and (W �/w
t (Z))t�0

are bounded in Lp(Pµ), and

W �
1(X) = W �/w

1 (Z) Pµ-almost surely.

(ii) Suppose that, in addition, (2.27) holds. For all f 2 p(D) with f/� bounded, we

have in L1(Pµ)

lim
t!1

e��
c

thf,Xti = hf, e�iW �
1(X). (2.30)
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(iii) If, in addition, Assumptions 3’ and 4 hold, then there exists a measurable set ⌦
0

with Pµ(⌦0

) = 1 and, on ⌦
0

, for all `-almost everywhere continuous functions

f 2 p(D) with f/� bounded, the convergence in (2.30) holds.

The first three moment conditions, (1.10)–(1.12) or (2.24)–(2.26), are used to guar-

antee that the martingale (W �
t (X))t�0

is bounded in Lp (see Theorem 2.15 below). To

the best of our knowledge, even though these conditions may not be optimal, they are

the best conditions obtained so far to guarantee Lp-boundedness, p 2 (1, 2), for general

superprocesses. For the case of a super-Brownian motion, similar conditions were found

in [97]. Condition (1.10) appeared as the main moment assumption in [61] and [62] to

establish the convergence (2.30) in distribution and in probability, respectively. The

two articles that study almost sure convergence in the product L1-critical regime (i.e.

under Assumption 2) are by Chen et al. [27] and Liu et al. [102]. In both papers, ↵

and � are bounded; hence, (1.10) holds.

The article [27] is restricted to quadratic branching mechanisms, i.e. ⇧ ⌘ 0, and

(1.11)–(1.12) are trivially satisfied. Liu et al. [102] do not require ⇧ to have a p-th

moment. The authors show that under their assumptions (D of finite Lebesgue measure

and (St)t�0

intrinsically ultracontractive) the martingale limit W �
1(X) is nontrivial if

and only if hR
(1,1)

y log y⇧(·, y/�), e�i < 1, and they establish their result under this

condition. In the alternative case, the martingale limit is zero almost surely, and the

stated convergence (1.16) holds trivially.

The fourth assumption, (1.13) or (2.27), is a technical condition. It is only used in

Proposition 3.11 below to compare the immigration after a large time t,
PN

t

i=1

hf, Ii,ts i,
to its expectation

PN
t

i=1

Pµ[hf, Ii,ts i|F t]. In previous work on the SLLN [27, 102], As-

sumption (1.13) holds since � is bounded.

The technical condition can be avoided using an h-transform. The h-transform

for measure-valued di↵usions was introduced by Engländer and Pinsky in [59]. For

h 2 C2,⌘(D), h > 0, let

Lh
0

= L+ a
rh

h
·r, �h(x) =

(L+ �)h(x)

h(x)
,  h

0

(x, z) =
 
0

(x, h(x)z)

h(x)
. (2.31)

If �h, ↵h and x 7! R

(0,1)

(y ^ h(x)y2)⇧(x, dy) belong to b(D), then  h
�h

(x, z) :=

��h(x)z +  h
0

(x, z) satisfies the assumptions from Section 1.1. We denote the space

of such functions h by H( �). An (Lh
0

, h
�h

;D)-superprocess Xh started in h(x)µ(dx)

can be obtained from an (L, ;D)-superprocess X started in µ by setting Xh
t (dx) :=

h(x)Xt(dx). This result follows immediately from a comparison of the Laplace trans-

forms using the mild equation (1.3) and Corollary 4.1.2 in [110]; see [59] for the com-

putation in the quadratic case. In the following, we superscript all quantities derived

from Xh with an h. Clearly, the (L, ;D)-superprocess can be recovered from the

(Lh
0

, h
�h

;D)-superprocess by a transform with 1/h.
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Lemma 2.10. Let h 2 H( �) and µ 2 M�
f (D).

(i) The operator Lh
0

+ �h satisfies Assumption 2 with �h = �/h, e�h = e�h and

�hc = �c, and the process (W �h

t (Xh) = e��h

c

th�h, Xh
t i : t � 0;P h

hµ) is a martingale

with almost sure limit W �h

1 (Xh).

(ii) Suppose (2.30) holds Pµ-almost surely for some f 2 p(D), then

lim
t!1

e��h

c

thf/h,Xh
t i = hf/h, e�hiW �h

1 (Xh) P h
hµ-almost surely. (2.32)

If (2.30) holds in L1(Pµ) instead, then (2.32) holds in L1(P h
hµ).

Proof. The first part of the claim was proved by Pinsky [110, Chapter 4]. Setting

Xh := hX, we immediately obtain W �h

t (Xh) = e��h

c

th�h, Xh
t i = W �

t (X) and, using

(2.30), Pµ-almost surely (in L1(Pµ), respectively),

e��h

c

thf/h,Xh
t i = e��

c

thf,Xti ! hf, e�iW �
1(X) = hf/h, e�hiW �h

1 (Xh) as t ! 1.

Lemma 2.10 states that Assumption 2 and our results are invariant under h-

transforms. The same is true for Assumptions 1 and 4.

Lemma 2.11. Let h 2 H( �). The (Lh
0

, h
�h

;D)-superprocess Xh satisfies Assump-

tion 1 with martingale function wh = w/h and the distribution of the skeleton Zh under

Ph
hµ agrees with the distribution of Z under Pµ for all µ 2 Mc(D). In particular, if X

satisfies Assumption 4, then Xh satisfies Assumption 4.

Proof. The claim follows immediately from the definitions.

Exploiting the invariance under h-transforms, we can prove our main results under

the following moment assumption.

Assumption 3”. There exists p 2 (1, 2] such that Conditions (1.10)–(1.12) and (2.29)

for j
2

= 1, '
2

= 1 hold and

sup
x2D

Z

(1/�(x),1)

y⇧(x, dy) < 1. (2.33)

Crucially, Assumption 3” does not require h�p, e�i < 1. In the case of a quadratic

branching mechanism, only boundedness of �↵ is required. Condition (2.33) is needed

to guarantee that � 2 H( �).

Theorem 2.12. Suppose Assumptions 1, 2, (1.10)–(1.12) and (2.33) hold, and let

µ 2 M�
f (D).

(i) For all f 2 p(D) with f/� bounded, the convergence in (2.30) holds in L1(Pµ).
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(ii) If, in addition, Assumptions 3” and 4 hold, then there exists a measurable set ⌦
0

with Pµ(⌦0

) = 1 and, on ⌦
0

, for all `-almost everywhere continuous functions

f 2 p(D) with f/� bounded, the convergence in (2.30) holds.

Proof of Theorem 2.12 assuming Theorem 2.9. Part (i): since �� = �c, ↵� = �↵ and

⇧�(x, dy) = 1

�(x)⇧(x, dy/�(x)), Conditions (1.10), (1.11), (2.33) and the model as-

sumptions in Section 1.1 guarantee that � 2 H( �). By Lemma 2.10 (i), X� satisfies

Assumption 2 and �� = 1. Thus, (1.10)–(1.12) imply that X� satisfies (2.24)–(2.27)

with '
1

= �, �
2

= 2, �
3

= p and �
1

2 [p, 2] arbitrary. Using Lemma 2.11, we deduce

that Theorem 2.9 (ii) applies to X�, and the claim follows from Lemma 2.10 (ii).

Part (ii): X� satisfies (2.28)–(2.29) with '
2

= � and arbitrary j
1

, j
2

2 {0, 1},
and Assumption 4 by Lemma 2.11. Hence, Theorem 2.9 (iii) applies to X�, and

Lemma 2.10 (ii) completes the proof for fixed functions f . The existence of a com-

mon set ⌦
0

will be proved in Lemma 3.4 below.

Engländer and Winter [62] proved the convergence (2.30) in probability under the

assumption of a quadratic branching mechanisms and (1.10). Their argument can easily

be extended to general branching mechanisms. Since the proof relies on an h-transform

with h = � and second moment estimates, the additional conditions needed for this

generalisation are (1.11), (1.12) with p = 2, and (2.33).

The freedom to choose p 2 (1, 2] allows us to analyse processes where (W �
t (X))t�0

is bounded in Lp for p 2 (1, 2) but not in L2. Examples of such processes are given in

Chapter 4. In these cases, not only our almost sure convergence result is new but also

the implied convergence in probability result. The main tool to deal with non-integer

moments is a spine decomposition presented in Section 2.2, and we are not aware of

any other way to obtain these conditions.

The final conditions (2.28)–(2.29) simplify to (1.14) in the case j
1

= j
2

= 0, '
2

= 1.

These assumptions guarantee that the process X⇤ from the skeleton decomposition has

finite second moments (2.14), a fact which is only used in the transition from lattice to

continuous times. In particular, the SLLN along lattice times in Theorem 3.13 below

holds without it. If w is bounded away from zero, for instance when the branching

mechanism is spatially independent and the motion is conservative (see Section 4.1),

then (1.14) holds automatically. Since Chen et al. [27] consider a quadratic branching

mechanism, the conditions automatically hold in their article. In contrast, Liu et

al. [102] have no conditions of this type.

In summary, our moment conditions are weaker than those used in [27], but com-

pared to [102], we impose stricter assumptions on the Lévy measure ⇧, yet allow a

much larger class of underlying motions ⇠ and domains D.

34



Chapter 2. Preliminaries

2.1.4 The strong law of large numbers for the skeleton

Throughout this section, we suppose that Assumptions 1, 2 and 3’ hold. Assumption 4

may look like a strong assumption on first glance. However, we argue that this is not so.

The skeleton decomposition shows that the large-time behaviour of the superprocess is

guided by the skeleton. This suggests that the total mass the superprocess assigns to

a compact ball, will be asymptotically well-behaved if and only if the skeleton carrying

the superprocess has asymptotically a well-behaved number of particles in that ball.

We write B
0

(D) := {B 2 B(D) : `(@B) = 0}. To show that Assumption 4 holds, it

su�ces to prove that, for all µ 2 Mc(D), B 2 B
0

(D),

lim inf
n!1

e��
c

n�
D �

w
B, Zn�

E

� h� B, e�iW �/w
1 (Z) Pµ-almost surely

as we will see in Lemma 3.1 (ii) below. Often it is a much easier task to prove the

convergence along lattice times than along continuous times.

There are good results in the literature proving SLLNs for branching di↵usions.

Some of the relevant literature was reviewed in Section 1.4. A nice argument to obtain

almost sure asymptotics for spatial branching particle processes from related asymp-

totic behaviour of the spine was found recently by Harris and Roberts [82]. However,

they assume a convergence for the spine which usually does not hold in our setup.

The theorem we use to verify several examples in Chapter 4 is based on a result from

Engländer et al. [57]. The authors prove the convergence for strictly dyadic branching

di↵usions along continuous times. We require only convergence along lattice times but

a more general branching generator. The following theorem is a version of their result

as our proof reveals.

Theorem 2.13 (Adaptation of Theorem 6 in [57]). Let µ 2 Mc(D), and assume that

for every x in the support of µ the following conditions hold:

(i) There is a family of sets Dt 2 B(D), t � 0, such that for all � > 0,

P•,�
x

(9n
0

2 N : supp(Zn�) ✓ Dn� for all n � n
0

) = 1.

(ii) For every B ⇢⇢ D, there exists a constant K > 0 such that

sup
y2D

t

�

�P�
y [ B(⇠Kt)]� h� B, e�i

�

� ! 0 as t ! 1. (2.34)

Then, for all � > 0, f 2 p(D) with fw/� bounded,

lim
n!1

e��
c

n�hf, Zn�i = hf, we�iW �/w
1 (Z) Pµ-almost surely.

Proof. Using Notation 2.4, we have Z =
PN0

i=1

Zi,0, where given F
0

, the processes

(Zi,0 : i = 1, . . . , N
0

) are independent, and (Zi,0;Pµ(·|F0

)) is equal in distribution to
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(Z;P•,�
⇠

i

(0)
). In particular, W �/w

1 (Z) =
PN0

i=1

W �/w
1 (Zi,0), and

Pµ

⇣

lim
n!1

e��
c

n�hf, Zn�i = hf, we�iW �/w
1 (Z)

⌘

� Pµ

⇣

N0
\

i=1

n

lim
n!1

e��
c

n�hf, Zi,0
n� i = hf, we�iW �/w

1 (Zi,0)
o⌘

= Pµ

h

N0
Y

i=1

P•,�
⇠

i

(0)

⇣

lim
n!1

e��
c

n�hf, Zn�i = hf, we�iW �/w
1 (Z)

⌘i

.

It remains to argue that under the stated assumptions, P•,�
x

(limn!1 e��
c

n�hf, Zn�i =
hf, we�iW �/w

1 (Z)) equals 1 for every x in the support of µ. Engländer et al. [57] give a

proof of this result for strictly dyadic branching di↵usions in two steps. The argument

can be generalised as follows. The first step is to show that with (sn)n�0

nonnegative

and non-decreasing, and Un = e��
c

(s
n

+�n)hf, Zs
n

+�ni, the sequence Df (sn, �n) = |Un�
P•,�

x

[Un|�(Zr : r  n�)]| converges to zero. The key to this result is an upper bound

on the p-th moment of W �/w
t (Z) and is obtained via a spine decomposition of the

branching di↵usion. This would be possible even in our more general setup but is not

needed since the required bound follows easily from Theorem 2.9 (i). The second step

is to show the convergence of CEf (sn, �n) = P•,�
x

[Un|�(Zr : r  �n)] for sn = K�n to

hf, we�iW �/w
1 (Z). Their assumptions for this convergence are Conditions (iii) and (iv)

in their Definition 4. Condition (iii) is our Condition (i) in Theorem 2.13. From the

proof in [57] it is easy to see that their Condition (iv) in Definition 4 can be relaxed to

our Condition (ii), a fact that has also been used in the verification of some examples

in [57].

The following lemma is useful in the verification of the conditions of Theorem 2.13

and has been proved by Engländer et al. [57]. We give the main argument for com-

pleteness. Denote by k · k the `2-norm on Rd.

Lemma 2.14. Suppose for x 2 D there are a continuous function a : [0,1) ! [0,1)

and some ✏ > 0 such that

P�
x

⇥

{k⇠
t

k�a(t)}w(⇠t)/�(⇠t)]  e�(�
c

+✏)t for all t su�ciently large. (2.35)

Then Condition (i) in Theorem 2.13 holds with Dt = {y 2 D : kyk < a(t)}. If, in

addition, for every B ⇢⇢ D, there is K > 0 such that

sup
ky1k<a(t),y22B

�

�

�

p�(y
1

, y
2

,Kt)

�(y
2

)e�(y
2

)
� 1

�

�

�

! 0 as t ! 1, (2.36)

where p� denotes the transition density of (⇠;P�), then also Condition (ii) in Theo-

rem 2.13 is satisfied.
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Proof. Markov’s inequality and (2.21) yield for all t � 0,

P•,�
x

(supp
�

Zt) 6✓ Dt

�  P•,�
x

⇥h Dc

t

, Zti
⇤

= e�c

t �(x)

w(x)
P�
x

⇥

{k⇠
t

k�a(t)}w(⇠t)/�(⇠t)].

The Borel–Cantelli lemma yields the first part of the lemma. The second part follows

immediately from the definitions and from h�, e�i < 1.

We will see in Chapter 4 that for many of the main examples of superdi↵usions

the SLLN for the skeleton already follows from Theorem 2.13. For those processes

where Assumption 4 has not been proved yet, we believe that the particle nature of

the skeleton will make it easier to obtain the SLLN for the skeleton than to derive

further convergence statements in the superprocess setup. This thesis will then allow

us to carry results for the branching di↵usion over to the superdi↵usion. We emphasize

that the SLLN for the skeleton is only needed along lattice times and for compactly

supported starting measures.

2.2 Spine decomposition

In this section, we use a spine decomposition of X to identify (W �
t (X))t�0

as an Lp-

bounded martingale, where p 2 (1, 2] is determined by Assumption 3’. A similar

decomposition has been used for other purposes by Engländer and Kyprianou [58]

on bounded subdomains for quadratic branching mechanisms and by Liu et al. [101]

in the case ↵ = 0. For the one-dimensional super-Brownian motion the spine de-

composition was used by Kyprianou et al. [96, 97] to establish Lp-boundedness of

martingales closely related to (W �
t (X))t�0

. Similar arguments have been used in the

setup of branching di↵usions in [80, 57]. See [58] for an overview of the history of

spine decompositions for branching processes. Throughout this section, we suppose

that Assumption 2 holds. Further conditions used are stated explicitly. Recall that

M�
f (D) = {µ 2 Mf (D) : h�, µi < 1}.

Theorem 2.15. Suppose Assumptions (2.24)–(2.26) hold. For all µ 2 M�
f (D), pro-

cess ((W �
t (X))t�0

;Pµ) is an Lp-bounded martingale. In particular, ((W �
t (X))t�0

;Pµ)

converges in Lp(Pµ).

Let µ 2 M�
f (D), µ 6⌘ 0. We already showed in Corollary 2.7 that (W �

t (X))t�0

is

a martingale. Hence, it su�ces to prove Lp-boundedness, and we can define a new

probability measure Qµ by

dQµ

dPµ

�

�

�

�

�(X
s

: s2[0,t])
=

W �
t (X)

h�, µi for all t � 0.

Recall from (2.23) that (⇠ = (⇠t)t�0

;P�
�µ) is the ergodic motion with randomised start-
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ing point, and use (2.15) to obtain

P�
�µ(A) =

e��
c

t

h�, µi
D

P·
⇥

e
R
t

0 �(⇠
s

) ds�(⇠t) A

⇤

, µ
E

for all A 2 �(⇠s : 0  s  t). (2.37)

Lemma 2.16. For all µ 2 M�
f (D), µ 6⌘ 0, f, g 2 bp(D), t � 0,

Qµ

h

e�hf,X
t

i h�g,Xti
h�, Xti

i

= Pµ

⇥

e�hf,X
t

i⇤P�
�µ

h

g(⇠t) exp
⇣

�
Z t

0

@z 0

(⇠s, uf (⇠s, t� s)) ds
⌘i

.

(2.38)

Notice that by definition, h�, Xti > 0, Qµ-almost surely.

Proof of Lemma 2.16. We prove (2.38) only for g compactly supported since the gen-

eral case then follows from the monotone convergence theorem. The continuity of �

implies that f + ✓�g 2 bp(D) for all ✓ � 0. Use the definition of Qµ, and interchange

di↵erentiation and integration using the dominated convergence theorem to obtain

Qµ

h

e�hf,X
t

i h�g,Xti
h�, Xti

i

= � e��
c

t

h�, µiPµ

⇥

@✓
�

�

✓=0

e�hf+✓�g,X
t

i⇤

=
e��

c

t

h�, µie
�hu

f

(·,t),µi@✓
�

�

✓=0

huf+✓�g(·, t), µi.

By (1.2), the definition of  � , and (2.37) the claim follows when we have shown that

hf,g(x, t) := @✓
�

�

✓=0

uf+✓�g(x, t)

= Px

h

�(⇠t)g(⇠t) exp
⇣

�
Z t

0

@z �(⇠s, uf (⇠s, t� s)) ds
⌘i

(2.39)

since integration with respect to µ and di↵erentiation can be interchanged using the

dominated convergence theorem. By (1.3), for any ✓ > 0,

uf+✓�g(x, t)� uf (x, t)

✓

= St[�g](x)�
Z t

0

Ss

h 
0

(·, uf+✓�g(·, t� s))�  
0

(·, uf (·, t� s))

✓

i

(x) ds.

The Laplace exponent ✓ 7! v(✓) := uf+✓�g(x, t) = � logP�
x

[e�hf+✓�g,X
t

i] is increasing,

concave and nonnegative. In particular, v(✓)�v(0)
✓ is decreasing in ✓. Moreover, z 7!

 
0

(x, z) is increasing, convex, and nonnegative. Hence, for all (x, t) 2 D ⇥ [0,1),

0  v(✓)� v(0)

✓
=

uf+✓�g(x, t)� uf (x, t)

✓
 St[�g](x)  k�gk1e

¯�t,

where �̄ = supx2D �(x), and k · k1 denotes the supremum norm. A Taylor expansion
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of  
0

yields for every (x, t) 2 D ⇥ [0,1) some ✓̃ 2 (0, ✓) such that

 
0

(x, v(✓))�  
0

(x, v(0))

✓

= @z 0

(x, v(0))
v(✓)� v(0)

✓
+
⇣

@z 0

(x, v(✓̃))� @z 0

(x, v(0))
⌘v(✓)� v(0)

✓
.

The first term on the right-hand side is nonnegative and increases as ✓ # 0, the second

term is dominated and tends to zero. Hence,

hf,g(x, t) = St[�g](x)�
Z t

0

Ss

⇥

@z 0

(·, uf (·, t� s))hf,g(·, t� s)
⇤

(x) ds. (2.40)

Lemma A.1 (ii) below applied to the functions g
1

(x, t) = �@z �(x, uf (x, t)), g2(x, t) =

@z 0

(x, uf (x, t)), f
1

= �g and f
2

(x, t) = �@z 0

(x, uf (x, t))hf,g(x, t) shows that the

unique solution to (2.40) is given by the right-hand side of (2.39).

Recall the definition of Dynkin and Kuznetsov’s Nx-measures from (2.8), and let

µ 2 M�
f (D), µ 6⌘ 0. On a suitable probability space with measure Pµ,�, we define the

following processes:

(i) (⇠ = (⇠t)t�0

;Pµ,�) is equal in distribution to (⇠t : t � 0;P�
�µ), that is an ergodic

di↵usion. We refer to this process as the spine.

(ii) Continuous immigration: (n;Pµ,�) a random measure such that, given ⇠, n is a

Poisson random measure which issues Mf (D)-valued processes Xn,t = (Xn,t
s )s�0

at space-time point (⇠t, t) with rate 2↵(⇠t) dt⇥dN⇠
t

. The almost surely countable

set of immigration times is denoted by Dn; Dn
t := Dn \ (0, t]. Given ⇠, the

processes (Xn,t : t 2 Dn) are independent.

(iii) Discontinuous immigration: (m;Pµ,�) a random measure such that, given

⇠, m is a Poisson random measure which issues Mf (D)-valued processes Xm,t

at space-time point (⇠t, t) with rate dt ⇥ R

(0,1)

⇧(⇠t, dy) y ⇥ dPy�
⇠

t

. The almost

surely countable set of immigration times is denoted by Dm; Dm
t = Dm \ (0, t].

Given ⇠, the processes (Xm,t : t 2 Dm) are independent and independent of n

and (Xn,t : t 2 Dn).

(iv) (X = (Xt)t�0

;Pµ,�) is equal in distribution to (X = (Xt)t�0

;Pµ), i.e. it is a copy

of the original process. Moreover, X is independent of ⇠,n,m and all immigration

processes.

We denote by

Xn
t =

X

s2Dn
t

Xn,s
t�s and Xm

t =
X

s2Dm
t

Xm,s
t�s

the continuous and discontinuous immigration processes, respectively. We write �t :=

Xt +Xn
t +Xm

t for all t � 0, and
d
= denotes distributional equality.
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Proposition 2.17 (Spine decomposition). For all µ 2 M�
f (D), µ 6⌘ 0,

(Xt : t � 0;Qµ)
d
= (�t = Xt +Xn

t +Xm
t : t � 0;Pµ,�).

The proof of Proposition 2.17 is very similar to the proof of Theorem 5.2 in [96],

and we omit long computations.

Proof of Proposition 2.17. Using the definitions and Campbell’s formula for Poisson

random measures, one easily checks that the marginal distributions agree. By defi-

nition, ((�t, ⇠t)t�0

;Pµ,�) is a time-homogeneous Markov process, and when we show

that

Pµ,�(⇠t 2 dx |�t) =
1

h�,�ti�(x)�t(dx) for all t � 0,

then ((�t)t�0

;Pµ,�) is a time-homogeneous Markov process (by the argument given on

page 21 of [96]). Using the definition, Lemma 2.16, and (�t;Pµ,�)
d
= (Xt;Qµ), we find

that for all f, g 2 bp(D),

Pµ,�

⇥

e�hf,�
t

iPµ,�[g(⇠t) |�t]
⇤

= Pµ,�

h

e�hf,�
t

i h�g,�ti
h�,�ti

i

,

and the claim follows.

For all t � 0, let Gt be the �-algebra generated by ⇠ up to time t and by n and m

restricted in the time component to [0, t].

Lemma 2.18. For all µ 2 M�
f (D), µ 6⌘ 0, and t � 0, Pµ,�-almost surely,

Pµ,�

⇥

e��
c

th�,�ti|Gt

⇤

= h�, µi+
X

s2Dn
t

e��
c

s�(⇠s) +
X

s2Dm
t

e��
c

sIm
s �(⇠s),

where (Im
t := h1, Xm,t

0

i : t � 0;Pµ,�) is, given ⇠, a Poisson point process with intensity

measure dt⇥ R

(0,1)

⇧(⇠t, dy) y.

Proof. Proposition 1.1 of [45] states that, for all f 2 p(D) with P�
x

[hf,Xti] < 1,

Nx[hf,Xti] = P�
x

[hf,Xti]. (2.41)

Using first the definition of �t, and then (2.41) and the branching property of X, we

obtain

Pµ,�[e
��

c

th�,�ti|Gt]

= Pµ

⇥

W �
t (X)

⇤

+
X

s2Dn
t

e��
c

tN⇠
s

[h�, Xt�si] +
X

s2Dm
t

e��
c

tPIm
s

�
⇠

s

[h�, Xt�si]

= Pµ

⇥

W �
t (X)

⇤

+
X

s2Dn
t

e��
c

tP�
⇠

s

[h�, Xt�si] +
X

s2Dm
t

e��
c

tIm
s P�

⇠

s

[h�, Xt�si].
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Since W �
t (X) = e��

c

th�, Xti, t � 0, is a Pµ- and P�
x

-martingale for all x 2 D, the

claim follows.

Finally, everything is prepared for the proof of Theorem 2.15. Throughout the

thesis, we use the letters c and C for generic constants in (0,1) and their value can

change from line to line. Important constants are marked by an index indicating the

order in which they occur.

Proof of Theorem 2.15. The martingale property was proved in Corollary 2.7. We

have to show the Lp-boundedness. If µ ⌘ 0, then Xt(D) = 0 for all t � 0, and the

statement is trivially true. Let µ 2 M�
f (D), µ 6⌘ 0. We write W �

t (�) = e��
c

th�,�ti and
p̄ = p� 1 2 (0, 1]. Then x 7! xp̄ is concave and (x+ y)p̄  xp̄ + yp̄ for x, y � 0. Hence,

the definition of Qµ, Proposition 2.17, Jensen’s inequality and Lemma 2.18, yield

Pµ[W
�
t (X)p]

h�, µi = Qµ

⇥

W �
t (X)p̄

⇤

= Pµ,�

⇥

Pµ,�[W
�
t (�)

p̄|Gt]
⇤  Pµ,�[Pµ,�[W

�
t (�)|Gt]

p̄]

 Pµ,�

h

h�, µip̄ +
⇣

X

s2Dn
t

e��
c

s�(⇠s)
⌘p̄i

+ Pµ,�

h⇣

X

s2Dm
t

,Im
s

'1(⇠s)

e��
c

sIm
s �(⇠s)

⌘p̄
+
⇣

X

s2Dm
t

,Im
s

>'1(⇠s)

e��
c

sIm
s �(⇠s)

⌘p̄i

,

where '
1

is determined by Assumption 3’. The first term is deterministic. For the

remaining three terms we first use that xp̄  1+x�̄ for all �̄ � p̄, then (x+y)�̄  x�̄+y�̄

for all �̄ 2 [0, 1], and finally apply Campbell’s formula to obtain

Pµ,�

h⇣

X

s2Dn
t

e��
c

s�(⇠s)
⌘p̄i  1 +

Z t

0

2e��
c

�̄1sP�
�µ[�(⇠s)

�̄1↵(⇠s)] ds,

Pµ,�

h⇣

X

s2Dm
t

,Im
s

'1(⇠s)

e��
c

sIm
s �(⇠s)

⌘p̄i

 1 +

Z t

0

e��
c

�̄2sP�
�µ

h

Z

(0,'1(⇠s)]
�(⇠s)

�̄2y�̄2+1⇧(⇠s, dy)
i

ds,

Pµ,�

h⇣

X

s2Dm
t

,Im
s

>'1(⇠s)

e��
c

sIm
s �(⇠s)

⌘p̄i

 1 +

Z t

0

e��
c

�̄3sP�
�µ

h

Z

('1(⇠s),1)

�(⇠s)
�̄3y�̄3+1⇧(⇠s, dy)

i

ds,

where �̄i = �i � 1 2 [p̄, 1] with �i defined in Assumption 3’, i 2 {1, 2, 3}. We con-

clude that if Assumptions (2.24)–(2.26) hold, then there exists a constant C
1

2 (0,1)

independent of µ and t such that

Pµ[W
�
t (X)p]

h�, µi  h�, µip̄ + C
1

for all t � 0, (2.42)
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and ((W �
t (X))t�0

;Pµ) is an Lp-bounded martingale. Doob’s inequality yields the stated

Lp-convergence.

In Section 3.3 the following lemma will be used in the comparison between the

immigration process and its conditional expectation.

Lemma 2.19. Suppose Assumptions (2.24)–(2.27) hold. For every µ 2 Mc(D), µ 6⌘ 0,

there exists a time T > 0 and a constant C
2

2 (0,1) such that

P�
�µ

⇥

�(⇠t)
�1P�

⇠

t

[W �
s (X)p]

⇤  C
2

for all s � 0, t � T.

Proof. According to (2.42), for all s, t � 0,

P�
�µ

⇥

�(⇠t)
�1P�

⇠

t

[W �
s (X)p]

⇤  P�
�µ[�(⇠t)

p�1] + C
1

.

Since µ 2 Mc(D) and h�p�1,�e�i < 1 by Assumption (2.27), (2.18) implies that

P�
�µ[�(⇠t)

p�1] converges to h�p�1,�e�i, and the claim follows.
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CHAPTER 3

PROOFS OF THE MAIN RESULTS

In this chapter, we prove the main results stated in Section 1.3.

3.1 Reduction to a core statement

In this section, we work under Assumption 2. We first show that it su�ces to consider

test functions f = � B =: �|B for Borel sets B 2 B
0

(D) = {B 2 B(D) : `(@B) = 0},
and that we only have to prove that lim inft!1 e��

c

thf,Xti � hf, e�iW �
1(X) instead of

the full convergence. The proof is based on standard approximation theory combined

with an idea that appeared in Lemma 9 of [5]. We denote by C+

` (D) the space of

nonnegative, measurable, `-almost everywhere continuous functions on D.

Lemma 3.1. Let µ 2 M�
f (D) and either T = [0,1) or T = �N for some � > 0. In

addition, let either A = B
0

(D) and A� = {f 2 C+

` (D) : f/� 2 b(D)}, or A = B(D)

and A� = {f 2 p(D) : f/� 2 b(D)}. We define A�/w like A� where � is replaced by

�/w.

(i) If for all B 2 A,

lim inf
T3t!1

e��
c

th�|B, Xti � h�|B, e�iW �
1(X) Pµ-almost surely, (3.1)

then limT3t!1 e��
c

thf,Xti = hf, e�iW �
1(X) Pµ-almost surely for all f 2 A�.

(ii) If for all B 2 A, lim infT3t!1 e��
c

th �w B, Zti � h�|B, e�iW �/w
1 (Z) Pµ-almost

surely, then, for all f 2 A�/w, limT3t!1 e��
c

thf, Zti = hf, we�iW �/w
1 (Z) Pµ-

almost surely.

Proof. We show only Part (i); the proof of Part (ii) is similar. Let f 2 A� and write

S = {Pk
i=1

ci�|B
i

: k 2 N, ci 2 [0,1), Bi 2 A}. There exists a sequence of functions

fk 2 S such that 0  fk  f and fk " f pointwise. Using (3.1) and the monotone
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convergence theorem, we deduce that Pµ-almost surely,

lim inf
T3t!1

e��
c

thf,Xti � sup
k2N

lim inf
T3t!1

e��
c

thfk, Xti � sup
k2N

hfk, e�iW �
1(X) = hf, e�iW �

1(X).

Let c = supx2D f(x)/�(x). Since 0  c�� f  c�, the same argument can be applied

to c�� f , and we conclude that Pµ-almost surely

lim sup
T3t!1

e��
c

thf,Xti = lim sup
T3t!1

⇣

cW �
t (X)� e��

c

thc�� f,Xti
⌘

 cW �
1(X)� lim inf

T3t!1
e��

c

thc�� f,Xti

 ch�, e�iW �
1(X)� hc�� f, e�iW �

1(X) = hf, e�iW �
1(X).

In the next step, we use the branching property of the superprocess to restrict

ourselves to compactly supported starting measures.

Lemma 3.2. Let T = [0,1) or T = �N
0

for some � > 0, and in addition, let A� =

{f 2 C+

` (D) : f/� 2 b(D)} or A� = {f 2 p(D) : f/� 2 b(D)}.
(i) If for all µ 2 Mc(D) and f 2 A�,

lim
T3t!1

e��
c

thf,Xti = hf, e�iW �
1(X) Pµ-almost surely, (3.2)

then (3.2) holds for all µ 2 M�
f (D).

(ii) If convergence (3.2) holds in L1(Pµ) for all µ 2 Mc(D), then it holds for all

µ 2 M�
f (D).

