

Functional central limit theorems for supercritical superprocesses

Yan-Xia Ren

Peking University

National University of Mongolia, Aug. 3, 2015

Outline

References

This talk is based on the following two papers:

- [1] Y.-X. Ren, R. Song and R. Zhang: Central limit theorems for supercritical superprocesses. *Stoch. Proc. Appl.*, 125(2015) 428-457.
- [2] Y.-X. Ren, R. Song and R. Zhang: Functional central limit theorems for supercritical superprocesses. Preprint, 2014.

Outline

1 Motivation

2 Superprocesses

3 Assumptions

4 Main Results

Previous works on CLT for BMP and superprocesses

Kesten and Stigum (1966) gave a central limit theorem for **multi-type discrete time** processes by using the Jordan canonical form of the expectation matrix M .

Then Athreya (1969, 1969, 1971) proved central limit theorems for **multi-type continuous time** branching processes, also using the Jordan canonical form and the eigenvectors of the matrix M_t , the mean matrix at time t .

Asmussen and Hering (1983) established spatial central limit theorems for general supercritical branching Markov processes under a certain condition.

Janson (2004) extended the results mentioned above and established **functional** central limit theorems for multitype branching processes.

Previous works on CLT for BMP and superprocesses

Kesten and Stigum (1966) gave a central limit theorem for **multi-type discrete time** processes by using the Jordan canonical form of the expectation matrix M .

Then Athreya (1969, 1969, 1971) proved central limit theorems for **multi-type continuous time** branching processes, also using the Jordan canonical form and the eigenvectors of the matrix M_t , the mean matrix at time t .

Asmussen and Hering (1983) established spatial central limit theorems for general supercritical branching Markov processes under a certain condition.

Janson (2004) extended the results mentioned above and established **functional** central limit theorems for multitype branching processes.

Previous works on CLT for BMP and superprocesses

Kesten and Stigum (1966) gave a central limit theorem for **multi-type discrete time** processes by using the Jordan canonical form of the expectation matrix M .

Then Athreya (1969, 1969, 1971) proved central limit theorems for **multi-type continuous time** branching processes, also using the Jordan canonical form and the eigenvectors of the matrix M_t , the mean matrix at time t .

Asmussen and Hering (1983) established spatial central limit theorems for general supercritical branching Markov processes under a certain condition.

Janson (2004) extended the results mentioned above and established **functional** central limit theorems for multitype branching processes.

Previous works on CLT for BMP and superprocesses

Kesten and Stigum (1966) gave a central limit theorem for **multi-type discrete time** processes by using the Jordan canonical form of the expectation matrix M .

Then Athreya (1969, 1969, 1971) proved central limit theorems for **multi-type continuous time** branching processes, also using the Jordan canonical form and the eigenvectors of the matrix M_t , the mean matrix at time t .

Asmussen and Hering (1983) established spatial central limit theorems for general supercritical branching Markov processes under a certain condition.

Janson (2004) extended the results mentioned above and established **functional** central limit theorems for multitype branching processes.

Recently, Adamczak and Miłoś (2011) proved some central limit theorems for supercritical branching Ornstein-Uhlenbeck processes with binary branching mechanism. Miłoś (2012) proved some central limit theorems for supercritical super Ornstein-Uhlenbeck processes with branching mechanisms satisfying a fourth moment condition.

Ren, Song and Zhang (2012-2014, 4 papers) established central limit theorems for supercritical branching Markov processes and superprocesses. We also extend the functional central limit theorems of Janson (2004) to supercritical superprocesses with space-dependent branching mechanisms.

In this talk I will introduce our results for **superprocesses**.

Recently, Adamczak and Miłoś (2011) proved some central limit theorems for supercritical branching Ornstein-Uhlenbeck processes with binary branching mechanism. Miłoś (2012) proved some central limit theorems for supercritical super Ornstein-Uhlenbeck processes with branching mechanisms satisfying a fourth moment condition.

Ren, Song and Zhang (2012-2014, 4 papers) established central limit theorems for supercritical branching Markov processes and superprocesses. We also extend the functional central limit theorems of Janson (2004) to supercritical superprocesses with space-dependent branching mechanisms.

In this talk I will introduce our results for **superprocesses**.

Recently, Adamczak and Miłoś (2011) proved some central limit theorems for supercritical branching Ornstein-Uhlenbeck processes with binary branching mechanism. Miłoś (2012) proved some central limit theorems for supercritical super Ornstein-Uhlenbeck processes with branching mechanisms satisfying a fourth moment condition.

Ren, Song and Zhang (2012-2014, 4 papers) established central limit theorems for supercritical branching Markov processes and superprocesses. We also extend the functional central limit theorems of Janson (2004) to supercritical superprocesses with space-dependent branching mechanisms.

In this talk I will introduce our results for **superprocesses**.

First we would like to find **conditions on the spatial processes** such that the spatial central limit theorem(CLT) works for supercritical **superprocesses** with space-dependent branching mechanisms.. The conditions should be easy to check and satisfied by a lot of Markov processes.

We also would like to give the **functional CLT** for supercritical superprocesses (to give a superprocess version of Jason's work).

First we would like to find **conditions on the spatial processes** such that the spatial central limit theorem(CLT) works for supercritical **superprocesses** with space-dependent branching mechanisms.. The conditions should be easy to check and satisfied by a lot of Markov processes.

We also would like to give the **functional CLT** for supercritical superprocesses (to give a superprocess version of Jason's work).

Outline

1 Motivation

2 Superprocesses

3 Assumptions

4 Main Results

Superprocesses

E : a locally compact separable metric space.

m : a σ -finite Borel measure on E with full support.

