

Optimality of Refraction Strategies for Spectrally Negative Lévy Processes

Kazutoshi Yamazaki

Department of Mathematics, Kansai University

Joint Work with **Daniel Hernández-Hernández, CIMAT** and **José Luis Pérez, UNAM**

Stochastic Processes and Applications Mongolia 2015

National University of Mongolia

August 7, 2015

Inventory Control Problems

Solving the tradeoff b/w controlling costs and inventory costs.

- inventory costs: shortage costs and surplus costs
 - want the inventory to be not too much and not too little,
 - typically modeled by a v-shaped function.
- controlling costs:
 - some variations – fixed and/or proportional – one-sided or two-sided etc.

Applications

- inventory management, cash management, currency control, international reserve etc.

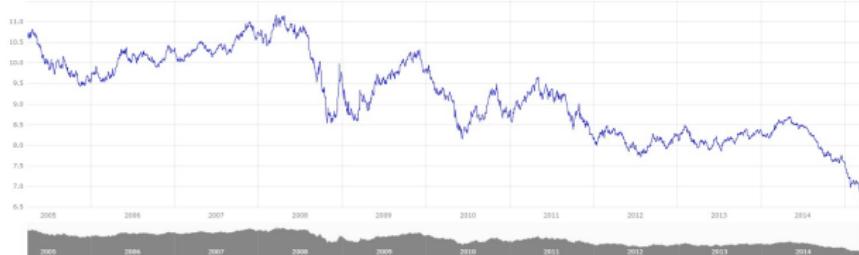
Optimality in Existing Literature

Essentially all papers show that the barrier strategy (or its variation) is optimal.

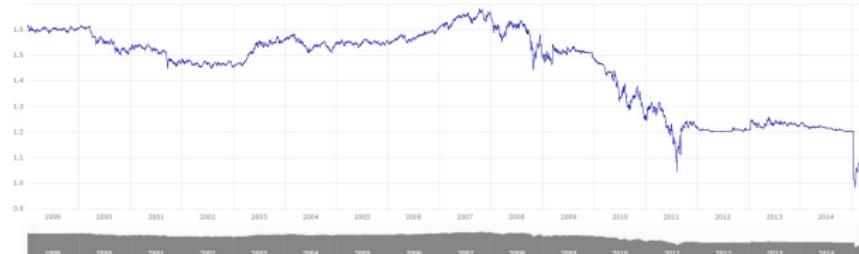
- one-sided control w/o fixed costs – reflection strategy is optimal.
- one-sided control w/ fixed costs – (s, S) -strategy (policy) is optimal.
- two-sided control w/o fixed costs – double reflection strategy is optimal.
- two-sided control w/ fixed costs – (d, D, U, u) -band strategy is optimal.

Barrier Strategy Is NOT Realistic

In reality, barrier strategies are hard to implement.



Euro vs Chinese yuan



Euro vs Swiss franc

Under Absolutely Continuous Assumptions

- The typical inventory control (one-sided w/o fixed costs) minimizes

$$v^\pi(x) := \mathbb{E}_x \left[\int_0^\infty e^{-qt} h(X_t \pm L_t^\pi) dt + \int_{[0, \infty)} e^{-qt} \beta dL_t^\pi \right],$$

by choosing the optimal control $\pi^* = (L_t^*)$ among the set of nonincreasing, cadlag, adapted processes $\pi = (L_t^\pi)$.

- In this talk, we restrict the set of admissible strategies to be absolutely continuous (w.r.t. the Lebesgue measure):

$$L_t^\pi = \int_0^t \ell_s^\pi ds, \quad t \geq 0,$$

with ℓ^π restricted to take values in $[0, \delta]$ uniformly in time.

Spectrally Negative Lévy Processes

Defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $X = \{X_t; t \geq 0\}$ be a spectrally negative Lévy process, i.e.

