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Percolation on Zd

Bonds join x to y for x, y 2 Zd

. Make bonds (x, y) independently

occupied with probability p,

vacant with probability 1� p,

where p 2 [0, 1] is percolation parameter.

Key examples:
B nearest-neighbor percolation;
B spread-out percolation, where range of bonds grows proportion-
ally with parameter L, and L is often taken to be large:
Bonds between x and y when 0 < kxk1  L.

[1] Heydenreich and van der Hofstad. Progress in high-dimensional
percolation and random graphs.
Lecture notes CRM-PIMS Summer School in Probability 2015.

http://www.win.tue.nl/⇠rhofstad/survey-high-d-percolation.pdf



Phase transition on Zd

Critical value p

d

(Zd

) for percolation on Zd is

p

d

(Zd

) = inf{p : P
p

(0 !1) > 0}

Moreover, p
c

(Zd

) 2 (0, 1) for d � 2.

C(x) = {x : 0 ! x} is cluster of x, and |C(x)| its size.

Aizenman and Barsky (87) or Menshikov (86):

p

c

(Zd

) = sup{p : E
p

|C(0)| <1}.

Beautiful new proof Duminil-Copin & Tassion (2015)!
We generally do not know that P

pc(|C(0)| =1) = 0.

B Central question:
What is structure of large critical clusters?

















Critical exponents
Let C(0) be cluster of 0, i.e.,

C(0) = {x 2 Zd

: 0 ! x},

where 0 ! x when there is path of occupied bonds between 0, x.

Let
✓(p) = P

p

(|C(0)| =1), �(p) = E
p

|C(0)|.

Close to criticality, these are believed to show power-laws:

P
p

(|C(0)| =1) ⇠ (p� p

c

)

�

p& p

c

, E
p

|C(0)| ⇠ (p

c

� p)

��
p% p

c

,

where �, � are believed to be universal, i.e., they only depend on
dimension and not on any other details of model.



Other critical exponents
Many more critical exponents are believed to exist:

P
pc(|C(0)| � n) ⇠ n

�1/�
, n!1,

P
pc(0 ! x) ⇠ |x|�(d�2�⌘) |x|!1,

P
pc(9x 2 C(0) : |x| � m) ⇠ m

�⇢
m!1.

Unfortunately, our understanding of these objects is limited to

two-dimensions and high-dimensions.

In particular, there we do know that P
pc(|C(0)| =1) = 0, while, for

d = 3, we do not even know that P
pc(|C(0)| =1) # 0, as p& p

c

.

Existence critical exponents is much stronger:

Holy grail percolation theory!



Two-dimensions
Theorem 1. (Schramm00, Smirnov01, SW01, LSW02)
For site percolation on two-dimensional triangular lat-
tice, critical exponents �, �, ⌘, �, ⇢ exist in logarithmic
sense, and take on values

� =

5

36

, � =

43

18

, ⌘ =

5

24

, � =

91

5

, ⇢ =

48

5

.

In particular,

P
p

(|C(0)| =1) = (p� p

c

)

5
36+o(1)

, E
p

[|C(0)|] = (p

c

� p)

�43
18+o(1)

,

P
pc(0 ! x) = |x|� 5

24+o(1)

, P
pc(|C(0)| � n) = n

� 5
91+o(1)

.

Proof: conformal invariance and Schramm/Stochastic Loewner
Evolution (SLE).

Not known for square lattice...



Interfaces of clusters

(Picture Matthijs Joosten)



High-dimensions
Physics prediction:

Percolation in high-dimensions (d > d

c

= 6) behaves
as it does on regular infinite tree:
B No infinite critical cluster;
B Critical exponents agree with tree embedded into
space.

Informal reason:

When dimension is high, space is so vast that faraway
pieces of percolation cluster no longer interact.

Thus, geometry "trivializes", and answer to most questions is same
as for percolation on an infinite regular tree, embedded into space.



Percolation on tree
Let T

r

be r-ary infinite tree, where, for simplicity, we assume that
root has degree r � 1.

Perform bond percolation on this tree with percolation probability
p 2 [0, 1]. Denote root of T

r

by 0.

Percolation on tree has phase transition at p
c

= 1/(r � 1), i.e.,

P
p

(|C(0)| =1) > 0 iff p > p

c

= 1/(r � 1),

and
E
p

|C(0)| <1 iff p < p

c

= 1/(r � 1).



