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Inventory Control Problems

Solving the tradeoff b/w controlling costs and inventory costs.
� inventory costs: shortage costs and surplus costs

� want the inventory to be not too much and not too little,
� typically modeled by a v-shaped function.

� controlling costs:
� some variations – fixed and/or proportional – one-sided or two-sided

etc.

Applications

� inventory management, cash management, currency control,
international reserve etc.
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Optimality in Existing Literature

Essentially all papers show that the barrier strategy (or its variation)
is optimal.

� one-sided control w/o fixed costs – reflection strategy is optimal.

� one-sided control w/ fixed costs – (s,S)-strategy (policy) is
optimal.

� two-sided control w/o fixed costs – double reflection strategy is
optimal.

� two-sided control w/ fixed costs – (d ,D,U, u)-band strategy is
optimal.
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Barrier Strategy Is NOT Realistic
In reality, barrier strategies are hard to implement.

Euro vs Chinese yuan

Euro vs Swiss franc
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Under Absolutely Continuous Assumptions

� The typical inventory control (one-sided w/o fixed costs) minimizes

vπ(x) := Ex

[ ∫ ∞
0

e−qth(Xt ± Lπt )dt +

∫
[0,∞)

e−qtβdLπt

]
,

by choosing the optimal control π∗ = (L∗t ) among the set of
nonincreasing, cadlag, adapted processes π = (Lπt ).

� In this talk, we restrict the set of admissible strategies to be
absolutely continuous (w.r.t. the Lebesgue measure):

Lπt =

∫ t

0
`πs ds, t ≥ 0,

with `π restricted to take values in [0, δ] uniformly in time.
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Spectrally Negative Lévy Processes

Defined on a probability space (Ω,F ,P), let X = {Xt ; t ≥ 0} be a

spectrally negative Lévy process , i.e.

1. The paths are almost surely right continuous with left limits.

2. For 0 ≤ s ≤ t, Xt − Xs is equal in distribution to Xt−s .

3. For 0 ≤ s ≤ t, Xt − Xs is independent of {Xu : u ≤ s}.
4. Jumps are almost surely negative (spectrally negative).

5. Not the negative of a subordinator.

Examples include Brownian motion, (compound) Poisson, stable
processes, CGMY, NIG, variance gamma, meromorphic Lévy processes
etc.
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Reflected & Refracted Lévy Processes

� Reflected Lévy processes: Us
t := Xt − Lst where

Lst := sup
0≤t′≤t

(Xt′ − s) ∨ 0, t ≥ 0.

� Refracted Lévy processes (Kyprianou and Loeffen, Annales de
l’Instut Henri Poincaré, 2009)
� A strong Markov process given by the unique strong sol’n to the SDE

dUb
t = dXt − δ1{Ub

t >b}dt, t ≥ 0.

� Namely, Ub progresses like X below the boundary b while it does like

Yt := Xt − δt, t ≥ 0,

above b.
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Objective
We show the optimality of a “refraction strategy” under the
absolutely continuous condition.

� We minimize

vπ(x) := Ex

[ ∫ ∞
0

e−qth(Xt ± Lπt )dt +

∫
[0,∞)

e−qtβdLπt

]
,

over the set Πδ given by

Lπt =

∫ t

0
`πs ds, t ≥ 0,

with `π restricted to take values in [0, δ] uniformly in time.
� The optimally controlled process becomes the refracted Lévy

process Ub∗
t , with a suitable choice b∗,

dUb∗
t = dXt − δ1{Ub∗

t >b∗}dt, t ≥ 0.
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SN Lévy Processes and Laplace Exponents
� Given a SN Lévy process X = {Xt ; t ≥ 0}, the Laplace exponent is

ψ(θ) := logE[eθX1 ] = γθ +
σ2

2
θ2

+

∫
(−∞,0)

(eθz − 1− θz1{z>−1})ν(dz), θ ≥ 0.

� ν is a Lévy measure such that
∫

(−∞,0)(1 ∧ z2)ν(dz) <∞.
� It has paths of bounded variation if and only if σ = 0 and∫

(−1,0) |z | ν(dz) <∞.
� For the case of bounded variation, we can write

ψ(θ) = γ̃θ +

∫
(−∞,0)

(eθz − 1)ν(dz), θ ≥ 0,

with γ̃ := γ −
∫

(−1,0) z ν(dz).
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Scale Functions

� Recall that X is a spectrally negative Lévy process with Laplace
exponent ψ(s) = logE

[
esX1

]
.

� Fix any q > 0, there exists a function called the q-scale function

W (q) : R→ [0,∞),

which is zero on (−∞, 0), continuous and strictly increasing on
[0,∞), and is characterized by the Laplace transform:∫ ∞

0
e−sxW (q)(x)dx =

1

ψ(s)− q
, s > Φ(q),

where
Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}.
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Scale Functions (Cont’d)
Let us define the first down- and up-crossing times, respectively, by

τ−a := inf {t ≥ 0 : Xt < a} ,
τ+
b := inf {t ≥ 0 : Xt > b} .