Proof. Let µ 2 M�
f (D), and take a sequence of domains Bk ⇢⇢ D, Bk ✓ Bk+1

,

with D =
S1

k=1

Bk; B̂k := Bk \ Bk�1

, where B
0

:= ;. On a suitable probability

space, let X
ˆB
k , k 2 N, be independent (L, � ;D)-superprocesses, where X

ˆB
k is started

in
ˆB
k

µ. By the branching property, XB
k :=

Pk
l=1

X
ˆB
l , XD\B

k :=
P1

l=k+1

X
ˆB
l and

X := XB
k+XD\B

k are (L, � ;D)-superprocesses with starting measures B
k

µ, D\B
k

µ

and µ, respectively. In particular,

W �
t (X) = e��

c

th�, XB
k

t +XD\B
k

t i = W �
t (X

B
k) +W �

t (X
D\B

k),

and the martingale limits W �
1(XD\B

k) := lim inft!1W �
t (X

D\B
k), k 2 N, are decreas-

ing in k. Fatou’s Lemma yields

Pµ

⇥

W �
1(XD\B

k)
⇤

= Pµ

⇥

lim
t!1

W �
t (X

D\B
k)
⇤  lim inf

t!1
Pµ

⇥

W �
t (X

D\B
k)
⇤

= h�, D\B
k

µi.

In particular, h�, µi < 1 implies that (W �
1(XD\B

k) : k 2 N) converges to zero in

L1(Pµ) as k ! 1 and, since the sequence is monotonically decreasing, almost sure

convergence follows. We conclude that limk!1W �
1(XB

k) = W �
1(X) almost surely

and in L1(Pµ).
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For Part (i), Lemma 3.1 (i) implies that it su�ces to show

lim inf
T3t!1

e��
c

thf,Xti � hf, e�iW �
1(X) Pµ-almost surely

for all f 2 A�. Since B
k

µ 2 Mc(D), the assumption implies that, for all k 2 N,

lim inf
t!1

e��
c

thf,Xti � lim inf
t!1

e��
c

thf,XB
k

t i � hf, e�iW �
1(XB

k) Pµ-almost surely,

and taking k ! 1 yields the claim.

To show Part (ii), let c = supx2D f(x)/�(x), and estimate for fixed k 2 N,

Pµ

⇥

�

�e��
c

thf,Xti � hf, e�iW �
1(X)

�

�

⇤  cPµ

⇥

e��
c

th�, XD\B
k

t i⇤

+ Pµ

⇥

�

�e��
c

thf,XB
k

t i � hf, e�iW �
1(XB

k)
�

�

⇤

+ hf, e�iPµ

⇥

W �
1(XD\B

k)
⇤

.

The second term on the right-hand side tends to zero as t ! 1 by assumption. The

first term is equal to ch�, D\D
k

µi and, therefore, tends to zero as k ! 1, and so does

the third term.

Let M(D) be the set of all �-finite measures on D.

Remark 3.3. The superprocess X can be defined for starting measures µ 2 M(D) via

the branching property; see also Section 1.4.4.1 in [44]. The proof of Lemma 3.2 then

shows that (3.2) for all µ 2 Mc(D) implies (3.2) for all µ 2 M(D) with h�, µi < 1.

Finally, we show that it su�ces to consider fixed test functions. The argument is

borrowed from Chen and Shiozawa [28, Theorem 3.7].

Lemma 3.4 (Chen and Shiozawa [28]). Let µ 2 M�
f (D). If for every B 2 B

0

(D),

Pµ-almost surely, limt!1 e��
c

th�|B, Xti = h�|B, e�iW �
1(X), then there exists a mea-

surable set ⌦
0

such that Pµ(⌦0

) = 1 and, on ⌦
0

, the convergence in (1.16) holds for all

f 2 C+

` (D) with f/� bounded.

Proof. Take a countable base (Bk)k2N of B
0

(D) which is closed under finite unions,

and let

⌦
0

=
n

lim
t!1

e��
c

th�|B
k

, Xti = h�|B
k

, e�iW �
1(X) for all k 2 N

o

.

Then Pµ(⌦0

) = 1 by assumption. On {W �
1(X) = 0}, convergence (1.16) trivially holds

for all f 2 p(D) with f/� bounded. On {W �
1(X) > 0} \ ⌦

0

, we define

�t(B) := e��
c

t h�|B, Xti
W �

1(X)
and �(B) = h�|B, e�i, for all B 2 B(D).

Since (Bk)k2N is a base of B
0

(D), lim inft!1 �t(U) � �(U) for all U 2 B
0

(D) open.

As, in addition, limt!1 �t(D) = �(D) = 1 is finite, the Portmanteau theorem (cf.

Theorem 13.35 in [94]) implies that �t converges to � in the weak sense. For every
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f 2 C+

` (D) with f/� bounded, g := f/� 2 bp(D) is `-almost everywhere continuous,

and since � is absolutely continuous with respect to `, limt!1hg,�ti = hg,�i, which is

equivalent to

lim
t!1

e��
c

thf,Xti = W �
1(X)hf, e�i on ⌦

0

\ {W �
1(X) > 0}.

3.2 Martingale limits

In this section, we prove Proposition 1.1, that is, we show that the martingale limits for

the superprocess and its skeleton agree almost surely. We assume only Assumptions 1

and 2 throughout this section. Recall from (2.13) that (S⇤
t )t�0

denotes the expectation

semigroup of X⇤.

Lemma 3.5. Let f 2 p(D) with f/� bounded. For all x 2 D,

✓⇤t (x) := e��
c

tS⇤
t f(x)/�(x) ! 0 as t ! 1,

and for t > 0, the function x 7! ✓⇤t (x) is continuous. Moreover, ✓⇤t (x) is uniformly

bounded in t and x, and if f = �, ✓⇤t (x) is non-increasing in t.

Proof. Let c = supx2D f(x)/�(x). By (2.6) and (2.15), for all (x, t) 2 D ⇥ [0,1),

0  ✓⇤t (x) = P�
x

h

e
R
t

0 [�
⇤
(⇠

s

)��(⇠
s

)] dsf(⇠t)/�(⇠t)
i

(3.3)

 cP�
x

h

e
R
t

0 [�
⇤
(⇠

s

)��(⇠
s

)] ds
i

= ce��
c

tS⇤
t �(x)/�(x). (3.4)

Since �⇤ � �  0, (3.4) implies that, for f = �, ✓⇤t (x) is non-increasing in t. Moreover,

(3.3) and Theorem 7.2.4 in [119] (see also Theorem 4.9.7 in [110]) imply that ✓⇤t (x) is

continuous in x for t > 0. The dominated convergence theorem and (3.4) yield

lim
t!1

e��
c

tS⇤
t �(x)/�(x) = P�

x

h

exp
⇣

Z 1

0

[�⇤(⇠s)� �(⇠s)] ds
⌘i

.

By Assumption 2, the di↵usion (⇠ = (⇠t)t�0

;P�
x) is positive recurrent, and Theo-

rem 4.9.5 (ii) in [110] yields

lim
t!1

1

t

Z t

0

min{�(⇠s)� �⇤(⇠s), 1} ds =
⌦

min{� � �⇤, 1},�e�↵ > 0 P�
x-almost surely,

where the limit is positive since `({x 2 D : ↵(x)+⇧(x, (0,1)) > 0}) > 0 by Remark 2.8.

Hence,
R1
0

[�⇤(⇠s)��(⇠s)] ds = �1 holds P�
x-almost surely, and the claim is established.

The following lemma gives a useful bound for the bp-th moment of hf, Iti. We will

apply the bound to bp = 1 and to bp = p with p from Assumption 3’.
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Lemma 3.6. For bp � 1, f 2 p(D), x 2 D and t � 0,

P•,�
x

⇥hf, Itibp
⇤  w(x)�1P�

x

⇥hf, Itibp
⇤

,

where the inequality is an equality in the case bp = 1.

Proof. Using Notation 2.5, It =
PN0

i=1

Ii,0t , where under P�
x

, N
0

is Poisson-distributed

with mean w(x) and F
0

-measurable, and (Ii,0t ;P�
x

(·|F
0

)) is equal in distribution to

(It;P•,�
x

). Using the monotonicity of the `bp-norm, we derive

P�
x

⇥hf, Itibp
⇤

= P�
x

h⇣

N0
X

i=1

hf, Ii,0t i
⌘bpi

� P�
x

h

N0
X

i=1

hf, Ii,0t ibp
i

= P�
x

⇥

N
0

P•,�
x

[hf, Itibp]
⇤

= w(x)P•,�
x

⇥hf, Itibp
⇤

.

For bp = 1 the inequality is an equality. Rearranging terms completes the proof.

We now come to the main part of this section. First, we employ the skeleton

decomposition to compute the conditional expectation of hf,Xs+ti.
Proposition 3.7. For all µ 2 M�

f (D), f 2 p(D) with f/� bounded, and s, t � 0,

Pµ

⇥hf,Xs+ti|F t

⇤

= hS⇤
sf,Xti+

DSsf

w
,Zt

E

�
DS⇤

sf

w
,Zt

E

Pµ-almost surely.

Proof. By Notation 2.5, hf,Xs+ti = hf,X⇤
s+t + I⇤,ts i+PN

t

i=1

hf, Ii,ts i, where the random

variable (X⇤
s+t+I⇤,ts ;Pµ(·|F t)) is equal in distribution to (X⇤

s ;PX
t

) and (Ii,ts ;Pµ(·|F t))

to (Is;P•,�
⇠

i

(t)
), i = 1, . . . , Nt. Hence, Pµ-almost surely,

Pµ[hf,Xs+ti|F t] = Pµ

h

hf,X⇤
s+t + I⇤,ts i+

N
t

X

i=1

hf, Ii,ts i
�

�

�

F t

i

= PX
t

[hf,X⇤
s i] +

N
t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi]. (3.5)

The first term on the right can be rewritten using (2.13) to obtain PX
t

[hf,X⇤
s i] =

hS⇤
sf,Xti. For the second term, we use Lemma 3.6 and Theorem 2.3 (iii.c) to derive

N
t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi] =

N
t

X

i=1

w(⇠i(t))
�1P�

⇠

i

(t)
[hf,Xs �X⇤

s i]. (3.6)

Since f/� is bounded and µ 2 M�
f (D), hSs

f
w , Zti is finite Pµ-almost surely. Hence,

(3.5), (3.6), (2.11) and (2.13) yield Pµ-almost surely,

Pµ

h

N
t

X

i=1

hf, Ii,ts i
�

�

�

F t

i

=
N

t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi] =

DSsf

w
,Zt

E

�
DS⇤

sf

w
,Zt

E

(3.7)
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as required.

Proof of Proposition 1.1 and Theorem 2.9 (i). Proposition 3.7 yields,

Pµ

⇥

W �
s+t(X)|F t

⇤

= e��
c

the��
c

sS⇤
s�, Xti+ e��

c

t
D

e��
c

sSs�

w
,Zt

E

� e��
c

t
D

e��
c

sS
⇤
s�

w
,Zt

E (3.8)

Pµ-almost surely, and we are interested in the limit as s ! 1. The first and last term

tend to zero Pµ-almost surely by Lemma 3.5 and the dominated convergence theorem.

The second term is independent of s since e��
c

sSs� = �. Hence, the right-hand side

of (3.8) converges to W �/w
t (Z). According to Theorem 2.15, ((W �

t (X))t�0

;Pµ) is an

Lp-bounded martingale, and we can interchange, on the left-hand side of (3.8), the

limit s ! 1 with the integration to obtain

Pµ

⇥

W �
1(X)|F t

⇤

= lim
s!1

Pµ

⇥

W �
s+t(X)|F t

⇤

= W �/w
t (Z) Pµ-almost surely. (3.9)

Since W �
1(X) is measurable with respect to F1 = �(

S

t�0

F t), (1.15) follows by

taking t ! 1 in (3.9). Moreover, (3.9) shows that (W �/w
t (Z))t�0

is a uniformly

integrable martingale, and since W �
1(X) = W �/w

1 (Z) is in Lp(Pµ), Lp-boundedness of

(W �/w
t (Z))t�0

follows by Jensen’s inequality.

3.3 Convergence in L1(Pµ)

In this section, we prove the WLLN in the form of Theorem 1.5 or Theorem 2.9 (ii). We

suppose that Assumptions 1, 2 and (2.24)–(2.27) hold and begin with an Lp-estimate

for the immigration that occurred after a large time t. Recall Notations 2.4 and 2.5.

Proposition 3.8. For every µ 2 Mc(D) and f 2 p(D) with f/� bounded, there exists

a time T > 0 and a constant C
3

2 (0,1) such that for all s � 0, t � T ,

e��
c

p(s+t)Pµ

h

�

�

�

N
t

X

i=1

⇣

hf, Ii,ts i �P•,�
⇠

i

(t)
[hf, Isi]

⌘

�

�

�

pi  C
3

e��
c

(p�1)t.

Proof. For µ ⌘ 0 the claim is trivial. Let µ 6⌘ 0. It was noted in [16, Lemma 1] that,

for p 2 [1, 2], n 2 N and (Yi : i 2 {1, . . . , n}) independent, centered random variables

(or martingale di↵erences),

P
h

�

�

�

n
X

i=1

Yi
�

�

�

pi  2p
n
X

i=1

P
⇥|Yi|p

⇤

.

For s, t � 0, we apply this inequality to Pµ[·|F t], n = Nt and Yi = hf, Ii,ts i �

48



Chapter 3. Proofs of the main results

P•,�
⇠

i

(t)
[hf, Isi] to bound

Pµ

h

�

�

�

N
t

X

i=1

⇣

hf, Ii,ts i�P•,�
⇠

i

(t)
[hf, Isi]

⌘

�

�

�

p�
�

�

F t

i

 2p
N

t

X

i=1

Pµ

⇥

�

�hf, Ii,ts i�P•,�
⇠

i

(t)
[hf, Isi]

�

�

p�
�F t

⇤

.

Using |x � y|p  xp + yp for x, y � 0, (Ii,ts ;Pµ(·|F t))
d
= (Is;P•,�

⇠

i

(t)
) and Jensen’s

inequality, we can bound the right-hand side by

2p
N

t

X

i=1

⇣

P•,�
⇠

i

(t)
[hf, Isip] +P•,�

⇠

i

(t)
[hf, Isi]p

⌘

 2p+1

N
t

X

i=1

P•,�
⇠

i

(t)
[hf, Isip].

Now Lemma 3.6, the identity Xs = X⇤
s + Is under P�

⇠

i

(t)
, and the monotonicity of

x 7! xp on [0,1) yield

Pµ

h

�

�

�

N
t

X

i=1

⇣

hf, Ii,ts i �P•,�
⇠

i

(t)
[hf, Isi]

⌘

�

�

�

p�
�

�

F t

i

 2p+1

N
t

X

i=1

P�
⇠

i

(t)
[hf,Xsip]

w(⇠i(t))

= 2p+1

DP�· [hf,Xsip]
w

,Zt

E

.

Writing c = supx2D f(x)/�(x) < 1, (2.22) and (2.23) yield

e��
c

p(s+t)Pµ

h

�

�

�

N
t

X

i=1

⇣

hf, Ii,ts i �P•,�
⇠

i

(t)
[hf, Isi]

⌘

�

�

�

pi

 2p+1cpe��
c

ptPµ

hDP�· [W
�
s (X)p]

w
,Zt

Ei

= 2p+1cpe��
c

(p�1)th�, µiP�
�µ

⇥

�(⇠t)
�1P�

⇠

t

[W �
s (X)p]

⇤

.

Since µ 2 Mc(D), Lemma 2.19 yields a time T > 0 and a constant C
2

2 (0,1) such

that the right-hand side is bounded by 2p+1cpe��
c

(p�1)th�, µiC
2

for all s � 0, t � T ,

and the proof is complete.

We are now in the position to prove Theorems 1.5 and 2.9 (ii).

Proof of Theorems 1.5 and 2.9 (ii). According to Lemma 3.2 (ii), it su�ces to consider

µ 2 Mc(D), and without loss of generality, we work on the skeleton space. Using the

skeleton decomposition in the form of (2.10), we write for s, t � 0,

e��
c

(s+t)hf,Xs+ti � hf, e�iW �
1(X)

= e��
c

(s+t)hf,X⇤
s+t + I⇤,ts i+ e��

c

(s+t)
N

t

X

i=1

⇣

hf, Ii,ts i �P•,�
⇠

i

(t)
[hf, Isi]

⌘

+
⇣

e��
c

(s+t)
N

t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi]� hf, e�iW �/w

t (Z)
⌘

+ hf, e�i�W �/w
t (Z)�W �

1(X)
�

=: ⌅
1

(s, t) + ⌅
2

(s, t) + ⌅
3

(s, t) + ⌅
4

(s, t).
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It su�ces to show that

lim sup
s!1

lim sup
t!1

Pµ[|⌅i(s, t)|] = 0 for all i 2 {1, . . . , 4}. (3.10)

Verification for i = 1: since (X⇤
s+t + I⇤,ts ;Pµ(·|F t))

d
= (X⇤

s ;PX
t

), the first moment

formulas (2.13) and (2.11), and (2.16) yield

Pµ[|⌅1

(s, t)|] = e��
c

(s+t)Pµ[PX
t

[hf,X⇤
s i]] = e��

c

(s+t)hStS
⇤
sf, µi = hP�

· [✓
⇤
s(⇠t)],�µi,

where ✓⇤s(x) = e��
c

sS⇤
sf(x)/�(x). By Lemma 3.5, ✓⇤s(x) is uniformly bounded in s and

x, and converges to zero as s ! 1. Using the ergodicity of (⇠;P�), cf. (2.18), and the

dominated convergence theorem, we conclude

lim
s!1

lim
t!1

Pµ[|⌅1

(s, t)|] = lim
s!1

h✓⇤s ,�e�ih�, µi = 0.

Verification for i = 2: Proposition 3.8 implies that ⌅
2

(s, t) converges to zero in

Lp(Pµ) as t ! 1 for every fixed s > 0. By monotonicity of norms, (3.10) for i = 2

follows.

Verification for i = 3: we use (3.7) and (2.16) to rewrite

e��
c

(s+t)
N

t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi] = e��

c

(s+t)
DSsf � S⇤

sf

w
,Zt

E

= e��
c

t
D

P�
·
⇥

f(⇠s)/�(⇠s)
⇤� ✓⇤s ,

�

w
Zt

E

.

Let ⌥s(x) := P�
x[f(⇠s)/�(⇠s)] � ✓⇤s(x). Since f/� is bounded, ⌥ is uniformly bounded

in s and x, and by (2.18) and Lemma 3.5, lims!1⌥s(x) = hf, e�i. Moreover, ⌅
3

(s, t) =

e��
c

th⌥s � hf, e�i, �
wZti by the definition of W �/w

t (Z). The many-to-one lemma for Z,

i.e. (2.22), yields

Pµ[|⌅3

(s, t)|]  e��
c

tPµ

hD

�

�⌥s � hf, e�i��, �
w
Zt

Ei

=
⌦

P�
·
⇥

�

�⌥s(⇠t)� hf, e�i��⇤,�µ↵.

Since ⌥s is bounded and �(x)µ(dx) is a finite measure, (2.18) implies that the right-

hand side converges to h|⌥s�hf, e�i|,�e�ih�, µi as t ! 1, and this expression converges

to zero as s ! 1 by the dominated convergence theorem.

Verification for i = 4: since (W �/w
t (Z))t�0

is an Lp(Pµ)-bounded martingale by

Theorem 2.9 (i), it converges to W �/w
1 (Z) = W �

1(X) in L1(Pµ). Hence, (3.10) for i = 4

holds.
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3.4 Asymptotics for the immigration process and the

SLLN along lattice times

In this section, we analyse the asymptotic behaviour of the immigration process I.

Lemma 3.1 (i) and Theorem 2.3 imply that, instead of e��
c

thf,Xti, we can study

e��
c

thf, Iti for the proof of Theorem 1.2 if the latter converges to the correct limit. To

show this, we first study the conditional expectation of the immigration after a large

time t as stated in (3.7). From now on, we work under Assumptions 1, 2, 3’ and 4.

Lemma 3.9. For all µ 2 Mc(D), s, � > 0, and for all f 2 p(D) with f/� bounded,

lim
�N3t!1

e��
c

t
N

t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi] = e�c

s
⇣

hf, e�i � he��
c

sS⇤
sf, e�i

⌘

W �
1(X)

Pµ-almost surely.

Proof. We apply the SLLN for the skeleton (Assumption 4) to the functions f
1

, f
2

given

by

f
1

(x) :=
Ssf(x)

w(x)
= e�c

sP�
x

⇥

f(⇠s)/�(⇠s)
⇤ �(x)

w(x)
, f

2

(x) :=
S⇤
sf(x)

w(x)
= e�c

s✓⇤s(x)
�(x)

w(x)
.

By Lemmas 2.1 and 3.5 and Theorem 4.9.7 in [110], f
1

and f
2

are continuous for any

s > 0. Hence, (3.7) and Assumption 4 yield Pµ-almost surely,

lim
�N3t!1

e��
c

t
N

t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi] =

DSsf

w
,we�

E

W �/w
1 (Z)�

DS⇤
sf

w
,we�

E

W �/w
1 (Z).

By (2.16) and (2.17), hSsf, e�i = e�c

shf, e�i, and Theorem 2.9 (i) completes the proof.

Proposition 3.10. For all µ 2 Mc(D), � > 0, and for all f 2 p(D) with f/� bounded,

lim
�N3s!1

lim
�N3t!1

e��
c

(s+t)
N

t

X

i=1

P•,�
⇠

i

(t)
[hf, Isi] = hf, e�iW �

1(X) Pµ-almost surely.

Proof. The claim follows immediately from Lemmas 3.9 and 3.5 and the dominated

convergence theorem.

Recall from Notation 2.5 that, given F t, Ii,t denotes the immigration occurring

along the skeleton descending from particle i at time t.

Proposition 3.11. For all µ 2 Mc(D), s, � > 0, and all f 2 p(D) with f/� bounded,

lim
�N3t!1

e��
c

(s+t)
�

�

�

N
t

X

i=1

⇣

hf, Ii,ts i �P•,�
⇠

i

(t)
[hf, Isi]

⌘

�

�

�

= 0 Pµ-almost surely.
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Proof. By the Borel–Cantelli lemma, it is su�cient to show that for all ✏ > 0 there is

a n
0

2 N such that

1
X

n=n0

Pµ

⇣

e��
c

(s+n�)
�

�

�

N
n�

X

i=1

⇣

hf, Ii,n�s i �P•,�
⇠

i

(n�)
[hf, Isi]

⌘

�

�

�

> ✏
⌘

< 1. (3.11)

To bound the left-hand side in (3.11), we first use Markov’s inequality, and then Propo-

sition 3.8 to obtain a time T > 0 and a constant C
3

2 (0,1) such that, for n
0

� T , an

upper bound is given by

✏�p
1
X

n=n0

e��
c

p(s+n�)Pµ

h

�

�

�

N
n�

X

i=1

⇣

hf, Ii,n�s i �P•,�
⇠

i

(n�)
[hf, Isi]

⌘

�

�

�

pi

 ✏�pC
3

1
X

n=n0

e��
c

(p�1)n� < 1.

Combining Propositions 3.10 and 3.11, the asymptotic behaviour of the immigration

process can be characterised as follows:

Corollary 3.12. For all µ 2 Mc(D), � > 0, and all f 2 p(D) with f/� bounded,

lim
�N3s!1

lim
�N3t!1

e��
c

(s+t)
N

t

X

i=1

hf, Ii,ts i = hf, e�iW �
1(X) Pµ-almost surely.

Now we are in the position to prove the SLLN along lattice times.

Theorem 3.13. For all µ 2 M�
f (D), � > 0, and all f 2 p(D) with f/� bounded,

lim
n!1

e��
c

n�hf,Xn�i = hf, e�iW �
1(X) Pµ-almost surely.

Proof. By Lemma 3.2 (i), it su�ces to consider µ 2 Mc(D). Moreover, without loss

of generality, we work on the skeleton space from Theorem 2.3. Corollary 3.12 yields

Pµ-almost everywhere,

lim inf
�N3t!1

e��
c

thf,Xti = lim inf
�N3s!1

lim inf
�N3t!1

e��
c

(s+t)hf,Xs+ti

� lim inf
�N3s!1

lim inf
�N3t!1

e��
c

(s+t)
N

t

X

i=1

hf, Ii,ts i = hf, e�iW �
1(X).

Lemma 3.1 (i) completes the proof.

3.5 Transition from lattice to continuous times

In this section, we extend the convergence along lattice times in Theorem 3.13 to

convergence along continuous times and conclude our main results. We work under
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Assumptions 1, 2, 3’ and 4. For  > 0, let U be the resolvent operator in integral

form, that is,

Uf(x) :=

Z 1

0

e�tP�
x[f(⇠t)] dt for all f 2 bp(D), x 2 D.

The argument for the transition from lattice to continuous times proceeds in two steps.

First we use the resolvent operator to bring the semigroup of (⇠; (P�
x)x2D) into the

argument. The semigroup property gives us a martingale which, combined with Doob’s

Lp-inequality, enables us to control the behaviour between times n� and (n + 1)�.

Second, we remove the resolvent operator by taking ! 1 in Uf(x). It is an analysis

of hitting times for di↵usion processes which allows us to control the convergences in

this step.

The main idea for the proof is borrowed from [102], but we employ the skeleton

decomposition to replace the stochastic analysis and the martingale measures used

there.

Proposition 3.14. For all µ 2 Mc(D),  > 0 and f 2 bp(D),

lim
t!1

e��
c

th�Uf,Xti = h�f, e�iW �
1(X) Pµ-almost surely.

Proof. Without loss of generality, we assume that µ 6⌘ 0 and work on the skeleton

space. Since U is linear with U1 = 1, the same argument that led to Lemma 3.1

shows that it su�ces to prove that, for all f 2 bp(D),

lim inf
t!1

e��
c

th�Uf,Xti � h�f, e�iW �
1(X) Pµ-almost surely. (3.12)

Let f, g 2 bp(D) with Uf � g, �, t > 0, and let n be such that n�  t < (n + 1)�.

Then

e��
c

th�Uf,Xti �
⇣

e��
c

th�Uf,Xti � e��
c

th�P�
·
⇥

Uf(⇠
(n+1)��t)

⇤

, Xti
⌘

+
⇣

e��
c

th�P�
· [g(⇠(n+1)��t)], Xti � e��

c

n�h�P�
· [g(⇠�)], Xn�i

⌘

+
⇣

e��
c

n�h�P�
· [g(⇠�)], Xn�i � h�g, e�iW �

1(X)
⌘

+ h�g, e�iW �
1(X)

=: ⇥
1,Uf (n, �, t) +⇥

2,g(n, �, t) +⇥
3,g(n, �) + h�g, e�iW �

1(X).

(3.13)

If we show, for all f, g 2 bp(D), g of compact support, that Pµ-almost surely,

lim sup
�!0

lim sup
n!1

sup
t2[n�,(n+1)�]

|⇥
1,Uf (n, �, t)| = 0, (3.14)

lim sup
n!1

sup
t2[n�,(n+1)�]

|⇥
2,g(n, �, t)| = 0 for all � > 0, (3.15)

lim sup
n!1

|⇥
3,g(n, �)| = 0 for all � > 0, (3.16)
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then we can choose g = BUf for B ⇢⇢ D in (3.13) to obtain

lim inf
t!1

e��
c

th�Uf,Xti � h� BU
f, e�iW �

1(X) Pµ-almost surely.

Choosing a sequence Bj ⇢⇢ D, Bj ✓ Bj+1

, D =
S1

j=1

Bj , the factor h� B
j

Uf, e�i
increases, as j ! 1, to

h�Uf, e�i =
Z 1

0

e�th�P�
· [f(⇠t)], e�i dt

(2.17)

=

Z 1

0

e�th�f, e�i dt = h�f, e�i,

and (3.12) follows. It remains to verify (3.14)–(3.16).

Verification of (3.14): Fubini’s theorem and the Markov property of (⇠;P�) yield, for

all x 2 D and s > 0,

�

�Uf(x)� P�
x[U

f(⇠s)]
�

� =
�

�

�

Z 1

0

e�tP�
x[f(⇠t)] dt�

Z 1

0

e�tP�
x[f(⇠t+s)] dt

�

�

�

 2(1� e�s)kfk1.

Using the linearity of integration and the definition of W �
t (X), we obtain

sup
t2[n�,(n+1)�]

�

�

�

⇥
1,Uf (n, �, t)

�

�

�

 2(1� e��)kfk1 sup
t2[n�,(n+1)�]

W �
t (X).

Since the martingale (W �
t (X))t�0

has a finite limit, (3.14) is established.

Verification of (3.15): Let g 2 bp(D) be compactly supported. By (2.16),

⇥
2,g(n, �, t) = e��

c

(n+1)�
⇣

hS
(n+1)��t[�g], Xti�hS�[�g], Xn�i

⌘

for all t 2 [0, (n+1)�].

The Markov property of X, and (2.11), imply that (⇥
2,g(n, �, t) : t 2 [n�, (n+1)�];Pµ)

is a martingale. Hence, (3.15) follows from the Borel–Cantelli lemma, Doob’s Lp-

inequality (cf. Theorem II.1.7 in [113]) and Pµ[h�g,X
(n+1)�i|Fn�] = hS�[�g], Xn�i when

we prove that for su�ciently large n
0

,

1
X

n=n0

e��
c

p(n+1)�Pµ

h

�

�h�g,X
(n+1)�i �Pµ[h�g,X

(n+1)�i|Fn�]
�

�

p
i

< 1. (3.17)

By (2.10) and (3.5), we have for all s, t > 0, Pµ-almost surely, given F t,

h�g,Xs+ti �Pµ[h�g,Xs+ti|F t]

= h�g,X⇤
s+t + I⇤,ts i �PX

t

[h�g,X⇤
s i] +

N
t

X

i=1

⇣

h�g, Ii,ts i �P•,�
⇠

i

(t)
[h�g, Isi]

⌘

.
(3.18)

The monotonicity of Lp-norms and (X⇤
s+t + I⇤,ts ;Pµ(·|F t))

d
= (X⇤

s ;PX
t

) imply

Pµ

⇥

�

�h�g,X⇤
s+t + I⇤,ts i �PX

t

[h�g,X⇤
s i]

�

�

p⇤  Pµ

⇥

VarX
t

(h�g,X⇤
s i)

⇤p/2
. (3.19)
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Recall the definitions of X⇤, �⇤, ⇡⇤, and S⇤
t f from page 23. Denote c⇤

1

(x) = 2↵(x),

c⇤
2

=
R

(0,'2(x)]
y2⇧⇤(x, dy), c⇤

3

(x) =
R

('2(x),1)

y2⇧⇤(x, dy), c⇤(x) =
P

3

i=1

c⇤i (x) for all

x 2 D, where '
2

is determined by Assumption 3’. We notice that �⇤  � implies that

S⇤
t f  Stf for all f 2 p(D). Using (2.14), (2.11), and the semigroup property of S, we

obtain

Pµ

⇥

VarX
t

(h�g,X⇤
s i)

⇤

=

Z s

0

hStS
⇤
r

⇥

c⇤(S⇤
s�r[�g])

2

⇤

, µi dr


Z s

0

hSt+r

⇥

c⇤(Ss�r[�g])
2

⇤

, µi dr.

Recall the definition of P�
�µ from (2.23), and use (2.16) to deduce

Pµ

⇥

VarX
t

(h�g,X⇤
s i)

⇤  h�, µikgk1
Z s

0

e�c

(s+t)P�
�µ

⇥

c⇤(⇠t+r)Ss�r[�g](⇠t+r)
⇤

dr. (3.20)

Writing �̄ = max{supx2D �(x), 0}, we notice that Ss�r[�g](x)  e
¯�sk�gk1. Further,

(2.16) implies Ss�r[�g](x)  e�c

skgk1�(x). Hence, for all i 2 {1, 2, 3},

P�
�µ

⇥

c⇤i (⇠t+r)Ss�r[�g](⇠t+r)
⇤

 min
n

e
¯�sk�gk1P�

�µ[c
⇤
i (⇠t+r)], e

�
c

skgk1P�
�µ

⇥

c⇤i (⇠t+r)�(⇠t+r)
⇤

o

.
(3.21)

The right-hand side of (3.21) is bounded for large t as we now explain: for i = 1,

boundedness of ↵, and therefore c⇤
1

, entails the assertion. For i 2 {2, 3}, (2.18) and

Conditions (2.28) and (2.29), respectively, yield the claim. Combining (3.19)–(3.21),

we obtain a time T > 0 and a constant C 2 (0,1), which may depend on s, g and µ,

such that

e��
c

p(s+t)Pµ

⇥

�

�h�g,X⇤
s+t+I⇤,ts i�PX

t

[h�g,X⇤
s i]

�

�

p⇤  Ce��
c

pt/2 for all t � T. (3.22)

Since |x+ y|p  2p(|x|p + |y|p) for all x, y 2 R, (3.18), (3.22) and Proposition 3.8 yield

(3.17).

Verification of (3.16): since h�P�
· [g(⇠�)], e�i = h�g, e�i by (2.17), (3.16) follows from

Theorem 3.13.

In the second step, we remove the resolvent operator from Proposition 3.14. The

proof is essentially borrowed from the lower bound in Theorem 2.2 in [102]. We present

the argument here for completeness. Recall that B
0

(D) = {B 2 B(D) : `(@B) = 0} and

�|B = � B.

Proposition 3.15. For all µ 2 Mc(D) and B 2 B
0

(D),

lim inf
t!1

e��
c

th�|B, Xti � h�|B, e�iW �
1(X) Pµ-almost surely. (3.23)

Proof. The claim is trivial when `(B) = 0. When (3.23) is proved for B 2 B
0

(D) with
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B ⇢⇢ D, then, for arbitrary B 2 B
0

(D), we choose a sequence of sets Bk 2 B
0

(D),

with Bk ⇢⇢ D, Bk ✓ Bk+1

and B =
S

k2NBk, and the monotone convergence theorem

yields, Pµ-almost surely,

lim inf
t!1

e��
c

th�|B, Xti � sup
k2N

lim inf
t!1

e��
c

th�|B
k

, Xti � h�|B, e�iW �
1(X).