∂ : a separate point not contained in E . ∂ will be interpreted as the cemetery point.

$\xi = \{\xi_t, \Pi_x\}$: a Hunt process on E .

$\zeta := \inf\{t > 0 : \xi_t = \partial\}$ is the lifetime of ξ .

$\{P_t : t \geq 0\}$: the semigroup of ξ .

Superprocesses

E : a locally compact separable metric space.

m : a σ -finite Borel measure on E with full support.

∂ : a separate point not contained in E . ∂ will be interpreted as the cemetery point.

$\xi = \{\xi_t, \Pi_x\}$: a Hunt process on E .

$\zeta := \inf\{t > 0 : \xi_t = \partial\}$ is the lifetime of ξ .

$\{P_t : t \geq 0\}$: the semigroup of ξ .

The superprocess $X = \{X_t : t \geq 0\}$ we are going to work with is determined by **three objects**:

- (i) **a spatial motion** $\xi = \{\xi_t, \Pi_x\}$ on E , which is symmetric with respect to m .
- (ii) **a branching rate function** $\beta(x)$ on E which is a non-negative bounded measurable function.
- (iii) **a branching mechanism** φ of the form

$$\varphi(x, z) = -a(x)z + b(x)z^2 + \int_{(0, +\infty)} (e^{-zy} - 1 + zy) n(x, dy), \quad x \in E, z > 0, \quad (1)$$

where $a \in \mathcal{B}_b(E)$, $b \in \mathcal{B}_b^+(E)$ and n is a kernel from E to $(0, \infty)$ satisfying

$$\sup_{x \in E} \int_{(0, +\infty)} y^2 n(x, dy) < \infty. \quad (2)$$

$\mathcal{M}_F(E)$ denote the space of finite measures on E .

$\langle f, \mu \rangle := \int_E f(x) \mu(dx)$ and $\|\mu\| := \langle 1, \mu \rangle = \mu(E)$.

The superprocess X is a Markov process taking values in $\mathcal{M}_F(E)$.

For any $\mu \in \mathcal{M}_F(E)$, we denote the law of X with initial configuration μ by \mathbb{P}_μ . Then for every $f \in \mathcal{B}_b^+(E)$ and $\mu \in \mathcal{M}_F(E)$,

$$-\log \mathbb{P}_\mu \left(e^{-\langle f, X_t \rangle} \right) = \langle u_f(t, \cdot), \mu \rangle, \quad (3)$$

where $u_f(t, x)$ is the unique positive solution to the equation

$$u_f(t, x) + \Pi_x \int_0^{t \wedge \zeta} \varphi(\xi_s, u_f(t-s, \xi_s)) \beta(\xi_s) ds = \Pi_x f(\xi_t), \quad (4)$$

Define

$$\alpha(x) := \beta(x) a(x) \quad \text{and} \quad A(x) := \beta(x) \left(2b(x) + \int_0^\infty y^2 n(x, dy) \right).$$

$\mathcal{M}_F(E)$ denote the space of finite measures on E .

$\langle f, \mu \rangle := \int_E f(x) \mu(dx)$ and $\|\mu\| := \langle 1, \mu \rangle = \mu(E)$.

The superprocess X is a Markov process taking values in $\mathcal{M}_F(E)$.

For any $\mu \in \mathcal{M}_F(E)$, we denote the law of X with initial configuration μ by \mathbb{P}_μ . Then for every $f \in \mathcal{B}_b^+(E)$ and $\mu \in \mathcal{M}_F(E)$,

$$-\log \mathbb{P}_\mu \left(e^{-\langle f, X_t \rangle} \right) = \langle u_f(t, \cdot), \mu \rangle, \quad (3)$$

where $u_f(t, x)$ is the unique positive solution to the equation

$$u_f(t, x) + \Pi_x \int_0^{t \wedge \zeta} \varphi(\xi_s, u_f(t-s, \xi_s)) \beta(\xi_s) ds = \Pi_x f(\xi_t), \quad (4)$$

Define

$$\alpha(x) := \beta(x) a(x) \quad \text{and} \quad A(x) := \beta(x) \left(2b(x) + \int_0^\infty y^2 n(x, dy) \right).$$

$\mathcal{M}_F(E)$ denote the space of finite measures on E .

$\langle f, \mu \rangle := \int_E f(x) \mu(dx)$ and $\|\mu\| := \langle 1, \mu \rangle = \mu(E)$.

The superprocess X is a Markov process taking values in $\mathcal{M}_F(E)$.

For any $\mu \in \mathcal{M}_F(E)$, we denote the law of X with initial configuration μ by \mathbb{P}_μ . Then for every $f \in \mathcal{B}_b^+(E)$ and $\mu \in \mathcal{M}_F(E)$,

$$-\log \mathbb{P}_\mu \left(e^{-\langle f, X_t \rangle} \right) = \langle u_f(t, \cdot), \mu \rangle, \quad (3)$$

where $u_f(t, x)$ is the unique positive solution to the equation

$$u_f(t, x) + \Pi_x \int_0^{t \wedge \zeta} \varphi(\xi_s, u_f(t-s, \xi_s)) \beta(\xi_s) ds = \Pi_x f(\xi_t), \quad (4)$$

Define

$$\alpha(x) := \beta(x) a(x) \quad \text{and} \quad A(x) := \beta(x) \left(2b(x) + \int_0^\infty y^2 n(x, dy) \right).$$

For any $f \in \mathcal{B}_b(E)$ and $(t, x) \in (0, \infty) \times E$, define

$$T_t f(x) := \Pi_x \left[e^{\int_0^t \alpha(\xi_s) ds} f(\xi_t) \right].$$

First moment: For any $f \in \mathcal{B}_b(E)$,

$$\mathbb{P}_\mu \langle f, X_t \rangle = \langle T_t f, \mu \rangle.$$

Second moment: For any $f \in \mathcal{B}_b(E)$,

$$\text{Var}_\mu \langle f, X_t \rangle = \langle \text{Var}_\delta \langle f, X_t \rangle, \mu \rangle = \int_E \int_0^t T_s [A(T_{t-s} f)^2](x) ds \mu(dx), \quad (5)$$

where Var_μ stands for the variance under \mathbb{P}_μ .