1. The paths are almost surely right continuous with left limits.
2. For $0 \leq s \leq t$, $X_t - X_s$ is equal in distribution to X_{t-s} .
3. For $0 \leq s \leq t$, $X_t - X_s$ is independent of $\{X_u : u \leq s\}$.
4. Jumps are almost surely negative (spectrally negative).
5. Not the negative of a subordinator.

Examples include Brownian motion, (compound) Poisson, stable processes, CGMY, NIG, variance gamma, meromorphic Lévy processes etc.

Reflected & Refracted Lévy Processes

- Reflected Lévy processes: $U_t^s := X_t - L_t^s$ where

$$L_t^s := \sup_{0 \leq t' \leq t} (X_{t'} - s) \vee 0, \quad t \geq 0.$$

- Refracted Lévy processes (Kyprianou and Loeffen, Annales de l'Instut Henri Poincaré, 2009)
 - A strong Markov process given by the unique strong sol'n to the SDE

$$dU_t^b = dX_t - \delta \mathbf{1}_{\{U_t^b > b\}} dt, \quad t \geq 0.$$

- Namely, U^b progresses like X below the boundary b while it does like

$$Y_t := X_t - \delta t, \quad t \geq 0,$$

above b .

Objective

We show the optimality of a “refraction strategy” under the absolutely continuous condition.

- We minimize

$$v^\pi(x) := \mathbb{E}_x \left[\int_0^\infty e^{-qt} h(X_t \pm L_t^\pi) dt + \int_{[0, \infty)} e^{-qt} \beta dL_t^\pi \right],$$

over the set Π_δ given by

$$L_t^\pi = \int_0^t \ell_s^\pi ds, \quad t \geq 0,$$

with ℓ^π restricted to take values in $[0, \delta]$ uniformly in time.

- The optimally controlled process becomes the refracted Lévy process $U_t^{b^*}$, with a suitable choice b^* ,

$$dU_t^{b^*} = dX_t - \delta \mathbf{1}_{\{U_t^{b^*} > b^*\}} dt, \quad t \geq 0.$$

SN Lévy Processes and Laplace Exponents

- Given a SN Lévy process $X = \{X_t; t \geq 0\}$, the Laplace exponent is

$$\begin{aligned}\psi(\theta) := \log \mathbb{E}[e^{\theta X_1}] &= \gamma\theta + \frac{\sigma^2}{2}\theta^2 \\ &+ \int_{(-\infty, 0)} (e^{\theta z} - 1 - \theta z \mathbf{1}_{\{z > -1\}}) \nu(dz), \quad \theta \geq 0.\end{aligned}$$

- ν is a Lévy measure such that $\int_{(-\infty, 0)} (1 \wedge z^2) \nu(dz) < \infty$.
- It has paths of bounded variation if and only if $\sigma = 0$ and $\int_{(-1, 0)} |z| \nu(dz) < \infty$.
- For the case of bounded variation, we can write

$$\psi(\theta) = \tilde{\gamma}\theta + \int_{(-\infty, 0)} (e^{\theta z} - 1) \nu(dz), \quad \theta \geq 0,$$

with $\tilde{\gamma} := \gamma - \int_{(-1, 0)} z \nu(dz)$.

Scale Functions

- Recall that X is a spectrally negative Lévy process with Laplace exponent $\psi(s) = \log \mathbb{E}[e^{sX_1}]$.
- Fix any $q > 0$, there exists a function called the q-scale function

$$W^{(q)} : \mathbb{R} \rightarrow [0, \infty),$$

which is zero on $(-\infty, 0)$, continuous and strictly increasing on $[0, \infty)$, and is characterized by the Laplace transform:

$$\int_0^\infty e^{-sx} W^{(q)}(x) dx = \frac{1}{\psi(s) - q}, \quad s > \Phi(q),$$

where

$$\Phi(q) := \sup\{\lambda \geq 0 : \psi(\lambda) = q\}.$$

Scale Functions (Cont'd)

