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Previous works on CLT for BMP and
superprocesses

Kesten and Stigum (1966) gave a central limit theorem for multi-type
discrete time processes by using the Jordan canonical form of the
expectation matrix M.

Then Athreya (1969, 1969, 1971) proved central limit theorems for
multi-type continuous time branching processes, also using the
Jordan canonical form and the eigenvectors of the matrix Mt , the
mean matrix at time t.

Asmussen and Hering (1983) established spatial central limit
theorems for general supercritical branching Markov processes under
a certain condition.

Janson (2004) extended the results mentioned above and established
functional central limit theorems for multitype branching processes.
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Recently, Adamczak and Miłoś (2011) proved some central limit
theorems for supercritical branching Ornstein-Uhlenbeck processes
with binary branching mechanism. Miłoś (2012) proved some central
limit theorems for supercritical super Ornstein-Uhlenbeck processes
with branching mechanisms satisfying a fourth moment condition.

Ren, Song and Zhang (2012-2014, 4 papers) established central limit
theorems for supercritical branching Markov processes and
superprocesses. We also extend the functional central limit theorems
of Janson (2004) to supercritical superprocesses with
space-dependent branching mechanisms.

In this talk I will introduce our reuslts for superprocesses.
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First we would like to find conditions on the spatial processes such
that the spatial central limit theorem(CLT) works for supercritical
superprocesses with space-dependent branching mechanisms..
The conditions should be easy to check and satisfied by a lot of
Markov processes.

We also would like to give the functional CLT for supercritical
superprocesses (to give a superprocess version of Jason’s work).
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Superprocesses

E : a locally compact separable metric space.
m: a σ-finite Borel measure on E with full support.
∂: a separate point not contained in E . ∂ will be interpreted as the
cemetery point.

ξ = {ξt ,Πx}: a Hunt process on E .
ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ.
{Pt : t ≥ 0}: the semigroup of ξ.



Motivation Superprocesses Assumptions Main Results

Superprocesses

E : a locally compact separable metric space.
m: a σ-finite Borel measure on E with full support.
∂: a separate point not contained in E . ∂ will be interpreted as the
cemetery point.

ξ = {ξt ,Πx}: a Hunt process on E .
ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ.
{Pt : t ≥ 0}: the semigroup of ξ.



Motivation Superprocesses Assumptions Main Results

The superprocess X = {Xt : t ≥ 0} we are going to work with is
determined by three objects:

(i) a spatial motion ξ = {ξt ,Πx} on E , which is symmetric with respect
to m.

(ii) a branching rate function β(x) on E which is a non-negative
bounded measurable function.

(iii) a branching mechanism ϕ of the form

ϕ(x , z) = −a(x)z+b(x)z2+

∫

(0,+∞)

(e−zy−1+zy)n(x , dy), x ∈ E , z > 0,

(1)
where a ∈ Bb(E), b ∈ B+

b (E) and n is a kernel from E to (0,∞)
satisfying

sup
x∈E

∫

(0,+∞)

y2n(x , dy) <∞. (2)
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MF (E) denote the space of finite measures on E .
〈f , µ〉 :=

∫
E f (x)µ(dx) and ‖µ‖ := 〈1, µ〉 = µ(E).

The superprocess X is a Markov process taking values in MF (E).
For any µ ∈ MF (E), we denote the law of X with initial configuration
µ by Pµ. Then for every f ∈ B+

b (E) and µ ∈ MF (E),

− logPµ

(
e−〈f ,Xt〉

)
= 〈uf (t , ·), µ〉, (3)

where uf (t , x) is the unique positive solution to the equation

uf (t , x) + Πx

∫ t∧ζ

0
ϕ(ξs , uf (t − s, ξs))β(ξs)ds = Πx f (ξt ), (4)

Define

α(x) := β(x)a(x) and A(x) := β(x)
(

2b(x) +
∫ ∞

0
y2n(x , dy)

)
.
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For any f ∈ Bb(E) and (t , x) ∈ (0,∞)× E , define

Tt f (x) := Πx

[
e
∫ t

0 α(ξs) ds f (ξt )
]
.

First moment: For any f ∈ Bb(E),

Pµ〈f ,Xt 〉 = 〈Tt f , µ〉.