For any $f \in \mathcal{B}_b(E)$ and $(t, x) \in (0, \infty) \times E$, define

$$T_t f(x) := \Pi_x \left[e^{\int_0^t \alpha(\xi_s) ds} f(\xi_t) \right].$$

First moment: For any $f \in \mathcal{B}_b(E)$,

$$\mathbb{P}_\mu \langle f, X_t \rangle = \langle T_t f, \mu \rangle.$$

Second moment: For any $f \in \mathcal{B}_b(E)$,

$$\text{Var}_\mu \langle f, X_t \rangle = \langle \text{Var}_\delta \langle f, X_t \rangle, \mu \rangle = \int_E \int_0^t T_s [A(T_{t-s} f)^2](x) ds \mu(dx), \quad (5)$$

where Var_μ stands for the variance under \mathbb{P}_μ .

For any $f \in \mathcal{B}_b(E)$ and $(t, x) \in (0, \infty) \times E$, define

$$T_t f(x) := \Pi_x \left[e^{\int_0^t \alpha(\xi_s) ds} f(\xi_t) \right].$$

First moment: For any $f \in \mathcal{B}_b(E)$,

$$\mathbb{P}_\mu \langle f, X_t \rangle = \langle T_t f, \mu \rangle.$$

Second moment: For any $f \in \mathcal{B}_b(E)$,

$$\mathbb{V}\text{ar}_\mu \langle f, X_t \rangle = \langle \mathbb{V}\text{ar}_\delta \langle f, X_t \rangle, \mu \rangle = \int_E \int_0^t T_s [A(T_{t-s} f)^2](x) ds \mu(dx), \quad (5)$$

where $\mathbb{V}\text{ar}_\mu$ stands for the variance under \mathbb{P}_μ .

Outline

1 Motivation

2 Superprocesses

3 Assumptions

4 Main Results

Assumptions on the spatial process

We assume that there exists a family of continuous strictly positive symmetric functions $\{p_t(x, y) : t > 0\}$ on $E \times E$ such that

$$P_t f(x) = \int_E p_t(x, y) f(y) m(dy).$$

Define

$$\tilde{a}_t(x) := p_t(x, x).$$

Assumption 1

- (i) For any $t > 0$, we have $\int_E \tilde{a}_t(x) m(dx) < \infty$.
- (ii) There exists $t_0 > 0$ such that $\tilde{a}_{t_0}(x) \in L^2(E, m)$.

Remark (ii) above is equivalent to

- (ii') There exists $t_0 > 0$ such that for all $t \geq t_0$,
 $\tilde{a}_t(x) \in L^2(E, m)$.

Assumptions on the spatial process

We assume that there exists a family of continuous strictly positive symmetric functions $\{p_t(x, y) : t > 0\}$ on $E \times E$ such that

$$P_t f(x) = \int_E p_t(x, y) f(y) m(dy).$$

Define

$$\tilde{a}_t(x) := p_t(x, x).$$

Assumption 1

- (i) For any $t > 0$, we have $\int_E \tilde{a}_t(x) m(dx) < \infty$.
- (ii) There exists $t_0 > 0$ such that $\tilde{a}_{t_0}(x) \in L^2(E, m)$.

Remark (ii) above is equivalent to

- (ii') There exists $t_0 > 0$ such that for all $t \geq t_0$,
 $\tilde{a}_t(x) \in L^2(E, m)$.

Assumptions on the spatial process

We assume that there exists a family of continuous strictly positive symmetric functions $\{p_t(x, y) : t > 0\}$ on $E \times E$ such that

$$P_t f(x) = \int_E p_t(x, y) f(y) m(dy).$$

Define

$$\tilde{a}_t(x) := p_t(x, x).$$

Assumption 1

- (i) For any $t > 0$, we have $\int_E \tilde{a}_t(x) m(dx) < \infty$.
- (ii) There exists $t_0 > 0$ such that $\tilde{a}_{t_0}(x) \in L^2(E, m)$.

Remark (ii) above is equivalent to

- (ii') There exists $t_0 > 0$ such that for all $t \geq t_0$,
 $\tilde{a}_t(x) \in L^2(E, m)$.

One can check that there exists a family $\{q_t(x, y) : t > 0\}$ of continuous strictly positive symmetric functions on $E \times E$ such that

$$T_t f(x) = \Pi_x \left[e^{\int_0^t \alpha(\xi_s) ds} f(\xi_t) \right] = \int_E q_t(x, y) f(y) m(dy).$$

Define $a_t(x) := q_t(x, x)$.

It follows from the assumptions (i) and (ii) in the previous subsection that a_t enjoys the following properties:

(i) For any $t > 0$, we have

$$\int_E a_t(x) m(dx) < \infty.$$

(ii) There exists $t_0 > 0$ such that for all $t \geq t_0$,
 $a_t(x) \in L^2(E, m)$.