Hence, let B 2 B
0

(D), B ⇢⇢ D, contain a non-empty, open ball. For small ✏ > 0,

let B✏ = {x 2 B : dist(x, @B) � ✏} 6= ; and denote by �B
✏

= inf{t > 0: ⇠t 2 B✏}
the hitting time of B✏. We write U(x,A) = U

A(x) for all A 2 B(D). Since

{⇠t 2 B✏} ✓ {�B
✏

 t}, for all x 2 D,

U(x,B✏) 
Z 1

0

e�tP�
x(�B✏

 t) dt = P�
x[e

��
B

✏ ]  B(x) + Bc(x)P�
x[e

��
B

✏ ],

where Bc := D \B. In particular,

e��
c

th�|B, Xti � e��
c

th�U
B

✏

, Xti � e��
c

th�|BcP�
· [e

��
B

✏ ], Xti,

and Proposition 3.14 yields, Pµ-almost surely,

lim inf
t!1

e��
c

th�|B, Xti � h�|B
✏

, e�iW �
1(X)� lim sup

t!1
e��

c

th�|BcP�
· [e

��
B

✏ ], Xti. (3.24)

The first term on the right converges to h�|B, e�iW �
1(X) as ✏ ! 0. Thus, we have to

show that the second term vanishes as ✏ ! 0. Heuristically, if the SLLN holds, then

the lim sup is a limit with value

h�|BcP�
· [e

��
B

✏ ], e�iW �
1(X).

Since B✏ has positive distance to Bc, this value converges to zero as  ! 1. Hence,

we first take ! 1 and then ✏! 0. Of course, we do not know the SLLN, yet. Thus,

we artificially reintroduce the resolvent operator in order to apply Proposition 3.14.

Continuing rigorously, let B0
✏ := {x 2 B : dist(x, @B✏)  ✏/2}. The situation is

sketched in Figure I-1.

B

B✏

B0
✏

x

y

Figure I-1. The big ball with thick boundary is B, the small, hatched ball is B✏ and the

shaded area denotes B0
✏. The di↵usion is started in x 2 Bc.
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When ⇠ starts outside B, then ⇠�
B

✏

2 @B✏, and we obtain for all x 2 Bc,

P�
x[e

��
B

✏ ] = P�
x

h

e��
B

✏

U(⇠�
B

✏

, B0
✏)

U(⇠�
B

✏

, B0
✏)

i

 1

infy2@B
✏

U(y,B0
✏)
P�
x

⇥

e��
B

✏U(⇠�
B

✏

, B0
✏)
⇤

. (3.25)

For t � 0, let Ht := �(⇠s : 0  s  t). By the Markov property of ⇠, the second factor

on the right-hand side of (3.25) can be estimated by

P�
x

⇥

e��
B

✏U(⇠�
B

✏

, B0
✏)
⇤

= P�
x

h

e��
B

✏P�
x

h

Z 1

0

e�t {⇠t+�
B

✏

2 B0
✏} dt

�

�

�

H�
B

✏

ii

= P�
x

h

Z 1

�
B

✏

e�t {⇠t 2 B0
✏} dt

i

 U(x,B0
✏).

(3.26)

Writing �(, ✏) := infy2@B
✏

U(y,B0
✏), (3.25) and (3.26) yield Bc(x)P�

x[e��
B

✏ ] 
U(x,B0

✏)/�(, ✏), and Proposition 3.14 entails, Pµ-almost surely,

lim sup
t!1

e��
c

th�|BcP�
· [e

��
B

✏ ], Xti  1

�(, ✏)
h�|B0

✏

, e�iW �
1(X). (3.27)

Clearly, h�|B0
✏

, e�iW �
1(X) converges to zero as ✏ ! 0. Thus, it remains to bound

U(y,B0
✏) for y 2 @B✏, and therefore �(, ✏), away from zero. We write b

0

(x) for

the vector whose j-th component is given by bj(x) +
1

2

Pd
i=1

@x
i

ai,j(x), j 2 {1, . . . , d},
x 2 D. Since B ⇢⇢ D,

c(B,�) :=
infx2B �(x)

supx2B �(x)
, �̃ := sup

x2B
|�(x)|,

b̃
0

:= sup
x2B

|b
0

(x)|, ã := sup
x2B

sup
|v|=1

vTa(x)v,

satisfy c(B,�), ã 2 (0,1) and �̃, b̃
0

2 [0,1). For all T > 0,

U(y,B0
✏) =

Z 1

0

e�tP�
y (⇠t 2 B0

✏) dt

=

Z 1

0

e�tP�
y (⇠t/ 2 B0

✏) dt �
Z T

0

e�tP�
y (⇠t/ 2 B0

✏) dt.

(3.28)

For y 2 @B✏, use the definition of B0
✏ and (2.15) to estimate

P�
y (⇠t/ 2 B0

✏) � P�
y

⇣

sup
0st/

|⇠s � y|  ✏/2
⌘

� c(B,�)e�(�
c

+

˜�)t/Py

⇣

sup
0st/

|⇠s � y|  ✏/2
⌘

.
(3.29)

To estimate the probability on the right-hand side, we use Theorem 2.2.2 in [110]. Since

this theorem is stated for a di↵usion generator in non-divergence form, we introduced
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the function b
0

. In particular, for  so large that tb̃
0

/  ✏/4 and for all y 2 @B✏, we

deduce

Py

⇣

sup
0st/

|⇠s � y|  ✏/2
⌘

� 1� 2d exp
⇣

� ✏2

32ãtd

⌘

. (3.30)

Combining (3.28)–(3.30), we obtain for all ✏ > 0,

lim inf
!1

�(, ✏) �
Z T

0

e�tc(B,�) dt > 0.

Since the right-hand side does not depend on ✏, taking first ! 1 and then ✏! 0 in

(3.27) and (3.24) completes the proof.

We are now in the position to conclude our main results.

Proof of Theorem 2.9 (iii). The Pµ-almost sure convergence in (2.30) for every given

`-almost everywhere continuous f 2 p(D) with f/� bounded follows from Proposi-

tion 3.15 and Lemmas 3.1 (i) and 3.2 (i). The existence of a common set ⌦
0

for all

such test functions follows from Lemma 3.4.

Proof of Theorem 1.2. The L1(Pµ)-convergence in (1.16) was proved in Theorem 1.5,

the remainder follows from Theorem 2.9 (iii).

Proof of Corollary 1.4. The claim follows immediately from Theorem 1.2, (2.20) and

(2.18).

58



CHAPTER 4

EXAMPLES

In this chapter, we explore our assumptions by verifying them for many classical ex-

amples of superdi↵usions from the literature. Moreover, we give several examples to

illustrate the implications and boundaries of the SLLN. For all examples considered,

this thesis proves the SLLN, and for some even the WLLN, for the first time.

4.1 Spatially independent branching mechanisms

In this section, we consider superdi↵usions with a conservative motion and a spatially

independent branching mechanism and write  (z) =  �(x, z) to simplify notation.

Under these conditions, the total mass process (h1, Xti : t � 0) is a continuous state

branching process (CSBP) with branching mechanism  ; cf. [118, 11]. We exclude

the trivial case of a linear branching mechanism  (z) = ��z (see Remark 2.8 for the

result in this situation). Since  is strictly convex,  (1) := limz!1  (z) exists in

[�1, 0)[ {1}. Writing z⇤ = sup{z � 0:  (z)  0}, we have z⇤ 2 (0,1) if and only if

� > 0 and  (1) = 1, and in that case (cf. Proposition 1.1 in [118]),

Pµ

⇥

e�z⇤h1,X
t

i⇤ = e�z⇤h1,µi for all µ 2 Mf (D), t � 0.

In particular, Assumption 1 is satisfied with w(x) = z⇤ for all x 2 D. In this CSBP

context, the skeleton decomposition was proved by Berestycki et al. in [11] a few years

before [98]. The martingale function z⇤ is related to the event of weak extinction

E
lim

= {limt!1h1, Xti = 0} by the identity P�
x

(E
lim

) = e�z⇤ which holds even if �  0

or  (1) < 0. To compare the martingale function w(x) = � logP�
x

(E
lim

) to the

classical choice w(x) = � logP�
x

(E
fin

), where E
fin

denotes the event of extinction after

finite time, notice that E
fin

✓ E
lim

, and for all µ 2 Mf (D),

Pµ(E
fin

) = Pµ(E
lim

) = e�z⇤h1,µi > 0 if  (1) = 1 and

Z 1 1

 (z)
dz < 1. (4.1)
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Otherwise, Pµ(E
fin

) = 0, and on E
lim

, the total mass of X drifts to zero while staying

positive at all finite times; cf. [78, 118].

From now on, assume � > 0,  (1) = 1 and w(x) = z⇤. In this case, Assumption 3

simplifies to

� bounded and

Z

(1,1)

yp⇧(dy) < 1 for some p 2 (1, 2].

In the following, we present two families of superprocesses for which the SLLN is

proved by Theorem 1.2. As far as we know, these results are new. Apart from the

intrinsic interest, the results are very useful since the analysed processes are frequently

employed to obtain further examples of superprocesses with interesting properties via

h-transform. For those examples the SLLN follows from Lemma 2.10.

We begin with the inward Ornstein–Uhlenbeck process (OU-process) which has

attracted a wide interest in the literature. Specifically, its asymptotic behaviour is the

subject of recent research articles [104, 112].

Example 4.1 (Inward OU-process). Let d � 1, D = Rd, L = 1

2

�� �x ·r with � > 0,

 spatially independent with � 2 (0,1),  (1) = 1 and
R

(1,1)

yp⇧(dy) < 1 for some

p 2 (1, 2]. Then Theorem 1.2 applies with � = 1, e�(x) = (�/⇡)d/2e��kxk2 and �c = �.

The generator L corresponds to the positive recurrent inward OU-process with

transition density

pin-OU(x, y, t) =
⇣ �

⇡(1� e�2�t)

⌘d/2
exp

⇣

� �

1� e�2�t
ky � e��txk2

⌘

(4.2)

for all x, y 2 Rd, t > 0. Hence, �c = �c(L+ �) = � > 0, L is product L1-critical, � = 1

and e�(x) = (�/⇡)d/2e��kxk2 (see Chapter 4 in [110] or Example 3 in [111]). Thus,

Assumptions 1–3 are satisfied. Using the estimate for p� = pin-OU in (2.19), we obtain

that Condition (2.35) holds for a(t) =
p

(�c/� + �)t with � > 0 (see Example 10 in

[57]), and using (4.2), we deduce that (2.36) holds with K = 1. Hence, Theorem 2.13

applies, and Assumption 4 is satisfied.

Example 4.2 (Outward OU-process). Let d � 1, D = Rd, L = 1

2

� + �x · r with

� > 0,  spatially independent with � 2 (�d,1),  (1) = 1 and
R

(1,1)

yp⇧(dy) < 1
for some p 2 (1, 2]. Then Theorem 1.2 applies with �(x) = (�/⇡)d/2e��kxk2 , e� = 1 and

�c = � � �d.

The generator L corresponds to the conservative, transient outward OU-process.

The operator L
1

:= L + �d is the formal adjoint of the inward OU-process with pa-

rameter �. Hence, L
1

is critical with ground states �
1

(x) = (�/⇡)d/2e��kxk2 and
e�
1

= 1 by Example 4.1 (see Theorem 4.3.3 in [110] or Example 2 in [111]). Writing

L
1

= L + � � (� � �d), we deduce that Assumptions 1–3 hold and �, e� and �c have

been correctly identified. The corresponding ergodic motion is the inward OU-process

with parameter �. Thus, Conditions (2.35) and (2.36) can be verified using (4.2),
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(2.19), a(t) = e�(1+�)t for some � > 0 and K > 1 + �, and Theorem 2.13 implies that

Assumption 4 holds.

The SLLN describes the asymptotic behaviour of the mass in compact sets. In

general, one cannot draw conclusions for the scaling of the total mass from the local

behaviour [58, 60]. Example 4.2 illustrates this fact. Since the total mass process is

a CSBP with branching mechanism  , Yt = e��th1, Xti converges to a finite random

variable Y1 with Pµ(Y1 = 0) = Pµ(E
lim

) if � > 0 and
R

(1,1)

y log y⇧(dy) < 1; cf.

[78]. In particular, in Example 4.2, the local growth rate �c = ���d is strictly smaller

than the global growth rate �. The reason is the transient nature of the underlying

di↵usion which allows mass to leave compact sets permanently and is reflected in the

decay of � at infinity. In particular, the function 1 is not an allowed test function in

Theorem 1.2, but the focus is on functions of the form B for B a compact set.

We call the di↵usion corresponding to the generator L = 1

2

r · ar+ b ·r symmetric

if b = arQ for some Q 2 C2,⌘(D). The inward and outward OU-processes constitute

examples of symmetric di↵usions with Q(x) = ��
2

kxk2 and Q(x) = �
2

kxk2, respectively.
Chen et al. [27] studied superdi↵usions with a symmetric motion but insisted that Q

is bounded. Hence, their results are not applicable to Examples 4.1 and 4.2. The

result from Liu et al. [102] is not applicable since the domain is not of finite Lebesgue

measure.

Engländer and Winter [62] proved convergence in probability in (1.16) for the situa-

tion of a quadratic branching mechanism. It is straightforward to extend their argument

to general branching mechanisms, but the method requires second moments. Hence, if
R

(1,1)

yp⇧(dy) < 1 for some p 2 (1, 2) but not for p = 2, then even the convergence

in probability in Examples 4.1 and 4.2 is new.

4.2 Quadratic branching mechanisms

In this section, we consider the classical situation of a quadratic branching mechanism

studied by Engländer, Pinsky and Winter [59, 62] and Chen, Ren and Wang [27]. Our

assumptions on the branching mechanism in this section are ↵,� 2 C⌘(D), ↵(x) > 0

for all x 2 D, �c := �c(L + �) < 1 and ⇧ ⌘ 0. We write  (x, z) = ��(x)z + ↵(x)z2

and call  a generalised quadratic branching mechanism (GQBM). In Section 1.1 we

insisted that ↵ and � are bounded. This assumption can be relaxed as follows. First

suppose that � is bounded from above but not necessarily from below. Engländer and

Pinsky [59] showed that there is a unique Mf (D)-valued Markov process X = (Xt)t�0

such that

Pµ[e
�hf,X

t

i] = e�hu
f

(·,t),µi for all continuous f 2 bp(D) and all µ 2 Mf (D),

61



Chapter 4. Examples

where uf is the minimal, nonnegative solution u 2 C(D⇥ [0,1)), (x, t) 7! u(x, t) twice

continuously di↵erentiable in x 2 D and once in t 2 (0,1), to

@tu(x, t) = Lu(x, t)�  (x, u(x, t)) for all (x, t) 2 D ⇥ (0,1),

u(x, 0) = f(x) for all x 2 D.
(4.3)

If ↵ and � are bounded, the minimal solution of (4.3) equals the unique solution to

(1.3) by Lemma A1 in [59]. Hence, the two definitions are consistent.

Now let � 2 C⌘(D) with �c = �c(L + �) < 1 be not necessarily bounded from

above. By definition (1.9), there exists � 2 R and h 2 C2,⌘(D), h > 0, such that

(L+ �)h = �h. Recall the definition of h-transforms from Section 2.1.3. An (L, ;D)-

superprocess can be defined by X = 1

hX
h, where Xh is the (Lh

0

, h;D)-superprocess

with �h = � and ↵h = ↵h; cf. [59]. Since h is not necessarily bounded from below,

the process X may take values in the space of �-finite measures M(D). While we

have considered mainly finite measure-valued processes in this thesis, it is natural to

consider also processes with values in the space M(D) via the branching property, and,

as noted in Remark 3.3, in our results the space of starting measures M�
f (D) can be

enlarged to the space of all µ 2 M(D) with h�, µi < 1.

Engländer and Pinsky [59] proved the skeleton decomposition for supercritical su-

perdi↵usions with GQBMs long before [98]. We only record the existence of a martin-

gale function in the following lemma. Recall that E
fin

denotes the event of extinction

after a finite time.

Lemma 4.3 (Engländer and Pinsky [59]). Let  be a GQBM and �c > 0. The

function x 7! w(x) := � logP�
x

(E
fin

) is strictly positive, belongs to C2,⌘(D) and satisfies

(1.6).

Proof. By Theorem 3.1 and Corollary 4.2 in [59], w 2 C2,⌘(D), w(x) > 0 for all x 2 D

and

Pµ(E
fin

) = e�hw,µi for all µ 2 Mc(D). (4.4)

Recall the notation from the beginning of Section 2.1.1. Let B ⇢⇢ D be a domain,

and µ 2 Mf (D) with supp(µ) ✓ B. Then the support of the exit measure eXB
t is

Pµ-almost surely compact (see the discussion following (2.3)). Since E
fin

is a tail event,

the Markov property and (4.4) yield Pµ[e�h ew, eXB

t

i] = e�hw,µi. Choose a sequence of

functions wj 2 C+

c (D) with wj " w pointwise, and a sequence of domains Bk ⇢⇢ D,

Bk ✓ Bk+1

, D =
S1

k=1

Bk. By Lemma A1 in [59], euBk

w
j

is increasing in j. Moreover,

Lemma B.5 below shows that, for fixed j and su�ciently large k, euBk

w
j

is increasing in

k with limk!1 euBk

w
j

= uw
j

pointwise. It follows that, for all µ 2 Mc(D),

Pµ[e
�hw,X

t

i] = lim
j!1

lim
k!1

Pµ[e
�h ew

j

, eXB

k

t

i]

= lim
k!1

lim
j!1

Pµ[e
�h ew

j

, eXB

k

t

i] = lim
k!1

Pµ[e
�h ew, eXB

k

t

i] = e�hw,µi.
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In the remainder of this section, we choose w to be w(x) = � logP�
x

(E
fin

), and let

Z = (Zt)t�0

be a strictly dyadic branching particle di↵usion, where the spatial motion

is defined by (1.7) and the branching rate is given by q = ↵w (in accordance with

(1.8)).

One advantage of allowing unbounded ↵ and � is that the setup is now invariant

under h-transforms: for any h 2 C2,⌘(D), h > 0,  h is a GQBM. Moreover,

wh(x) := � logP h
�
x

(9t � 0: h1, Xh
t i = 0)

= � logPh(x)�1�
x

(9t � 0: hh,Xti = 0) = w(x)/h(x),
(4.5)

and Lemmas 2.10 and 2.11 remain valid for GQBMs and H( ) = {h 2 C2,⌘(D) : h > 0}.
We record the following result.

Theorem 4.4. Let  be a GQBM, and suppose Assumption 2 holds and �↵ is bounded.

Let µ 2 M�
f (D).

(i) For all f 2 p(D) with f/� bounded, the convergence in (1.16) holds in L1(Pµ).

(ii) If, in addition, Assumption 4 holds, then there exists a measurable set ⌦
0

with

Pµ(⌦0

) = 1, and on ⌦
0

, the convergence in (1.16) holds for all `-almost every-

where continuous f 2 p(D) with f/� bounded.

Proof. Let X� be an (L�
0

, �;D)-superprocess. Since �� = �c and ↵� = �↵ are

bounded, X� satisfies the assumptions of Section 1.1. Moreover, X� satisfies Assump-

tion 1 by Lemma 4.3, Assumption 2 with �� = 1 by Lemma 2.10 (i), and Assump-

tion 3”. Hence, Theorem 2.12 (i) and Lemma 2.10 (ii) yield the first part of the claim.

Lemmas 2.11, 2.10 (ii) and 3.4, and Theorem 2.12 (ii) yield the second part.

The h-transforms are one way to relate two superprocesses to each other; another

is monotonicity.

Lemma 4.5. Let  � and  ̂
ˆ� be two branching mechanisms as defined in Section 1.1

with  � �  ̂
ˆ�. Let X and X̂ be (L, � ;D)- and (L,  ̂

ˆ� ;D)-superprocesses, respectively.

(i) For all µ 2 Mf (D), f 2 bp(D), t � 0, Pµ[e�hf,X
t

i] � Pµ[e�hf, ˆX
t

i].

(ii) Let w(x) = � logP�
x

(9t � 0: h1, Xti = 0) and ŵ(x) = � logP�
x

(9t � 0: h1, X̂ti =
0) for all x 2 D. Then w  ŵ.

Proof. Part (i) is proved in Appendix B below. Part (ii) follows from Part (i) and the

identity w(x) = limt!1 lim✓!1� logP�
x

[e�✓h1,X
t

i].

We saw in Example 4.2 that the SLLN describes the asymptotics of the mass

in compact sets, not necessarily the global growth. A second distinction between

the local and global behaviour can be observed on the event {W �
1(X) = 0} \ E

fin

.

Engländer and Turaev [61, Problem 14] raised the question whether this event can
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have positive probability. Suppose Assumption 2 holds. Engländer [53] observed that

if limt!1 e��
c

thf,Xti = hf, e�iW �
1(X) in distribution for all f 2 C+

c (D), µ 2 Mc(D),

and if the support of X is transient, then

Pµ(W
�
1(X) = 0) > Pµ(E

fin

) for all µ 2 Mc(D), µ 6⌘ 0. (4.6)

Here the support of (X;Pµ) is recurrent if

Pµ(Xt(B) > 0 for some t � 0 | Ec
fin

) = 1 for every open B ✓ D,B 6= ;,

and transient otherwise. See [59] for a detailed discussion of recurrence and transience

of the support of superdi↵usions.

We study three examples in this section. In the first example, ↵ and � are bounded

but w is unbounded. In the second example ↵ is bounded, but �, � and w are un-

bounded. Both examples are based on a recurrent motion but while the support of

the superprocess is recurrent in the second, it is transient in the first example. The

third example considers a large class of processes containing super-Brownian motion

with compactly supported growth rate � and instances of non-symmetric underlying

motions.

The domain for all these examples is D = Rd, and therefore, none of them is

covered in Liu et al.’s [102] article. Chen et al.’s [27] article is not applicable to the

first two examples since they are based on the inward-OU process as underlying motion

(because, as in Section 4.1, Q is unbounded) and not to the third because the motion is

non-symmetric (for some processes in the considered class), and the variance parameter

↵ is unbounded, whereas [27] requires ↵ to be bounded.

The motivation for the first example comes from Example 5.1 in [59].

Example 4.6. Let d � 1, D = Rd, L = 1

2

�� �x ·r with � > 0, � 2 (0,1) constant,

↵(x) = e��kxk2 , ⇧ ⌘ 0. Then Theorem 1.2 applies with � = 1, e�(x) = (�/⇡)d/2e��kxk2

and �c = �. Moreover, w(x) = (� + �d)e�kxk
2
, the support of X is transient, and (4.6)

holds.

There are two ways to prove (1.16) for this example. First, we perform an h-

transform with h(x) = (�/⇡)�d/2e�kxk
2
to obtain

Lh
0

=
1

2
�+ �x ·r, �h = � + �d, ↵h = (⇡/�)d/2.

In Example 4.2, we showed that Theorem 1.2 applies to the (Lh
0

, h;Rd)-superprocess.

The (L, ;Rd)-superprocess can be recovered by an h-transform with h
2

= 1/h, and

Lemma 2.10 yields that Assumption 2 is satisfied with the stated �, e� and �c, and that

(1.16) holds. Alternatively, we can deduce (1.16) by a direct application of Theorems 1.2

and 2.13. Assumption 1 holds by Lemma 4.3, and Assumption 3 holds since ↵ and � are

bounded. To verify Assumption 4, we notice that wh(x) = �h/↵h = (� + �d)(�/⇡)d/2
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by (4.1), and (4.5) yields

w(x) = wh(x)h(x) = (� + �d)e�kxk
2

for all x 2 Rd.

Thus, w is not bounded from above. The verification of (2.35) and (2.36) is the same

as in Example 4.2 since w/� is of the same order and the ergodic motion is the same.

Hence, the conditions hold with a(t) = e�(1+�)t for some � > 0 and K > 1 + �.

To see that the support of X is transient, notice that the support is invariant

under h-transforms, and the support of the (Lh
0

; h;Rd)-superprocess is transient by

Theorem 4.6 in [59] and Example 2 in [111].

Example 4.6 should be compared to Example 4.2 for a quadratic branching mech-

anism. In both examples, the support of the superprocess is transient, and the event

{W �
1(X) = 0} \ E

fin

has positive probability. Hence, in both examples, mass can es-

cape to infinity which is reflected in the SLLN by virtue of the fact that W �
1(X) = 0.

However, the motion in Example 4.6 is recurrent, and the SLLN captures not only the

local but also the global growth of mass.

The unbounded w in Example 4.6 can be interpreted as follows. Heuristically, since

the local growth rate � is bounded away from zero, on average a large population is

generated everywhere in space. Risk for the branching process comes from areas of

a relatively large variance for the total mass process. In contrast, when the variance

parameter ↵ is very small, then extinction is unlikely and w becomes large.

The motivation for the next example comes from Example 10 in [57]. For B 2 B(D),

f
1

, f
2

2 p(B), we write f
1

⇣ f
2

if there are constants 0 < c  C < 1 such that

cf
1

(x)  f
2

(x)  Cf
1

(x) for all x 2 B.

Example 4.7. Let d � 1, D = Rd, L = 1

2

� � �x · r, �(x) = c
1

kxk2 + c
2

, where

c
1

, c
2

> 0, � >
p
2c

1

. Write # := 1

2

(� �
p

�2 � 2c
1

). Then Assumption 2 holds with

�c = #d+ c
2

, �(x) = e#kxk
2
and e�(x) = ce(#��)kxk2 , where c = (��2#

⇡ )d/2. Suppose that

⇧ ⌘ 0 and ↵ 2 C⌘(D) with ↵ ⇣ 1/� on Rd. Then Theorem 4.4 applies, w ⇣ �, and

the support of X is recurrent.

Let h(x) = e#kxk
2
. Using ��+2# = �

p

�2 � 2c
2

and #2 � �#+ c1
2

= 0, we observe

that

Lh
0

=
1

2
��

p

�2 � 2c
1

x ·r, �h = #d+ c
2

, ↵h(x) = h(x)↵(x) ⇣ 1 on Rd.

The (Lh
0

, h;Rd)-superprocess, denoted by Xh, satisfies Assumption 2 by Example 4.1

with �h = 1, e�h ⇣ e(2#��)kxk2 and �hc = #d+ c
2

. Hence, Lemma 2.10 (i) shows that X

satisfies Assumption 2, �, e� and �c have been correctly identified, and �↵ is bounded.

When we have verified Assumption 4 for Xh, then Lemma 2.11 will yield Assumption 4

for X, and Theorem 4.4 applies.

To this end, choose constants c
3

, c
4

2 (0,1) such that c
3

/h  ↵  c
4

/h. Let
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 (x, z) := ��hz + c
3

z2 and  (x, z) := ��hz + c
4

z2, and denote by w and w the

martingale functions corresponding to the event of extinction after finite time for

the (Lh
0

, ;Rd)- and (Lh
0

, ;Rd)-superprocesses, respectively. Since    h   ,

Lemma 4.5 (ii) and (4.1) imply

�h/c
3

= w(x) � wh(x) � w(x) = �h/c
4

for all x 2 D.

Hence, wh ⇣ 1 = �h. Now the verification of (2.35) and (2.36) for Xh is the same as

in Example 4.1, and we can choose a(t) =
p

(�c/(� � 2#) + �)t for some � > 0 and

K = 1. Theorem 2.13 yields Assumption 4.

The support of X is recurrent since the support is invariant under h-transforms, and

the support of the (Lh
0

, h;Rd)-superprocess is recurrent according to Theorem 4.4 (b)

in [59].

The next example covers a large class of processes. The underlying motion is a

Brownian motion with or without a compactly supported drift term. Depending on

the choice of that drift, the motion can be symmetric or non-symmetric. For a choice

of b which makes L non-symmetric see Example 13 in [57]. The article by Chen et al.

[27] excludes non-symmetric motions. The example is motivated by Example 22 in [61]

and Examples 12 and 13 in [57].

Example 4.8. Let d 2 {1, 2}, D = Rd, L = 1

2

� + b · r, where all components

of b belong to C1,⌘(Rd) for some ⌘ 2 (0, 1] and are of compact support. Let �
0

2
C⌘(Rd) be nonnegative and of compact support, �

0

6= 0. There exists ✓ > 0 such that

�c(L+ ✓�
0

) > 0, and we let � = ✓�
0

, �c = �c(L+ �). Write

%(x) = kxk(1�d)/2e�
p
2�

c

kxk, for all x 2 Rd \ {0}.

Let ↵ 2 C⌘(D), ↵(x) > 0 for all x 2 Rd and ↵ ⇣ 1/% on Rd \ B for an open ball

B around the origin. Then Theorem 4.4 applies with �, e�, w ⇣ % on Rd \ B, and the

support of X is recurrent.

The existence of ✓ is proved in Theorems 4.6.3 and 4.6.4 of Pinsky’s book [110],

and L + � � �c is critical by Theorem 4.6.7 in the same book. Denote by G the

Green’s function corresponding to the operator L� �c. Then � ⇣ G(·, 0) on Rd \B by

Theorems 4.6.3 and 7.3.8 in [110]. Pinsky showed in Example 7.3.11 that the Green’s

function G
1

of 1

2

���c satisfies G1

(·, 0) ⇣ % on Rd \B. Since b is compactly supported,

G
1

(·, 0) ⇣ G(·, 0) on Rd \B, and the estimate for � is established. The same argument

yields the same estimate for e�, and Assumption 2 holds. Moreover, �↵ is bounded.

To check Assumption 4 we use Theorem 2.13. An h-transform of the (L, ;Rd)-

superprocess with h = � gives an (L�
0

, �;Rd)-superprocess, where L�
0

corresponds to

a conservative, positive recurrent motion, and  �(x, z) = ��cz + �(x)↵(x)z2. Since

�↵ ⇣ 1, w� ⇣ 1 by the same argument as in Example 4.7. Hence, (4.5) implies

w/� ⇣ 1, and Conditions (i) and (ii) of Theorem 2.13 have been verified in Examples 12
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and 13 of [57] with a(t) =
p

2(k�k1 + �)t, K >
p

(k�k1 + �)/�c for � > 0. Since w�

is bounded and the di↵usion corresponding to L�
0

is recurrent, Theorem 4.4 in [59]

shows that the support of X�, and therefore X, is recurrent.

4.3 Bounded domains

In the situation that D is a bounded Lipschitz domain and L is a uniformly elliptic op-

erator with smooth coe�cients, Liu et al. [102] prove the SLLN for a general branching

mechanism with arbitrary � 2 b(D), and ↵ and ⇧ as in Section 1.1.

However, the Wright–Fisher di↵usion on domain D = (0, 1) is a di↵usion process

whose di↵usion matrix a(x) = x(1 � x) is not uniformly elliptic. The process has at-

tracted a wide interest in the literature (see for example [77, 74, 12]). Fleischmann and

Swart [74] studied the large-time behaviour of the corresponding superprocess with

spatially independent, quadratic branching mechanism on [0, 1]. They conjecture a

SLLN for the process restricted to D = (0, 1) (see above (23) in [74]) but prove only

convergence in L2. The Wright–Fisher di↵usion is not conservative, so the arguments in

Section 4.1 are not applicable. However, Theorem 1.2 applies, and the following theo-

rem proves the conjecture for all Lebesgue-almost everywhere continuous test functions

f 2 p(D) with f/� bounded. (Fleischmann and Swart do not assume any continuity.)

Theorem 4.9 (Super-Wright–Fisher di↵usion). Let D = (0, 1), � 2 (1,1), ↵ > 0,

⇧ ⌘ 0 and

L =
1

2
x(1� x)

d2

dx2
=

1

2

d

dx
x(1� x)

d

dx
+

2x� 1

2

d

dx
.

Then Theorem 1.2 applies with �(x) = 6x(1� x), e� = 1 and �c = � � 1.

Proof. Let h(x) = 6x(1� x). Fleischmann and Swart proved in Lemma 20 of [74] that

the generator

Lh
0

=
1

2

d

dx
x(1� x)

d

dx
+

1� 2x

2

d

dx

corresponds to an ergodic di↵usion with invariant law h(x)`(dx) onD. Using �h = ��1,

we deduce that �c(Lh
0

+ �h) = � � 1, �h = 1, e�h = h, and using Lemma 2.10,

Assumption 2 for the (L, ;D) superprocess as well as the stated identities for �, e�

and �c are established. Assumption 1 holds by Lemma 4.3; the boundedness of ↵

and � implies that Assumption 3 is satisfied. To verify Assumption 4, we notice that

Condition (i) of Theorem 2.13 is trivially satisfied for Dt = D, and (2.34) for Dt = D

and K = 1 has been proved in Lemma 20 of [74]. Hence, Assumption 4 follows from

Theorem 2.13, and Theorem 1.2 applies.
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APPENDIX A

FEYNMAN–KAC ARGUMENTS

In this appendix, we prove an integral identity that is used several times in the thesis.

Versions of this result appeared in Lemma A.I.1.5 of [43] and Lemma 4.1.2 of [44] but

the format and assumptions are di↵erent. Like in the remainder of Part I of this thesis,

(⇠ = (⇠t)t�0

: (Px)x2D) is a di↵usion as described in Section 1.1.

Lemma A.1. Let T > 0 and either B = D or B ⇢⇢ D open. Write ⌧ = inf{t �
0: ⇠t 62 B}, and A = D if B = D; A = B if B ⇢⇢ D.