Let us define the first down- and up-crossing times, respectively, by

$$\begin{aligned}\tau_a^- &:= \inf \{t \geq 0 : X_t < a\}, \\ \tau_b^+ &:= \inf \{t \geq 0 : X_t > b\}.\end{aligned}$$

Then we have for any $b > 0$

$$\begin{aligned}\mathbb{E}_x \left[e^{-q\tau_b^+} 1_{\{\tau_b^+ < \tau_0^-\}} \right] &= \frac{W^{(q)}(x)}{W^{(q)}(b)}, \\ \mathbb{E}_x \left[e^{-q\tau_0^-} 1_{\{\tau_b^+ > \tau_0^-\}} \right] &= Z^{(q)}(x) - Z^{(q)}(b) \frac{W^{(q)}(x)}{W^{(q)}(b)},\end{aligned}$$

where

$$\overline{W}^{(q)}(x) := \int_0^x W^{(q)}(y) dy,$$

$$Z^{(q)}(x) := 1 + q \overline{W}^{(q)}(x).$$

Back to the Problem

- Define Π_δ as the set of absolutely continuous strategies π given by adapted processes

$$L_t^\pi = \int_0^t \ell_s^\pi ds, \quad t \geq 0,$$

with ℓ^π restricted to take values in $[0, \delta]$ uniformly in time.

- The objective is to minimize the net present value (NPV) of the expected total costs

$$v^\pi(x) := \mathbb{E}_x \left[\int_0^\infty e^{-qt} (h(U_t^\pi) + \beta \ell_t^\pi) dt \right],$$

where

$$U_t^\pi := X_t - L_t^\pi, \quad t \geq 0.$$

- Remark: β can be negative – the case $U_t^\pi := X_t + L_t^\pi$ is also covered.

Assumptions

Key Assumption: We assume h is convex

We need the following so the refracted process
will not be a subordinator above and below the threshold.

- For the case X is of bounded variation, we assume that $\tilde{\gamma} - \delta > 0$.

We want the following properties to exchange derivatives over integrals and also to take limits in verification.

- We assume that there exists $\bar{\theta} > 0$ such that $\int_{(-\infty, -1]} \exp(\bar{\theta}|z|) \nu(dz) < \infty$ – the jump size should not have a heavy tail.
- We assume h has at most polynomial growth in the tail.

Refracted Lévy Processes

- A strong Markov process given by the unique strong sol'n to the SDE

$$dU_t^b = dX_t - \delta \mathbf{1}_{\{U_t^b > b\}} dt, \quad t \geq 0.$$

- Namely, U^b progresses like X below the boundary b while it does like

$$Y_t := X_t - \delta t, \quad t \geq 0,$$

above b .

- The corresponding NPV of the total costs

$$v_b(x) := \mathbb{E}_x \left[\int_0^\infty e^{-qt} (h(U_t^b) + \beta \delta \mathbf{1}_{\{U_t^b > b\}}) dt \right], \quad x \in \mathbb{R},$$

can be written using the scale functions of X and Y .

Scale Functions

- We use $W^{(q)}$ and $\mathbb{W}^{(q)}$ for the scale functions of X and Y , respectively. Namely, these are defined by

$$\int_0^\infty e^{-\theta x} W^{(q)}(x) dx = \frac{1}{\psi(\theta) - q}, \quad \theta > \Phi(q),$$

$$\int_0^\infty e^{-\theta x} \mathbb{W}^{(q)}(x) dx = \frac{1}{\psi(\theta) - \delta\theta - q}, \quad \theta > \varphi(q),$$