Then we have for any b > 0

Ex

[
e−qτ

+
b 1{τ+

b <τ
−
0 }
]

=
W (q)(x)

W (q)(b)
,

Ex

[
e−qτ

−
0 1{τ+

b >τ
−
0 }
]

= Z (q)(x)− Z (q)(b)
W (q)(x)

W (q)(b)
,

where

W
(q)

(x) :=

∫ x

0
W (q)(y)dy ,

Z (q)(x) := 1 + qW
(q)

(x).

11 of 28



Back to the Problem
� Define Πδ as the set of absolutely continuous strategies π given by

adapted processes

Lπt =

∫ t

0
`πs ds, t ≥ 0,

with `π restricted to take values in [0, δ] uniformly in time.
� The objective is to minimize the net present value (NPV) of the

expected total costs

vπ(x) := Ex

[ ∫ ∞
0

e−qt(h(Uπ
t ) + β`πt )dt

]
,

where

Uπ
t := Xt − Lπt , t ≥ 0.

� Remark: β can be negative – the case Uπ
t := Xt + Lπt is also

covered.
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Assumptions

Key Assumption: We assume h is convex

We need the following so the refracted process
will not be a subordinator above and below the threshold.

� For the case X is of bounded variation, we assume that γ̃ − δ > 0.

We want the following properties to exchange derivatives over
integrals and also to take limits in verification.

� We assume that there exists θ̄ > 0 such that∫
(−∞,−1] exp(θ̄|z |)ν(dz) <∞ – the jump size should not have a

heavy tail.

� We assume h has at most polynomial growth in the tail.
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Refracted Lévy Processes

� A strong Markov process given by the unique strong sol’n to the
SDE

dUb
t = dXt − δ1{Ub

t >b}dt, t ≥ 0.

� Namely, Ub progresses like X below the boundary b while it does
like

Yt := Xt − δt, t ≥ 0,

above b.

� The corresponding NPV of the total costs

vb(x) := Ex

[ ∫ ∞
0

e−qt(h(Ub
t ) + βδ1{Ub

t >b})dt
]
, x ∈ R,

can be written using the scale functions of X and Y .
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Scale Functions

� We use W (q) and W(q) for the scale functions of X and Y ,
respectively. Namely, these are defined by∫ ∞

0
e−θxW (q)(x)dx=

1

ψ(θ)− q
, θ > Φ(q),∫ ∞

0
e−θxW(q)(x)dx=

1

ψ(θ)− δθ − q
, θ > ϕ(q),

where

Φ(q):= sup{λ ≥ 0 : ψ(λ) = q},
ϕ(q):= sup{λ ≥ 0 : ψ(λ)− δλ = q}.

� By the strict convexity of ψ, we have the strict inequality

ϕ(q) > Φ(q) > 0.
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NPV under Refraction Strategies
By the resolvent measure obtained by Kyprianou and Loeffen (2010),

vb(x) = v
(1)
b (x) + v

(2)
b (x)1{x>b},

v
(1)
b (x) := eΦ(q)(x−b)ϕ(q) − Φ(q)

δΦ(q)

[ ∫ ∞
0

h(y + b)e−ϕ(q)ydy +
βδ

ϕ(q)

]
+

∫ 0

−∞
h(y + b)

[
eΦ(q)(x−b)ϕ(q) − Φ(q)

Φ(q)

×
∫ ∞

0

e−ϕ(q)zW (q)′(z − y)dz −W (q)(x − b − y)
]
dy ,

v
(2)
b (x) :=

∫ ∞
0

(h(y + b) + βδ)
{
e−ϕ(q)yM(x ; b) −W(q)(x − b − y)

}
dy

+ δ

∫ 0

−∞
h(y + b)

{
M(x ; b)

∫ ∞
0

e−ϕ(q)zW (q)′(z − y)dz

−
∫ x

b

W(q)(x − z)W (q)′(z − b − y)dz
}
dy ,

M(x ; b) := (ϕ(q) − Φ(q))e−Φ(q)b

∫ x

b

eΦ(q)zW(q)(x − z)dz , x > b.
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Candidate Threshold b∗

� We see (once we confirm that ∂/∂b and ∂/∂x can go into the
integrals):

∂

∂b
vb(x) = ub(x)

where

ub(x) := Ex

[ ∫ ∞
0

e−qth′(Ub
t )dt

]
− v ′b(x), x , b ∈ R.