One can check that there exists a family $\{q_t(x, y) : t > 0\}$ of continuous strictly positive symmetric functions on $E \times E$ such that

$$T_t f(x) = \Pi_x \left[e^{\int_0^t \alpha(\xi_s) ds} f(\xi_t) \right] = \int_E q_t(x, y) f(y) m(dy).$$

Define $a_t(x) := q_t(x, x)$.

It follows from the assumptions (i) and (ii) in the previous subsection that a_t enjoys the following properties:

(i) For any $t > 0$, we have

$$\int_E a_t(x) m(dx) < \infty.$$

(ii) There exists $t_0 > 0$ such that for all $t \geq t_0$,
 $a_t(x) \in L^2(E, m)$.

One can check that there exists a family $\{q_t(x, y) : t > 0\}$ of continuous strictly positive symmetric functions on $E \times E$ such that

$$T_t f(x) = \Pi_x \left[e^{\int_0^t \alpha(\xi_s) ds} f(\xi_t) \right] = \int_E q_t(x, y) f(y) m(dy).$$

Define $a_t(x) := q_t(x, x)$.

It follows from the assumptions (i) and (ii) in the previous subsection that a_t enjoys the following properties:

(i) For any $t > 0$, we have

$$\int_E a_t(x) m(dx) < \infty.$$

(ii) There exists $t_0 > 0$ such that for all $t \geq t_0$,
 $a_t(x) \in L^2(E, m)$.

It follows from (i) above that, for any $t > 0$, T_t is a compact operator. The infinitesimal generator \mathcal{L} of $\{T_t : t \geq 0\}$ in $L^2(E, m)$ has purely discrete spectrum with eigenvalues $-\lambda_1 > -\lambda_2 > -\lambda_3 > \dots$.

The first eigenvalue $-\lambda_1$ is simple and the eigenfunction ϕ_1 associated with $-\lambda_1$ can be chosen to be strictly positive everywhere and continuous. We will assume that $\|\phi_1\|_2 = 1$. ϕ_1 is sometimes denoted as $\phi_1^{(1)}$.

For $k > 1$, let $\{\phi_j^{(k)}, j = 1, 2, \dots, n_k\}$ be an orthonormal basis of the eigenspace associated with $-\lambda_k$.

$\{\phi_j^{(k)}, j = 1, 2, \dots, n_k; k = 1, 2, \dots\}$ forms a complete orthonormal basis of $L^2(E, \mu)$ and all the eigenfunctions are continuous.

It follows from (i) above that, for any $t > 0$, T_t is a compact operator. The infinitesimal generator \mathcal{L} of $\{T_t : t \geq 0\}$ in $L^2(E, m)$ has purely discrete spectrum with eigenvalues $-\lambda_1 > -\lambda_2 > -\lambda_3 > \dots$.

The first eigenvalue $-\lambda_1$ is simple and the eigenfunction ϕ_1 associated with $-\lambda_1$ can be chosen to be strictly positive everywhere and continuous. We will assume that $\|\phi_1\|_2 = 1$. ϕ_1 is sometimes denoted as $\phi_1^{(1)}$.

For $k > 1$, let $\{\phi_j^{(k)}, j = 1, 2, \dots, n_k\}$ be an orthonormal basis of the eigenspace associated with $-\lambda_k$.

$\{\phi_j^{(k)}, j = 1, 2, \dots, n_k; k = 1, 2, \dots\}$ forms a complete orthonormal basis of $L^2(E, \mu)$ and all the eigenfunctions are continuous.

It follows from (i) above that, for any $t > 0$, T_t is a compact operator. The infinitesimal generator \mathcal{L} of $\{T_t : t \geq 0\}$ in $L^2(E, m)$ has purely discrete spectrum with eigenvalues $-\lambda_1 > -\lambda_2 > -\lambda_3 > \dots$.

The first eigenvalue $-\lambda_1$ is simple and the eigenfunction ϕ_1 associated with $-\lambda_1$ can be chosen to be strictly positive everywhere and continuous. We will assume that $\|\phi_1\|_2 = 1$. ϕ_1 is sometimes denoted as $\phi_1^{(1)}$.

For $k > 1$, let $\{\phi_j^{(k)}, j = 1, 2, \dots, n_k\}$ be an orthonormal basis of the eigenspace associated with $-\lambda_k$.

$\{\phi_j^{(k)}, j = 1, 2, \dots, n_k; k = 1, 2, \dots\}$ forms a complete orthonormal basis of $L^2(E, \mu)$ and all the eigenfunctions are continuous.

It follows from (i) above that, for any $t > 0$, T_t is a compact operator. The infinitesimal generator \mathcal{L} of $\{T_t : t \geq 0\}$ in $L^2(E, m)$ has purely discrete spectrum with eigenvalues $-\lambda_1 > -\lambda_2 > -\lambda_3 > \dots$.

The first eigenvalue $-\lambda_1$ is simple and the eigenfunction ϕ_1 associated with $-\lambda_1$ can be chosen to be strictly positive everywhere and continuous. We will assume that $\|\phi_1\|_2 = 1$. ϕ_1 is sometimes denoted as $\phi_1^{(1)}$.

For $k > 1$, let $\{\phi_j^{(k)}, j = 1, 2, \dots, n_k\}$ be an orthonormal basis of the eigenspace associated with $-\lambda_k$.

$\{\phi_j^{(k)}, j = 1, 2, \dots, n_k; k = 1, 2, \dots\}$ forms a complete orthonormal basis of $L^2(E, \mu)$ and all the eigenfunctions are continuous.

More Assumptions

Assumption 2 The superprocess is supercritical, that is, $\lambda_1 < 0$.