(i) Let f
1

2 b(A), g
1

: A⇥ [0, T ] ! R measurable and bounded from above and f
2

, g
2

2
b(A⇥ [0, T ]). If for all (x, t) 2 A⇥ [0, T ],

v(x, t) = Px

h

e
R
t^⌧

0 (g1+g2)(⇠r,t�r) drf
1

(⇠t^⌧ )
i

+ Px

h

Z t^⌧

0

e
R
s

0 (g1+g2)(⇠r,t�r) drf
2

(⇠s, t� s) ds
i

,
(A.1)

then, for all (x, t) 2 A⇥ [0, T ],

v(x, t) = Px

h

e
R
t^⌧

0 g1(⇠r,t�r) drf
1

(⇠t^⌧ )
i

+ Px

h

Z t^⌧

0

e
R
s

0 g1(⇠r,t�r) dr
⇣

f
2

(⇠s, t� s) + g
2

(⇠s, t� s)v(⇠s, t� s)
⌘

ds
i

.

(ii) The statement of (i) remains valid when f
1

2 bp(A), f
2

, g
1

, g
2

: A ⇥ [0, T ] ! R
measurable with g

1

bounded from above, g
2

nonnegative, f
2

nonpositive and g
1

+g
2

bounded from above. Notice that in this case, v might attain the value �1.

Proof. For all t � 0, write

Yt = e
R
t^⌧

0 (g1+g2)(⇠r,t�r) drf
1

(⇠t^⌧ ), and Zt =

Z t^⌧

0

e
R
s

0 (g1+g2)(⇠r,t�r) drf
2

(⇠s, t� s) ds.
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By assumption, v(x, t) = Px[Yt + Zt] for all (x, t) 2 A ⇥ [0, T ]. The Markov property

implies

Z t

0

Px

h

{s<⌧}e
R
s

0 g1(⇠r,t�r) drg
2

(⇠s, t� s)P⇠
s

[Yt�s]
i

ds

=

Z t

0

Px

h

{s<⌧}e
R
s

0 g1(⇠r,t�r) drg
2

(⇠s, t� s)e
R
t^⌧

s

(g1+g2)(⇠r,t�r) drf
1

(⇠t^⌧ )
i

ds.

If g
2

is bounded, then Fubini’s theorem and the fundamental theorem of calculus (FTC)

for Lebesgue integrals imply that the right-hand side equals

Px

h

f
1

(⇠t^⌧ )e
R
t^⌧

0 g1(⇠r,t�r) dr

Z t^⌧

0

g
2

(⇠s, t� s)e
R
t^⌧

s

g2(⇠r,t�r) dr ds
i

= Px

h

f
1

(⇠t^⌧ )e
R
t^⌧

0 g1(⇠r,t�r) dr
⇣

e
R
t^⌧

0 g2(⇠r,t�r) dr � 1
⌘i

.

In the situation of (ii), the same identity can be obtained by truncating g
2

before the

application of the FTC and using the monotone convergence theorem afterwards. The

Markov property and Fubini’s theorem (in case (ii) its application is justified by the

nonpositivity of the integrand) yield

Z t

0

Px

h

{s<⌧}e
R
s

0 g1(⇠r,t�r) drg
2

(⇠s, t� s)P⇠
s

[Zt�s]
i

ds

=

Z t

0

Px

h

{s<⌧}e
R
s

0 g1(⇠r,t�r) drg
2

(⇠s, t� s)

Z t^⌧

s
e
R
u

s

(g1+g2)(⇠r,t�r) drf
2

(⇠u, t� u) du
i

ds

= Px

h

Z t^⌧

0

e
R
u

0 g1(⇠r,t�r) drf
2

(⇠u, t� u)

Z u

0

g
2

(⇠s, t� s)e
R
u

s

g2(⇠r,t�r) dr ds du
i

.

As above, the FTC implies that the right-hand side equals

Px

h

Z t^⌧

0

e
R
u

0 g1(⇠r,t�r) drf
2

(⇠u, t� u)
⇣

e
R
u

0 g2(⇠r,t�r) dr � 1
⌘

du
i

.

Since v(x, t) = Px[Yt + Zt] for all (x, t) 2 A⇥ [0, T ], we conclude that in the situation

of (i),

Px

h

Z t^⌧

0

e
R
s

0 g1(⇠r,t�r) dr
⇣

f
2

(⇠s, t� s) + g
2

(⇠s, t� s)v(⇠s, t� s)
⌘

ds
i

= Px

h

f
1

(⇠t^⌧ )e
R
t^⌧

0 g1(⇠r,t�r) dr
⇣

e
R
t^⌧

0 g2(⇠r,t�r) dr � 1
⌘

+

Z t^⌧

0

e
R
s

0 (g1+g2)(⇠r,t�r) drf
2

(⇠s, t� s) ds
i

.

In the situation of (ii), this use of linearity is justified since none of the summed integrals

can take the value +1. Since f
1

is bounded and g
1

, g
1

+ g
2

are bounded from above,

the first term on the right can be written as the di↵erence of two finite integrals and

(A.1) yields the claim.
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MONOTONICITY

In this appendix, a generalised version of the mild equation (1.3) is studied. For the

exit measures eXB
t from Section 2.1.1, we establish monotonicity in the domain, and we

prove Lemma 4.5. As a by-product, we re-prove the existence and uniqueness of the

solutions to (1.3) and (2.7).

To this end, we assume only that � is bounded above, not necessarily from below.

More specifically, the setup is as follows. Let � : D ! R be measurable with �̄ =

max{supx2D �(x), 0} < 1, ↵ 2 bp(D), ⇧ a kernel from D to (0,1) such that x 7!
R

(0,1)

(y ^ y2)⇧(x, dy) belongs to bp(D), and let (⇠;P) be a di↵usion as described in

Section 1.1. We denote by lbp(D⇥ [0,1)) the space of all functions f 2 p(D⇥ [0,1))

with kfk1,T := supt2[0,T ]

kf(·, t)k1 < 1 for all T > 0.

For f 2 bp(D) and g 2 lbp(D⇥ [0,1)), we are interested in solutions to the integral

equation

u(x, t) +

Z t

0

Ss

⇥

 
0

(·, u(·, t� s))
⇤

(x) ds = Stf(x) +

Z t

0

Ss[g(·, t� s)](x) ds (B.1)

for all (x, t) 2 D ⇥ [0,1), where Stf(x) = Px[e
R
t

0 �(⇠
s

) dsf(⇠t)] for f 2 p(D). A similar

analysis to ours has been carried out by Dynkin (Chapter 4, Sections 1 and 3 in [43])

for the case � = 0 and g = 0. The greater generality of (B.1) allows us to handle the

general setup of this thesis and to prove Lemma 4.5.

Note that z 7!  
0

(x, z), defined in (1.1) is increasing, convex, and nonnegative. In

particular, any nonnegative solution u to (B.1), satisfies

0  u(x, t)  e
¯�tkfk1 +

Z t

0

e
¯�skg(·, t� s)k1 ds for all (x, t) 2 D ⇥ [0,1).

Hence, any nonnegative solution to (B.1) is an element of lbp(D ⇥ [0,1)). Moreover,

 
0

is locally Lipschitz continuous in the sense that for every fixed c > 0 there exists
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L(c) 2 [0,1) such that

| 
0

(x, z
1

)�  
0

(x, z
2

)|  L(c)|z
1

� z
2

| for all z
1

, z
2

2 [0, c], x 2 D. (B.2)

We use the following version of Gronwall’s lemma; for a proof see Theorem A.5.1 in

[68].

Lemma B.1 (Gronwall’s lemma). Let T > 0, C, ⇢ � 0 and h 2 b([0, T ]). If

h(t)  C + ⇢

Z t

0

h(s) ds for all t 2 [0, T ],

then h(t)  Ce⇢t for all t 2 [0, T ].

Lemmas B.2 and B.3 in the case � = 0 and g = 0 are Theorems 4.1.1 and 4.3.1 in

[44].

Lemma B.2 (Uniqueness). Let f, f̂ 2 bp(D), g, ĝ 2 lbp(D ⇥ [0,1)), and suppose

that u and û are nonnegative solutions to (B.1) for (f, g) and (f̂ , ĝ), respectively. Then,

for every T > 0, there exists a constant C > 0 such that

ku� ûk1,T  C
�kf � f̂k1 + kg � ĝk1,T

�

.

In particular, the solution to (B.1) is unique.

Proof. Fix T > 0, and let c � max{kuk1,T , kûk1,T }. Then (B.2) yields

| 
0

(x, û(x, t))�  
0

(x, u(x, t))|  L(c)|û(x, t)� u(x, t)| for all (x, t) 2 D ⇥ [0, T ].

Writing h(x, t) = |u(x, t)� û(x, t)| and M = e
¯�T , (B.1) implies that

h(x, t)  Mkf � f̂k1 +MTkg � ĝk1,T +

Z t

0

ML(c)kh(·, s)k1 ds

for all (x, t) 2 D ⇥ [0, T ]. Lemma B.1 yields the claim.

Lemma B.3 (Existence). Let f 2 bp(D) and g 2 lbp(D ⇥ [0,1)). There exists a

nonnegative solution u 2 lbp(D ⇥ [0,1)) to (B.1).

Proof. Fix T > 0 and let M = e
¯�T . For k 2 [0,1) and u 2 lbp(D ⇥ [0, T ]), i.e.

u 2 p(D ⇥ [0, T ]) with kuk1,T < 1, we define for all (x, t) 2 D ⇥ [0, T ],

Fku(x, t) = e�ktStf(x) +

Z t

0

e�ksSs[g(·, t� s)](x) ds

+

Z t

0

e�ksSs

⇥

ku(·, t� s)�  
0

(·, u(·, t� s))
⇤

(x) ds.

Let c � Mkfk1+MTkgk1,T and k � L(c). Write v(x, t) = e
¯�tkfk1+

R t
0

e
¯�s dskgk1,T

for all x 2 D, t 2 [0, T ]. We show the following:
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(i) 0  Fk0  v on D ⇥ [0, T ].

(ii) If 0  u
1

 u
2

 v on D ⇥ [0, T ], then Fku1  Fku2 on D ⇥ [0, T ].

(iii) Fkv  v on D ⇥ [0, T ].

Indeed, Fk0(x, t) = e�ktStf(x) +
R t
0

e�ksSs[g(·, t� s)](x) ds 2 [0, v(x, t)] since f and g

are nonnegative and k � 0. For (ii), we combine u
1

 u
2

 v  c on D ⇥ [0, T ] with

(B.2), to obtain

Fku2(x, t)� Fku1(x, t)

=

Z t

0

e�ksSs

⇥

k(u
2

� u
1

)(·, t� s)� �

 
0

(·, u
2

(·, t� s))�  
0

(·, u
1

(·, t� s))
�⇤

(x) ds

�
Z t

0

e�ksSs

⇥

(k � L(c))(u
2

� u
1

)(·, t� s)
⇤

(x) ds � 0.

To show (iii), we use that  
0

is nonnegative, the definition of v and Fubini’s theorem

to obtain

Fkv(x, t)  e�kte
¯�tkfk1 +

Z t

0

e�kse
¯�skgk1,T ds

+

Z t

0

e�kse
¯�sk

⇣

e
¯�(t�s)kfk1 +

Z t�s

0

e
¯�r drkgk1,T

⌘

ds

=
⇣

e�kt +

Z t

0

ke�ks ds
⌘

e
¯�tkfk1

+
⇣

Z t

0

e(
¯��k)s ds+

Z t

0

ke�ks

Z t

s
e
¯�r dr ds

⌘

kgk1,T

= v(x, t).

In the next step, we construct a solution to (B.1) via a Picard iteration. Let u
0

= 0

and un = Fkun�1

for all n 2 N. We show by induction that 0  un�1

 un  v

on D ⇥ [0, T ] for all n 2 N. For n = 1, this is statement (i). The induction step

follows from (ii)–(iii). In particular, (un)n2N0 has a pointwise limit u, which is a

fixed point of Fk by the dominated convergence theorem. Lemma A.1 (i) applied to

g
1

= �, which is bounded from above, and the bounded functions g
2

= �k, f
1

= f and

f
2

(x, t) = g(x, t) + ku(x, t)�  
0

(x, u(x, t)), shows that u solves (B.1).

Choosing g = 0, Lemmas B.2 and B.3 imply the existence of a unique solution to

(1.3) and (2.7). The following lemma will be used in the proof of Lemma 4.5.

Lemma B.4 (Monotonicity in (f, g)). Let f, f̂ 2 bp(D), g, ĝ 2 lbp(D⇥ [0,1)) with

f  f̂ and g  ĝ, and denote by u and û the unique solutions to (B.1) corresponding to

(f, g) and (f̂ , ĝ), respectively. Then u  û.

Proof. Since the solution is unique according to Lemma B.2, the claim follows im-

mediately from the construction of the solution via Picard iteration in the proof of

Lemma B.3.
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Proof of Lemma 4.5 (i). According to (1.3), uf is the unique solution to (B.1) with

g = 0. Moreover, (1.3) for ûf , and Lemma A.1 (i) applied to g
1

= �, g
2

= �̂ � �,

f
1

= f and f
2

(x, t) = � ̂
0

(x, ûf (x, t)), imply that ûf satisfies

ûf (x, t) = Stf(x) +

Z t

0

Ss

⇥�  ̂
0

(·, ûf (·, t� s)) + (�̂(·)� �(·))ûf (·, t� s)
⇤

(x) ds

= Stf(x)�
Z t

0

Ss

⇥

 
0

(·, ûf (·, t� s))
⇤

(x) ds

+

Z t

0

Ss

⇥

 �(·, ûf (·, t� s))�  ̂
ˆ�(·, ûf (·, t� s))

⇤

(x) ds.

In particular, ûf solves (B.1) with g(x, t) =  �(x, ûf (x, t))�  ̂
ˆ�(x, ûf (x, t)) � 0. Now

Lemma B.4 yields the claim.

The following lemma is used in the proofs of Theorem 2.3 and Lemma 4.3.

Lemma B.5 (Monotonicity in B). Let B ⇢⇢ D and f 2 bp(D) such that the support

of f , supp(f), is compactly embedded in B. There exists a unique nonnegative solution

uBf 2 lbp(D ⇥ [0,1)) to

u(x, t) = Px

h

e
R
t^⌧

B

0 �(⇠
s

) dsf(⇠t^⌧
B

)
i

�Px

h

Z t^⌧
B

0

e
R
s

0 �(⇠
r

) dr 
0

(⇠s, u(⇠s, t�s)) ds
i

. (B.3)

Moreover, if B
1

and B
2

are domains with supp(f) ✓ B
1

✓ B
2

, then uB1
f  uB2

f .

Proof. Let T > 0, c � e
¯�T kfk1, k � L(c). For u 2 lbp(D ⇥ [0, T ]), define

Fku(x, t) = Px

h

e
R
t

0 [�(⇠s)�k] dsf(⇠t) {t<⌧
B

}

i

+

Z t

0

Px

h

e
R
s

0 [�(⇠r)�k] dr
⇥

ku(⇠s, t� s)�  
0

(⇠s, u(⇠s, t� s))
⇤

{s<⌧
B

}

i

ds.

Since kz� 
0

(x, z) � kz�L(c)z � 0 for all z 2 [0, c], Fku is increasing in B for all u with

u(x, t)  e
¯�tkfk1 =: v(x, t). As in Lemmas B.2 and B.3, the unique solution to (B.3)

can be obtained as a pointwise limit of the increasing sequence u
0

= 0, un+1

= Fkun

with un  v for all n. Denote by u(1)
n and u(2)

n the iterates for the operators F (1)

k and

F (2)

k corresponding to B
1

and B
2

, respectively. We show by induction that u(1)
n  u(2)

n

for every n 2 N
0

. For n = 0 this is trivial. For the induction step, we first use the

induction hypothesis and monotonicity of F (1)

k (see (ii) in the proof of Lemma B.3) and

then the monotonicity of Fk in B to deduce

u(1)

n+1

= F (1)

k u(1)
n  F (1)

k u(2)
n  F (2)

k u(2)
n = u(2)

n+1

.

For B ⇢⇢ D, the tuple (L, ⇤
�⇤ ;B) satisfies the assumptions of Section 1.1, where

the motion is killed at the boundary of B. Hence, Lemma B.5 implies that the

(L, ⇤
�⇤ ;D)-superprocess can be obtained as a distributional limit of (L, ⇤

�⇤ ;B)-super-
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Appendix B. Monotonicity

processes using an increasing sequence of compactly embedded domains to approximate

D; see the argument before Corollary 6.2 in [98] or Lemma A2 and Theorem A1 in

[59].
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Part II

Vulnerability of robust

preferential attachment networks

Scale-free networks with small power law exponent are known to be

robust, meaning that their qualitative topological structure cannot

be altered by random removal of even a large proportion of nodes.

By contrast, it has been argued in the science literature that such

networks are highly vulnerable to a targeted attack, and removing a

small number of key nodes in the network will dramatically change

the topological structure.

Here we analyse a class of preferential attachment networks in the

robust regime and prove four main results supporting this claim: after

removal of an arbitrarily small proportion ✏ > 0 of the oldest nodes (1)

the asymptotic degree distribution has exponential instead of power

law tails; (2) the largest degree in the network drops from being of the

order of a power of the network size n to being just logarithmic in n;

(3) the typical distances in the network increase from order log log n

to order log n; and (4) the network becomes vulnerable to random

removal of nodes. Importantly, all our results explicitly quantify the

dependence on the proportion ✏ of removed vertices. For example, we

show that the critical proportion of nodes that have to be retained for

survival of the giant component undergoes a steep increase as ✏ moves

away from zero, and a comparison of this result with similar ones

for other networks reveals the existence of two di↵erent universality

classes of robust network models.

The key techniques in our proofs are a local approximation of the

network by a branching random walk with two killing boundaries,

and an understanding of the particle genealogies in this process, which

enters into estimates for the spectral radius of an associated operator.
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CHAPTER 5

INTRODUCTION

5.1 Motivation

The problem of resilience of networks to either random or targeted attack is crucial to

many instances of real world networks, ranging from social networks (like collaboration

networks) via technological networks (like electrical power grids), to communication

networks (like the World Wide Web). Of particular importance is whether the con-

nectivity of a network relies on a small number of hubs and whether their loss will

cause a large-scale breakdown. Albert, Albert and Nakarado [3] argue that “the power

grid is robust to most perturbations, yet disturbances a↵ecting key transmission sub-

stations greatly reduce its ability to function”. Experiments of Albert, Jeong, and

Barabási [4], Holme, Kim, Yoon and Han [86] and more recently of Mishkovski, Biey

and Kocarev [105] find robustness under random attack but vulnerability to the removal

of a small number of key nodes in several other networks. The latter paper includes a

study of data related to the human brain, as well as street, collaboration and power

grid networks. One should expect this qualitative behaviour across the range of real

world networks and it should therefore also be present in the key mathematical models

of large complex networks.

A well established feature of many real world networks is that in a suitable range

of values k the proportion of nodes with degree k has a decay of order k�⌧ for a power

law exponent ⌧ . The robustness of networks with small power law exponent under

random attack has been observed heuristically by Callaway et al. [25] and Cohen et

al. [32], but there seems to be controversy in these early papers about the extent of

the vulnerability in the case of targeted attack, see the discussion in [39] and [33]. As

Bollobás and Riordan [21, Section 10] point out, such heuristics, informative as they

may be, are often quite far away from a mathematical proof that applies to a given

model. In their seminal paper [21] they provide the first rigorous proof of robustness

in the case of a specific preferential attachment model with power law exponent ⌧ = 3,
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and later Dereich and Mörters [37] proved for a class of preferential attachment models

with tunable power law exponent that networks are robust under random attack if the

power law exponent satisfies ⌧  3, but not when ⌧ > 3, thus revealing the precise

location of the phase transition in the behaviour of preferential attachment networks.

However, the question of vulnerability of robust networks when a small number of

privileged nodes is removed has not been studied systematically in the mathematical

literature so far.

It is our aim to give evidence for the vulnerability of robust networks by provid-

ing rigorous proof that preferential attachment networks in the robust regime ⌧  3

undergo a radical change under a targeted attack, i.e. when an arbitrarily small propor-

tion ✏ > 0 of the most influential nodes in the network is removed. Our main results,

presented in Section 5.3, show how precisely this change a↵ects the degree structure,

the length of shortest paths and the connectivity in the network. The results take the

form of limit theorems revealing explicitly the dependence of the relevant parameters

on ✏. Not only does this provide further insight into the topology of the network and

the behaviour as ✏ tends to zero, it also allows a comparison to other network models,

and thus exposes two classes of robust networks with rather di↵erent behaviour; see

Section 5.5. Our mathematical analysis of the network combines probabilistic and com-

binatorial arguments with analytic techniques informed by new probabilistic insights.

It is crucially based on the local approximation of preferential attachment networks by

a branching random walk with a killing boundary recently found in [37]. In this approx-

imation the removal of a proportion of old vertices corresponds to the introduction of

a second killing boundary. On the one hand this adds an additional level of complexity

to the process, as the mathematical understanding of critical phenomena in branching

models on finite intervals is only just emerging; see for example [81]. On the other

hand compactness of the typespace for this branching process opens up new avenues

that are exploited, for example, in the form of spectral estimates based on rather subtle

information on the shape of principal eigenfunctions of an operator associated with the

branching process.

5.2 Mathematical framework

The established mathematical model for a large network is a sequence (Gn : n 2 N) of
(random or deterministic) graphs Gn with vertex set Vn and an edge set En consisting

of (directed or undirected) edges between the vertices. We assume that the size |Vn| of
the vertex set is increasing to infinity in probability, so that results about the limiting

behaviour in the sequence of graphs may be seen as predictions for the behaviour of

large networks. In all cases of interest here the average number of edges per vertex

converges in probability to a finite limit and the topology of a bounded neighbourhood

of a typical vertex stabilizes. An important example for this is the proportion of

vertices with a given degree in Gn, which in the relevant models converges and allows
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us to talk about the asymptotic degree distribution. The mathematical models of power

law networks therefore have an asymptotic degree distribution with the probability of

degree k decaying like k�⌧ , as k ! 1, for some ⌧ > 1. Our focus here is on the global

properties emerging in network models with asymptotic power law degree distributions.

A crucial global feature of a network is its connectivity, and in particular the exis-

tence of a large connected component. To describe this, we denote by Cn a connected

component in Gn with maximal number of nodes. The graph sequence (Gn : n 2 N)
has a giant component if there exists a constant ⇣ > 0 such that

|Cn|
E|Vn| ! ⇣ as n ! 1,

where the convergence holds in probability. We remark that for the models usually

considered the issue is not the convergence itself but the positivity of the limit ⇣. If a

giant component exists and the length of the shortest path between any two vertices

in the largest component of Gn is asymptotically bounded by a multiple of log n, then

the network is called small. If it is asymptotically bounded by a constant multiple of

log log n, then the network is called ultrasmall ; see Section 1.2 in [85].

To model a random attack on the network, each vertex in Gn is kept independently

with probability p 2 [0, 1] and otherwise it is removed from the vertex set together with

all its adjacent edges, i.e., we run vertex percolation on Gn with retention probability

p. The resulting graph is denoted by Gn(p). A simple coupling argument shows that

there exists a critical parameter p
c

2 [0, 1] such that the sequence (Gn(p) : n 2 N) has
a giant component if p

c

< p  1, and it does not have a giant component if 0  p < p
c

.

If p
c

= 0, i.e. if the giant component cannot be destroyed by percolation with any

positive retention parameter, then the network is called robust. To study the resilience

of networks to a targeted attack, we consider models in which the construction of the

network favours certain vertices in such a way that these privileged vertices have a

better chance of getting a high degree than others. When Gn is a graph on n vertices,

we label these by 1 to n and assume that vertices are ordered in decreasing order of

privilege. This assumption allows an attacker to target the most privileged vertices

without knowledge of the entire graph. The damaged graph G✏
n, for some ✏ 2 (0, 1), is

obtained from Gn by the removal of all vertices with label less or equal to ✏n together

with all adjacent edges. In particular, the new vertex set is V✏
n = {b✏nc + 1, . . . , n},

and we let C✏
n be a connected component in G✏

n with maximal number of nodes. Write

G✏
n(p) for the graph obtained from Gn by first removing all vertices with label at most

✏n and then running vertex percolation on the remaining graph. Note that we would

get the same graph when reversing the order in which these two attacks are performed.

However, we always start with the targeted attack for definiteness.

We investigate the problem of vulnerability of random networks to targeted at-

tack in the context of preferential attachment networks. This class of models has been

popularised by Barabási and Albert [9] and has received considerable attention in the
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scientific literature. The idea is that a sequence of graphs is constructed by succes-

sively adding vertices. Together with a new vertex, new edges are introduced by that

connect it to existing vertices at random with a probability depending on the degree

of the existing node; the higher the degree the more likely the connection. Despite the

relatively simple principle on which this model is based it shows a good match of global

features with real networks. For example, the asymptotic degree distributions follow a

power law, and variations in the attachment probabilities allow for tuning of the power

law exponent ⌧ ; see [36]. If the power law exponent satisfies ⌧ < 3, then the network

is robust and ultrasmall [37, 35].

The first mathematically rigorous study of resilience in preferential attachment

networks was performed by Bollobás and Riordan [21] for the so-called LCD model.

This model variant has the advantage of having an explicit static description, which

makes it easier to analyse than models that have only a dynamic description. It also

has a fixed power law exponent ⌧ = 3, hence, Bollobás and Riordan [21] prove only

results for this specific exponent. They show that the network is robust and identify a

critical proportion ✏
c

< 1 such that the removal of the oldest b✏nc vertices leads to the

destruction of the giant component if and only if ✏ � ✏
c

. Note that this is not in line

with the notion of vulnerability that we are interested in as we only want to remove a

small proportion of old vertices.

We consider the question of vulnerability in the following model variant introduced

in [36]. Let N
0

be the set of nonnegative integers and fix a function f : N
0

! (0,1),

which we call the attachment rule. The most important case is if f is a�ne, i.e.

f(k) = �k + � for parameters � 2 [0, 1) and � > 0, but non-linear functions are

allowed.

G
1

: 1 G
1

! G
2

: 1 2
f(0)/1

G
2

: 1 2 G
2

! G
3

: 1 2 3
f(0)/2

f(1)/2

G
3

: 1 2 3 G
3

! G
4

: 1 2 3 4
f(0)/3

f(0)/3

f(2)/3

G
4

: 1 2 3 4

Figure II-1. One possible evolution from graph G1 to G4. Potential edges are displayed as

dashed arrows together with their probabilities.

Given an attachment rule f , we define a growing sequence (Gn : n 2 N) of random
graphs by the following dynamics:
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• Start with one vertex labelled 1 and no edges, i.e. G
1

is given by V
1

:= {1}, and
E
1

:= ;;

• Given the graph Gn, we construct Gn+1

from Gn by adding a new vertex labelled

n + 1 and, for each m  n independently, inserting the directed edge (n + 1,m)

with probability
f(indegree of m at time n)

n
^ 1. (5.1)

The first few steps in one possible evolution of the graphs are displayed in Figure II-1.

Formally we are dealing with a sequence of directed graphs but all edges point from the

younger to the older vertex. Hence, the directions can be recreated from the undirected,

labelled graph. For all structural questions, particularly regarding connectivity and the

length of shortest paths, we regard (Gn : n 2 N) as an undirected network. Dereich and

Mörters consider in [36, 37] concave attachment rules f . Denoting the asymptotic slope

of f by

� := lim
k!1

f(k)

k
, (5.2)

they show that for � 2 (0, 1) the sequence (Gn : n 2 N) has an asymptotic degree

distribution which follows a power law with exponent

⌧ =
� + 1

�
.

For � � 1, i.e. ⌧  2, the mean of the asymptotic degree distribution is infinite and

a radically di↵erent topology can be expected. Results on power law networks in this

regime have been derived for example in [65, 15]; we restrict ourselves to the finite

mean case � < 1. In the case � < 1

2

, or equivalently ⌧ > 3, there exists a critical

percolation parameter p
c

> 0 such that (Gn(p) : n 2 N) has a giant component if and

only if p > p
c

.1 If however � � 1

2

, or equivalently ⌧  3, the sequence (Gn(p) : n 2 N)
has a giant component for all p 2 (0, 1], i.e. (Gn : n 2 N) is robust. This is the regime

of interest in this thesis.

5.3 Statement of the main results

In this section, we study the case of an a�ne attachment rule f(k) = �k + � with

� > 0 and � 2 [1
2

, 1). Recall that for this choice the preferential attachment network is

robust. We use the symbol a(✏) ⇣ b(✏) to indicate that there are constants 0 < c < C

and some ✏
0

> 0 such that cb(✏)  a(✏)  Cb(✏) for all 0 < ✏ < ✏
0

.

1
The results of [37] are formulated for edge percolation, whereas we consider vertex percolation. It is

not hard to see that for the existence or nonexistence of the giant component this makes no di↵erence.
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Theorem 5.1. (Loss of connectivity) For any ✏ 2 (0, 1), there exists p
c

(✏) 2 (0, 1]

such that the damaged network

(G✏
n(p) : n 2 N) has a giant component , p > p

c

(✏). (5.3)

If � = 1

2

, then

p
c

(✏) ⇣ 1

log(1/✏)
. (5.4)

If � > 1

2

, then, as ✏ # 0,

p
c

(✏) =
2� � 1

p

�(� + �)
✏��1/2

⇥

1 +O
�

✏��1/2(log ✏)
�⇤

.

Theorem 5.1 shows that the removal of an arbitrarily small proportion of old nodes

makes the network vulnerable to percolation, but does not destroy the giant component.

The steep increase of p
c

(✏) as ✏ leaves zero shows that, even when a small proportion

of old nodes has been removed from the network, the removal of further old nodes is

much more destructive than the removal of a similar proportion of randomly chosen

nodes.

Since ✏��1/2 is strictly decreasing in �, this e↵ect is stronger the closer � is to
1

2

. This result might be perceived as slightly counterintuitive since the preferential

attachment becomes stronger as � increases and therefore we might expect older nodes

to be more privileged and a targeted attack to be more e↵ective than in the small

� regime. However, the e↵ect of the stronger preferential attachment is more than

compensated by the fact that networks with a small value of � have a (stochastically)

smaller number of edges and are therefore a-priori more vulnerable. Note also that

p
c

(✏) may be equal to 1 if ✏ is not su�ciently small in which case (5.3) implies that the

damaged network has no giant component. In the case � = 1

2

, the implied constants in

(5.4) can be made explicit as c = 1

�+� and C = 1

� ; see Proposition 6.5 below.

From here onwards we additionally assume that �  1. Under this condition,

f(n) < n + 1 for all n 2 N
0

, and the minimum in (5.1) is always attained by its first

argument. To gain further insight into the topology of the damaged graph, we look

at the asymptotic indegree distribution and at the largest indegree in the network.

It was proved in Theorem 1.1 (b) of [36] that outdegrees are asymptotically Poisson-

distributed, and therefore indegrees are solely responsible for the power law behaviour

as well as the dynamics of maximal degrees.

For a probability measure ⌫ on the nonnegative integers, we write ⌫�k := ⌫({k, k+
1, . . .}) and ⌫k := ⌫({k}). Let Z[m,n] be the indegree of vertex m in Gn at time

n � m. Since for m > b✏nc, the indegree of m in Gn and G✏
n agree, writing X✏(n) for
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the empirical indegree distribution in G✏
n,

X✏
k(n) =

1

n� b✏nc
n
X

m=b✏nc+1

{k}(Z[m,n]), for k 2 N
0

.

Write M(G) for the maximal indegree in a directed graph G, and for s, t > 0, let

B(s, t) :=

Z

1

0

xs�1(1� x)t�1 dx

denote the beta function at (s, t). Before we make statements about the network after

the targeted attack, recall the situation in the undamaged network. In Theorem 1.1 (a)

of [36], Dereich and Mörters show that the empirical indegree distribution X0(n) in Gn

satisfies almost surely

lim
n!1

X0(n) = µ

in total variation norm. The limit is the probability measure µ on the nonnegative

integers given by

µ�k =
B(k + �

� ,
1

� )

B(�� ,
1

� )
for k 2 N

0

,

and satisfies limk!1 logµ�k/ log k = �1/�. Moreover, Theorem 1.1 and 1.5 and Propo-

sition 1.10 in [36] show that the maximal indegree satisfies, in probability,

logM(Gn)

log(n�)
! 1 as n ! 1.

Our result shows that in the damaged network the asymptotic degree distribution is

no longer a power law but has exponential tails. The maximal degree grows only

logarithmically, not polynomially.

Theorem 5.2. (Collapse of large degrees) Let ✏ 2 (0, 1). Almost surely,

lim
n!1

X✏(n) = µ✏

in total variation norm. The limit is the probability measure µ✏ on the nonnegative

integers given by

µ✏
�k =

Z

1

✏

1

1� ✏
B
�

k, ��
��1

Z

1

y�
x

�

�

�1(1� x)k�1 dx dy for k 2 N. (5.5)

It satisfies limk!1 logµ✏
�k/k = log(1 � ✏�). Moreover, the maximal indegree satisfies,

in probability,
M(G✏

n)

log n
! � 1

log(1� ✏�)
as n ! 1. (5.6)

It is worth mentioning that µ = µ0, so Theorem 5.2 remains valid for ✏ = 0.

Moreover, the result holds also for � 2 (0, 1
2

) by the same proof. Theorem 5.2 shows in
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particular that, by removing the b✏nc oldest vertices, we have removed all vertices with

a degree bigger than a given constant multiple of log n. This justifies the comparison

of our vulnerability results with empirical studies of real world networks such as [32],

in which all nodes whose degree exceeds a given threshold are removed. Note also that,

as ✏ # 0, the right-hand side in (5.6) is asymptotically equivalent to ✏�� and the growth

of the maximal degree is the faster the larger �.