Phase transition tree

By realizing that percolation on tree is branching process,

✓(p) = P
p

(|C(0)| =1) ⇠ (p� p

c

), �(p) = E
p

|C(0)| ⇠ (p

c

� p)

�1
.

Indeed,
�(p) = 1 + (r � 1)p�(p),

so that, for p < 1/(r � 1),

�(p) = 1/(1� (r � 1)p),

while �(p) =1 for p > 1/(r � 1).



Phase transition tree
By conditioning on number of occupied bonds incident to root,

1� ✓(p)=

r�1X

m=0

✓
r � 1

m

◆
p

m

(1� p)

r�1�m
(1� ✓(p))

m

=

⇥
p(1� ✓(p)) + (1� p)

⇤
r�1 ⌘ G(1� ✓(p)),

which has unique solution 1� ✓(p) = 1 when G

0
(1) = (r � 1)p  1,

and two solutions when G

0
(1) = (r � 1)p > 1.

In former case, ✓(p) = 0, while in latter case, ✓(p) > 0. By investigat-
ing properties of x 7! G(x) for x% 1, we conclude that, as p& p

c

,

✓(p) ⇠ 2(r � 1)(p� p

c

).



Critical exponents tree

Conclusion: By branching process methodology,

P
p

(|C(0)| =1) ⇠ (p� p

c

), E
p

|C(0)| ⇠ (p

c

� p)

�1
.

Moreover,

P
pc(|C(0)| � n) ⇠ n

�1/2
, P

pc

�
diameter(|C(0)|) � n

�
⇠ n

�1
.

Critical exponents:

� = 1, � = 1, � = 2, ⇢

int

= 1.



Percolation on Zd

Bonds join x to y for x, y 2 Zd

. Make bonds (x, y) independently

occupied with probability p,

vacant with probability 1� p,

where p 2 [0, 1] is percolation parameter.

Key examples:
B nearest-neighbor percolation;
B spread-out percolation, where range of bonds grows proportion-
ally with parameter L, and L is often taken to be large:
Bonds between x and y when 0 < kxk1  L.



Critical exponents
Theorem 2. (Aizenman-Newman84, Barsky-Aiz91)
When triangle condition holds, i.e.,

4(p

c

) =

X

x,y2Zd

P
pc(0 ! x)P

pc(x ! y)P
pc(y  ! 0) <1,

the following asymptotics hold:

P
p

(|C(0)| =1) ⇣ (p� p

c

)

1

, E
p

|C(0)| ⇣ (p

c

� p)

�1
,

P
pc(|C(0)| � n) ⇣ n

�1/2
:

critical exponents �, �, � exist and take on tree values

� = 1, � = 1, � = 2.

Proofs use differential inequalities, comparing critical exponents to
those on infinite tree, assuming triangle condition.



Critical exponents
Theorem 3. (Hara-Slade90, HHS03, H08)
For spread-out percolation with L sufficiently large and
d > 6, or nearest-neighbor percolation for d � 19, the
triangle condition holds and

P
p

(|C(0)| =1) ⇣ (p� p

c

)

1

, E
p

|C(0)| ⇣ (p

c

� p)

�1
,

P
pc(|C(0)| � n) ⇣ n

�1/2
, P

pc(0 ! x) ⇣ |x|�(d�2) :

critical exponents �, �, �, ⌘ exist and take on tree values

� = 1, � = 1, � = 2, ⌘ = 0.

Proofs use lace expansion, a perturbative method to prove that
critical two-point function is alike that of critical branching random
walk, thus verifying triangle condition.



Progress in high dim’s

(a) Continuity nearest-neighbor percolation function above 10 di-
mensions.

(b) Arm exponents in high-dimensions.

(c) Existence incipient infinite cluster, behavior random walk on it.

(d) Percolation on high-dimensional tori.



Part (a): Nearest-neighbor
Theorem 4. (Fitzner-vdH 15) Theorems 2–3 ex-
tend to nearest-neighbour percolation for d > 10.

Proof by Hara-Slade was never published, so project improves
transparancy in high-dimensional percolation.
B Download Mathematica code from site Robert Fitzner!

Proof uses
(a) Non-backtracking lace expansion (NoBLE) taking more
of interaction explicitly into account;
(b) sharp bounds on NoBLE coefficients;
(c) analysis of NoBLE assuming explicit numerical condi-
tions;
(d) a computer-assisted proof that verifies these conditions.