Then

$$\mathbb{P}_{\delta_x} \langle f, X_t \rangle = T_t f(x) \sim e^{-\lambda_1 t} \quad \text{as } t \rightarrow \infty.$$

Assumption 3 for any $t > 0$ and $x \in E$,

$$\mathbb{P}_{\delta_x} \{ \|X_t\| = 0 \} \in (0, 1). \quad (6)$$

Remark Here is a sufficient condition for (6). Suppose that $\Phi(z) = \inf_{x \in E} \psi(x, z) \beta(x)$ can be written in the form:

$$\Phi(z) = \tilde{a}z + \tilde{b}z^2 + \int_0^\infty (e^{-zy} - 1 + zy) \tilde{n}(dy)$$

with $\tilde{a} \in \mathbb{R}$, $\tilde{b} \geq 0$ and \tilde{n} being a measure on $(0, \infty)$ satisfying $\int_0^\infty (y \wedge y^2) \tilde{n}(dy) < \infty$. If $\tilde{b} + \tilde{n}(0, \infty) > 0$ and $\Phi(z)$ satisfies $\int_0^\infty \frac{1}{\Phi(z)} dz < \infty$ then (6) holds.

More Assumptions

Assumption 2 The superprocess is supercritical, that is, $\lambda_1 < 0$.

Then

$$\mathbb{P}_{\delta_x} \langle f, X_t \rangle = T_t f(x) \sim e^{-\lambda_1 t} \quad \text{as } t \rightarrow \infty.$$

Assumption 3 for any $t > 0$ and $x \in E$,

$$\mathbb{P}_{\delta_x} \{ \|X_t\| = 0 \} \in (0, 1). \quad (6)$$

Remark Here is a sufficient condition for (6). Suppose that $\Phi(z) = \inf_{x \in E} \psi(x, z) \beta(x)$ can be written in the form:

$$\Phi(z) = \tilde{a}z + \tilde{b}z^2 + \int_0^\infty (e^{-zy} - 1 + zy) \tilde{n}(dy)$$

with $\tilde{a} \in \mathbb{R}$, $\tilde{b} \geq 0$ and \tilde{n} being a measure on $(0, \infty)$ satisfying $\int_0^\infty (y \wedge y^2) \tilde{n}(dy) < \infty$. If $\tilde{b} + \tilde{n}(0, \infty) > 0$ and $\Phi(z)$ satisfies $\int_0^\infty \frac{1}{\Phi(z)} dz < \infty$ then (6) holds.

Outline

1 Motivation

2 Superprocesses

3 Assumptions

4 Main Results

Main Results

Define

$$H_t^{k,j} := e^{\lambda_k t} \langle \phi_j^{(k)}, X_t \rangle, \quad t \geq 0.$$

For any nonzero $\mu \in \mathcal{M}_F(E)$, $H_t^{k,j}$ is a martingale under \mathbb{P}_μ .

Strong Law of Large Numbers: If $\lambda_1 > 2\lambda_k$, then

$\sup_{t > 3t_0} \mathbb{P}_\mu(H_t^{k,j})^2 < \infty$. Thus the limit

$$H_\infty^{k,j} := \lim_{t \rightarrow \infty} H_t^{k,j} \quad \text{exists } \mathbb{P}_\mu\text{-a.s. and in } L^2(\mathbb{P}_\mu).$$

In particular, we write $W_t := H_t^{1,1} = e^{\lambda_1 t} \langle \phi_1, X_t \rangle$ and $W_\infty := H_\infty^{1,1}$.
 $\{W_t : t \geq 0\}$ is a positive martingale and

$$W_t \rightarrow W_\infty, \quad \mathbb{P}_\mu\text{-a.s. and in } L^2(\mathbb{P}_\mu).$$

Moreover, we have $\mathbb{P}_\mu(W_\infty) = \langle \phi_1, \mu \rangle$.

Main Results

Define

$$H_t^{k,j} := e^{\lambda_k t} \langle \phi_j^{(k)}, X_t \rangle, \quad t \geq 0.$$

For any nonzero $\mu \in \mathcal{M}_F(E)$, $H_t^{k,j}$ is a martingale under \mathbb{P}_μ .

Strong Law of Large Numbers: If $\lambda_1 > 2\lambda_k$, then $\sup_{t > 3t_0} \mathbb{P}_\mu(H_t^{k,j})^2 < \infty$. Thus the limit

$$H_\infty^{k,j} := \lim_{t \rightarrow \infty} H_t^{k,j} \quad \text{exists } \mathbb{P}_\mu\text{-a.s. and in } L^2(\mathbb{P}_\mu).$$

In particular, we write $W_t := H_t^{1,1} = e^{\lambda_1 t} \langle \phi_1, X_t \rangle$ and $W_\infty := H_\infty^{1,1}$. $\{W_t : t \geq 0\}$ is a positive martingale and

$$W_t \rightarrow W_\infty, \quad \mathbb{P}_\mu\text{-a.s. and in } L^2(\mathbb{P}_\mu).$$

Moreover, we have $\mathbb{P}_\mu(W_\infty) = \langle \phi_1, \mu \rangle$.

Main Results

Define

$$H_t^{k,j} := e^{\lambda_k t} \langle \phi_j^{(k)}, X_t \rangle, \quad t \geq 0.$$

For any nonzero $\mu \in \mathcal{M}_F(E)$, $H_t^{k,j}$ is a martingale under \mathbb{P}_μ .