Denote the graph distance in a graph G by dG. Preferential attachment networks are

ultrasmall for su�ciently small power law exponents. For our model, Mönch [107], see

also [35, 38], has shown that for independent random vertices Vn,Wn chosen uniformly

from Cn,

if � =
1

2
, then dG

n

(Vn,Wn) ⇠ log n

log log n
,

if � >
1

2
, then dG

n

(Vn,Wn) ⇠ 4 log log n

log(�/(1� �))
,

meaning that the ratio of the left- and right-hand side converges to one in probability

as n ! 1. Removing an arbitrarily small proportion of old vertices however leads

to a massive increase in the typical distances, as our third main theorem reveals. We

say that a sequence of events (En : n 2 N) holds with high probability if P(En) ! 1 as

n ! 1.

Theorem 5.3. (Increase of typical distances) Let ✏ > 0 be su�ciently small so

that (G✏
n : n 2 N) has a giant component, and let Vn,Wn be chosen independently and

uniformly from C✏
n. Then, for all � > 0,

dG✏

n

(Vn,Wn) � 1� �

log(1/p
c

(✏))
log n with high probability.

Our proof gives the result for all values � 2 [0, 1), ✏ > 0, with p
c

(✏) < 1, but if

� < 1

2

, even without removal of old vertices the typical distances in the network are

known to be of order log n, so that this is not surprising. We believe that there is an

upper bound matching the lower bound above, but the proof would be technical and

the result much less interesting.

In the next two sections we discuss some further ramifications of our main results.

5.4 Non-linear attachment rules

So far we have presented results for the case of a�ne attachment rules f , given by

f(k) = �k + �. While the fine details of the network behaviour often depend on the

exact model definition, we expect the principal scaling and macroscopic features to be

independent of these details. To investigate this universality, we now discuss to what
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extent Theorem 5.1 remains true when we look at more general non-linear attachment

rules f .

We consider two classes of attachment rules.

(1) A function f : N
0

! (0,1) is called a L-class attachment rule if there exists

� 2 [0, 1) and 0 < �l  �u such that �k + �l  f(k)  �k + �u for all k. Note

that the parameter � for a L-class rule is uniquely defined by (5.2).

(2) A concave function f : N
0

! (0,1) with � := limk!1 f(k)/k 2 [0, 1) is called a

C-class attachment rule. Note that concavity of f implies that the limit above

exists and that f is non-decreasing.

The asymptotic slope of the attachment rule determines the key features of the

model. For example, Dereich and Mörters [36] show that, for certain C-class attachment

rules with � > 0, the asymptotic degree distribution is a power law with exponent

⌧ = 1 + 1/�. The following theorem shows that � also determines the scaling of the

critical percolation parameter for the damaged network.

Theorem 5.4. (Loss of connectivity, non-linear case) Let f be a L-class or C-class

attachment rule. For all ✏ 2 (0, 1),

p
c

(✏) := inf
�

p : (G✏
n(p) : n 2 N) has a giant component

 

> 0.

Moreover, if f is in the L-class and

if � =
1

2
, then lim

✏#0

log p
c

(✏)

log log(1/✏)
= �1,

if � >
1

2
, then lim

✏#0

log p
c

(✏)

log ✏
= � � 1

2
.

If f is in the C-class, the statement remains true in the case � > 1

2

, and in the case

� = 1

2

if the limit is replaced by a lim sup✏#0 and the equality by ‘’.

Theorem 5.4 implies that the damaged network (G✏
n : n 2 N) is not robust. But as

lim✏#0 pc(✏) = 0 it is still ‘asymptotically robust’ for ✏ # 0 in the sense that when less

than order n old vertices are destroyed, then the critical percolation parameter remains

zero. We formulate this as a corollary. For two graphs G = (V,E) and G̃ = (Ṽ, Ẽ), we

write G � G̃ if there is a coupling such that V ◆ Ṽ and E ◆ Ẽ.

Corollary 5.5. Let f be a L-class or C-class attachment rule with � � 1

2

, and let

(mn : n 2 N) be a sequence of natural numbers with limn!1mn/n = 0. The network

(G(m
n

)
n : n 2 N), consisting of the graphs Gn damaged by removal of the oldest mn vertices

along with all adjacent edges, is robust.

Proof. Let p 2 (0, 1). By Theorem 5.4, there exists ✏ > 0 such that p
c

(✏) < p. Choose

n
0

2 N such that mn/n < ✏ for all n � n
0

. Then G(m
n

)
n � G✏

n for all n � n
0

,
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implying G(m
n

)
n (p) � G✏

n(p). Since (G✏
n(p) : n 2 N) has a giant component, so does

(G(m
n

)
n (p) : n 2 N).

Theorem 5.4 is derived from Theorem 5.1 using the monotonicity of the network in

the attachment rule. Its appeal lies in the large class of functions to which it applies.

The L-class attachment rules are all positive, bounded perturbations of linear functions.

In Figure II-2 we see several examples: on the left a concave function which is also in

the C-class, then a convex function and a function which is convex in one and concave
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Figure II-2. Examples for L-class attachment rules. The blue curve is the attachment rule,

the red, dashed lines are linear lower and upper bounds.

in another part of its domain. The latter examples are not monotone, and all three are

asymptotically vanishing perturbations of an a�ne attachment rule. The example of

an L-class attachment rule on the right shows that this may also fail.

The C-class attachment rules are always non-decreasing as positive concave func-

tions and always have a linear lower bound with the same asymptotic slope � as the

function itself. However, when the perturbation k 7! f(k) � �k is not bounded, then

there exists no linear function with slope � which is an upper bound to the attachment

rule; any linear upper bound will be steeper. Two examples are displayed in Figure II-3.
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Figure II-3. Examples for C-class attachment rules. The blue curve is the attachment rule,

the red, dashed lines are linear lower and upper bounds. The slope of the upper bound is

strictly larger than �.

5.5 Vulnerability of other network models

We would like to investigate to what extent our results are common to robust random

network models rather than specific to preferential attachment networks. Again our

focus is on Theorem 5.1 and we look at two types of networks, the configuration model

and the inhomogeneous random graphs. Both types have an explicit static description,
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and are therefore much easier to analyse than the preferential attachment networks

studied in our main theorems.

5.5.1 Configuration model

A targeted attack can be planned particularly well when the degree sequence of the

network is known. A random graph model with fixed degree sequence is given by the

configuration model. For n 2 N, denote by dn = (dni )
n
i=1

2 Nn, with
Pn

i=1

dni even,

the desired degrees. To simplify notation, we write di instead of dni for the degree of

vertex i at time n. The multigraph G(CM)
n on vertex set {1, . . . , n} is constructed as

follows: to every vertex i attach di half-edges. Combine the half-edges into pairs by

a uniformly random matching of the set of all half-edges. Each pair of half-edges is

then joined to form an edge of G(CM)
n . The configuration model has received a lot of

attention in the literature; see [85] and the references therein. A good targeted attack

in the configuration model is the removal of the vertices with the highest degree, and

we denote by G(CM),✏
n the network after removal of the b✏nc vertices with the largest

degree.

Let nk = |{i  n : di = k}| be the number of vertices with degree k, and assume

that there exists a N-valued random variable D with 0 < ED < 1 and P(D = 2) < 1,

such that, as n ! 1,

nk/n ! P(D = k) for all k 2 N and
1

n

1
X

k=1

knk ! ED. (5.7)

In particular, the law of D is the weak limit of the empirical degree distribution in

(G(CM)
n : n 2 N), and the network is robust if E[D2] = 1; see [87, Theorem 3.5]. Our

focus is on the case that the distribution of D is a power law with exponent ⌧ = 1+1/�,

� � 1

2

.

Theorem 5.6. Let ✏ 2 (0, 1), � 2 [1
2

, 1) and suppose there is a constant C > 0 such

P(D > k) ⇠ Ck�1/� as k ! 1. Then there exists p(CM)
c

(✏) > 0 such that

(G(CM),✏
n (p) : n 2 N) has a giant component , p > p(CM)

c

(✏).

Moreover,

p(CM)
c

(✏) ⇣
8

<

:

1

log(1/✏) if � = 1

2

,

✏2��1 if � > 1

2

.

We observe the same basic phenomenon as in the corresponding preferential attach-

ment models: while the undamaged network is robust, after removal of an arbitrarily

small proportion of privileged nodes the network becomes vulnerable to random re-

moval of vertices. However, when � > 1

2

, then the increase of the critical percolation

parameter p
c

(✏) as ✏ leaves zero is less steep than in the corresponding preferential

attachment model.
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Note that our assumptions imply that 0 < ED < 1. In the case ED = 1, Bhamidi

et al. [15, Theorem 3.3] show a more extreme form of vulnerability, where the network

can be disconnected with high probability by deleting a bounded number of vertices.

5.5.2 Inhomogeneous random graphs

Inhomogeneous random graphs are a generalisation of the classical Erdős–Rényi random

graph. Let  : (0, 1] ⇥ (0, 1] ! (0,1) be a symmetric kernel. The inhomogeneous

random graph G()
n corresponding to kernel  has the vertex set Vn = {1, . . . , n}, and any

pair of distinct vertices i and j is connected by an edge independently with probability

P({i, j} present in G()
n ) = 1

n
�

i
n ,

j
n

� ^ 1. (5.8)

Many features of this model class are discussed by Bollobás, Janson and Riordan [20],

and van der Hofstad [85]. The first inhomogeneous random graph model we consider

is a version of the Chung–Lu model ; see for example [29, 30, 31]. The relevant kernel is

(CL)(x, y) = x��y�� for x, y 2 (0, 1].

This is an example of a kernel of the form (x, y) = �(x)�(y), for some �, which are

called kernels of rank one; see [20]. Note that a similar factorisation occurs in the

configuration model since the probability that vertices i and j are directly connected

is roughly proportional to didj . Therefore, the configuration model can be classified

as a rank one model, too. By Theorem 3.13 and Corollary 13.1 in [20], the network

corresponding to (CL) has an asymptotic degree distribution which is a power law with

exponent ⌧ = 1 + 1/�.

The second inhomogeneous random graph model we consider is chosen such that

the edge probabilities agree (at least asymptotically, cf. Lemma 7.9 below) with those

in a preferential attachment network, and the asymptotic degree distribution is a power

law with exponent ⌧ = 1 + 1/�. The relevant kernel is

(PA)(x, y) =
1

(x ^ y)�(x _ y)1��
for x, y 2 (0, 1].

Note that, if � 6= 1

2

, this kernel is not of rank one but strongly inhomogeneous. The two

kernels (CL) and (PA) allow us to demonstrate the di↵erence between rank one models

and preferential attachment models within one model class.

We denote by G(CL)
n and G(PA)

n the inhomogeneous random graphs with kernel (CL)

and kernel (PA), respectively. If � � 1

2

, then (G(CL)
n : n 2 N) and (G(PA)

n : n 2 N)
are robust by Theorem 3.1 and Example 4.11 in [20]. Since the kernels (CL) and

(PA) are decreasing in both components, vertices with small labels are favoured in the

corresponding models. We denote by G(CL),✏
n and G(PA),✏

n what remains of the graphs

G(CL)
n and G(PA)

n , respectively, after removal of all vertices with label at most ✏n along
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with their adjacent edges.

The following theorem confirms that, like in the preferential attachment and in

the configuration model, the removal of a positive fraction of key vertices makes the

networks vulnerable to random removal of nodes. Notice that (CL) and (PA) agree for

� = 1

2

so that we only have to state a result for G(CL),✏
n in this regime.

Theorem 5.7. Let � 2 [1
2

, 1), ? 2 {CL,PA}, and ✏ 2 (0, 1). There exists p(?)
c

(✏) > 0

such that

(G(?),✏
n (p) : n 2 N) has a giant component , p > p(?)

c

(✏).

Moreover,

p(CL)
c

(✏) =

8

<

:

1

log(1/✏) if � = 1

2

,

(2� � 1)✏2��1[1 +O(✏2��1)] if � > 1

2

,

and

p(PA)
c

(✏) ⇣ ✏��1/2 if � > 1

2

.

The fact that the Chung–Lu model is vulnerable to targeted attacks has also been

remarked by van der Hofstad in Section 9.1 of [85].

Summarising, we note that vulnerability to a targeted attack is a universal feature

of robust networks, holding not only for preferential attachment networks but also for

configuration models and various classes of inhomogeneous random graphs. In the

case 2 < ⌧ < 3, studying the asymptotic behaviour of the critical percolation parame-

ter p
c

(✏) as a function of the proportion ✏ of removed vertices reveals two universality

classes of networks, that are distinguished by the critical exponent measuring the poly-

nomial rate of decay of p
c

(✏) as ✏ # 0. In terms of the power law exponent ⌧ , this critical

exponent equals 3�⌧
⌧�1

in the case of the configuration model and the Chung–Lu model,

but is only half this value in the case of preferential attachment networks and inhomo-

geneous random graphs with a strongly inhomogeneous kernel. The same classification

of networks has emerged in a di↵erent context in [35], where it was noted that the typi-

cal distances in networks of the two classes di↵er by a factor of two. The key feature of

the configuration model and the rank one inhomogeneous random graphs seems to be

that the connection probability of two vertices factorises. By contrast, the connection

probabilities in preferential attachment networks have a more complex structure giving

privileged nodes a stronger advantage.

5.6 The local neighbourhood in the network

Dereich and Mörters [37] have shown that the (not too large) graph neighbourhood

of a uniformly chosen vertex in Gn can be coupled to a branching random walk on

the negative half-line. Although we cannot make direct use of this coupling result in

our proofs, it is helpful to formulate our ideas in this framework. Therefore, we now
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explain heuristically that a suitable exploration of the local neighbourhood of a given

vertex v
0

2 G✏
n reveals a graph that can be approximated by the genealogical tree of

a two-type branching random walk with two killing boundaries. A complete definition

of the branching process used in our analysis is given in Section 6.1, and the coupling

is proved rigorously in Chapter 8 below.

Firstly, we associate to every vertex in Gn a location on the negative half-line such

that the youngest vertex is located at the origin, and the distance between vertex j

and vertex j+1 is represented as 1/j. In particular, the vertex labelled v is located at

sn(v) := �Pn�1

j=v
1

j , the location of the oldest vertex scales like� log n, and vertices with

label at most b✏nc, which we remove when damaging the network, are asymptotically

located to the left of log ✏. The location of a vertex is determined by its age in the

network with old vertices being located further left than young vertices; Figure II-4

has a sketch. As the graph size increases, the location of any fixed vertex moves to

the left and the vertex locations (sn(v) : v 2 {1, . . . , n}) become dense on the negative

half-line.

1/j

⇠ � log n 0

Figure II-4. Vertex locations if n = 20. Vertices are ordered from the oldest on the left to

the youngest on the right.

We run an exploration from vertex v
0

2 G✏
n and successively create particles in the

branching random walk that approximate the discovered vertices. We stop as soon as

there is no longer a one-to-one correspondence between the nodes in the two processes.

For example, this could happen if in the network a vertex is rediscovered and the

explored subgraph is no longer a tree. A careful analysis, carried out in Section 8.1

below, shows that when the order in which vertices are explored is chosen in a suitable

way, then we do not stop until either the whole component is discovered or at least cn

vertices have been found, where limn!1 c2n/n = 0.

To start, we place a particle at the location of vertex v
0

and declare it to be the

root of the branching random walk. Then we explore all direct neighbours of v
0

in

G✏
n. The locations of the particles in the first generation of the branching random walk

are chosen to approximate the locations of these direct neighbours. To this end, we

distinguish o↵spring located to the left and right of v
0

. For a given interval [a, b] on

the left of sn(v0), i.e. [a, b] ✓ [log ✏, sn(v0)], the number of vertices located in [a, b] is a

sum of independent Bernoulli random variables by the definition of the model. Write

Z[u, v] for the indegree of vertex u at time v, 4Z[u, v
0

� 1] = Z[u, v
0

] � Z[u, v
0

� 1].

The probability that v
0

has a direct neighbour labelled u < v
0

, is given by

P
�4Z[u, v

0

� 1] = 1
�

=
1

v
0

� 1
E
⇥

f(Z[u, v
0

� 1])
⇤

=
�

v
0

� 1

v0�2

Y

j=u

(1 + �/j), (5.9)
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where the last equality follows from the fact that (f(Z[u, n])
Qn�1

j=u
1

1+�/j : n � u) is

a martingale by the definition of the network. The right-hand side of (5.9) can be

approximated by

�

u� 1
e�(log(v0�1)�log(u�1))

v0�2

Y

j=u

e�/j ⇡ �

1� �

⇥

1� e�(1��)/(u�1)

⇤

e�(1��)
P

v0�1
j=u

1
j

= �

Z �
P

v0�1
j=u

1
j

�
P

v0�1
j=u�1

1
j

e(1��)t dt.

Hence,

P
�4Z[u, v

0

� 1] = 1
� ⇡

Z s
n

(u)�s
n

(v0)

s
n

(u�1)�s
n

(v0)
�e(1��)t dt. (5.10)

Since the location of u can be written as sn(v0) plus the displacement sn(u)� sn(v0),

asymptotically, we can approximate the displacements of the direct neighbours of v
0

on

its left by the points of a Poisson point process ⇧ with intensity measure �e(1��)t on

(�1, 0] that lie in [log ✏�sn(v0), 0]. We emphasise that ⇧ describes the displacements,

not the particle locations. Hence, in the branching random walk, the relative positions

of the o↵spring to the left of a particle with location � are given by the points of ⇧

that lie in [log ✏� �, 0].

In the next step, we motivate the point process that describes the relative positions

of the o↵spring on the right in the branching random walk. Note that in the network

every direct neighbour u of v
0

with u > v
0

increases the indegree of v
0

and therefore

the probability that v
0

has further o↵spring on its right. The distance between the i-th

and (i+ 1)-st right neighbour of v
0

in the network is given by

Tv0 [i] := sup
n

l
X

j=k

1

j
: Z[v

0

, k] = i = Z[v
0

, l]
o

.

Suppose the i-th neighbour of v
0

is born at time k. For given t > 0, we have

P
�

Tv0 [i] > t | Z[v
0

, k � 1] < Z[v
0

, k] = i
�

= P
�Z[v

0

, l] = i | Z[v
0

, k] = i
�

, (5.11)

where l is the smallest integer with
Pl

j=k
1

j > t. Plugging in the connection probabilities

given in the model definition, we deduce that (5.11) is equal to

l�1

Y

j=k

⇣

1� f(i)

j

⌘

⇡ exp
⇣

� f(i)
l�1

X

j=k

1

j

⌘

⇡ exp
�� f(i)t

�

.

Hence, the distance between the i-th and (i+1)-st right neighbour of v
0

is approximately

exponentially distributed with rate f(i). For a precise statement, see Lemma 7.2 below.

Consequently, the displacements of the direct neighbours on the right of v
0

are well

approximated by the jump times in [0,�sn(v0)] of the pure jump Markov process
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Z = (Zt : t � 0) that starts in Z
0

= 0 and jumps from i to i + 1 after an exponential

waiting time of rate f(i), independently of the previous jumps. Therefore, in the

branching random walk, the relative positions of the o↵spring to the right of the root,

that is located in �, are given by the jump times of Z in [0,��].
When the exploration is continued, the information gathered from the already ex-

plored neighbourhood leads to a size-biasing e↵ect. Indeed, in the network the edges

between a vertex v and its direct neighbours on the right u > v are not independent.

If v was discovered as a direct neighbour of a vertex w on its right, i.e. w > v, then

we already know that v has indegree at least one. Consequently, we expect v to have

more direct neighbours on its right than without this information. Mathematically,

this leads to a size biasing e↵ect, and the displacements of particles on the right of

v are given by the jump times in [0,�sn(v)] of Z started in one instead of zero. In

contrast, if v was discovered as a direct neighbour of a vertex w with smaller label,

i.e. w < v, then we do not have that information and the displacements are again the

jump times in [0,�sn(v)] of Z started in zero. Similarly, for the direct neighbours

on the left of v, there is no size-biasing e↵ect as a consequence of the independence

between the edges on the left. Of course, there are several further dependencies coming

from the previously explored subgraph. However, we show in Chapter 8 that the error

accrued by adjusting only for the immediate parent is asymptotically negligible when

we discover not more than cn vertices, where limn!1 c3n/n = 0.

To be able to use di↵erent o↵spring distributions depending on the relative location

of the parent, each vertex is equipped with a mark ↵ in {`, r} to indicate the relative

location of the parent, where the non-numerical symbols ` and r stand for ‘left’ and

‘right’, respectively. The relative positions of the o↵spring can be generated as the

points of ⇧ on (�1, 0] and the jump times of Z (with initial state depending on the

mark) on [0,1). All o↵spring particles located on the left of log ✏ or on the right of 0

are immediately removed. In other words, the approximating tree is the genealogical

tree of a two-type branching random walk with two killing boundaries.

An equivalent description is as a multitype branching process with type space � :=

[log ✏, 0]⇥ {`, r}, where the first component indicates the location of a particle and the

second indicates its mark. Whilst the branching random walk interpretation o↵ers more

intuition, the two killing boundaries make the mathematical analysis di�cult. Hence

in our analysis, we will use the interpretation of the process as multitype branching

process with the larger typespace �.

5.7 Main ideas of the proofs

Understanding the local neighbourhood of vertices in the network is the key to many of

its properties. As in [37], the survival probability of the approximating killed branching

random walk is equal to the asymptotic relative size ⇣ of the largest component. This

result allows us to determine, for example, the critical parameter of percolation from
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knowledge about the survival probability of the percolated branching process. To form

the percolated branching process with retention probability p from the original process

every particle is kept with probability p and removed together with its line of descent

with probability 1� p independently of all other particles.

It is instructive to continue the comparison of the damaged and undamaged net-

works in the setup of this branching process. In [37], where the undamaged network is

analysed, the branching random walk has only one killing boundary on the right. It

turns out that on the set of survival, the leftmost particle drifts away from the killing

boundary, such that it does not feel the boundary anymore. As a consequence, the un-

killed process carries all information needed to determine whether the killed branching

random walk survives with positive probability and, therefore, whether the network

has a giant component. The two killing boundaries in the branching random walk

describing the damaged network prevent us from using this analogy; every particle is

exposed to the threat of absorption.

To survive indefinitely, a genealogical line of descent has to move within the (space-

time) strip [log ✏, 0] ⇥ N
0

. To understand the optimal strategy for survival, observe

that, in the network with strong preferential attachment, old vertices typically have a

large degree and therefore are connected to many young vertices while young vertices

themselves have only a few connections. This means that in the branching random

walk without killing, particles produce many o↵spring to the right but only a few to

the left. Hence, if a particle is located near the left killing boundary, it represents an

old vertex in the graph and is very fertile, but its o↵spring are mostly located further

to the right and are therefore less fertile. A particle near the right killing boundary,

however, represents a young vertex and has itself a small number of o↵spring, which

then however have a good chance of being fertile since they are necessarily located

further left in the strip. As a result, the optimal survival strategy for a particle is to

have an ancestral line of particles whose locations are alternating between positions

near the left and the right killing boundary. This intuition is the basis for our proofs.

Continuing more formally, in the proof of Theorem 5.1 we show that positivity of

the survival probability can be characterised in terms of the largest eigenvalue ⇢✏ of

an operator that describes the spatial distribution of o↵spring of a given particle. The

branching random walk survives percolation with retention parameter p if its growth

rate p⇢✏ exceeds the value one, so that p
c

(✏) = 1/⇢✏. Our intuition allows us to guess

the form of the eigenfunction corresponding to ⇢✏, which, relatively to the particle

density, has its mass concentrated in two bumps near the left and right killing boundary.

From this guess we obtain su�ciently accurate estimates for the largest eigenvalue, and

therefore for the critical percolation parameter, as long as the preferential attachment

e↵ect is strong enough. This is the case if � � 1

2

, allowing us to prove Theorem 5.1.

By contrast, for � < 1

2

we know that the network is not robust, i.e. we have

p
c

(0) > 0. It would be of interest to understand the behaviour of p
c

(✏)� p
c

(0) as ✏ # 0.
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Our methods can be applied to this case, but the resulting bounds are very rough.

The reason is that in this regime the preferential attachment is much weaker, and the

intuitive idea underlying our estimates gives a less accurate picture.

The idea for the proof of Theorem 5.3 is based on the branching process comparison,

too. To bound the probability that two typical vertices V and W are connected by

a path of length at most h, we study the expected number of such paths. That is

given by the number of paths of length at most h � 1 starting from V multiplied by

the probability that the terminal vertex in the path connects to W . By our branching

process heuristics, the number of such paths can be approximated by the number of

particles in the first h� 1 generations of the branching random walk, which is of order

⇢h✏ where ⇢✏ = 1/p
c

(✏) as before. The probability of connecting any vertex with label

at least ✏n to W is bounded from above by f(m)/✏n, where m is the maximal degree

in the network. Since m = o(n) by Theorem 5.2, this implies that the probability of a

connection between V and W is bounded from above by exp(h log(1/p
c

(✏)) � log n +

o(log n)) and therefore goes to zero if h  (1��) log n/ log(1/p
c

(✏)), � > 0, which yields

the result.

Theorem 5.2 is relatively soft by comparison. The independence of the indegrees

of distinct vertices allows us to study them separately, and we again use the contin-

uous approximation to describe the expected empirical indegree evolution. The limit

theorem for the empirical distribution itself follows from a standard concentration ar-

gument. The asymptotic result for the maximal degrees is only slightly more involved

and is based on fairly standard extreme value arguments.

5.8 Overview

The outline of Part II of this thesis is as follows. We start with the main steps of the

proofs in Chapter 6. The multitype branching process, which locally approximates a

connected component in the network, is defined in Section 6.1, and its key properties

are stated. The main part of the proof of Theorem 5.1 then follows in Section 6.2.

The analysis of the multitype branching process is conducted in Section 6.3. Chapter 7

is devoted to the study of the topology of the damaged graph. In Section 7.1 the

typical and maximal degree of vertices is analysed; in Section 7.2 typical distances

are studied. The couplings between the network and the approximating branching

process that underlie our proofs are provided in Chapter 8. We then look at model

variations in Chapter 9. The derivation of Theorem 5.4 from Theorem 5.1 is presented

in Section 9.1. This is the only section which requires consideration of non-linear

attachment rules. We finish in Section 9.2 by studying the question of vulnerability in

other network models.
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CHAPTER 6

CONNECTIVITY AND BRANCHING PROCESSES

From here until the end of Chapter 8, we restrict our attention to linear attachment

rules f(k) = �k + �, for � 2 [0, 1) and � > 0. Unless stated otherwise, ✏ is a fixed

value in (0, 1). The goal of this chapter is to prove Theorem 5.1. To this end, we

couple the local neighbourhood of a vertex in G✏
n to a multitype branching process.

The branching process is introduced in Section 6.1, and Theorem 5.1 is deduced in

Section 6.2. Properties of the branching processes which are needed in the analysis

are proved in Section 6.3. The proof of the coupling between network and branching

process is deferred to Chapter 8.

6.1 The approximating branching process

As explained in Section 5.6, the local neighbourhood of a vertex in G✏
n can be approx-

imated by a multitype branching process with type space � = [log ✏, 0] ⇥ {`, r}. A

typical element of � is denoted by � = (�,↵). The intuitive picture is that � encodes

the spatial position of the particle which we call location. The second coordinate ↵

indicates on which side of the particle its parent is located, and we refer to ↵ as the

mark. In view of (5.10), a particle of type (�,↵) 2 � produces o↵spring to its left with

displacements having the same distribution as those points of the Poisson point process

⇧ on (�1, 0] with intensity measure

�e(1��)t
(�1,0](t) dt (6.1)

that lie in [log ✏ � �, 0]. Since these o↵spring have their parent on the right, they are

of mark r.

We denote by Z an increasing, integer-valued process, which jumps from i to i+ 1

after an exponential waiting time of rate f(i), independently of the previous jumps.

We write P for the distribution of Z started in zero and E for the corresponding
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expectation. By (Ẑt : t � 0) we denote a version of the process started in Ẑ
0

= 1 under

the measure P .

The distribution of the o↵spring to the right depends on the mark of the parent.

As motivated in Section 5.6, when the particle is of type (�, `), then the displacements

of the o↵spring follow the same distribution as the jump times of (Zt : t 2 [0,��]), but
when the particle is of type (�, r), then the displacements follow the same distribution

as the jump times of (Ẑt : t 2 [0,��]). All o↵spring on the right have their parent on

the left, so their mark is `. Observe that the chosen o↵spring distributions ensure that

new particles have again a location in [log ✏, 0]. The o↵spring distribution to the right

is not a Poisson point process: the more particles are born, the higher the rate at which

new particles arrive.

We call the branching process thus constructed the idealized branching process

(IBP). It can be interpreted as a labelled tree, where every node represents a par-

ticle and is connected to its children and (apart from the root) to its parent. We equip

node x with label �(x) = (�(x),↵(x)), where �(x) denotes its location and ↵(x) its

mark, and write |x| for the generation of x. To obtain a branching process approxi-

mation to the percolated graph G✏
n(p), we define the percolated IBP by associating to

every o↵spring in the IBP an independent Bernoulli(p) random variable. If the random

variable is zero, then we delete the o↵spring together with its line of descent. If it

equals one, then the o↵spring is retained in the percolated IBP.

Let S✏ be a random variable such that eS
✏

is uniformly distributed on [✏, 1], that is,

P(�S✏  t) =
1

1� ✏

�

1� e�t
�

for t 2 [0,� log ✏]. (6.2)

Recalling the definitions from the beginning of Section 5.6, the location of a uniformly

chosen vertex in V✏
n converges weakly to S✏. Denote by ⇣✏(p) the survival probability of

the tree which is with probability p equal to the genealogical tree of the percolated IBP

started with one particle of mark ` in location S✏, and equals the empty tree otherwise.

Let C✏
n(p) be a connected component in G✏

n(p) of maximal size.

Theorem 6.1. For all ✏ 2 (0, 1) and p 2 (0, 1], in probability,

|C✏
n(p)|

E|V✏
n(p)|

! ⇣✏(p)/p as n ! 1.

The proof of Theorem 6.1 is postponed to Chapter 8. The theorem describes the

asymptotic size of the largest component in the network in terms of the survival prob-

ability of the percolated IBP. To make use of this connection, we have to understand

the branching process.

For any measurable, complex-valued, bounded function g on �, and � 2 �, let

Apg(�) := E�,p

h

X

|x|=1

g(�(x),↵(x))
i

,
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where the expectation E�,p refers to the percolated IBP starting with a single particle

of type �, percolated with retention probability p. We write A = A
1

for the operator

corresponding to the unpercolated branching process and E� := E�,1. Recall that all

quantities associated with the IBP, and in particular Ap, depend on the fixed value of ✏.

We denote by C(�) the complex Banach space of continuous functions on � equipped

with the supremum norm. The following proposition, which summarizes properties

of Ap, is proved in Section 6.3.1.

Proposition 6.2. For all ✏ 2 (0, 1) and p 2 (0, 1], the operator Ap : C(�) ! C(�)

is linear, strictly positive and compact with spectral radius ⇢✏(Ap) 2 (0,1). Moreover,

Ap = pA and ⇢✏(Ap) = p⇢✏(A).

The survival probability of the percolated IBP has the following property.

Theorem 6.3. For all ✏ 2 (0, 1) and p 2 (0, 1],

⇣✏(p) > 0 , ⇢✏(Ap) > 1.

Theorem 6.3 is proved in Section 6.3.2. Combined with Theorem 6.1 and Proposi-

tion 6.2, it gives a characterisation of the critical percolation parameter for the network

(G✏
n(p) : n 2 N).

Corollary 6.4. The network (G✏
n(p) : n 2 N) has a giant component if and only if

p > ⇢✏(A)�1.

Notice that the corollary implies that (G✏
n : n 2 N) has no giant component when

⇢✏(A)  1. Moreover, the first statement of Theorem 5.1 follows from the corollary by

taking p
c

(✏) = ⇢✏(A)�1 ^ 1.

To complete the proof of Theorem 5.1, it remains to estimate the spectral radius

⇢✏(A). This estimation is performed in Section 6.2 below using that (see, e.g., Theo-

rem 45.1 in [84]) for a linear and bounded operator A on a complex Banach space, the

spectral radius is given by

⇢(A) = lim
n!1

kAnk 1
n = inf{kAnk 1

n : n 2 N}. (6.3)

By the definition of the Poisson point process ⇧ in (6.1), the intensity measure of ⇧

equals

(�1,0](t)M(dt), for M(dt) := �e(1��)t dt.

We denote by ⇧` the point process given by the jump times of (Zt : t � 0) and by ⇧r

the point process given by the jump times of (Ẑt : t � 0). A simple computation (cf.

Lemma 1.12 in [37]) shows that with M↵(dt) := a↵e�t dt, where a` = � and a
r

= �+�,

the intensity measure of ⇧↵ is given by
[0,1)

(t)M↵(dt) for ↵ 2 {`, r}. Hence, for any
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bounded, measurable function g on � and (�,↵) 2 �,

Ag(�,↵) = E
(�,↵)

h

X

|x|=1

g(�(x),↵(x))
i

=

Z

0

log ✏��
g(�+ t, r)�e(1��)t dt+

Z ��

0

g(�+ t, `)a↵e
�t dt.

(6.4)

6.2 Proof of Theorem 5.1

Subject to the considerations of the previous section, Theorem 5.1 follows from the

following proposition.

Proposition 6.5. (a) If � = 1

2

, then
1

� + �

1

log(1/✏)
 ⇢✏(A)

�1  1

�

1

log(1/✏)
.