Part (b): Arm exponents
Theorem 5. (Kozma-Nachmias 09) Fix d > 6

for sufficiently spread-out model, or d � 11 for
nearest-neighbor model. Then, as R!1,

P
pc(9x : dC(0)(0, x) � R) ⇣ R

�1
,

where dC(0)(0, x) is intrinsic or graph distance of
cluster C(0).

Theorem 6. (Kozma-Nachmias 09) Fix d > 6

for sufficiently spread-out model, or d � 11 for
nearest-neighbor model. Then, as R!1,

P
pc(0 ! @QR) ⇣ R

�2
,

where QR is Euclidean ball of radius R.



Implication d

c

� 6

Note that, with R = |x|/2,

P
pc(0 ! x)  P

pc(0 ! @QR)
2

.

By Theorem 3, in high dimensions,

P
pc(0 ! x) ⇣ |x|�(d�2),

while, by Theorem 5, again in high dimensions,

P
pc(0 ! @QR)

2 ⇠ |x|�4.

Only possible when d � 6 : critical exponents in Theorems 3
and 5 cannot hold for d < 6. Condition believed to be sharp.



Part (c): Existence IIC
For cylinder events E, define

(IIC) P1(E) = lim

|x|!1
P
pc(E | 0 ! x).

Theorem 7. (vdH-Járai (03)) For spread-out
percolation with L sufficiently large and d > 6,

or nearest-neighbour percolation for d � 15,

above limit exists for every cylinder event
E. Moreover, P1 extends to probability mea-
sure on full sigma-algebra of events, and
P1(|C(0)| =1) = 1.

Result relies on asymptotics critical two-point function Theorem 3

P
pc(0 ! x) ⇠ |x|�(d�2).



Random walk on IIC

Theorem 8. (Kozma-Nachmias 09) Fix d > 6 and sufficiently
spread-out model, or d � 15 and nearest-neighbor model. Then,
in probability,

lim

r!1

logE

0

[exit time of intrinsic ball radius r]

log r

= 3,

lim

n!1

log # sites visited by random walk to time n

log n

= 2/3,

where E

0 denotes conditional law of RW on IIC.



Part (d): Percolation torus
Random subgraph of finite tori

T
r,d

= (V,B) where V = {0, . . . , r � 1}d.

Make bonds (x, y) for x, y 2 T
r,d

independently

occupied with probability p,

vacant with probability 1� p,

where p 2 [0, 1] is percolation parameter.

Key examples:
B nearest-neighbor percolation;
B spread-out percolation: Bonds between x and y when
0 < kxk1  L and L is taken to be large.



Percolation high-d tori

Branching random walk is mean-field model
for high-dimensional critical percolation.

Torus is finite set: different scaling behavior for percolation on torus.

In high dimensions, geometry trivializes, so one might expect criti-
cal percolation on high-dimensional torus to be related to

percolation on complete graph of same size.



Erdős-Rényi graph

Erdős-Rényi random graph is random subgraph of
complete graph on V vertices where each of

�
V

2

�

edges is occupied with probab. p.

Phase transition: (Erdős and Rényi (60))
For p = (1 + ")/V, largest component is
(a) ⇥P(log V ) for " < 0;

(b) ⇥P(V ) for " > 0.

Scaling window: (Bollobás (84) and Łuczak (90))
For p = (1/V )(1 + �/V

1/3

), largest component is
⇥P(V

2/3

), with expected cluster size ⇥(V

1/3

).



High-d tori
Define largest connected component for percolation on torus by

|C
max

| = max

v

|CT(v)|,

where |CT(v)| is size connected component of v on torus.

Theorem 9. (Heydenreich+vdH 07+09) For d� 6

and nearest-neighbor bonds, or for d > 6 and suf-
ficiently spread-out bonds, there exists b > 0 such
that for all ! � 1 and as r !1

P
pc(Zd

)

⇣
1

!

V

2/3  |C
max

|  !V

2/3

⌘
� 1� b

!

.

Moreover, |C
max

|V �2/3 is not concentrated: hall-
mark of critical behavior.

Proof: Coupling relating |C(v)| on torus and on Zd

.



Networks
Percolation on networks is also used as model
for resilience of networks. This line of research
fits well within recently awarded

Gravitation project Networks.

This project focusses on

fundamental mathematical and computer science challenges
posed by networks, and studies these by combining stochastic

modelling and algorithmics.

For more information, including vacancies, see

www.thenetworkcenter.nl