where

$$\Phi(q) := \sup\{\lambda \geq 0 : \psi(\lambda) = q\},$$

$$\varphi(q) := \sup\{\lambda \geq 0 : \psi(\lambda) - \delta\lambda = q\}.$$

- By the strict convexity of ψ , we have the strict inequality

$$\varphi(q) > \Phi(q) > 0.$$

NPV under Refraction Strategies

By the resolvent measure obtained by Kyprianou and Loeffen (2010),

$$v_b(x) = v_b^{(1)}(x) + v_b^{(2)}(x) \mathbf{1}_{\{x>b\}},$$

$$\begin{aligned} v_b^{(1)}(x) &:= e^{\Phi(q)(x-b)} \frac{\varphi(q) - \Phi(q)}{\delta\Phi(q)} \left[\int_0^\infty h(y+b) e^{-\varphi(q)y} dy + \frac{\beta\delta}{\varphi(q)} \right] \\ &\quad + \int_{-\infty}^0 h(y+b) \left[e^{\Phi(q)(x-b)} \frac{\varphi(q) - \Phi(q)}{\Phi(q)} \right. \\ &\quad \left. \times \int_0^\infty e^{-\varphi(q)z} W^{(q)'}(z-y) dz - W^{(q)}(x-b-y) \right] dy, \end{aligned}$$

$$\begin{aligned} v_b^{(2)}(x) &:= \int_0^\infty (h(y+b) + \beta\delta) \left\{ e^{-\varphi(q)y} M(x; b) - \mathbb{W}^{(q)}(x-b-y) \right\} dy \\ &\quad + \delta \int_{-\infty}^0 h(y+b) \left\{ M(x; b) \int_0^\infty e^{-\varphi(q)z} W^{(q)'}(z-y) dz \right. \\ &\quad \left. - \int_b^x \mathbb{W}^{(q)}(x-z) W^{(q)'}(z-b-y) dz \right\} dy, \end{aligned}$$

$$M(x; b) := (\varphi(q) - \Phi(q)) e^{-\Phi(q)b} \int_b^x e^{\Phi(q)z} \mathbb{W}^{(q)}(x-z) dz, \quad x > b.$$

Candidate Threshold b^*

- We see (once we confirm that $\partial/\partial b$ and $\partial/\partial x$ can go into the integrals):

$$\frac{\partial}{\partial b} v_b(x) = u_b(x)$$

where

$$u_b(x) := \mathbb{E}_x \left[\int_0^\infty e^{-qt} h'(U_t^b) dt \right] - v'_b(x), \quad x, b \in \mathbb{R}.$$

- We shall pursue b^* such that $u_{b^*}(x)$ vanishes or equivalently

$$v'_{b^*}(x) = \mathbb{E}_x \left[\int_0^\infty e^{-qt} h'(U_t^{b^*}) dt \right].$$

Candidate Threshold (Cont'd)

After tedious calculation, for all $x, b \in \mathbb{R}$,

$$u_b(x) = \left[\frac{\varphi(q) - \Phi(q)}{\delta\Phi(q)} e^{\Phi(q)(x-b)} + \mathbf{1}_{\{x>b\}} (M(x; b) - \mathbb{W}^{(q)}(x-b)) \right] I(b),$$

where

$$\begin{aligned} I(b) &= \frac{\varphi(q) - \Phi(q)}{\varphi(q)} \int_0^\infty h'(y+b) e^{-\varphi(q)y} dy \\ &\quad + \frac{\delta}{\varphi(q)} \left[\int_{-\infty}^0 h'(y+b) \left\{ (\varphi(q) - \Phi(q)) \right. \right. \\ &\quad \times \left. \left. \int_0^\infty e^{-\varphi(q)z} W^{(q)'}(z-y) dz - \Phi(q) W^{(q)}(-y) \right\} dy - \beta \Phi(q) \right]. \end{aligned}$$

Candidate Threshold (Cont'd)

By the convexity of h , the function I is *nondecreasing*.

- Hence we can define the limits $I(\infty) := \lim_{b \uparrow \infty} I(b)$ and $I(-\infty) := \lim_{b \downarrow -\infty} I(b)$ – we set our candidate optimal threshold level b^* to be the *largest root* of $I(b) = 0$ if $I(-\infty) < 0 < I(\infty)$.
- If $I(\infty) \leq 0$, we let $b^* = \infty$
- If $I(-\infty) \geq 0$, we let $b^* = -\infty$.