Second moment: For any f ∈ Bb(E),

Varµ〈f ,Xt 〉 = 〈Varδ
·

〈f ,Xt 〉, µ〉 =

∫

E

∫ t

0
Ts[A(Tt−sf )2](x)dsµ(dx), (5)

where Varµ stands for the variance under Pµ.
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Assumptions on the spatial process

We assume that that there exists a family of continuous strictly
positive symmetric functions {pt (x , y) : t > 0} on E × E such that

Pt f (x) =
∫

E
pt (x , y)f (y)m(dy).

Define
ãt(x) := pt (x , x).

Assumption 1

(i) For any t > 0, we have
∫

E ãt(x)m(dx) <∞.

(ii) There exists t0 > 0 such that ãt0(x) ∈ L2(E , m).

Remark (ii) above is equivalent to
(ii′) There exists t0 > 0 such that for all t ≥ t0,

ãt (x) ∈ L2(E ,m).



Motivation Superprocesses Assumptions Main Results

Assumptions on the spatial process

We assume that that there exists a family of continuous strictly
positive symmetric functions {pt (x , y) : t > 0} on E × E such that

Pt f (x) =
∫

E
pt (x , y)f (y)m(dy).

Define
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ãt (x) ∈ L2(E ,m).



Motivation Superprocesses Assumptions Main Results

One can check that there exists a family {qt(x , y) : t > 0} of
continuous strictly positive symmetric functions on E × E such that

Tt f (x) = Πx

[
e
∫ t

0 α(ξs) dsf (ξt )
]
=

∫

E
qt (x , y)f (y)m(dy).

Define at (x) := qt(x , x).

It follows from the assumptions (i) and (ii) in the previous subsection
that at enjoys the following properties:

(i) For any t > 0, we have
∫

E
at (x)m(dx) <∞.

(ii) There exists t0 > 0 such that for all t ≥ t0,
at (x) ∈ L2(E ,m).
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It follows from (i) above that, for any t > 0, Tt is a compact operator.
The infinitesimal generator L of {Tt : t ≥ 0} in L2(E ,m) has purely
discrete spectrum with eigenvalues −λ1 > −λ2 > −λ3 > · · · .

The first eigenvalue −λ1 is simple and the eigenfunction φ1

associated with −λ1 can be chosen to be strictly positive everywhere
and continuous. We will assume that ‖φ1‖2 = 1. φ1 is sometimes
denoted as φ(1)1 .

For k > 1, let {φ(k)j , j = 1, 2, · · · nk} be an orthonormal basis of the
eigenspace associated with −λk .

{φ
(k)
j , j = 1, 2, · · · nk ; k = 1, 2, . . . } forms a complete orthonormal

basis of L2(E , µ) and all the eigenfunctions are continuous.
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More Assumptions

Assumption 2 The superprocess is supercritical, that is, λ1 < 0.
Then

Pδx 〈f ,Xt 〉 = Tt f (x) ∼ e−λ1t as t → ∞.

Assumption 3 for any t > 0 and x ∈ E ,

Pδx{‖Xt‖ = 0} ∈ (0, 1). (6)

Remark Here is a sufficient condition for (6). Suppose that
Φ(z) = infx∈E ψ(x , z)β(x) can be written in the form:

Φ(z) = ãz + b̃z2 +

∫ ∞

0
(e−zy − 1 + zy)ñ(dy)

with ã ∈ R, b̃ ≥ 0 and ñ being a measure on (0,∞) satisfying∫∞

0 (y ∧ y2)ñ(dy) <∞. If b̃ + ñ(0,∞) > 0 and Φ(z) satisfies∫∞ 1
Φ(z) dz <∞ then (6) holds.
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Main Results

Define
Hk ,j

t := eλk t〈φ
(k)
j ,Xt 〉, t ≥ 0.

For any nonzero µ ∈ MF (E), Hk ,j
t is a martingale under Pµ.

Strong Law of Large Numbers: If λ1 > 2λk , then
supt>3t0 Pµ(H

k ,j
t )2 <∞. Thus the limit

Hk ,j
∞ := lim

t→∞
Hk .j

t exists Pµ-a.s. and in L2(Pµ).

In particular, we write Wt := H1,1
t = eλ1 t〈φ1,Xt〉 and W∞ := H1,1

∞ .
{Wt : t ≥ 0} is a positive martingale and

Wt → W∞, Pµ-a.s. and in L2(Pµ).