(b) If � > 1

2

, then

⇣

1 + log(✏1�2�)✏��1/2 +
⇥

log(✏1�2�)✏��1/2
⇤

2

⌘�1/2


p

�(� + �)

2� � 1
✏��+1/2⇢✏(A)

�1  �

1� ✏��1/2
��1

.

Proof of Proposition 6.5 (a). Denote by C([log ✏, 0]) the complex Banach space of con-

tinuous functions on [log ✏, 0]. For all h
0

2 C([log ✏, 0]), � 2 [log ✏, 0], let

Āh
0

(�) :=

Z

0

log ✏��
h
0

(�+ t)et/2 dt+

Z ��

0

h
0

(�+ t)et/2 dt.

Note that A and Ā map real-valued functions to real-valued functions and nonnegative

functions to nonnegative functions, and they are monotone. For A this observation

implies

kAnk = sup
�kAngk : g 2 C(�), g is [0, 1]-valued

 

= kAn1k, (6.5)

where kAngk = sup{|Ang(�)| : � 2 �} and 1 denotes the constant function with value 1.

Combining (6.3) and (6.5), we deduce that ⇢✏(A) = limn!1 kAn1k 1
n . The same argu-

ment shows that

⇢✏(Ā) = lim
n!1

kĀn1k 1
n . (6.6)

Defining h(�,↵) := h
0

(�) for all (�,↵) 2 �, (6.4) yields for h
0

2 C([log ✏, 0]) with

h
0

� 0,

�Āh
0

(�)  Ah(�,↵)  (� + �)Āh
0

(�) for all (�,↵) 2 �.

In particular, by the monotonicity and linearity of A and Ā,

�nĀn1(�)  An1(�,↵)  (� + �)nĀn1(�) for (�,↵) 2 �, n 2 N,
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implying ⇢✏(A) 2 [�⇢✏(Ā), (�+�)⇢✏(Ā)]. To complete the proof it su�ces to show that

⇢✏(Ā) = log(1/✏), which we can achieve by ‘guessing’ the principal eigenfunction of Ā.

Indeed, the result follows from (6.6) and

Ān+11(�) = 2(1� ✏1/2)(log(1/✏))ne��/2 for � 2 [log ✏, 0], n 2 N
0

. (6.7)

We show (6.7) by induction over n. For n = 0,

Ā1(�) =

Z

0

log ✏��
et/2 dt+

Z ��

0

et/2 dt = 2(1� e��/2✏1/2+ e��/2� 1) = 2(1� ✏1/2)e��/2.

Moreover, with h
0

(�) := e��/2 we have

Āh
0

(�) =

Z

0

log ✏��
e�(�+t)/2et/2 dt+

Z ��

0

e�(�+t)/2et/2 dt = e��/2 log(1/✏).

Thus, � 7! e��/2 is an eigenfunction of Ā with eigenvalue log(1/✏), and (6.7) follows.

Proof of the lower bound in Proposition 6.5 (b). We analyse the ancestral lines of par-

ticles in the branching process at a fixed time n � 2. Going back two steps in the

ancestral line of every particle alive, we can divide the population at time n in four

groups depending on the relative positions of parent and child in the transitions from

generation n� 2 to n� 1 and from n� 1 to n: (1) in both steps the child is to the left

of its parent, (2) in the first step the child is to the left and in the second it is to the

right of its parent, (3) first right, then left, (4) in both steps the child is to the right of

its parent. The cases are depicted in Figure II-5.

log ✏

0

log ✏

0

log ✏

0

log ✏

0

B
1

B
2

B
3

B
4

Figure II-5. Possible genealogy of a particle contributing to the respective operators.

We denote by Bi, i 2 {1, . . . , 4}, the mean operators corresponding to the four

scenarios. Using the point processes ⇧, ⇧` and ⇧r, for any bounded, measurable

function g on � and any type (�,↵) 2 �,

B
1

g(�,↵) := E
h

X

p2⇧
log ✏��p

X

q2⇧
log ✏���pq

g(�+ p+ q, r)
i

,

B
2

g(�,↵) := E
h

X

p2⇧
log ✏��p

X

q2⇧r

q�(�+p)

g(�+ p+ q, `)
i

,

B
3

g(�,↵) := E
h

X

p2⇧↵

p��

X

q2⇧
log ✏���pq

g(�+ p+ q, r)
i

,
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B
4

g(�,↵) := E
h

X

p2⇧↵

p��

X

q2⇧`

q�(�+p)

g(�+ p+ q, `)
i

.

Intuitively, going back the ancestral line of a typical particle in the population at a

late time, for a few generations the ancestral particles may be in group (4), because

of the high fertility of particles positioned near the left boundary of [log ✏, 0]. But

this behaviour is not sustainable, as after a few generations in this group the o↵spring

particle will typically be near the right end of the interval and will therefore be pushed

into the right killing boundary so that it is likely to die out. Over a longer period the

ancestral particles are much more likely to be in groups (2) and (3), as this behaviour is

sustainable over long periods when the ancestral line is hopping more or less regularly

between positions near the left and the right boundary of the interval [log ✏, 0]. A

similar pattern can also be observed when studying typical paths in the random graph

model; see our discussion in Section 5.7. The aim is now to turn this heuristics into

useful bounds on high iterates of the operator A.

It is helpful to understand how the operators Bi act on the constant function 1 as

well as on the functions g
1

(�,↵) := e��� and g
2

(�,↵) := e�(1��)�. We can write

B
3

g(�,↵) =

Z ��

0

Z

0

log ✏���t
g(�+ t+ s, r)M(ds)M↵(dt),

where M(dt) = �e(1��)t dt and M↵(dt) = a↵e�t dt with a↵  � + � are the intensity

measures of the point processes ⇧ and ⇧↵. From this we obtain, for (�,↵) 2 �,

B
3

1(�,↵) 
Z ��

�1

Z

0

�1
M(ds)M r(dt) =

�(� + �)

�(1� �)
e���,

B
3

g
1

(�,↵) 
Z ��

�1

Z 1

log ✏�t��
e��(�+t+s)M(ds)M r(dt) =

�(� + �)

(2� � 1)2
✏1�2�e���,

B
3

g
2

(�,↵) 
Z ��

�1

Z

0

log ✏
e�(1��)(�+t+s)M(ds)M r(dt) =

�(� + �)

2� � 1
log(1/✏)e���.

Moreover, similarly elementary calculations for B
1

, B
2

and B
4

imply

B
1

1(�,↵)  �2

(1��)2
, B

2

1(�,↵)  �(�+�)
�(2��1)

✏1�2�e�(1��)�,

B
4

1(�,↵)  �(�+�)
� log(1/✏)e���,

and

B
1

g
1

(�,↵)  �2

2��1

log(1/✏)✏1�2�e�(1��)�, B
1

g
2

(�,↵)  �2(log ✏)2e�(1��)�,

B
2

g
1

(�,↵)  �(�+�)
2��1

log(1/✏)✏1�2�e�(1��)�, B
2

g
2

(�,↵)  �(�+�)
(2��1)

2 ✏
1�2�e�(1��)�,

B
4

g
1

(�,↵)  �(� + �)(log ✏)2e���, B
4

g
2

(�,↵)  �(�+�)
2��1

log(1/✏)e���.
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Summarising, there exists C✏ > 0 such that Bi1(�)  C✏g1(�) for all i 2 {1, . . . , 4},
� 2 �, and denoting

b
sm

:= b
1

:= b
4

:= �(� + �)(log ✏)2, b
bg

:= b
2

:= b
3

:= �(�+�)
(2��1)

2 ✏
1�2� ,

where sm stands for ‘small’ and bg for ‘big’, we have

Big1(�)  b
bg

log(✏1�2�)g
2

(�), Big2(�)  big2(�) for i 2 {1, 2},
Big1(�)  big1(�), Big2(�)  b

bg

log(✏1�2�)✏2��1g
1

(�) for i 2 {3, 4}.

Using that by definition A2 =
P

4

i=1

Bi, our estimate for Bi1 and monotonicity of Bi

yield

A2(n+1)1(�) =
X

i0,...,in2{1,...,4}

Bi
n

� · · · �Bi01(�)

 4C✏

X

i1,...,in2{1,...,4}

Bi
n

� · · · �Bi1g1(�). (6.8)

Up to constants, the estimates for B
3

and B
4

preserve g
1

but change g
2

into g
1

, whereas

the estimates for B
1

and B
2

preserve g
2

and change g
1

into g
2

. Hence, we split the

sequence of indices into blocks containing only 1 or 2 and blocks containing only 3 or 4.

We write m for the number of blocks, kj for the length of block j and k̄j :=
Pj�1

i=1

ki+1

for the first index in block j. Then

X

i1,...,in2{1,...,4}

Bi
n

� · · · �Bi1g1(�)

=
n+1

X

m=1

X

k1+...+k
m

=n
k12N0,k2,...,km2N

X

(i1,...,in)

Bi
n

� · · · �Bi1g1(�), (6.9)

where the last sum is over all sequences of indices (i
1

, . . . , in) with i
¯k
j

, . . . , i
¯k
j+1�1

2
{3, 4} for j odd and i

¯k
j

, . . . , i
¯k
j+1�1

2 {1, 2} for j even. We insist that formally the

first block contains the indices 3 or 4 — the case that this does not hold is covered by

k
1

= 0. Hence, in the first block, operators B
3

and B
4

encounter g
1

, which is preserved.

To determine the constants, we only have to keep track of how often B
4

is used; we

call this number l
1

. The first operator belonging to a new block j causes a factor

b
bg

log(✏1�2�) and if the change is from a {1, 2} to a {3, 4} block, then an additional

✏2��1 is obtained. For the subsequent steps within block j, we again have to track how

often the operator causing the smaller constant b
sm

, B
1

or B
4

, is used. This number

is called lj . After applying all n operators, the function g
1

(�)
odd

(m) + g
2

(�)
even

(m)

remains and is bounded it by ✏�� . This sequence of estimates allows us to upper bound
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the right-hand side of (6.9) by

n+1

X

m=1

X

k1+...+k
m

=n
k12N0,k2,...,km2N

bm�1

bg

(log(✏1�2�))m�1✏(2��1)(dm

2
e�1)✏��

·
k1
X

l1=0

h

✓

k
1

l
1

◆

bl1
sm

bk1�l1
bg

i

m
Y

j=2

k
j

�1

X

l
j

=0

h

✓

kj � 1

lj

◆

b
l
j

sm

b
k
j

�1�l
j

bg

i

= ✏��
n+1

X

m=1

X

k1+...+k
m

=n
k12N0,k2,...,km2N

bm�1

bg

(log(✏1�2�))m�1✏(2��1)(dm

2
e�1)(b

sm

+ b
bg

)k1

·
m
Y

j=2

(b
sm

+ b
bg

)kj�1

= ✏��
n+1

X

m=1

X

k1+...+k
m

=n
k12N0,k2,...,km2N

bm�1

bg

(log(✏1�2�))m�1✏(2��1)(dm

2
e�1)(b

sm

+ b
bg

)n�(m�1).

Given m, the number of configurations k
1

2 N
0

, k
2

, . . . , km 2 N with k
1

+ . . .+ km = n

is the number of arrangements of m � 1 dividers and n � (m � 1) balls, which equals
�

n
m�1

�

. Since dm
2

e � 1 � m�1

2

� 1

2

, an application of the binomial theorem yields

X

i1,...,in2{1,...,4}

Bi
n

� · · · �Bi1g1(�)  ✏�2�+1/2
�

b
bg

log(✏1�2�)✏��1/2 + b
bg

+ b
sm

�n
. (6.10)

Combining (6.8) and (6.10), we conclude that, for all � 2 �,

A2(n+1)1(�)  4C✏✏
�2�+1/2bn

bg

�

log(✏1�2�)✏��1/2 + 1 + bsm
bbg

�n
.

Now (6.3) yields, for all ✏ 2 (0, 1),

⇢✏(A)
�1 � 2��1p

�(�+�)
✏��1/2

⇣

1 + log(✏1�2�)✏��1/2 +
⇥

log(✏1�2�)✏��1/2
⇤

2

⌘�1/2
.

The insight gained in the proof of the lower bound, enables us to ‘guess’ an approx-

imating eigenfunction, which is the main ingredient in the proof of the upper bound.

Proof of the upper bound in Proposition 6.5 (b). Let c
r

:= 1 and c` := �/(� + �) and,

for (�,↵) 2 �, let

g
e

(�,↵) := c↵✏
�e���

[log ✏, log ✏

2
]

(�) +
p

�/(� + �)✏1/2e�(1��)�
(

log ✏

2
,0]
(�).

Notice that a↵/c↵ = � + � for ↵ 2 {`, r}.
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Recall that we write |x| for the generation of a particle x in the IBP, and �(x) for its

location. If (�,↵) 2 [log ✏, log ✏
2

]⇥ {`, r}, then

Ag
e

(�,↵) � E
(�,↵)

h

X

|x|=1

�(x)>
log ✏

2

g
e

(�(x), `)
i

= a↵
p

�/(� + �)✏1/2e�(1��)�

Z ��

��+ log ✏

2

e(2��1)t dt

= c↵

p
�(�+�)

2��1

✏1/2e���
⇥

1� ✏��1/2
⇤

=
p

�(�+�)

2��1

✏��+1/2
⇥

1� ✏��1/2
⇤

g
e

(�,↵).

If (�,↵) 2 ( log ✏
2

, 0]⇥ {`, r}, then

Ag
e

(�,↵) � E
(�,↵)

h

X

|x|=1

�(x) log ✏

2

g
e

(�(x), r)
i

= �c
r

✏�e���

Z ��+ log ✏

2

��+log ✏
e(1�2�)t dt

= �
2��1

✏�e���e(1�2�)(log ✏��)
⇥

1� e�(1�2�) log ✏

2
⇤

=
p

�(�+�)

2��1

✏��+1/2[1� ✏��1/2]g
e

(�,↵).

By monotonicity of A, this implies

kAnk � �

p
�(�+�)

2��1

✏��+1/2[1� ✏��1/2]
�n
.

Taking the n-th root on both sides, an application of (6.3) yields the required bound

for ⇢✏(A).

Proof of Theorem 5.1. The result follows immediately from Corollary 6.4, and Propo-

sitions 6.2 and 6.5.

6.3 A multitype branching process

In this section, we analyse the IBP and its relation to the associated operator A. We

begin by collecting properties of A in Section 6.3.1, and then use these properties to

prove necessary and su�cient conditions for the multitype branching process to survive

with positive probability in Section 6.3.2. Throughout, we use the notation introduced

in Section 6.1, and write P�,p for the distribution of the percolated IBP with retention

probability p started with one particle of type � 2 �, abbreviating P� := P�,1.

6.3.1 Proof of Proposition 6.2

Lemma 6.6. For all nonnegative g 2 C(�) with g 6⌘ 0, we have min
�2�

A2g(�) > 0.

Proof. If g 2 C(�), g � 0, g 6⌘ 0, then there exist log ✏  �
1

< �
2

 0 and ↵
0

2 {`, r}
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such that g is strictly positive on [�
1

,�
2

]⇥ {↵
0

}. Hence, it su�ces to show that

min
�2�

P�

�9x : |x| = 2,�(x) 2 [�
1

,�
2

]⇥ {↵
0

}� > 0.

By the definition of the process, any particle produces o↵spring in any given interval

of positive length with, uniformly in the start type, strictly positive probability. The

two steps allow the time needed to ensure that the relative position of the parent

gives ↵(x) = ↵
0

.

Lemma 6.7. The operator A : C(�) ! C(�) is compact.

Proof. According to (6.4), we can write for g 2 C(�) and (�,↵) 2 �,

Ag(�,↵) =

Z

0

log ✏
g(t, r)`(�, t) dt+

Z

0

log ✏
g(t, `)

r

(�,↵, t) dt,

with `(�, t) =
[log ✏,�](t)�e

(1��)(t��) and 
r

(�,↵, t) =
[�,0](t)a↵e

�(t��). Thus A can

be written as the sum of two operators, which are both compact by the Arzelà–Ascoli

theorem.

We summarize some standard properties of compact, positive operators in the fol-

lowing proposition.

Proposition 6.8. Let X be a complex Banach space and A : X ! X be a linear,

compact and strictly positive operator.

(i) The spectral radius of A, ⇢ = ⇢(A), is a strictly positive eigenvalue of A with

one dimensional eigenspace, generated by a strictly positive eigenvector '. The

eigenvalue ⇢ is also the spectral radius of the adjoint A⇤ and the corresponding

eigenspace is generated by a strictly positive eigenvector ⌫
0

. We rescale ' and ⌫
0

such that k'k = 1 and ⌫
0

(') = 1 to make the choice unique.

(ii) There exists ✓
0

2 [0, ⇢) such that |✓|  ✓
0

for all ✓ 2 �(A) \ {⇢}, where �(A) is the

spectrum of A.

(iii) For any ✓ > ✓
0

and g 2 X, we have Ang = ⇢n⌫
0

(g)'+O(✓n) for all n 2 N.

Proof. Statements (i) and (ii) are immediate from the Krein–Rutman theorem, see

Theorem 3.1.3 (ii) in [110], and the general form of the spectrum of compact operators.

Statement (iii) then follows from the spectral decomposition of a compact operator on

a complex Banach space. See for example [84] and there in particular Theorem 49.1

and Proposition 50.1.

Now all results are collected to establish Proposition 6.2.
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Chapter 6. Connectivity and branching processes

Proof of Proposition 6.2. Identity Ap = pA holds by definition and implies ⇢✏(Ap) =

p⇢✏(A). Moreover, it is clear that it su�ces to prove the first sentence of the state-

ment for p = 1. Linearity is immediate from the definition, positivity was shown in

Lemma 6.6, and compactness is the content of Lemma 6.7. The positive spectral radius

follows immediately from Proposition 6.8 (i).

6.3.2 Proof of Theorem 6.3

We start with a moment estimate for the total number of o↵spring of a particle. In the

sequel, we write |IBPn| for the number of particles in generation n of the IBP.

Lemma 6.9. We have sup�2�E�

⇥|IBP
1

|2⇤ < 1.

Proof. Let ⇧, Z and Ẑ be independent realisations of the Poisson point process and

the pure jump processes defined in Section 6.1. Let � = (�,↵) 2 �. By the definition

of the IBP, under P
(�,↵),

|IBP
1

| d
=

8

<

:

⇧([log ✏� �, 0]) + Z�� if ↵ = `,

⇧([log ✏� �, 0]) + Ẑ�� if ↵ = r,

where
d
= denotes distributional equality. Since f is non-decreasing, Ẑ stochastically

dominates Z. This implies that for all � 2 �,

E�

⇥|IBP
1

|2⇤  2
⇣

E
⇥

⇧([log ✏, 0])2
⇤

+ E
⇥

(Ẑ� log ✏)
2

⇤

⌘

.

The first term on the right is finite because ⇧ is a Poisson point process with finite

intensity measure. The second summand was computed in Lemma 1.12 of [37] and

found to be finite.

The next result is a classical fact about branching processes. We give a proof since

we could not find a reference for the result in su�cient generality; see Theorem III.11.2

in [83] for a special case.

Lemma 6.10. For all p 2 [0, 1], N 2 N and � 2 �,

P�,p

�

1  |IBPn|  N infinitely often
�

= 0.

Proof. We split the proof in two parts. First we show that � := inf�2� P�,p(|IBP1

| =
0) > 0, then we conclude the statement from this result. By definition of the percolated
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IBP, for all (�,↵) 2 �,

P
(�,↵),p

�|IBP
1

| = 0
� � P

(�,↵),1

�|IBP
1

| = 0
�

=

8

<

:

P
�{⇧([log ✏� �, 0]) = 0} \ {Z�� = 0}� if ↵ = `

P
�{⇧([log ✏� �, 0]) = 0} \ {Ẑ�� = 0}� if ↵ = r

� P
�

⇧([log ✏, 0]) = 0
�

P
�

Ẑ� log ✏ = 0
�

> 0.

Since the lower bound is independent of (�,↵), the claim that � > 0 is established.

For the second step of the proof, we set p = 1 to simplify notation. The proof

for general p is identical. Fix N 2 N, set ⌧
0

:= 0 and, for k � 1, let ⌧k := inf{n >

⌧k�1

: |IBPn| 2 [1, N ]}, where inf ; := 1. The strong Markov property implies, for all

� 2 � and k 2 N,

P�(⌧k < 1)  P�(⌧1 < 1) sup
⌫

P⌫(⌧1 < 1)k�1,

where the supremum is over all counting measure ⌫ on � such that ⌫(�) 2 [1, N ].

Under P⌫ , ⌫ =
Pn

i=1

��
i

, the branching process is started with n particles of types

�
1

, . . . ,�n. When all original ancestors have no o↵spring in the first generation, then

the branching process su↵ers immediate extinction and ⌧
1

= 1. Hence, for all such ⌫,

P⌫(⌧1 < 1) = 1� P⌫(⌧1 = 1)  1� P⌫

�|IBP
1

| = 0
�  1� �⌫(�)  1� �N .

We conclude, for all � 2 �,

P�

�

1  |IBPn|  N infinitely often
�

= lim
k!1

P�(⌧k < 1)  lim
k!1

sup
⌫

P⌫(⌧1 < 1)k�1

 lim
k!1

(1� �N )k�1 = 0.

Proof of Theorem 6.3. Throughout the proof, we write ⇢ := ⇢✏(Ap) and ' for the cor-

responding strictly positive eigenfunction with k'k = 1 from Proposition 6.8 (i). First

suppose ⇢  1. By Lemma 6.10, P�,p(limn!1 |IBPn| 2 {0,1}) = 1. By Proposi-

tion 6.8 (iii), the assumption ⇢  1 implies that

E�,p

⇥|IBPn|
⇤

= An
p1(�) = ⇢n⌫

0

(1)'(�) + o(1).

Hence, supn2NE�,p[|IBPn|] < 1, and we conclude that limn!1 |IBPn| = 0 P�,p-almost

surely for all � 2 � and, therefore, ⇣✏(p) = 0.

Now suppose that ⇢ > 1, and denote Wn = 1

⇢n
P

|x|=n '(�(x)) for n 2 N. Then

(Wn : n 2 N) is under P�,p a nonnegative martingale with respect to the filtration

generated by the branching process. Hence, W := limn!1Wn exists almost surely.

Given Lemma 6.9, Biggins and Kyprianou show in Theorem 1.1 of [17] that E�,p[W ] =

'(�) and therefore, P�,p(W > 0) > 0. This implies in particular that the branching
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Chapter 6. Connectivity and branching processes

process survives with positive probability irrespective of the start type.

We now investigate continuity of the survival probability as a function of the at-

tachment rule. For this purpose we emphasise dependence on f by adding it as an

additional argument to several quantities. The result is used in the proof of Theo-

rem 6.1 in Chapter 8 below.

Lemma 6.11. Let p 2 (0, 1]. Then lim�#0 ⇣✏(p, f � �) = ⇣✏(p, f).

Proof. Observe that there exists a natural coupling of the IBP(f) with the IBP(f � �)

such that every particle in the IBP(f � �) is also present in the IBP(f), and hence,

⇣✏(p, f � �) is increasing as � # 0. We can therefore assume that ⇣✏(p, f) > 0, that is

⇢(f) := ⇢✏(Ap, f) > 1. By the continuity of Ap in the attachment rule (see (6.4)), there

exists �
0

> 0 such that ⇢✏(Ap, f � �
0

) > 1. In the proof of Theorem 6.3 we have seen

that this implies that the IBP(f � �
0

) survives with positive probability, irrespective

of the start type, and similar to Lemma 6.6, we conclude

inf
�2�

P�,p

�

IBP(f � �
0

) survives
�

> 0. (6.11)

Recall the definition of the martingale (Wn : n 2 N) and its almost sure limit W from

the proof of Theorem 6.3. We have E�,p[W ] = '(�), and

W =
1

⇢(f)

X

|x|=1

W (�(x)) P�,p-almost surely,

where, conditionally on the first generation, (W (�(x)) : |x| = 1) are independent copies

of the random variableW under P�(x),p. In particular, � 7! P�,p(W = 0) is a fixed point

of the operator Hg(�) = E�,p[
Q

|x|=1

g(�(x))] on the set of [0, 1]-valued, measurable

functions. As the only [0, 1]-valued fixed points of H are the constant function 1 and

the extinction probability � 7! P�,p(IBP(f) dies out), we deduce that W > 0 almost

surely on survival. Let c > 0 and N 2 N. On the space of the coupling between IBP(f)

and IBP(f � �),

⇣✏(p, f)�⇣✏(p, f � �) = P (IBP(f) survives, IBP(f � �) dies out)

 P
�

W  c, IBP(f) survives
�

+ P
⇣

W > c, 9n � N : |IBPn(f)| < c⇢(f)n

2max'

⌘

+ P
⇣

|IBPn(f)| � c⇢(f)n

2max'
8n � N, IBP(f � �) dies out

⌘

=: ⇥
1

(c) +⇥
2

(c,N) +⇥
3

(c,N, �).

Since the o↵spring distribution of an individual particle is continuous in � uniformly

on the type space, the probability that IBP(f) and IBP(f � �) agree until generation

N tends to one as � # 0. On this event, when |IBPN (f)| � C⇢(f)N for some C > 0,

then the probability that the IBP(f � �) subsequently dies out is bounded from above
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by

sup
�2�

P�,p

�

IBP(f � �) dies out
�dC⇢(f)N e

.

By (6.11), this expression tends to zero as N ! 1 when �  �
0

. Hence, for all c > 0,

0  lim sup
�#0

�

⇣✏(p, f)� ⇣✏(p, f � �)
�  ⇥

1

(c) + lim sup
N!1

⇥
2

(c,N).

On the event {W > c}\{Wn ! W}, there is a finite stopping time N
0

such that Wn �
W/2 for all n � N

0

and we deduce that ⇢(f)�n|IBPn(f)| � Wn/max' � c/(2max').

Since Wn converges to W almost surely, we conclude that limN!1⇥
2

(c,N) = 0.

Finally, ⇥
1

(c) tends to zero as c # 0 because W is positive on the event of survival.
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CHAPTER 7

THE TOPOLOGY OF THE DAMAGED GRAPH

We investigate the empirical indegree distribution and the maximal indegree of the

damaged network in Section 7.1, and typical distances in Section 7.2.

7.1 Degrees: proof of Theorem 5.2

The following lemma formalises basic facts about the indegrees Z[m,n].

Lemma 7.1. For given n 2 N, the random variables (Z[m,n] : m  n) are independent.

Fix m̂ 2 {1, . . . , n} and let (Zm[m̂, n] : m  n), be independent copies of the random

variable Z[m̂, n].

(i) There is a coupling between (Z[m,n] : 1  m  m̂) and (Zm[m̂, n] : 1  m  m̂)

such that

Z[m,n] � Zm[m̂, n] for all 1  m  m̂.

(ii) There is a coupling between (Z[m,n] : m̂  m  n) and (Zm[m̂, n] : m̂  m  n)

such that

Z[m,n]  Zm[m̂, n] for all m̂  m  n.

Proof. The independence of (Z[m,n] : m  n) is immediate from the network construc-

tion. Consequently, to prove (i) and (ii) it su�ces to couple Z[m,n] and Zm[m̂, n] for

fixed 1  m  m̂  n in such a way that Z[m,n] � Zm[m̂, n]. Equivalently, we show

that Z[m,n] stochastically dominates Z[m̂, n]. Let Ym = (Ym
l : l 2 N

0

) be the Markov

process given by Ym
l = Z[m,m+ l]. Then Ym

0

= 0 and, for all l, k 2 N
0

with k  l,

P(Ym
l+1

= k + 1|Ym
l = k) = 1� P(Ym

l+1

= k|Ym
l = k) =

f(k)

m+ l

is decreasing in m. Hence, in every step, the probability that Ym jumps is at least the

probability that Ym̂ jumps. Since Z[m,n] = Ym
n�m, Z[m̂, n] = Ym̂

n�m̂ and n�m � n�m̂,
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Chapter 7. The topology of the damaged graph

the claim is established.

Our goal is to determine the asymptotic behaviour of maxm2V✏

n

Z[m,n] and

X✏
�k(n) =

1

n� b✏nc
n
X

m=b✏nc+1

{k,k+1,...}(Z[m,n]).

Lemma 7.1 allows us to replace the independent random variables in these sequences

by groups of independent and identically distributed random variables.

Dereich and Mörters observe in [36], see for example Corollary 4.3, that the in-

degrees in network (Gn : n 2 N) are closely related to the pure jump process (Zt)t�0

.

Since the indegrees are not altered by the targeted attack, the same holds in the dam-

aged network (G✏
n : n 2 N). We now explain this connection. Let  (k) :=

Pk�1

j=1

1

j for

all k 2 N, which we consider as a time change, mapping ‘real time’ epochs k to an

‘artificial time’  (k). The artificial time spent by the process Z[m, ·] in state i is

Tm[i] := sup
n

l
X

j=k

1

j
: Z[m, k] = i = Z[m, l]

o

.

Let k 2 N
0

and nk the last real time that Z[m, ·] spends in k, that is, Z[m,nk] = k,

Z[m,nk +1] = k+1. Then
Pk

i=0

Tm[i] =
Pn

k

j=m
1

j =  (nk +1)� (m). In particular,

Z[m,n]  k ,
k
X

i=0

Tm[i] �  (n+ 1)�  (m). (7.1)

By definition, there exists a sequence of independent random variables (T [i] : i 2 N
0

)

such that T [i] is exponentially distributed with mean 1/f(i) and

Zt  k ,
k
X

i=0

T [i] > t. (7.2)

The next lemma provides a coupling between the artificial times Tm[i] and the expo-

nential times T [i]. In combination with (7.1) and (7.2), this allows us to study the jump

process (Zt : t � 0) instead of the involved dynamics of the indegree process Z[m, ·].
The proof of the lemma is identical to the proof of Lemma 4.1 in [36], and is omitted.

However, the argument behind the result was sketched in the paragraph of (5.11). We

denote by ⌧m,i = inf{ (k) : Z[m, k] = i} the artificial first entrance time of Z[m, ·] into
state i. If ⌧m,i =  (k), we write 4⌧m,i = k�1.

Lemma 7.2. There exists a constant ⌘ > 0 such that for all m 2 N there is a coupling

such that, for all i 2 N
0

with f(i)4⌧m,i  1

2

,

T [i]� ⌘f(i)4⌧m,i  Tm[i]  T [i] +4⌧m,i almost surely,
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and the random variables ((T [i], Tm[i]) : i 2 N
0

) are independent.

By definition 4⌧m,i  m�1. Hence, Lemma 7.2 yields a coupling such that when

f(k)/m  1

2

, then

k
X

i=0

T [i]� (k + 1)⌘f(k)/m 
k
X

i=0

Tm[i] 
k
X

i=0

T [i] + (k + 1)/m.

In particular, for f(k)/m  1

2

, the equivalence (7.1) implies

P
⇣

k
X

i=0

T [i] �  (n+ 1)�  (m) + ⌘(k + 1)f(k)/m
⌘

 P(Z[m,n]  k)

 P
⇣

k
X

i=0

T [i] �  (n+ 1)�  (m) + (k + 1)/m
⌘

.

If m  n and m� #n = O(1) for some # 2 (0, 1], then  (n+ 1)�  (m) =
Pn

j=m
1

j =

� log #+ o(1). Hence, for m  n, m� #n = O(1) and k = O(log n),

P(Z[m,n]  k) = P
⇣

k
X

i=0

T [i] � � log #+ o(1)
⌘

, (7.3)

where the random null sequence o(1) is bounded by a deterministic null sequence of

order O((log n)2/n).

We proceed by estimating the distribution function of
Pk

i=0

T [i]. The following

identity for the incomplete beta function will be of use.

Lemma 7.3. Let a 2 (0, 1], c > 0 and k 2 N
0

. Then

k
X

i=0

✓

k

i

◆

(�a)i

i+ c
= a�c

Z a

0

xc�1(1� x)k dx.

Proof. Denote the left-hand side by ✓(k, a, c). For x > 0, we have

@

@x

⇥

xc✓(k, x, c)
⇤

=
@

@x

h

k
X

i=0

✓

k

i

◆

(�1)i
xi+c

i+ c

i

=
k
X

i=0

✓

k

i

◆

(�1)ixi+c�1 = xc�1(1� x)k.

Integrating both sides between 0 and a, and dividing by ac, we obtain the claim.

Lemma 7.4. For k 2 N
0

and t � 0,

P (Zt � k + 1) = P
⇣

k
X

i=0

T [i]  t
⌘

= B
�

k + 1, ��
��1

Z

1

e��t

x
�

�

�1(1� x)k dx. (7.4)

Proof. Let k 2 N
0

. The probability density for
Pk

i=0

T [i] is given by (see for example

Problem 12, Chapter 1 in [71])
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t 7!
k
X

i=0

Qk
j=0,j 6=i f(j)

Qk
j=0,j 6=i[f(j)� f(i)]

f(i)e�f(i)t
[0,1)

(t).

Using f(j) = �j + �, we can rewrite for all i 2 {0, . . . , k},
Qk

j=0,j 6=i f(j)
Qk

j=0,j 6=i[f(j)� f(i)]
=

�
f(i)

k!
k!

Qk
j=1

f(j)

�k(�1)ii!(k � i)!
=
�

�

⇣

k
Y

j=1

f(j)

�j

⌘

✓

k

i

◆

(�1)i

i+ �
�

.

We obtain

P
⇣

k
X

i=0

T [i]  t
⌘

=
�

�

⇣

k
Y

j=1

f(j)

�j

⌘

k
X

i=0

✓

k

i

◆

(�1)i

i+ �
�

�

1� e��te��it
�

.