Strong Law of Large Numbers: If $\lambda_1 > 2\lambda_k$, then $\sup_{t > 3t_0} \mathbb{P}_\mu(H_t^{k,j})^2 < \infty$. Thus the limit

$$H_\infty^{k,j} := \lim_{t \rightarrow \infty} H_t^{k,j} \quad \text{exists } \mathbb{P}_\mu\text{-a.s. and in } L^2(\mathbb{P}_\mu).$$

In particular, we write $W_t := H_t^{1,1} = e^{\lambda_1 t} \langle \phi_1, X_t \rangle$ and $W_\infty := H_\infty^{1,1}$. $\{W_t : t \geq 0\}$ is a positive martingale and

$$W_t \rightarrow W_\infty, \quad \mathbb{P}_\mu\text{-a.s. and in } L^2(\mathbb{P}_\mu).$$

Moreover, we have $\mathbb{P}_\mu(W_\infty) = \langle \phi_1, \mu \rangle$.

Question 1: Is it possible to get

$$\frac{W_t - W_\infty}{e^{\lambda_1 t/2}} \xrightarrow{d} \text{a normal distribution, } t \rightarrow \infty?$$

We will use $(\cdot, \cdot)_m$ to denote inner product in $L^2(E, m)$.

Question 2: For any bounded measurable $f \geq 0$, it will be proved that

$$e^{\lambda_1 t} \langle f, X_t \rangle \rightarrow (\phi_1, f)_m W_\infty \quad \text{as } t \rightarrow \infty.$$

When $(\phi_1, f)_m = 0$, what is the proper scaling rate for $\langle f, X_t \rangle$?

Question 1: Is it possible to get

$$\frac{W_t - W_\infty}{e^{\lambda_1 t/2}} \xrightarrow{d} \text{a normal distribution, } t \rightarrow \infty?$$

We will use $(\cdot, \cdot)_m$ to denote inner product in $L^2(E, m)$.

Question 2: For any bounded measurable $f \geq 0$, it will be proved that

$$e^{\lambda_1 t} \langle f, X_t \rangle \rightarrow (\phi_1, f)_m W_\infty \quad \text{as } t \rightarrow \infty.$$

When $(\phi_1, f)_m = 0$, what is the proper scaling rate for $\langle f, X_t \rangle$?

Question 1: Is it possible to get

$$\frac{W_t - W_\infty}{e^{\lambda_1 t/2}} \xrightarrow{d} \text{a normal distribution, } t \rightarrow \infty?$$

We will use $(\cdot, \cdot)_m$ to denote inner product in $L^2(E, m)$.

Question 2: For any bounded measurable $f \geq 0$, it will be proved that

$$e^{\lambda_1 t} \langle f, X_t \rangle \rightarrow (\phi_1, f)_m W_\infty \quad \text{as } t \rightarrow \infty.$$

When $(\phi_1, f)_m = 0$, what is the proper scaling rate for $\langle f, X_t \rangle$?

Main Results

Denote

$$\mathcal{C}_I := \left\{ g(x) = \sum_{k: \lambda_1 > 2\lambda_k} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) : b_j^k \in \mathbb{R} \right\},$$

$$\mathcal{C}_c := \left\{ g(x) = \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) : 2\lambda_k = \lambda_1, b_j^k \in \mathbb{R} \right\}$$

and

$$\mathcal{C}_s := \left\{ g(x) = \sum_{k: \lambda_1 < 2\lambda_k} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \text{ with } \sum_{k: \lambda_1 < 2\lambda_k} \sum_{j=1}^{n_k} (b_j^k)^2 < \infty \right\}.$$

Main Results

For $f \in \mathcal{C}_s$, define

$$\sigma_f^2 := \int_0^\infty e^{\lambda_1 s} (A(T_s f)^2, \phi_1)_m ds$$

For $h \in \mathcal{C}_c$, define

$$\rho_h^2 := (Ah^2, \phi_1)_m.$$

For $g(x) = \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_l$, we define

$$\beta_g^2 := \int_0^\infty e^{-\lambda_1 s} (A(I_s g)^2, \phi_1)_m ds, \quad \text{where}$$

$$I_s g(x) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{\lambda_k s} b_j^k \phi_j^{(k)}(x)$$

Main Results

For $f \in \mathcal{C}_s$, define

$$\sigma_f^2 := \int_0^\infty e^{\lambda_1 s} (A(T_s f)^2, \phi_1)_m ds$$

For $h \in \mathcal{C}_c$, define

$$\rho_h^2 := (Ah^2, \phi_1)_m.$$

For $g(x) = \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_l$, we define

$$\beta_g^2 := \int_0^\infty e^{-\lambda_1 s} (A(I_s g)^2, \phi_1)_m ds, \quad \text{where}$$

$$I_s g(x) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{\lambda_k s} b_j^k \phi_j^{(k)}(x)$$

Main Results

For $f \in \mathcal{C}_s$, define

$$\sigma_f^2 := \int_0^\infty e^{\lambda_1 s} (A(T_s f)^2, \phi_1)_m ds$$

For $h \in \mathcal{C}_c$, define

$$\rho_h^2 := (Ah^2, \phi_1)_m.$$

For $g(x) = \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_l$, we define

$$\beta_g^2 := \int_0^\infty e^{-\lambda_1 s} (A(I_s g)^2, \phi_1)_m ds, \quad \text{where}$$

$$I_s g(x) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{\lambda_k s} b_j^k \phi_j^{(k)}(x)$$