Moreover, we have Pµ(W∞) = 〈φ1, µ〉.
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Question 1: Is it possible to get

Wt − W∞

eλ1t/2
d
→ a normal distribution, t → ∞?

We will use (·, ·)m to denote inner product in L2(E ,m).

Question 2: For any bounded measurable f ≥ 0, it will be proved that

eλ1 t〈f ,Xt 〉 → (φ1, f )mW∞ as t → ∞.

When (φ1, f )m = 0, what is the proper scaling rate for 〈f ,Xt 〉?
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Main Results

Denote

Cl :=



g(x) =

∑

k :λ1>2λk

nk∑

j=1

bk
j φ

(k)
j (x) : bk

j ∈ R



 ,

Cc :=




g(x) =
nk∑

j=1

bk
j φ

(k)
j (x) : 2λk = λ1, bk

j ∈ R






and

Cs :=



g(x) =

∑

k :λ1<2λk

nk∑

j=1

bk
j φ

(k)
j (x) with

∑

k :λ1<2λk

nk∑

j=1

(bk
j )

2 <∞



 .
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For f ∈ Cs, define

σ2
f :=

∫ ∞

0
eλ1s(A(Tsf )2, φ1)m ds

For h ∈ Cc , define
ρ2

h :=
(
Ah2, φ1

)
m .

For g(x) =
∑

k :2λk<λ1

∑nk
j=1 bk

j φ
(k)
j (x) ∈ Cl , we define

β2
g :=

∫ ∞

0
e−λ1s (A(Isg)2, φ1

)
m ds, where

Isg(x) :=
∑

k :2λk<λ1

nk∑

j=1

eλk sbk
j φ

(k)
j (x)
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Theorem 1

If f ∈ Cs, h ∈ Cc and g(x) =
∑

k :2λk<λ1

∑nk
j=1 bk

j φ
(k)
j (x) ∈ Cl , then

σ2
f <∞, ρ2

h <∞ and β2
g <∞. Let

Ft(g) :=
∑

k :2λk<λ1

e−λk t
nk∑

j=1

bk
j Hk ,j

∞ .

Then, it holds that, under Pν(· | Ec), as t → ∞,
(

eλ1t 〈φ1, ,Xt 〉,
〈g,Xt 〉 − Ft(g)√

〈φ1,Xt〉
,

〈h,Xt 〉√
t〈φ1,Xt 〉

,
〈f ,Xt 〉√
〈φ1,Xt 〉

)

d
→ (W ∗,G3(g),G2(h), G1(f )), (7)

where W ∗ has the same distribution as W∞ conditioned on Ec ,
G3(g) ∼ N (0, β2

g ), G2(h) ∼ N (0, ρ2
h) and G1(f ) ∼ N (0, σ2

f ). Moreover,
W ∗, G3(g), G2(h) and G1(f ) are independent.
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For f1, f2 ∈ Cs, define

σ(f1, f2) =
∫ ∞

0
eλ1s(A(Ts f1)(Tsf2), φ1)m ds

Then, under Pµ(· | Ec),
(

〈f1,Xt 〉√
〈φ1,Xt 〉

,
〈f2,Xt 〉√
〈φ1,Xt 〉

)
d
→ (G1(f1),G1(f2)), t → ∞,

where (G1(f1),G1(f2)) is a bivariate normal random variable with
covariance

Cov(G1(f1),G1(f2)) = σ(f1, f2).
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For h1, h2 ∈ Cc , define

ρ(h1, h2) = (Ah1h2, φ1)m.

Then we have, under Pµ(· | Ec),
(

〈h1,Xt 〉√
t〈φ1,Xt 〉

,
〈h2,Xt 〉√
t〈φ1,Xt〉

)
d
→ (G2(h1),G2(h2)), t → ∞,

where (G2(h1),G2(h2)) is a bivariate normal random variable with
covariance

Cov(G2(h1),G2(h2)) = ρ(h1, h2).
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For g1, g2 ∈ Cl , define

β(g1, g2) =

∫ ∞

0
e−λ1s(A(Isg1)(Isg2), φ1)m ds.

Then we have, under Pµ(· | Ec),
(
〈g1,Xt 〉 − Ft(g1)√

〈φ1,Xt 〉
,
〈g2,Xt 〉 − Ft(g2)√

〈φ1,Xt 〉

)

d
→ (G3(g1),G3(g2)),

where (G3(g1),G3(g2)) is a bivariate normal random variable with
covariance

Cov(G3(g1),G3(g2)) = β(g1, g2).
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Main Results

We denote by D(Rd ) the space of all cadlag functions from [0,∞) into
R

d , equipped with the Skorokhod topology.