For example, for the case $h(y) := \alpha y^2$ for some $\alpha > 0$,

$$b^* = \beta q / (2\alpha) + \mathbb{E}(-\underline{X}_{e_q}) - \varphi(q)^{-1}.$$

Verification Lemma

Lemma (Verification lemma)

Suppose $\hat{\pi} \in \Pi_\delta$ is such that $v_{\hat{\pi}}$ is sufficiently smooth on \mathbb{R} and satisfies

$$\begin{cases} (\Gamma - q)v_{\hat{\pi}}(x) + h(x) \geq 0 & \text{if } v'_{\hat{\pi}}(x) \leq \beta, \\ (\Gamma - q)v_{\hat{\pi}}(x) - \delta(v'_{b^*}(x) - \beta) + h(x) \geq 0 & \text{if } v'_{\hat{\pi}}(x) > \beta. \end{cases}$$

Then $\hat{\pi}$ is an optimal strategy and $v(x) = v_{\hat{\pi}}(x)$ for all $x \in \mathbb{R}$.

Main Results

Theorem

v_{b^*} satisfies the above conditions, and hence the refraction strategy w/ refraction trigger level b^* is optimal.

Convergence to Reflection Strategy

We have

$$\begin{aligned}\tilde{v}(x; \delta) &:= \inf_{\pi \in \Pi_\delta} \mathbb{E}_x \left[\int_0^\infty e^{-qt} (h(Y_t + L_t^\pi) + \tilde{\beta} \ell_t^\pi) dt \right] \\ &= v(x; \delta, -\tilde{\beta}) + \frac{\tilde{\beta} \delta}{q},\end{aligned}$$

where $v(x; \delta, -\tilde{\beta})$ is the value function obtained above with X_t replaced with $X_t^{(\delta)} := Y_t + \delta t$ and β with $-\tilde{\beta}$.

Convergence to Reflection Strategy (Cont'd)

- Let Π_∞ be the set of admissible strategies w/o restrictions on the absolutely continuity. It is known as in Y. (arXiv, 2013) that

$$\begin{aligned}\tilde{v}(x; \infty) &:= \inf_{\pi \in \Pi_\infty} \mathbb{E}_x \left[\int_{[0, \infty)} e^{-qt} (h(Y_t + L_t^\pi) dt + \tilde{\beta} dL_t^\pi) \right] \\ &= -\tilde{\beta} \left(\mathbb{Z}^{(q)}(x - b^*(\infty)) + \frac{\psi'_Y(0+)}{q} \right) \\ &\quad - \int_{b^*(\infty)}^x \mathbb{W}^{(q)}(x - y) h(y) dy + \mathbb{Z}^{(q)}(x - b^*(\infty)) \times \\ &\quad \left(\frac{\varphi(q)}{q} \int_0^\infty e^{-\varphi(q)y} h(y + b^*(\infty)) dy + \frac{\tilde{\beta}}{\varphi(q)} \right).\end{aligned}$$

- This is attained by the *reflected Lévy process* $Y_t + L_t^{b^*(\infty)}$ with

$$L_t^{b^*(\infty)} := \sup_{0 \leq t' \leq t} ((b^*(\infty)) - Y_{t'}) \vee 0, \quad t \geq 0.$$

Convergence to Reflection Strategy (Cont'd)

Proposition

We have $b^*(\delta) \xrightarrow{b \uparrow \infty} b^*(\infty)$.

Theorem

Uniformly in x in compacts, $\tilde{v}(x; \delta) \xrightarrow{\delta \uparrow \infty} \tilde{v}(x; \infty)$.