The factor in front of the sum equals B(k+1, �� )
�1. Thus, it remains to show that the

sum agrees with the integral in (7.4). Using Lemma 7.3, we derive

k
X

i=0

✓

k

i

◆

(�1)i

i+ �
�

�

1� e��te��it
�

=

Z

1

0

x
�

�

�1(1� x)k dx� e��t(e��t)�
�

�

Z e��t

0

x
�

�

�1(1� x)k dx

=

Z

1

e��t

x
�

�

�1(1� x)k dx.

Proposition 7.5. For all k 2 N
0

,

E
⇥

X✏
�k+1

(n)
⇤ !

Z

1

✏

1

1� ✏
B
�

k + 1, ��
��1

Z

1

y�
x

�

�

�1(1� x)k dx dy as n ! 1.

Proof. Let � > 0, � = b�✏nc, N = 1+bn�b✏nc
�

c, mj = b✏nc+1+j� for j = 0, . . . , N�1,

mN = n+1, �j = � for j = 1, . . . , N � 1 and �N = mN �mN�1

2 [0,�). Combining

Lemma 7.1 with (7.3), we obtain

1

n� b✏nc
n
X

m=b✏nc+1

P(Z[m,n] > k)  1

n� b✏nc
N�1

X

j=0

�j+1

P(Z[mj , n] > k)

 1

n� b✏nc
N�1

X

j=0

�✏nP
⇣

k
X

i=0

T [i]  � log(✏+ j�✏) + o(1)
⌘

.

Hence,

lim sup
n!1

1

n� b✏nc
n
X

m=b✏nc+1

P(Z[m,n] > k)
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is bounded from above by

d 1�✏

�✏

e
X

j=0

�✏

1� ✏
P
⇣

k
X

i=0

T [i]  � log
�

✏+ j
�✏

1� ✏
(1� ✏)

�

⌘

.

Taking � ! 0, we conclude

lim sup
n!1

1

n� b✏nc
n
X

m=b✏nc+1

P(Z[m,n] > k)


Z

1

0

P
⇣

k
X

i=0

T [i]  � log
�

✏+ y(1� ✏)
�

⌘

dy.

(7.5)

Similarly,

1

n� b✏nc
n
X

m=b✏nc+1

P(Z[m,n] > k) � 1

n� b✏nc
N
X

j=1

�jP(Z[mj � 1, n] > k)

� 1

n� b✏nc
N�1

X

j=1

�jP
⇣

k
X

i=0

T [i]  � log(✏+ j�✏) + o(1)
⌘

,

and as above we see that lim inf satisfies the reverse inequality in (7.5). Lemma 7.4

yields the claim.

The following proposition proves the first part of Theorem 5.2.

Proposition 7.6. Let µ✏ be the probability measure on N
0

that satisfies (5.5). Then,

almost surely, limn!1X✏(n) = µ✏ in total variation norm, and

lim
k!1

logµ✏
�k/k = log(1� ✏�). (7.6)

Proof. Dereich and Mörters (pp 1238–1239 in [36]) give a simple argument based on

Cherno↵’s inequality to upgrade the convergence of the expected empirical degree dis-

tribution to convergence of the empirical degree distribution in total variation norm.

Given Proposition 7.5, the proof remains valid for the damaged network and is therefore

omitted.

To establish (7.6), we write a(k) ⇣ b(k) if there exist constants 0 < c  C < 1 such

that ca(k)  b(k)  Ca(k) for all large k. By Stirling’s formula, B(k+1,�/�)�1 ⇣ k�/� .

Moreover,

1

1� ✏

Z

1

✏

Z

1

y�
x

�

�

�1(1� x)k dx dy ⇣
Z

1

✏

Z

1

y�
(1� x)k dx dy

=
1

k + 1

Z

1

✏
(1� y�)k+1 dy ⇣ (1� ✏�)k+1

(k + 1)2
.

114



Chapter 7. The topology of the damaged graph

In the first estimate we used that x
�

�

�1 is bounded from zero and infinity; in the second

we employed Laplace’s method (see for example Section 3.5 of [103]). In particular,

(7.6) holds.

To complete the proof of Theorem 5.2, it remains to derive the asymptotic behaviour

of the maximal indegree. The statement follows from the next two lemmas.

Lemma 7.7 (Upper bound). Let c > � 1

log(1�✏�) . Then,

P
�

max
m2V✏

n

Z[m,n]  c log n
� ! 1 as n ! 1.

Proof. Write kn = bc log nc, m = b✏nc+ 1 and � = n� b✏nc. Moreover, let Zm[m,n],

m  n, be independent copies of Z[m,n]. Lemma 7.1 and (7.3) yield

P
�

max
m2V✏

n

Z[m,n]  c log n
� � P

�

max
m2V✏

n

Zm[m,n]  kn
�

= P
�Z[m,n]  kn

�

�

= P
⇣

k
n

X

i=0

T [i] � � log ✏+ o(1)
⌘

�

(7.7)

= exp
⇣

��P
⇣

k
n

X

i=0

T [i]  � log ✏+ o(1)
⌘

(1 + o(1))
⌘

,

using a Taylor expansion in the last equality. As above, uniformly for t in compact

subintervals of (0,1),

Z

1

e��t

x
�

�

�1(1� x)k dx ⇣
Z

1

e��t

(1� x)k dx ⇣ exp
⇣

k log(1� e��t)� log k
⌘

.

Thus, Lemma 7.4 and Stirling’s formula yield for # 2 (0, 1) and t = � log #+ o(1),

P
⇣

k
X

i=0

T [i]  t
⌘

⇣ exp
⇣

k log(1� e��t) + (�� � 1) log k
⌘

= exp
⇣

k log(1� #�)(1 + o(1))
⌘

(7.8)

as k ! 1. Using this estimate for k = kn and # = ✏, the exponent on the right-hand

side of (7.7) tends to zero as n ! 1 if c > �1/ log(1� ✏�).

Lemma 7.8 (Lower bound). Let c < � 1

log(1�✏�) . Then,

P
�

max
m2V✏

n

Z[m,n]  c log n
� ! 0 as n ! 1.

Proof. The idea of the proof is to restrict the maximum to an arbitrarily small pro-

portion of the oldest vertices. Let � > 0, and write kn := bc log nc, � = b�✏nc and

m = b✏nc + �. Moreover, let Zm[m,n], m  n, be independent copies of Z[m,n].
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According to Lemma 7.1, there is a coupling such that

max
m2V✏

n

Z[m,n] � max
m=b✏nc+1,...,b✏nc+�

Z[m,n] � max
m=b✏nc+1,...,b✏nc+�

Zm[m,n].

Arguing as in (7.7), (7.3) yields that

P
�

max
m2V✏

n

Z[m,n]  c log n
�

is bounded from above by

exp
⇣

��P
⇣

k
n

X

i=0

T [i]  � log(✏(1 + �)) + o(1)
⌘

�

1 + o(1)
�

⌘

.

Now (7.8) with # = ✏(1 + �) implies that the exponent on the right-hand side tends to

�1 if c < �1/ log(1� (✏(1 + �))�). Since � was arbitrary, the claim is established.

Proof of Theorem 5.2. The result follows immediately from Proposition 7.6 and Lem-

mas 7.7 and 7.8.

7.2 Distances: proof of Theorem 5.3

In this section, we study the typical distance between two uniformly chosen vertices

in C✏
n, and prove Theorem 5.3. We write 4Z[m,n] = Z[m,n + 1] � Z[m,n] and, for

m � n, Z[m,n] = 0. In the graph, the indegree of vertex m at time m is zero by

definition, but we will also use the distribution of the process (Z[m,n] : n � m) for

di↵erent initial values. Formally, the evolution of Z[m, ·] with initial value k is obtained

by using the attachment rule g(l) := f(k + l), and we denote its distribution by Pk,

using Ek for the corresponding expectation; we abbreviate P := P0, E := E0. We

further write n̂ := inf{n 2 N : f(n)/n  1} _ 2. Note that � < 1 implies n̂ 2 N. We

observe some facts about the indegree distribution. These are adaptations of results in

[37].

Lemma 7.9 (Lemma 2.7 in [37]). For all k 2 N
0

and m,n 2 N with k  m, n̂  m  n,

Pk(4Z[m,n] = 1)  f(k)

(m� 1)�n1��
. (7.9)

Proof. Observe that (f(Z[m,n])
Qn�1

j=m
1

1+�/j : n � m) is a martingale, and therefore

Pk(4Z[m,n] = 1) = Ek
hf(Z[m,n])

n

i

=
f(k)

n

n�1

Y

j=m

(1 + �/j)  f(k)

(m� 1)�n1��
.

Lemma 7.10 (Lemma 2.10 in [37]). For all k 2 N
0

, m,m0 2 N, n̂  m  m0, k  m,

there exists a coupling of the process (Z[m,n] : n � m) under the conditional probability
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Pk(·|4Z[m,m0] = 1) and the process (Z[m,n] : n � m) under Pk+1 such that, apart

from time m0, the jump times of the first process are a subset of the jump times of the

latter.

The proof of the lemma is similar to the proof of Lemma 2.10 in [37], and we omit

it. After these preliminary results, we now begin our analysis of typical distances in

the network (G✏
n : n 2 N). Recall, that for this type of questions, we consider G✏

n to be

an undirected graph. For v, w 2 V✏
n and h 2 N

0

, let

Sh(v, w) := {(v
0

, . . . , vh) : vi 2 V✏
n, vi 6= vj for i 6= j, v

0

= v, vh = w}

be the set of all self-avoiding paths of length h between v and w, and let Sh(v) =

{p : p 2 Sh(v, w) for some w 2 V✏
n} the set of all self-avoiding paths of length h starting

in v.

Definition 7.11. Let ✓ 2 (0,1) and G = (V,E) be an undirected graph with V ✓ N.
A self-avoiding path p = (v

0

, . . . , vh) in G is ✓-admissible (or admissible) if, for all

i 2 {1, . . . , h}, we have {vi�1

, vi} 2 E and

�

�

�

w 2 V : vi�1

< w  vi, {vi�1

, w} 2 E
 

�

�  ✓. (7.10)

Note that (7.10) is automatically satisfied if vi < vi�1

. In the graph G✏
n, condition

(7.10) can be written as Z[vi�1

, vi]  ✓. We further denote, for v, w 2 V✏
n, h 2 N

0

and

✓ 2 (0,1),

N ✓
h(v, w) :=

�

�{p 2 Sh(v, w) : p is ✓-admissible in G✏
n}
�

�,

N ✓
h(v) :=

�

�{p 2 Sh(v) : p is ✓-admissible in G✏
n}
�

�,

and, for h > 0, N ✓
h(v) =

Pbhc
k=0

N ✓
k (v), N

✓
h(v, w) =

Pbhc
k=0

N ✓
k (v, w). The dependence

of Sh(v, w), Sh(v), N ✓
h(v, w) etc. on n is suppressed in the notation, but it will always

be clear from the context which graph is considered. We write IBP✏(f) for the idealized

branching process with type space [log ✏, 0]⇥ {`, r} generated with attachment rule f if

we want to emphasize f and ✏. The proof of the following lemma is deferred to Section

8.3.

Lemma 7.12. Let � > 0 such that �(1 + �) < 1, ✏ 2 (0, ✏), and (✓n : n 2 N) a positive

sequence with ✓n = o(n). For all su�ciently large n, v
0

2 V✏
n, and h 2 N

0

,

E
⇥

N ✓
n

h (v
0

)
⇤  E

(s
n

(v0),`)

⇥

�

�IBP✏
h((1 + �)f)

�

�

⇤

, where sn(v0) := �
n�1

X

j=v0

1

j
.

We are now in the position to prove Theorem 5.3. For two vertices v, w 2 V✏
n

in di↵erent components of G✏
n, the distance dG✏

n

(v, w) between them is defined to be

infinite.
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Proof of Theorem 5.3. Let v, w 2 V✏
n, h 2 N. With ✓n := (log n)2, (5.6) yields

P
�

dG✏

n

(v, w)  h
�  P

⇣

dG✏

n

(v, w)  h, max
m2V✏

n

Z[m,n]  ✓n
⌘

+ P
⇣

max
m2V✏

n

Z[m,n] > ✓n
⌘

 P
�

N ✓
n

h(v, w) � 1
�

+ o(1), (7.11)

where the error bound is uniform in v, w and h. Markov’s inequality yields, for every

v, w 2 V✏
n with v 6= w and for every h 2 N,

P
�

N ✓
n

h(v, w) � 1
�  E

⇥

N ✓
n

h(v, w)
⇤

=
h
X

k=1

X

p2S
k

(v,w)

P
�

p is ✓n-admissible in G✏
n

�

. (7.12)

Let p = (v
0

, . . . , vk) 2 Sk(v, w). We write w+

i := vi�1

_ vi, w
�
i := vi�1

^ vi and

Ei :=
�4Z[w�

i , w
+

i � 1] = 1,Z[vi�1

, vi]  ✓n
 

for every i 2 {1, . . . , k}.

We have

P(p is ✓n-admissible in G✏
n) = P

⇣

k
\

i=1

�4Z[w�
i , w

+

i � 1] = 1,Z[vi�1

, vi]  ✓n
 

⌘

= P
⇣

Ek
�

�

�

k�1

\

i=1

Ei
⌘

P((v
0

, . . . , vk�1

) is ✓n-admissible in G✏
n).

(7.13)

To estimate the probability P(Ek|
Tk�1

i=1

Ei), we first note that the only edge in the self-

avoiding path p on whose presence the event {vk�1

, vk} 2 E✏
n can depend is {vk�2

, vk�1

}.
The possible arrangements of these two edges are sketched in Figure II-6. When

vk�2

< vk�1

(cases A, B and C in Figure II-6), then in addition, we have knowl-

edge of edges whose left vertex is vk�2

because Z[vk�2

, vk�1

]  ✓n. However, these are

always independent of {vk�1

, vk}. If vk�1

< vk (cases A, D and E in Figure II-6), then

event Ek requires that Z[vk�1

, vk]  ✓n. Since edges with left vertex vk�1

depend only

on edges whose left vertex is also vk�1

, the only relevant conditioning occurs in cases

D and E in Figure II-6 by requiring {vk�1

, vk�2

} to be present.

vk�2 vk�1 vk

A

vk�1 vk�2 vk

D

vk vk�1 vk�2

F

vk�2 vk vk�1

B

vk vk�2 vk�1

C

vk�1 vk vk�2

E

Figure II-6. Possible interactions of two edges on a self-avoiding path. The red, dashed

edges have to be considered to decide if the number of right-neighbours is small enough to

declare the path admissible.
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We deduce

P
⇣

Ek
�

�

�

k�1

\

i=1

Ei
⌘

=

8

<

:

P(4Z[w�
k , w

+

k � 1] = 1,Z[vk�1

, vk]  ✓n) in A,B,C,F,

P(4Z[vk�1

, vk � 1] = 1,Z[vk�1

, vk]  ✓n|4Z[vk�1

, vk�2

� 1] = 1) in D,E.

Using Lemma 7.10 and (7.9), we can bound the probability in both cases by f(1)/(✏n).

Combining this estimate with (7.12) and (7.13), we obtain

P
�

N ✓
n

h(v, w) � 1
� 

h
X

k=1

X

p2S
k�1(v)

f(1)

✏n
P(p is ✓n-admissible in G✏

n)

=
f(1)

✏n

h�1

X

k=0

E
⇥

N ✓
n

k (v)
⇤

.

Lemma 7.12 yields for small �̄ > 0 and ✏ := ✏� �̄ > 0,

P
�

N ✓
n

h(v, w) � 1
�  f(1)

✏n

h�1

X

k=0

E
(s

n

(v),`)

h

�

�IBP✏
k((1 + �̄)f)

�

�

i

.

We denote by ⇢̄ the spectral radius of the operator A associated to IBP✏((1 + �̄)f),

and by '̄ the corresponding eigenfunction. Choose a constant C such that C �
max� '̄(�)/min� '̄(�) for all su�ciently small �̄. That is possible since the eigenfunc-

tions are continuous in �̄ (this can be seen along the lines of Note 3 to Chapter II on

pages 568-569 of [91]). By Theorem 6.3, and by the assumption that G✏
n has a giant

component, ⇢✏(A) > 1. Combining this fact with the continuity of the spectral radius

with respect to the operator (see Chapter II.5 in [91]), we obtain ⇢̄ > 1 for all small �̄.

Hence, for all v, w 2 V✏
n, v 6= w,

P
�

N ✓
n

h(v, w) � 1
�  f(1)

✏n

h�1

X

k=0

1

min� '̄(�)
E

(s
n

(v),`)

h

X

x2IBP✏((1+�̄)f)
|x|=k

'̄(�(x))
i

=
f(1)

✏n

h�1

X

k=0

⇢̄k
'̄(sn(v), `)

min� '̄(�)

 f(1)C

✏n

⇢̄h

⇢̄� 1
=

f(1)C

✏(⇢̄� 1)
exp

�

h log ⇢̄� log n
�

.

In particular, for � > 0 and hn := (1� �2) logn
log ⇢̄ , we showed that

sup
v,w2V✏

n

,v 6=w
P(N ✓

n

h
n

(v, w) � 1) = o(1).

For independent, uniformly chosen vertices Vn,Wn in C✏
n, we have Vn 6= Wn with high
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probability. According to (7.11), this implies P(dG✏

n

(Vn,Wn)  hn) = o(1). Choosing �̄

so small that log ⇢̄  (1 + �) log ⇢✏(A), it follows that, with high probability,

dG✏

n

(Vn,Wn) � (1� �2)
log n

log ⇢̄
� (1� �)

log n

log ⇢✏(A)
.

Since ⇢✏(A) = 1/p
c

(✏) by Corollary 6.4, the proof is complete.
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CHAPTER 8

APPROXIMATION BY A BRANCHING PROCESS

In this chapter, we compare the connected components in the network to the multitype

branching process (the IBP) defined in Section 6.1. We begin by coupling the local

neighbourhood of a uniformly chosen vertex to the IBP in Sections 8.1 and 8.2. These

local considerations allow us to draw conclusions about the existence or nonexistence

of the giant component from knowledge of the branching process; see Section 8.4. For

the analysis of the typical distances in the network, knowing the local neighbourhood

is insu�cient. We show in Section 8.3 that a slightly larger IBP dominates the network

globally in a suitable way.

8.1 Coupling the network to a tree

The proof of the coupling follows the lines of [37] for the undamaged network, but unfor-

tunately we cannot use their results directly as the coupling in [37] makes extensive use

of vertices which are removed in the damaged network. Note however that the removal

of the old vertices significantly reduces the risk of cycles in the local neighbourhood of

a vertex, and therefore, the coupling here will be successful for much longer than the

coupling in [37].

In the first step, we couple the local neighbourhood of a vertex v
0

in G✏
n to a labelled

tree T✏
n(v0), thus ruling out cycles in that subgraph. In Section 8.2, we then study the

large n-asymptotics of the o↵spring distributions to arrive at the IBP.

Every vertex v in the labelled tree T✏
n(v0) is equipped with a V✏

n-valued ‘tag’ and a

‘mark’ ↵ 2 V✏
n [ {`}. The tag indicates which vertex in the network is approximated

by v. We use the same notation for vertex and tag to emphasize the similarity between

the tree and the network. The mark ↵ carries information about the tag of the parent

w of v in the tree. In the spirit of Section 5.6, v has mark ↵ = ` if its parent has a

smaller tag, i.e. w < v, and we say that the parent of v is on its left. In contrast, if

w > v we say that the parent is on its right. It turns out that here it is beneficial to
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Chapter 8. Approximation by a branching process

record the exact tag of w instead of only the relative position and we choose ↵ = w.

Hence, a typical label is of the form (v,↵).

To construct the coupling, we run an exploration process on the connected compo-

nent of v
0

. The o↵spring distribution of a vertex v in the tree is chosen to be the same

as the distribution of direct neighbours of v in G✏
n when only the vertex w is known

as whose direct neighbour v is found in the exploration. That vertex w determines

the mark of v. The need of this information to identify the o↵spring distribution is

the reason why vertices in T✏
n(v0) are equipped with marks, whereas vertices in G✏

n(v0)

are not. Note the similarity to the comparison between network and IBP sketched in

Section 5.6.

Formally, for v
0

2 V✏
n, let T✏

n(v0) be the random tree with root v
0

of label (v
0

, `)

constructed as follows: every vertex v produces independently o↵spring to the left, i.e.

with tag u 2 {b✏nc+ 1, . . . , v � 1}, with probability

P(v has a descendant with tag u) = P(4Z[u, v � 1] = 1).

All o↵spring on the left are of mark v. Moreover, independently, v produces descendants

to its right, i.e. with tag in {v + 1, . . . , n}. Since the parent of these descendant is on

the left, they are of mark `. The distribution of the cumulative sum1 of the sequence

of relative positions of the right descendants depends on the mark of v. When v

is of mark ↵ = `, then the cumulative sum is distributed according to the law of

(Z[v, u] : v + 1  u  n). When v is of mark ↵ = w 2 V✏
n, w > v, then the cumulative

sum follows the same distribution as (Z[v, u]�
[w,1)

(u) : v + 1  u  n) conditioned

on 4Z[v, w � 1] = 1. The percolated version T✏
n,p(v0) is obtained from T✏

n(v0) by

deleting every particle in T✏
n(v0) together with its line of descent with probability 1�p,

independently for all particles. In particular, with probability 1 � p, the root v
0

is

deleted and T✏
n,p(v0) is empty.

We write C✏
n,p(v0) for the connected component in G✏

n(p) containing vertex v
0

.

Proposition 8.1. Suppose (cn : n 2 N) is a sequence of positive integers that satisfies

limn!1 c2n/n = 0. Then there exists a coupling of a uniformly chosen vertex Vn in V✏
n,

graph G✏
n(p) and tree T✏

n,p(Vn) such that

|C✏
n,p(Vn)| ^ cn = |T✏

n,p(Vn)| ^ cn with high probability.

To prove Proposition 8.1, we define an exploration process which we then use to

inductively collect information about the tree and the network on the same probability

space. We show that the two discovered graphs agree until a stopping time, which is

with high probability larger than cn. After that time, the undiscovered part of the tree

and the network can be generated independently of each other.

We begin by specifying the exploration process that is used to explore the connected

1
For a sequence (x

j

: j = 1, . . . , n) the cumulative sum is given by (

P
j

i=1 xi

: j = 1, . . . , n)
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component of a vertex v
0

in a labelled graph G, like C✏
n,p(v0) or T✏

n,p(v0). We distinguish

three categories of vertices:

• veiled vertices: vertices for which we have not yet found a connection to the

cluster of v
0

,

• active vertices: vertices for which we already know that they belong to the cluster

of v
0

but for which we have not yet explored all its immediate neighbours,

• dead vertices: vertices which belong to the cluster of v
0

and for which all imme-

diate neighbours have been explored.

At the beginning of the exploration only v
0

is active and all other vertices are veiled.

In the first exploration step we explore all immediate neighbours of v
0

, declare v
0

as

dead and all its immediate neighbours as active. The other vertices remain veiled.

We now continue from the active vertex v with the smallest tag and explore all its

immediate neighbours apart from v
0

from where we just came. The exploration is

continued until there are no active vertices left.

We couple the exploration processes of the network and the tree started with v
0

2 V✏
n

up to a stopping time T , such that up to time T both explored subgraphs (without the

marks) coincide. In particular, the explored part of C✏
n,p(v0) is a tree, and every tag

has been used at most once by the active or dead vertices in T✏
n,p(v0). If at least one of

these properties fails, then we say that the coupling fails. We also stop the exploration,

when either the number of dead and active vertices exceeds cn or when there are no

active vertices left. In this case we say that the coupling is successful.

Lemma 8.2. Suppose that p 2 (0, 1] and (cn : n 2 N) satisfies limn!1 c2n/n = 0. Then

lim
n!1

sup
v02V✏

n

P
�

the coupling of C✏
n,p(v0) and T✏

n,p(v0) fails
�

= 0.

In the sequel, we will label some key constants by the lemma in which they appear

first. The following result will be used in the proof of Lemma 8.2.

Lemma 8.3 (Adaptation of Lemma 2.12 in [37]). Let (cn : n 2 N) be such that

limn!1 cn/n = 0. Then there exists a constant C
8.3 > 0 such that for all su�ciently

large n, for all disjoint sets I
0

, I
1

✓ V✏
n with |I

0

|  cn and |I
1

|  1, and for all u, v 2 V✏
n,

P
�4Z[v, u] = 1

�

�4Z[v, i] = 1 for i 2 I
1

,4Z[v, i] = 0 for i 2 I
0

�

 C
8.3P

�4Z[v, u] = 1
�

�4Z[v, i] = 1 for i 2 I
1

�

.

Proof. We have

P
�4Z[v, u] = 1

�

�4Z[v, i] = 1 for i 2 I
1

,4Z[v, i] = 0 for i 2 I
0

�

 P(4Z[v, u] = 1 |4Z[v, i] = 1 for i 2 I
1

)

P(4Z[v, i] = 0 for i 2 I
0

|4Z[v, i] = 1 for i 2 I
1

)
.
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With n so large that b✏nc � n̂, Lemma 7.10 and (7.9) imply that

P(4Z[v, i] = 0 for i 2 I
0

|4Z[v, i] = 1 for i 2 I
1

) � P1(4Z[v, i] = 0 for i 2 I
0

)

�
Y

i2I0

P1(4Z[v, i] = 0) �
Y

i2I0

⇣

1� f(1)

(v � 1)�i1��

⌘

�
⇣

1� f(1)

✏n

⌘c
n

.

Since cn/n tends to zero as n ! 1, the right-hand side converges to one.

Proof of Lemma 8.2. We assume that n is so large that b✏nc � n̂. To distinguish the

exploration processes, we use the term descendant for a child in the labelled tree and

the term neighbour in the context of G✏
n(p). The �-algebra generated by the exploration

until the completion of step k is denoted Fk.

Since the probability of removing v
0

is the same in C✏
n,p(v0) and T✏

n,p(v0), this

event can be perfectly coupled. If v
0

is not removed, then we explore the immediate

neighbours of v
0

in G✏
n(p) and the children of the root v

0

in the tree. Again these

families are identically distributed and can be perfectly coupled.

Now suppose that we successfully completed exploration step k and are about to

start the next step from vertex v. At this stage, every vertex in the tree can be uniquely

referred to by its tag, and the subgraphs coincide. Denoting by a and d the set of active

and dead vertices, respectively, we have a 6= ; and |a[d| < cn. We continue by exploring

the left descendants and neighbours of v. Since we always explore the leftmost active

vertex, we cannot encounter any dead or active neighbours in this step. However, in

the tree T✏
n,p(v0) we may find a dead left descendant (i.e. an o↵spring whose tag agrees

with the tag of a dead particle); we call this event Ia. On Ia, the vertices in the explored

part of T✏
n,p(v0) are no longer uniquely identifiable by their tag and we stop. We have

P
�

Ia | Fk

�

= P
�9d 2 d : d is a left descendant of v | Fk

�


X

d2d
P(4Z[d, v � 1] = 1)  cn

f(0)

✏n
.

In the first inequality, we used subadditivity, the definition of T✏
n,p(v0), and omitted

the event that o↵spring of v may be removed by percolation. Hence, P(Ia) = O(cn/n).

In the exploration to the left in the tree, we immediately check if a found left descen-

dant has a right descendant which is dead. We denote this event by Ib and stop the

exploration as soon as it occurs. The reason is that in the network this event could

not happen since we always explore the leftmost active vertex. The distribution of left

neighbours agrees with the distribution of the left descendants conditioned on having

no dead right descendants, and we can couple both explorations such that they agree

in this case. The probability of the adverse event Ib, P
�

Ib | Fk

�

, is given by

P
�9u 2 dc, d 2 d : u is a left descendant of v, d is a right descendant of u | Fk

�

.
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Using the definition of T✏
n,p(v), this probability can be bounded from above by

X

u2dc

X

d2d
P
�4Z[u, v � 1] = 1

�

P
�4Z[u, d� 1] = 1 |4Z[u, v � 1] = 1

�

.

By the definition of the exploration process, there are at most cn dead vertices. There-

fore, Lemma 7.10 and (7.9) yield

P
�

Ib|Fk

�  cn
X

u2dc,uv�1

f(0)

(u� 1)�(v � 1)1��

f(1)

✏n
 cn

f(0)f(1)

✏n

1

(v � 1)1��

v�1

X

u=1

u�� ,

which implies in particular that P(Ib) = O(cn/n).

We turn to the exploration of right descendants, resp. neighbours. When vertex v is

of mark ↵ 6= `, then we already know that v has no right descendants, resp. neighbours,

in d since we checked this when v was discovered. We denote the event that a right

descendant, resp. neighbour, is active by IIr and stop the exploration as soon as this

event occurs because the tags in T✏
n,p(v0) are no longer unique, resp. we found a cycle in

C✏
n,p(v0). According to Lemma 8.3 and (7.9), the probability P

�

IIr
�

�Fk

�

can be bounded

from above by

P
⇣

9a 2 a : 4Z[v, a� 1] = 1
�

�4Z[v,↵� 1] = 1,4Z[v, d� 1] = 08 d 2 d \ {↵},Fk

⌘

 C
8.3

X

a2a
P1(4Z[v, a� 1] = 1)  C

8.3cn
f(1)

✏n
.

Thus, P(IIr) = O(cn/n). Conditional on the event that there are no active vertices in

the set of right descendants, resp. neighbours, the o↵spring distributions in tree and

network agree, and can, therefore, be perfectly coupled. When the vertex v is of mark

↵ = `, then we have not gained any information about its right descendants, yet. The

event that there is a dead or active vertex in the right descendants is denoted by II`a.

We stop when this event occurs, and use (7.9) to estimate

P
�

II`a|Fk

�

= P
�9a 2 a [ d : a is a right descendant of v

�

�Fk

�


X

a2a[d
P(4Z[v, a� 1] = 1)  cn

f(0)

✏n
.

Thus, P(II`a) = O(cn/n). In C✏
n,p(v0) we know that v has no dead right neighbours as

this would have stopped the exploration in the moment when v became active. The

event that there are active vertices in the set of right neighbours is denoted by II`b,

and we stop as soon as it occurs since a cycle is created. Using again (7.9), we find

P
�

II`b|Fk

�

= P
�9a 2 a : 4Z[v, a� 1] = 1

�

�4Z[v, d� 1] = 0 for d 2 d,Fk

�


X

a2a
P(4Z[v, a� 1] = 1)  cn

f(0)

✏n
.
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As in the case ↵ 6= `, the explorations can be perfectly coupled when the adverse

events do not occur. We showed that in every step the coupling fails with a probability

bounded by O(cn/n). As there are at most cn exploration steps until we end the

coupling successfully, the probability of failure is O(c2n/n) = o(1). In other words, the

coupling succeeds with high probability.

Proof of Proposition 8.1. First, consider the statement for a fixed vertex v
0

. When

the coupling is successful and ends because at least cn vertices were explored, then

|C✏
n,p(v0)| � cn and |T✏

n,p(v0)| � cn. If the coupling is successful and ends because there

are no active vertices left, then |C✏
n,p(v0)| = |T✏

n,p(v0)| since the subgraphs coincide.

As the coupling is successful with high probability by Lemma 8.2, |C✏
n,p(v0)| ^ cn =

|T✏
n,p(v0)| ^ cn with high probability. Because Lemma 8.2 shows the success of the

coupling uniformly in the start vertex, the randomization of the vertex v
0

to a uniformly

chosen vertex Vn 2 V✏
n is now straightforward.

8.2 Coupling the tree to the IBP

Coupling the neighbourhood of a vertex to a labelled tree provides a great simplifica-

tion of the problem since many dependencies are eliminated. However, the o↵spring

distribution in the tree T✏
n,p(Vn) is still complicated and depends on n. Since we are

mainly interested in the asymptotic size of the giant component, we now couple the

tree to the IBP, which does not depend on n and is much easier to analyse. We denote

by |X ✏(p)| the total progeny of the IBP. Recall the definition of S✏ from (6.2).

Proposition 8.4. Let p 2 (0, 1], and let (cn : n 2 N) be a sequence of positive integers

with limn!1 c3n/n = 0. Then there exists a coupling of a uniformly chosen vertex Vn

in V✏
n, the graph G✏

n(p) and the percolated IBP started with a particle of mark ` and

location S✏ such that, with high probability,

|C✏
n,p(Vn)| ^ cn = |X ✏(p)| ^ cn.

Proof of Proposition 8.4. Throughout the proof, we suppose that n is so large that

b✏nc � n̂. Instead of coupling the IBP directly to the network, we couple a projected

version of the IBP to the tree T✏
n,p(Vn). As long as the number of particles is preserved

under the projection, this is su�cient according to Proposition 8.1. To describe the

projection, we define ⇡✏n : [log ✏, 0] ! V✏
n by

⇡✏n(�) = v , sn(v � 1) < �  sn(v), (8.1)

where sn(v) = �Pn�1

j=v
1

j . Since sn(b✏nc) < log(b✏nc/n)  log ✏, every location in

[log ✏, 0] can be uniquely identified with a tag in V✏
n by the map ⇡✏n. The projected IBP

is again a labelled tree: the genealogical tree of the IBP with its marks is preserved,

the location of a particle x is replaced by the tag ⇡✏n(�(x)). If sn(b✏nc+1) < log ✏, then
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Chapter 8. Approximation by a branching process

no particles of the IBP are projected onto b✏nc+1. Moreover, while for v � b✏nc+3 an

interval of length 1/(v � 1) is projected onto v, for b✏nc+ 2 only an interval of length

at most sn(b✏nc + 2) � log ✏ is used. This length is positive but may be smaller than

1/(b✏nc+1). As a consequence, the projected IBP can have unusually few particles at

b✏nc+ 1 and b✏nc+ 2, and we treat these two tags separately.