Our next aim is to establish functional central limit theorem: for “good”
test function f such that 〈f ,Xt 〉 is right continuous and has left limit,
we hope that prove

Ct+·(〈f ,Xt+·〉 − At+·) →
√

W∞G(·) (in distribution)

with G being some Gaussian process.
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Fix a q > max{K ,−2λ1}. For any p ≥ 1 and f ∈ Lp(E ,m), define

Uqf (x) :=






∫ ∞

0
e−qsTsf (x)ds, if

∫∞

0 e−qsTs(|f |)(x)ds <∞,

0, otherwise.

Then Uqf ∈ Lp(E ,m).

Lemma

If f ∈ L2(E ,m), then for any µ ∈ MF (E), the function 〈Uqf ,X·〉 is in
D(R), Pµ-a.s.
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For f ∈ Cs, define

σf ,τ := eλ1τ/2
∫ ∞

0
eλ1s(A(Ts f )(Ts+τ f ), φ1)m ds. (8)

We write σf ,0 as σ2
f .

For h ∈ Cc , define
ρ2

h := (Ah2, φ1)m. (9)

Recall that for g(x) =
∑

k :2λk<λ1

∑nk
j=1 bk

j φ
(k)
j (x) ∈ Cl , we put

Ft (g) :=
∑

k :2λk<λ1

nk∑

j=1

e−λk tbk
j Hk ,j

∞ , t ≥ 0.
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For g ∈ Cl , define

βg,τ := e−λ1τ/2
∫ ∞

0
e−λ1s(A(Isg)(Is+τg), φ1)m ds. (10)

where Iug(x) :=
∑

k :2λk<λ1

∑nk
j=1 eλk ubk

j φ
(k)
j (x), x ∈ E , u ≥ 0.

We write β2
g := βg,0.

For f ∈ Cs, g ∈ Cl and 0 ≤ τ1 ≤ τ2, define

ητ1,τ2(f , g) := −eλ1(τ1+τ2)/2
∫ τ2

τ1

e−λ1u(A(Tτ2−uf )(Iu−τ1 g), φ1
)

m du.

(11)
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Main Results

Theorem 2

Assume that f ∈ Cs, h ∈ Cc, g ∈ Cl and µ ∈ MF (E). For any t > 0,
define

Y 1,f
t (τ) := eλ1(t+τ )/2〈f ,Xt+τ 〉, τ ≥ 0,

Y 2,h
t (τ) := t−1/2eλ1(t+τ )/2〈h,Xt+τ 〉, τ ≥ 0,

and
Y 3,g

t (τ) := eλ1(t+τ )/2 (〈g,Xt+τ − Ft+τ (g)〉) , τ ≥ 0.

Then, for each fixed t ∈ [0,∞),
(

Wt ,Y
1,Uq f
t (·),Y 2,h

t (·),Y 3,g
t (·)

)
is a

D(R4)-valued random variable under Pµ, where Wt is regarded as a
constant process. Furthermore, under Pµ,

(
Wt ,Y

1,Uq f
t (·),Y 2,h

t (·),Y 3,g
t (·)

)

d,D(R4)
−→

(
W∞,

√
W∞G1,Uq f (·),

√
W∞G2,h,

√
W∞G3,g(·)

)
.
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Theorem 2 (continue)

Here G2,h ∼ N (0, ρ2
h) is a constant process, and

{(G1,Uq f (τ),G3,g(τ)) : τ ≥ 0} is a continuous R
2-valued Gaussian

process with mean 0 and covariance functions given by

E(G1,Uq f (τ1)G1,Uq f (τ2)) = σUq f ,τ2−τ1 , for 0 ≤ τ1 ≤ τ2, (12)

E(G3,g(τ1)G3,g(τ2)) = βg,τ2−τ1 , for 0 ≤ τ1 ≤ τ2, (13)

and

E(G3,g(τ1)G1,Uq f (τ2)) =

{
ητ1,τ2(Uq f , g), if 0 ≤ τ1 < τ2,

0, if τ1 ≥ τ2 ≥ 0.
(14)

Moreover, W∞, G2,h and (G1,Uq f ,G3,g) are independent.
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