Main Results

Theorem 1

If $f \in \mathcal{C}_s$, $h \in \mathcal{C}_c$ and $g(x) = \sum_{k:2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_l$, then $\sigma_f^2 < \infty$, $\rho_h^2 < \infty$ and $\beta_g^2 < \infty$. Let

$$F_t(g) := \sum_{k:2\lambda_k < \lambda_1} e^{-\lambda_k t} \sum_{j=1}^{n_k} b_j^k H_{\infty}^{k,j}.$$

Then, it holds that, under $\mathbb{P}_{\nu}(\cdot | \mathcal{E}^c)$, as $t \rightarrow \infty$,

$$\left(e^{\lambda_1 t} \langle \phi_1, X_t \rangle, \frac{\langle g, X_t \rangle - F_t(g)}{\sqrt{\langle \phi_1, X_t \rangle}}, \frac{\langle h, X_t \rangle}{\sqrt{t \langle \phi_1, X_t \rangle}}, \frac{\langle f, X_t \rangle}{\sqrt{\langle \phi_1, X_t \rangle}} \right) \xrightarrow{d} (W^*, G_3(g), G_2(h), G_1(f)), \quad (7)$$

where W^* has the same distribution as W_{∞} conditioned on \mathcal{E}^c , $G_3(g) \sim \mathcal{N}(0, \beta_g^2)$, $G_2(h) \sim \mathcal{N}(0, \rho_h^2)$ and $G_1(f) \sim \mathcal{N}(0, \sigma_f^2)$. Moreover, W^* , $G_3(g)$, $G_2(h)$ and $G_1(f)$ are independent.

Main Results

For $f_1, f_2 \in \mathcal{C}_s$, define

$$\sigma(f_1, f_2) = \int_0^\infty e^{\lambda_1 s} (A(T_s f_1)(T_s f_2), \phi_1)_m ds$$

Then, under $\mathbb{P}_\mu(\cdot \mid \mathcal{E}^c)$,

$$\left(\frac{\langle f_1, X_t \rangle}{\sqrt{\langle \phi_1, X_t \rangle}}, \frac{\langle f_2, X_t \rangle}{\sqrt{\langle \phi_1, X_t \rangle}} \right) \xrightarrow{d} (G_1(f_1), G_1(f_2)), \quad t \rightarrow \infty,$$

where $(G_1(f_1), G_1(f_2))$ is a bivariate normal random variable with covariance

$$\text{Cov}(G_1(f_1), G_1(f_2)) = \sigma(f_1, f_2).$$

For $h_1, h_2 \in \mathcal{C}_c$, define

$$\rho(h_1, h_2) = (Ah_1 h_2, \phi_1)_m.$$

Then we have, under $\mathbb{P}_\mu(\cdot \mid \mathcal{E}^c)$,

$$\left(\frac{\langle h_1, X_t \rangle}{\sqrt{t\langle \phi_1, X_t \rangle}}, \frac{\langle h_2, X_t \rangle}{\sqrt{t\langle \phi_1, X_t \rangle}} \right) \xrightarrow{d} (G_2(h_1), G_2(h_2)), \quad t \rightarrow \infty,$$

where $(G_2(h_1), G_2(h_2))$ is a bivariate normal random variable with covariance

$$\text{Cov}(G_2(h_1), G_2(h_2)) = \rho(h_1, h_2).$$

For $g_1, g_2 \in \mathcal{C}_l$, define

$$\beta(g_1, g_2) = \int_0^\infty e^{-\lambda_1 s} (A(I_s g_1)(I_s g_2), \phi_1)_m ds.$$

Then we have, under $\mathbb{P}_\mu(\cdot \mid \mathcal{E}^c)$,

$$\begin{aligned} & \left(\frac{\langle g_1, X_t \rangle - F_t(g_1)}{\sqrt{\langle \phi_1, X_t \rangle}}, \frac{\langle g_2, X_t \rangle - F_t(g_2)}{\sqrt{\langle \phi_1, X_t \rangle}} \right) \\ & \xrightarrow{d} (G_3(g_1), G_3(g_2)), \end{aligned}$$

where $(G_3(g_1), G_3(g_2))$ is a bivariate normal random variable with covariance

$$\text{Cov}(G_3(g_1), G_3(g_2)) = \beta(g_1, g_2).$$

Main Results

We denote by $\mathbb{D}(\mathbb{R}^d)$ the space of all cadlag functions from $[0, \infty)$ into \mathbb{R}^d , equipped with the Skorokhod topology.

Our next aim is to establish functional central limit theorem: for “good” test function f such that $\langle f, X_t \rangle$ is right continuous and has left limit, we hope that prove

$$C_{t+}(\langle f, X_{t+} \rangle - A_{t+}) \rightarrow \sqrt{W_\infty} G(\cdot) \quad (\text{in distribution})$$

with G being some Gaussian process.

Main Results

We denote by $\mathbb{D}(\mathbb{R}^d)$ the space of all cadlag functions from $[0, \infty)$ into \mathbb{R}^d , equipped with the Skorokhod topology.

Our next aim is to establish functional central limit theorem: for “good” test function f such that $\langle f, X_t \rangle$ is right continuous and has left limit, we hope that prove

$$C_{t+}(\langle f, X_{t+} \rangle - A_{t+}) \rightarrow \sqrt{W_\infty} G(\cdot) \quad (\text{in distribution})$$

with G being some Gaussian process.

Main Results

Fix a $q > \max\{K, -2\lambda_1\}$. For any $p \geq 1$ and $f \in L^p(E, m)$, define

$$U_q f(x) := \begin{cases} \int_0^\infty e^{-qs} T_s f(x) \, ds, & \text{if } \int_0^\infty e^{-qs} T_s(|f|)(x) \, ds < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Then $U_q f \in L^p(E, m)$.