The exploration of the two trees follows the same procedure as the exploration

described in Section 8.1, and we declare the coupling successful and stop as soon as

either there are no active vertices left or the number of active and dead vertices exceeds

cn. Since both objects are trees, as long as the labels for the starting vertices agree, any

failure of the coupling comes from a failure in the coupling of the o↵spring distributions.

For simplicity, we consider only the case p = 1. The generalisation to p 2 (0, 1] is

straightforward.

We first show that the labels of the starting vertices can be coupled with high

probability. To this end, note that the distribution of S✏ is chosen such that exp(S✏)

is uniformly distributed on [✏, 1]. Since log ✏  sn(b✏nc + 2)  sn(v � 1)  sn(v)  0,

for v � b✏nc+ 3, we obtain

P
�

⇡✏n(S
✏) = v

�

= P
�

esn(v�1) < eS
✏  esn(v)

�

= 1

1�✏

�

esn(v) � esn(v�1)

�

= 1

1�✏ e
s
n

(v�1)

�

e1/(v�1) � 1
�

.

The right-hand side is in the interval [ 1

1�✏(
1

n � 2

vn),
1

1�✏(
1

n + 2

vn)]. Moreover, the prob-

ability that Vn or ⇡✏n(S
✏) is in {b✏nc + 1, b✏nc + 2} is of order O(1/n). Hence, Vn and

S✏ can be coupled such that

P
�

Vn 6= ⇡✏n(S
✏)
� 

n
X

v=b✏nc+3

�

�P
�

⇡✏n(S
✏) = v

�� 1

n�b✏nc
�

�+O
�

1

n

�

= O
�

logn
n

�

.

In the next step, we study the o↵spring distributions of a particle x in the IBP with label

(�,↵) and ⇡✏n(�) = v. We start with the o↵spring to the left. Let u 2 {b✏nc+1, . . . , v}.
By the definition of the IBP, the number of projected o↵spring of x that have tag u is

Poisson-distributed with parameter

Z

(s
n

(u)��)^0

(s
n

(u�1)��)_(log ✏��)
�e(1��)t dt.

A vertex with tag v in T✏
n(Vn) produces a Bernoulli-distributed number of descendants

with tag u with success probability P(4Z[u, v � 1] = 1) when u < v, and with success

probability zero when u = v. It is proved in Lemma 6.3 of [37] that for u � b✏nc + 3

the Poisson distributions can be coupled to the Bernoulli distribution such that they

disagree with a probability bounded by a constant multiple of v��1u�(�+1) for u < v and

1/v for u = v. For u 2 {b✏nc+1, b✏nc+2}, a similar estimate shows that the probability

can be bounded by a constant multiple of 1/(✏n). Since the number of descendants
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with tag in {b✏nc + 1, . . . , v} form an independent sequence of random variables, we

can apply the coupling sequentially for each location and obtain a coupling of the ⇡✏n-

projected left descendants in the IBP and the left descendants in T✏
n(Vn). The failure

probability of this coupling can be estimated by

P(left descendants of v disagree)  3C

✏n
+

C 0

v1��

v�1

X

u=b✏nc+3

1

u�+1

 3C

✏n
+

C 0

✏n
log

⇣v � 1

b✏nc
⌘

 C 00

n
,

where C,C 0, C 00 are suitable positive constants whose value can change from line to

line in the sequel. We turn to the o↵spring on the right. Suppose that particle x in

the IBP has mark ↵ = `. The cumulative sum of ⇡✏n-projected right descendants of x

follows the same distribution as (Zs
n

(u)�� : v  u  n). The cumulative sum of right

descendants of v in T✏
n(Vn) is distributed according to the law of (Z[v, u] : v  u  n).

The following lemma is taken from [37], and we omit its proof.

Lemma 8.5 (Lemma 6.2 in [37]). Fix a level H 2 N. We can couple the processes

(Zs
n

(u)�� : v  u  n) and (Z[v, u] : v  u  n) such that for the coupled processes

(Y (1)
u : v  u  n) and (Y (2)

u : v  u  n),

P(Y (1)
u 6= Y (2)

u for some u  �H)  C
8.5

f(H)2

v � 1

for some constant C
8.5 > 0, and where �H denotes the first time that one of the processes

reaches or exceeds H.

In the coupling between the tree T✏
n(Vn) and the projected IBP we consider at most

cn right descendants. Hence, Lemma 8.5 implies that the distributions can be coupled

such that

P(right descendants of v disagree)  C
8.5

f(cn)2

v � 1
 C

c2n
✏n

,

for some C > 0. When ↵ = r, then the cumulative sum of ⇡✏n-projected right descen-

dants of x follows the same distribution as (Ẑs
n

(u)�� � 1: v  u  n). The cumulative

sum of right descendants of a vertex v with mark w 2 V✏
n, w > v, in T✏

n(Vn) is dis-

tributed according to (Z[v, u]�
[w,1)

(u) : v  u  n) conditioned on 4Z[v, w�1] = 1.

We can couple these two distributions. Again the proof of the following lemma is given

in [37] up to minor changes and therefore omitted.

Lemma 8.6 (Lemma 6.6 in [37]). Fix a level H 2 N. We can couple the processes

(Ẑs
n

(u)�� � 1: v  u  n) and (Z[v, u] �
[w,1)

(u) : v  u  n) conditioned on

4Z[v, w � 1] = 1 such that for the coupled processes (Y (1)
u : v  u  n) and (Y (2)

u : v 
u  n),

P(Y (1)
u 6= Y (2)

u for some u  �H)  C
8.6

f(H)2

v � 1
,
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for some constant C
8.6 > 0, and where �H denotes the first time that one of the processes

reaches or exceeds H.

As we explore at most cn vertices during the exploration, Lemma 8.6 implies that

we can couple the o↵spring distribution to the right such that there is a constant C > 0

with

P(right descendants of v disagree)  C
8.6

f(cn)2

v � 1
 C

c2n
✏n

.

Since we explore at most cn vertices in total, the probability that the coupling fails can

be bounded by a constant multiple of cn/n+ c3n/n, which converges to zero. Thus, the

two explorations can be successfully coupled with high probability and, as in the proof

of Proposition 8.1, the claim follows.

8.3 Dominating the network by a branching process

Like in the coupling, we begin with a comparison to a tree: for ✓ 2 N and v
0

2 V✏
n, let

T✏,✓
n (v

0

) be the subtree of T✏
n(v0), where every particle can have at most ✓ o↵spring to

the right. That is, for a particle with tag v and mark ↵ = `, the cumulative sum of the

o↵spring to the right is distributed according to the law of (Z[v, u]^ ✓ : v+1  u  n).

When v is of mark ↵ = w 2 V✏
n, w > v, then the cumulative sum follows the same

distribution as ((Z[v, u]�
[w,1)

(u))^✓ : v+1  u  n) conditioned on4Z[v, w�1] = 1.

We refer to the particles at graph distance h from the root in T✏,✓
n (v

0

) as the h-th

generation. Recall from Section 7.2 that N ✓
h(v0) denotes the number of ✓-admissible

paths of length h in G✏
n with initial vertex v

0

.

Lemma 8.7. For all ✓, h, n 2 N, v
0

2 V✏
n,

E
⇥

N ✓
h(v0)

⇤  E
h

�

�

�

particles in generation h of T✏,✓
n (v

0

)
 

�

�

i

.

Proof. Let p = (v
0

, . . . , vh) 2 Sh(v0). Using the notation and terminology from the

proof of Theorem 5.3, and the definition of the tree T✏,✓
n (v

0

), one easily checks that

in cases A, B, C, E and F of Figure II-6 on page 118, P(Eh| \h�1

i=1

Ei) agrees with the

probability that in tree T✏,✓
n (v

0

) a particle with tag vh�1

gives birth to a particle of tag

vh given that its parent has tag vh�2

. In case D of Figure II-6, the tree T✏,✓
n is allowed

to have one more o↵spring on its right because the edge {vh�2

, vh�1

} is not accounted

for. Hence, P(Eh| \h�1

i=1

Ei) is bounded from above by the probability for the event in

the tree. We obtain

E[N ✓
h(v0)] =

X

p2S
h

(v0)

P(p is ✓-admissible in G✏
n) 

X

p2S
h

(v0)

P(p present in T✏,✓
n (v

0

)).

Particles in generation h of T✏,✓
n (v

0

), who have two ancestors with the same tag, are not

represented in the sum on the right-hand side. Adding these, we obtain the result.
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Proof of Lemma 7.12. By Lemma 8.7, it su�ces to show that, for every h, the number

of particles in the h-th generation of T✏,✓
n

n (v
0

) is stochastically dominated by the number

of particles in IBP✏
h((1 + �)f) started in sn(v0), or, as in the proof of Proposition 8.4,

by the number of particles in the h-th generation of the ⇡✏n-projected IBP✏
h((1 + �)f)

defined in (8.1). Since both processes are trees starting with the same type of particle,

it su�ces to compare the o↵spring distributions. All particles in T✏,✓
n

n (v
0

) have a tag

v > b✏nc, but the projected IBP can have o↵spring with tag v 2 {b✏nc+ 1, . . . , b✏nc}.
Hence, these o↵spring are ignored in the following, giving us a lower bound on the

projected IBP. We assume that n is so large, that n � n̂ and sn(b✏nc+ 1) � log ✏.

Let x be a particle in the IBP of type (�,↵) with ⇡✏n(�) = v. We begin with the

o↵spring to the left, i.e. tag u 2 {b✏nc + 1, . . . , v}. A particle in T✏,✓
n

n (v
0

) with tag v

cannot produce particles in u = v, therefore, the IBP clearly dominates. For u < v,

using (7.9), the probability that a particle with tag u is a child of x, is

P(4Z[u, v � 1] = 1)
�  �(u� 1)��(v � 1)�(1��).

Writing f̄(k) = (1 + �)f(k) = �̄k + �̄, for k 2 N
0

, the number of particles with tag u

produced by x in the projected IBP follows a Poisson distribution with parameter

Z s
n

(u)��

s
n

(u�1)��
�̄e(1��̄)t dt  �̄

u� 1
e�(1��)

P
v�1
k=u�1

1
k  �̄

u� 1

⇣u� 2

v � 1

⌘

1��
,

where we used that �  sn(v) and ey � 1 � y. For % > 0, ⌘ 2 [0, 1], the Poisson

distribution with parameter % is dominating the Bernoulli distribution with parameter ⌘

if and only if e�%  1� ⌘. Since e�y  1� y + y2/2 for y � 0, it su�ces to show that

%(1�%/2) � ⌘. In our case, ⌘ = �(u�1)��(v�1)�(1��), % = ⌘(1+�)(1�1/(u�1))1��

and the inequality holds for all large n and u 2 V✏
n, u < v, since ⌘ is a null sequence.

We turn to the right descendants. The pure jump process corresponding to the

attachment rule f̄ is denoted by Z̄, and we write P l for the distribution of Z̄ when

started in l, that is, P l(Z̄
0

= l) = 1. First suppose that ↵ = `. The cumulative sum

of ⇡✏n-projected right descendants of x have the distribution of (Z̄s
n

(u)�� : v  u  n),

where Z̄
0

= 0. The cumulative sum of right descendants of v in T✏,✓
n

n (v
0

) is distributed

according to the law of (Z[v, u] ^ ✓n : v  u  n). We couple these distributions by

defining ((Y (1)
u ,Y (2)

u ) : v  u  n) to be the time-inhomogeneous Markov chain which

starts in P 0(Z̄s
n

(v)�� 2 ·) ⌦ �
0

, has the desired marginals, and evolves from state

(l, k) at time j according to a coupling of Z̄
1/j and Z[j, j + 1] which guarantees that

Z̄
1/j � Z[j, j+1] until Y (2) reaches state ✓n, where Y (2) is absorbed. To prove that this

coupling exists, it su�ces to show that

e�
¯f(l)/j = P l(Z̄

1/j = l)  Pk(Z[j, j+1] = k) = 1�f(k)/j for j 2 V✏
n, k  ✓n, k  l.

Since f̄ is non decreasing, this inequality follows as above once we show that %(1�%/2) �
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⌘ with ⌘ = f(k)/j, % = f̄(k)/j = ⌘(1 + �). Since k  ✓n = o(n) and j � b✏nc, ⌘ is a

null sequence and the claim follows. Hence, Y (1)

j � Y (2)

j for all j, and the domination is

established.

Now suppose that ↵ = r and that the location of x’s parent is projected onto tag

w. The cumulative sum of ⇡✏n-projected right descendants of x has the distribution of

(Ys
n

(u)�� : v  u  n), where Y is a version of Z̄ under measure P 1. The cumula-

tive sum of right descendants of v in T✏,✓
n

n (v
0

) is distributed according to the law of

((Z[v, u] �
[w,1)

(u)) ^ ✓n : v  u  n) conditioned on 4Z[v, w � 1] = 1. We couple

these distributions as in the ↵ = ` case, but, for times j  w � 2, the Markov chain

evolves from state (l, k) according to a coupling of Y
1/j and Z[j, j + 1] conditioned on

4Z[j, w� 1] = 1 which guarantees that Y
1/j � Z[j, j+1] until either j = w� 2 or Y (2)

reaches ✓n and is absorbed. To show that this coupling exists, it su�ces to show that

for all j 2 V✏
n, k  ✓n, k  l,

P l+1(Z̄
1/j � 1 = l)  Pk(Z[j, j + 1] = k|Z[j, w � 1] = 1). (8.2)

We compute

Pk(Z[j, j + 1] = k|4Z[j, w � 1] = 1) = 1� Pk(4Z[j, j] = 1,4Z[j, w � 1] = 1)

Pk(4Z[j, w � 1] = 1)

= 1�
f(k)
j Pk+1(4Z[j + 1, w � 1] = 1)

Pk(4Z[j, w � 1] = 1)

= 1� f(k + 1)

j + �
.

Since f̄ is non-decreasing, (8.2) follows when we show that %(1 � %/2) � ⌘ with ⌘ =

f(k + 1)/(j + �) and % = f̄(k + 1)/j = ⌘(1 + �)(1 + �/j). Since k  ✓n = o(n) and

j � b✏nc, ⌘ is a null sequence, and (8.2) is proved. In the transition from generation

j = w�1 to j = w, Y (2) cannot change its state while Y (1) can increase. From generation

j = w onwards, the coupling explained in case ↵ = ` is used. Thus, the Markov chain

can be constructed such that Y (1)

j � Y (2)

j for all j and the domination is proved.

8.4 Proof of Theorem 6.1

Proposition 8.4 implies the following result.

Corollary 8.8. Let p 2 (0, 1] and (cn : n 2 N) a sequence with limn!1 c3n/n = 0 and

limn!1 cn = 1. Then, as n ! 1,

E
h 1

n� b✏nc
n
X

v=b✏nc+1

{|C✏
n,p(v)| � cn}

i

= P
�|C✏

n,p(Vn)| � cn
�

! P (|X ✏(p)| = 1) = ⇣✏(p).
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This convergence can be strengthened to convergence in probability.

Lemma 8.9. Let p 2 (0, 1], and let (cn : n 2 N) be a sequence with limn!1 c3n/n = 0

and limn!1 cn = 1. Then

M ✏
n,p(cn) :=

1

(1� ✏)n

n
X

v=b✏nc+1

{|C✏
n,p(v)| � cn} ! ⇣✏(p) in probability, as n ! 1.

To prove Lemma 8.9, we use a variance estimate for M ✏
n,p(cn).

Lemma 8.10. Let p 2 (0, 1], and let (cn : n 2 N) be a positive sequence. There exists a

constant C > 0 such that

Var(M ✏
n,p(cn)) 

C

n

⇣

cn +
c2n
✏n

⌘

.

The proof is almost identical to the proof of Proposition 7.1 in [37]. The necessary

changes are similar to the changes made for the proofs of Proposition 8.1 and 8.4. We

sketch only the main steps.

Proof sketch. Write

Var
⇣ 1

(1� ✏)n

n
X

v=b✏nc+1

{|C✏
n,p(v)| � cn}

⌘

=
1

(1� ✏)2n2

(8.3)

·
n
X

v,w=b✏nc+1

⇣

P(|C✏
n,p(v)| � cn, |C✏

n,p(w)| � cn)� P(|C✏
n,p(v)| � cn)P(|C✏

n,p(w)| � cn)
⌘

.

To estimate the probability P(|C✏
n,p(v)| � cn, |C✏

n,p(w)| � cn), we run two successive

explorations in the graph G✏
n(p), the first starting from v, and the second starting from

w. For these explorations, we use the exploration process described below Proposition

8.1 but in every step only neighbours in the set of veiled vertices are explored. The

first exploration is terminated as soon as either the number of dead and active vertices

exceeds cn or there are no active vertices left. The second exploration, additionally,

stops when a vertex is found which was already unveiled in the first exploration. Let

⇥v := {the first exploration started in vertex v stops because cn vertices are found}.

Then, for any v 2 V✏
n, P(|C✏

n,p(v)| � cn) = P(⇥v), and in the proof of Proposition 7.1

of [37] it was shown that there exists a constant C 0 > 0, independent of v and n, such

that

n
X

w=b✏nc+1

P
�|C✏

n,p(v)| � cn, |C✏
n,p(w)| � cn

�

(8.4)

 P(⇥v)
⇣

cn +
n
X

w=b✏nc+1

P(⇥w) + C 0cnPc
n(4Z[b✏nc+ 1, b✏nc+ 1] = 1)

⌘

.
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Combining (8.3) and (8.4), and using (7.9), there exists a constant C > 0 with

Var(M ✏
n(cn)) 

1

(1� ✏)2n2

n
X

v=b✏nc+1

P(⇥v)
⇣

cn + C 0 cnf(cn)

✏n

⌘

 C

n

⇣

cn +
c2n
✏n

⌘

.

Proof of Lemma 8.9. Using Chebyshev’s inequality, Corollary 8.8 and Lemma 8.10

yield the claim.

Lemma 8.9 already implies that the asymptotic relative size of a largest component

in the network is bounded from above by ⇣✏(p). To show that the survival probability

also constitutes a lower bound, we use the following sprinkling argument.

Lemma 8.11. Let ✏ 2 [0, 1), p 2 (0, 1], � 2 (0, f(0)), and define f(k) := f(k)�� for all
k 2 N

0

. Denote by C✏
n,p(v) the connected component containing v in the network G✏

n(p)

constructed with the attachment rule f . Let  > 0 and (cn : n 2 N) be a sequence with

lim
n!1

⇥

1

2

(1� ✏)p�cn � log n
⇤

= 1 and lim
n!1

c2n/n = 0.

Suppose that

1

n� b✏nc
n
X

v=b✏nc+1

{|C✏
n,p(v)| � 2cn} �  with high probability.

Then there exists a coupling of the networks (G✏
n(p) : n 2 N) and (G✏

n(p) : n 2 N) such

that G✏
n(p)  G✏

n(p) for all n 2 N, and with high probability all connected components in

G✏
n(p) with at least 2cn vertices belong to one connected component in G✏

n(p).

Lemma 8.11 in the case ✏ = 0 and p = 1 is Proposition 4.1 in [37]. The proof

remains valid for ✏ 2 [0, 1), p 2 (0, 1], up to obvious changes and is therefore omitted.

Proof of Theorem 6.1. Choose cn = (log n)2. By Lemma 8.9, we have in probability

lim sup
n!1

|C✏
n,p|

(1� ✏)n
 lim sup

n!1
max

n cn
(1� ✏)n

,M ✏
n,p(cn)

o

 ⇣✏(p).

Moreover, for � 2 (0, f(0)), Lemma 8.9 implies that M ✏
n,p(2cn, f � �) converges to

⇣✏(p, f � �) in probability. Hence, Lemmas 6.11 and 8.11 yield that for all �0 > 0,

|C✏
n,p| � (n� b✏nc)(⇣✏(p)� �0) with high probability, as required.
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CHAPTER 9

VARIATIONS AND OTHER MODELS

We study preferential attachment networks with non-linear attachment rules in Sec-

tion 9.1, and inhomogeneous random graphs and the configuration model in Sec-

tions 9.2.2 and 9.2.1, respectively.

9.1 Non-linear attachment rules: proof of Theorem 5.4

Theorem 5.4 is an immediate consequence of Theorem 5.1 and a stochastic domination

result on the level of the networks. We make use of the notation and terminology

introduced in Section 5.4.

Proof of Theorem 5.4. First suppose that f is a L-class attachment rule with f �
f � f , where f, f are for two a�ne attachment rules given by f(k) = �k + �u and

f(k) = �k + �l. There exists a natural coupling of the networks generated by these

attachment rules such that

Gn � Gn � Gn for all n 2 N.

This ordering is retained after a targeted attack and percolation, and implies the order-

ing p
c

(✏)  p
c

(✏)  p
c

(✏) of the critical percolation parameters. Applying Theorem 5.1

to f and f , we obtain positive constants C
1

, . . . , C
4

such that, for small ✏ 2 (0, 1),

C
1

log(1/✏)
 p

c

(✏)  C
2

log(1/✏)
if � = 1

2

,

C
3

✏��1/2  p
c

(✏)  C
4

✏��1/2 if � > 1

2

,

and the result follows.

Now let f be a C-class attachment rule. Concavity of f implies that the increments

�k := f(k + 1) � f(k) form a non-increasing sequence converging to �. In particular,
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with f(k) := �k + f(0), we get f(k) =
Pk�1

l=0

�l + f(0) � �k + f(0) = f(k), for all

k 2 N
0

. To obtain a corresponding upper bound, let �j := f(j) � �jj. Then �j > 0

and for all k 2 N
0

,

f(k)� �j = f(k)� f(j) + �jj

=

(

�Pj�1

l=k �l + �jj  �(j � k)�j + �jj if k  j
Pk�1

l=j �l + �jj  (k � j)�j + �jj if k � j

)

= �jk.

Hence, the attachment rule given by f j(k) := �jk + �j , for k 2 N
0

, satisfies f j � f ,

and we can use the same coupling as in the first part of the proof to obtain

p(j)
c

(✏)  p
c

(✏)  p
c

(✏),

where p(j)
c

(✏) corresponds to the network with attachment rule fj . Since �j # �, we
have �j 2 [1

2

, 1) for large j. Theorem 5.1 yields, for � > 1

2

, constants C,Cj > 0 such

that

logCj + (�j � 1/2) log ✏  log p
c

(✏)  logC + (� � 1/2) log ✏.

Dividing by log ✏, and then taking first ✏ # 0 and then j ! 1 yields the claim for

� > 1

2

. In the case � = 1

2

it could happen that �j >
1

2

for all j 2 N. In this situation,

Theorem 5.1 does not give a bound on the right scale. Therefore, we can use only the

upper bound on p
c

(✏) which gives the stated result.

9.2 Other models

In this section, we study vulnerability of two other classes of robust network models.

9.2.1 Configuration model: proof of Theorem 5.6

The configuration model is a natural way to construct a network with given degree

sequence. It is closely related to the uniformly chosen simple graph with given degree

sequence as is explained in Section 7.5 of [85]. Existence of a giant component in

the configuration model has been studied by Molloy and Reed [106] and Janson and

Luczak [88, 87]. Recall from Section 5.5.1 that we write D for the weak limit of the

degree of a uniformly chosen vertex. Janson and Luczak [88] showed that if (5.7) holds

and P(D = 2) < 1, then

(G(CM)
n : n 2 N) has a giant component , E[D(D � 1)] > ED.

Janson [87] found a simple construction that allows to obtain a corresponding result

for the network after random or deterministic removal of vertices (or edges), where

the retention probability of a vertex can depend on its degree. Let ⇡ = (⇡k)k2N be a

sequence of retention probabilities with ⇡kP(D = k) > 0 for some k. Every vertex i is
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removed with probability 1 � ⇡d
i

and kept with probability ⇡d
i

, independently of all

other vertices. Janson describes the network after percolation as follows [87, page 90]:

for each vertex i, replace it with probability 1�⇡d
i

by di new vertices of degree 1. Then

construct the configuration model G(CM),⇡
n corresponding to the new degree sequence

and larger number of vertices, and remove from this graph uniformly at random vertices

of degree 1 until the correct number of vertices for G(CM)
n after percolation is reached.

The removal of these surplus vertices cannot destroy or split the giant component since

the vertices are of degree 1. Hence, it su�ces to study the existence or nonexistence of

a giant component in G(CM),⇡
n .

To construct G(CM),✏
n (p), we remove the b✏nc vertices with the largest degree from

G(CM)
n , and then run vertex percolation with retention probability p on the remaining

graph. In general, this does not fit exactly into the setup of Janson. To emulate the

behaviour, we denote by nj the number of vertices with degree j in the graph, and let

Kn = inf{k 2 N
0

:
P1

j=k+1

nj  b✏nc}. Then all vertices with degree larger than Kn

are deterministically removed in G(CM),✏
n (p), i.e. ⇡j = 0 for j � Kn + 1. In addition,

we deterministically remove b✏nc �P1
j=K

n

+1

nj vertices of degree Kn, while all other

vertices are subject to vertex percolation with retention probability p. In particular,

⇡j = p for j  Kn � 1.

Write F (x) := P(D  x) for x � 0, and [1 � F ]�1 for the generalised inverse of

[1� F ], that is

[1� F ]�1(u) = inf{k 2 N
0

: [1� F ](k)  u} for all u 2 (0, 1).

One easily checks that Kn 2 {m,m + 1} for all su�ciently large n, where m :=

[1 � F ]�1(✏). Using this observation, it is not di�cult to adapt Janson’s proof (c.f.

Theorem 3.5 in [87]) to show that

(G(CM),✏
n (p) : n 2 N) has a giant component , p > p

c

(✏),

where

p
c

(✏) :=
ED

E[D(D � 1) Dm]�m(m� 1)(✏� [1� F ](m))
.

Proof of Theorem 5.6. Let U be a uniformly distributed random variable on (0, 1).

Then [1� F ]�1(U) has the same distribution as D and

E[D(D � 1) {Dm}]�m(m� 1)(✏� [1� F ](m))

= E
⇥

[1� F ]�1(U)
�

[1� F ]�1(U)� 1
�

{U�✏}
⇤

⇣ E
⇥

[1� F ]�1(U)2 {U�✏}
⇤

. (9.1)

The assumption [1� F ](k) ⇠ Ck�1/� as k ! 1 implies that [1� F ]�1(u) ⇠ C�u�� as
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u # 0. Let u
0

> 0 such that

1

2
 [1� F ]�1(u)

C�u��
 3

2
for all u  u

0

.

Since [1 � F ]�1(u)2 is not integrable around zero but bounded on [u
0

, 1), we deduce

that the right-hand side of (9.1) is equal to

E
⇥

[1� F ]�1(U)2 {U�✏}
⇤

=

Z

1

✏
[1� F ]�1(u)2 du ⇣

Z u0

✏
[1� F ]�1(u)2 du

⇣
Z u0

✏
u�2� du ⇣

8

<

:

log(1/✏) if � = 1

2

,

✏1�2� if � > 1

2

.

9.2.2 Inhomogeneous random graphs: proof of Theorem 5.7

The classical Erdős–Rényi random graph can be generalised by giving each vertex a

weight, and choosing the probability for an edge between two vertices as an increasing

function of their weights. Suppose that  : (0, 1] ⇥ (0, 1] ! (0,1) is a symmetric,

continuous kernel with
Z

1

0

Z

1

0

(x, y) dx dy < 1 (9.2)

and recall from (5.8) that in the inhomogeneous random graph G()
n , the edge {i, j}

is present with probability 1

n(
i
n ,

j
n) ^ 1, independently of all other edges. We assume

that vertices are ordered in decreasing order of privilege, i.e.  is non-increasing in both

components. Bollobás et al. showed in Theorem 3.1 and Example 4.11 of [20] that, for

all ✏ 2 [0, 1),

(G(),✏
n (p) : n 2 N) has a giant component , p > p

c

(✏) := kTk�1

L2
(✏,1)

, (9.3)

where

Tg(x) =

Z

1

✏
(x, y)g(y) dy, for all x 2 (✏, 1)

and all measurable functions g such that the integral is well-defined, and k · kL2
(✏,1)

denotes the operator norm on the L2-space with respect to the Lebesgue measure

on (✏, 1). The same result holds for a version of the Norros–Reittu model in which

edges between di↵erent vertex pairs are independent, and edge {i, j} is present with

probability 1� e�(i/n,j/n)/n for all i, j 2 {1, . . . , n}. Consequently, the estimates given

in Theorem 5.7 hold for this model, too.

Proof of Theorem 5.7. Since (CL) and (PA) are positive, symmetric, continuous ker-

nels satisfying (9.2), the first part of the theorem follows immediately from (9.3). By

definition,

kTkL2
(✏,1) = sup

�kTgkL2
(✏,1) : kgkL2

(✏,1)  1
 

.
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For a rank one kernel (x, y) = �(x)�(y), the operator norm of T is attained at

�/k�kL2
(✏,1) with kTkL2

(✏,1) = k�k2L2
(✏,1). Hence,

kT(CL)kL2
(✏,1) =

Z

1

✏
x�2� dx =

8

<

:

log(1/✏) if � = 1/2,

1

1�2�

⇥

1� ✏1�2�
⇤

if � 6= 1

2

,

and

p(CL)
c

(✏) =

8

>

>

>

<

>

>

>

:

(1� 2�) 1

1�✏1�2� if � < 1

2

,

1

log(1/✏) if � = 1

2

,

(2� � 1)✏2��1

1

1�✏2��1 if � > 1

2

.

Now suppose that � > 1/2. By Cauchy–Schwarz’s inequality and the symmetry of

(PA),

kT(PA)k2L2
(✏,1) 

Z

1

✏

Z

1

✏
(PA)(x, y)2 dy dx = 2

Z

1

✏

Z x

✏
x2(��1)y�2� dy dx

 2

Z

1

0

x2(��1) dx

Z 1

✏
y�2� dy =

2

(2� � 1)2
✏1�2� .

For the lower bound, let c✏ =
p
2� � 1✏��1/2 and g(x) = c✏x�� . Then kgkL2

(✏,1)  1,

and

kT(PA)k2L2
(✏,1) � kT(PA)gk2L2

(✏,1) �
Z

1

✏

⇣

Z x

✏
(PA)(x, y)g(y) dy

⌘

2

dx

=
c2✏

(2� � 1)2

Z

1

✏
x2(��1)[✏1�2� � x1�2� ]2 dx

� c2✏
(2� � 1)2

Z

1

✏
x2(��1)

⇥

✏2(1�2�) � 2✏1�2�x1�2�
⇤

dx

=
✏1�2�

(2� � 1)2

h

1� ✏2��1 + 2(2� � 1)✏2��1 log ✏
i

.

The claim follows.

138



BIBLIOGRAPHY

[1] L. Addario-Berry, N. Berestycki, and N. Gantert, eds. (2013). Extremes

in branching random walk and branching Brownian motion. No. 20 in Oberwolfach

Reports.

[2] W. Aiello, F. Chung, and L. Lu (2001). A random graph model for power

law graphs . Exp. Math., 10(1):53–66.

[3] R. Albert, I. Albert, and G. L. Nakarado (2004). Structural vulnerability

of the North American power grid . Phys. Rev. E, 69:025103.

[4] R. Albert, H. Jeong, and A.-L. Barabási (2000). Error and attack tolerance

of complex networks . Nature, 406:378–382.

[5] S. Asmussen and H. Hering (1976). Strong limit theorems for general

supercritical branching processes with applications to branching di↵usions .

Z. Wahrsch. Verw. Gebiete, 36(3):195–212.

[6] K. B. Athreya (1968). Some results on multitype continuous time Markov

branching processes. Ann. Math. Statist., 39:347–357.

[7] K. B. Athreya and P. E. Ney (1972). Branching processes. Grundlehren

Math. Wiss., Springer.

[8] F. Ball and P. Donnelly (1995). Strong approximations for epidemic models .

Stoch. Proc. Appl., 55(1):1–21.

[9] A.-L. Barabási and R. Albert (1999). Emergence of scaling in random net-

works. Science, 286(5439):509–512.

[10] J. Berestycki, N. Berestycki, and J. Schweinsberg (2013). The genealogy

of branching Brownian motion with absorption. Ann. Probab., 41(2):527–618.

139



Bibliography

[11] J. Berestycki, A. E. Kyprianou, and A. Murillo-Salas (2011). The pro-

lific backbone for supercritical superprocesses. Stoch. Proc. Appl., 121(6):1315–

1331.

[12] N. Berestycki (2009). Recent progress in coalescent theory. Vol. 16 of Ensaios

Mat. Sociedade Brasileira de Matemática, Rio de Janeiro.
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[27] Z.-Q. Chen, Y.-X. Ren, and H. Wang (2008). An almost sure scaling limit the-

orem for Dawson–Watanabe superprocesses. J. Funct. Anal., 254(7):1988–2019.

[28] Z.-Q. Chen and Y. Shiozawa (2007). Limit theorems for branching Markov

processes. J. Funct. Anal., 250(2):374–399.

[29] F. Chung and L. Lu (2002). The average distances in random graphs with given

expected degrees. Proc. Nat. Acad. Sci. USA, 99(25):15879–15882.

[30] F. Chung and L. Lu (2002). Connected components in random graphs with

given expected degree sequences. Ann. Comb., 6(2):125–145.

[31] F. Chung and L. Lu (2006). Complex graphs and networks. Vol. 107 of Regional

Conference Series in Mathematics. Co-publication of the Amer. Math. Soc. and

CBMS.

[32] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin (2001). Breakdown of

the internet under intentional attack . Phys. Rev. Lett., 86:3682–3685.

[33] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin (2001). Reply .

Phys. Rev. Lett., 87:219802.

[34] D. A. Dawson (1993).Measure-valued Markov processes . In École d’Été de Prob-
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