Numerical Results

- Let X be a spectrally negative process with i.i.d. phase-type distributed jumps of the form

$$X_t - X_0 = \tilde{\gamma}t + \sigma B_t - \sum_{n=1}^{N_t} Z_n, \quad 0 \leq t < \infty,$$

for some $\tilde{\gamma} \in \mathbb{R}$ and $\sigma \geq 0$. Here $B = \{B_t; t \geq 0\}$ is a standard Brownian motion, $N = \{N_t; t \geq 0\}$ is a Poisson process with arrival rate κ , and $Z = \{Z_n; n = 1, 2, \dots\}$ is an i.i.d. sequence of phase-type-distributed random variables with representation (m, α, T) .

- For Z , we choose such that it approximates the Weibull random variable with parameter $(2, 1)$.

Numerical Results (Cont'd)

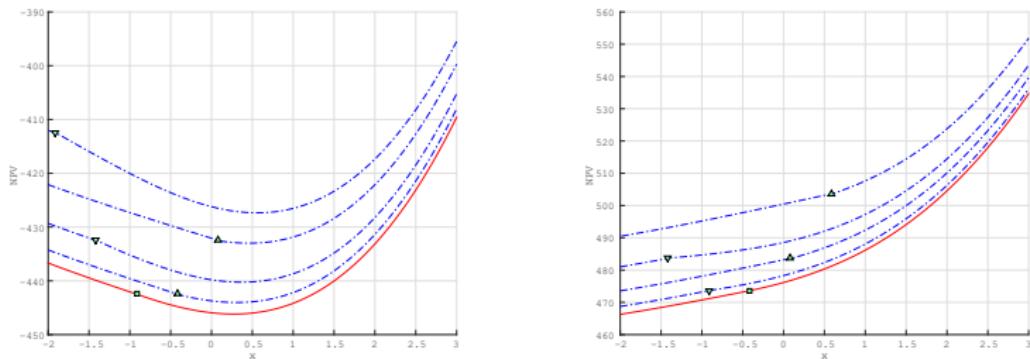


Figure: Plots of $v_b(x)$ for the case $\beta = -5$ (left) and $\beta = 5$ (right). Each panel shows $v_{b^*}(x)$ (solid) in comparison to $v_b(x)$ (dotted) for $b \in \{b^* - 1, b^* - 0.5, b^* + 0.5, b^*, b^* + 1\}$.

Convergence as $\delta \uparrow \infty$ (Cont'd)

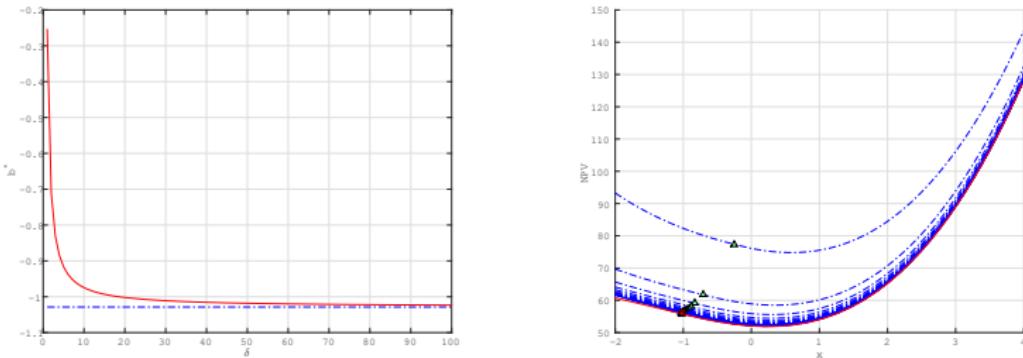


Figure: Plots of convergence as $\delta \uparrow \infty$. The left panel shows $b^*(\delta)$ for δ running from 1 to 100. The value of $b^*(\infty)$ is indicated by the dotted line. On the right panel, the functions $\tilde{v}(x; \delta)$ are shown as dotted lines for $\delta \in \{1, 2, \dots, 20, 40, 60, 80, 100\}$.

Thank you. – kyamazak@kansai-u.ac.jp –