� We shall pursue b∗ such that ub∗(x) vanishes or equivalently

v ′b∗(x) = Ex

[ ∫ ∞
0

e−qth′(Ub∗
t )dt

]
.
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Candidate Threshold (Cont’d)

After tedious calculation, for all x , b ∈ R,

ub(x)=
[ϕ(q)− Φ(q)

δΦ(q)
eΦ(q)(x−b) + 1{x>b}(M(x ; b)−W(q)(x − b))

]
I (b),

where

I (b) =
ϕ(q)− Φ(q)

ϕ(q)

∫ ∞
0

h′(y + b)e−ϕ(q)ydy

+
δ

ϕ(q)

[ ∫ 0

−∞
h′(y + b)

{
(ϕ(q)− Φ(q))

×
∫ ∞

0
e−ϕ(q)zW (q)′(z − y)dz − Φ(q)W (q)(−y)

}
dy − βΦ(q)

]
.
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Candidate Threshold (Cont’d)

By the convexity of h, the function I is nondecreasing.

� Hence we can define the limits I (∞) := limb↑∞ I (b) and
I (−∞) := limb↓−∞ I (b) – we set our candidate optimal threshold
level b∗ to be the largest root of I (b) = 0 if I (−∞) < 0 < I (∞).

� If I (∞) ≤ 0, we let b∗ =∞
� If I (−∞) ≥ 0, we let b∗ = −∞.

For example, for the case h(y) := αy2 for some α > 0,

b∗ = βq/(2α) + E(−X eq)− ϕ(q)−1.
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Verification Lemma

Lemma (Verification lemma)

Suppose π̂ ∈ Πδ is such that vπ̂ is sufficiently smooth on R and
satisfies{

(Γ− q)vπ̂(x) + h(x) ≥ 0 if v ′π̂(x) ≤ β,
(Γ− q)vπ̂(x)− δ(v ′b∗(x)− β) + h(x) ≥ 0 if v ′π̂(x) > β.

Then π̂ is an optimal strategy and v(x) = vπ̂(x) for all x ∈ R.
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Main Results

Theorem
vb∗ satisfies the above conditions, and hence the refraction strategy
w/ refraction trigger level b∗ is optimal.
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Convergence to Reflection Strategy

We have

ṽ(x ; δ):= inf
π∈Πδ

Ex

[ ∫ ∞
0

e−qt(h(Yt + Lπt ) + β̃`πt )dt
]

= v(x ; δ,−β̃) +
β̃δ

q
,

where v(x ; δ,−β̃) is the value function obtained above with Xt

replaced with X
(δ)
t := Yt + δt and β with −β̃.
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Convergence to Reflection Strategy (Cont’d)
� Let Π∞ be the set of admissible strategies w/o restrictions on the

absolutely continuity. It is known as in Y. (arXiv, 2013) that

ṽ(x ;∞) := inf
π∈Π∞

Ex

[ ∫
[0,∞)

e−qt(h(Yt + Lπt )dt + β̃dLπt )
]

= −β̃
(
Z(q)

(x − b∗(∞)) +
ψ′Y (0+)

q

)
−
∫ x

b∗(∞)
W(q)(x − y)h(y)dy + Z(q)(x − b∗(∞))×(

ϕ(q)

q

∫ ∞
0

e−ϕ(q)yh(y + b∗(∞))dy +
β̃

ϕ(q)

)
.

� This is attained by the reflected Lévy process Yt + L
b∗(∞)
t with

L
b∗(∞)
t := sup

0≤t′≤t
((b∗(∞))− Yt′) ∨ 0, t ≥ 0.
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Convergence to Reflection Strategy (Cont’d)

Proposition

We have b∗(δ)
b↑∞−−−→ b∗(∞).

Theorem
Uniformly in x in compacts, ṽ(x ; δ)

δ↑∞−−−→ ṽ(x ;∞).
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Numerical Results

� Let X be a spectrally negative process with i.i.d. phase-type
distributed jumps of the form

Xt − X0 = γ̃t + σBt −
Nt∑
n=1

Zn, 0 ≤ t <∞,

for some γ̃ ∈ R and σ ≥ 0. Here B = {Bt ; t ≥ 0} is a standard
Brownian motion, N = {Nt ; t ≥ 0} is a Poisson process with
arrival rate κ, and Z = {Zn; n = 1, 2, . . .} is an i.i.d. sequence of
phase-type-distributed random variables with representation
(m,α,T ).

� For Z , we choose such that it appoximates the Weibull random
variable with parameter (2, 1).
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Numerical Results (Cont’d)
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Figure: Plots of vb(x) for the case β = −5 (left) and β = 5 (right). Each
panel shows vb∗(x) (solid) in comparison to vb(x) (dotted) for
b ∈ {b∗ − 1, b∗ − 0.5, b∗ + 0.5, b∗, b∗ + 1}.
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Convergence as δ ↑ ∞ (Cont’d)
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Figure: Plots of convergence as δ ↑ ∞. The left panel shows b∗(δ) for δ
running from 1 to 100. The value of b∗(∞) is indicated by the dotted line.
On the right panel, the functions ṽ(x ; δ) are shown as dotted lines for
δ ∈ {1, 2, . . . , 20, 40, 60, 80, 100}.
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Thank you. – kyamazak@kansai-u.ac.jp –
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