Lemma

If $f \in L^2(E, m)$, then for any $\mu \in \mathcal{M}_F(E)$, the function $\langle U_q f, X_\cdot \rangle$ is in $\mathbb{D}(\mathbb{R})$, \mathbb{P}_μ -a.s.

Main Results

Fix a $q > \max\{K, -2\lambda_1\}$. For any $p \geq 1$ and $f \in L^p(E, m)$, define

$$U_q f(x) := \begin{cases} \int_0^\infty e^{-qs} T_s f(x) \, ds, & \text{if } \int_0^\infty e^{-qs} T_s(|f|)(x) \, ds < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Then $U_q f \in L^p(E, m)$.

Lemma

If $f \in L^2(E, m)$, then for any $\mu \in \mathcal{M}_F(E)$, the function $\langle U_q f, X_\cdot \rangle$ is in $\mathbb{D}(\mathbb{R})$, \mathbb{P}_μ -a.s.

Main Results

For $f \in \mathcal{C}_s$, define

$$\sigma_{f,\tau} := e^{\lambda_1 \tau / 2} \int_0^\infty e^{\lambda_1 s} (A(T_s f)(T_{s+\tau} f), \phi_1)_m ds. \quad (8)$$

We write $\sigma_{f,0}$ as σ_f^2 .

For $h \in \mathcal{C}_c$, define

$$\rho_h^2 := (Ah^2, \phi_1)_m. \quad (9)$$

Recall that for $g(x) = \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_l$, we put

$$F_t(g) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{-\lambda_k t} b_j^k H_{\infty}^{k,j}, \quad t \geq 0.$$

Main Results

For $f \in \mathcal{C}_s$, define

$$\sigma_{f,\tau} := e^{\lambda_1 \tau / 2} \int_0^\infty e^{\lambda_1 s} (A(T_s f)(T_{s+\tau} f), \phi_1)_m ds. \quad (8)$$

We write $\sigma_{f,0}$ as σ_f^2 .

For $h \in \mathcal{C}_c$, define

$$\rho_h^2 := (Ah^2, \phi_1)_m. \quad (9)$$

Recall that for $g(x) = \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_I$, we put

$$F_t(g) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{-\lambda_k t} b_j^k H_{\infty}^{k,j}, \quad t \geq 0.$$

Main Results

For $f \in \mathcal{C}_s$, define

$$\sigma_{f,\tau} := e^{\lambda_1 \tau / 2} \int_0^\infty e^{\lambda_1 s} (A(T_s f)(T_{s+\tau} f), \phi_1)_m ds. \quad (8)$$

We write $\sigma_{f,0}$ as σ_f^2 .

For $h \in \mathcal{C}_c$, define

$$\rho_h^2 := (Ah^2, \phi_1)_m. \quad (9)$$

Recall that for $g(x) = \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} b_j^k \phi_j^{(k)}(x) \in \mathcal{C}_I$, we put

$$F_t(g) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{-\lambda_k t} b_j^k H_{\infty}^{k,j}, \quad t \geq 0.$$

Main Results

For $g \in \mathcal{C}_I$, define

$$\beta_{g,\tau} := e^{-\lambda_1 \tau/2} \int_0^\infty e^{-\lambda_1 s} (A(I_s g)(I_{s+\tau} g), \phi_1)_m ds. \quad (10)$$

where $I_u g(x) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{\lambda_k u} b_j^k \phi_j^{(k)}(x)$, $x \in E$, $u \geq 0$.

We write $\beta_g^2 := \beta_{g,0}$.

For $f \in \mathcal{C}_s$, $g \in \mathcal{C}_I$ and $0 \leq \tau_1 \leq \tau_2$, define

$$\eta_{\tau_1, \tau_2}(f, g) := -e^{\lambda_1(\tau_1 + \tau_2)/2} \int_{\tau_1}^{\tau_2} e^{-\lambda_1 u} (A(T_{\tau_2-u} f)(I_{u-\tau_1} g), \phi_1)_m du. \quad (11)$$

Main Results

For $g \in \mathcal{C}_I$, define

$$\beta_{g,\tau} := e^{-\lambda_1 \tau/2} \int_0^\infty e^{-\lambda_1 s} (A(I_s g)(I_{s+\tau} g), \phi_1)_m ds. \quad (10)$$

where $I_u g(x) := \sum_{k: 2\lambda_k < \lambda_1} \sum_{j=1}^{n_k} e^{\lambda_k u} b_j^k \phi_j^{(k)}(x)$, $x \in E$, $u \geq 0$.

We write $\beta_g^2 := \beta_{g,0}$.

For $f \in \mathcal{C}_s$, $g \in \mathcal{C}_I$ and $0 \leq \tau_1 \leq \tau_2$, define

$$\eta_{\tau_1, \tau_2}(f, g) := -e^{\lambda_1(\tau_1 + \tau_2)/2} \int_{\tau_1}^{\tau_2} e^{-\lambda_1 u} (A(T_{\tau_2-u} f)(I_{u-\tau_1} g), \phi_1)_m du. \quad (11)$$

Main Results

Theorem 2

Assume that $f \in \mathcal{C}_s$, $h \in \mathcal{C}_c$, $g \in \mathcal{C}_l$ and $\mu \in \mathcal{M}_F(E)$. For any $t > 0$, define

$$Y_t^{1,f}(\tau) := e^{\lambda_1(t+\tau)/2} \langle f, X_{t+\tau} \rangle, \quad \tau \geq 0,$$

$$Y_t^{2,h}(\tau) := t^{-1/2} e^{\lambda_1(t+\tau)/2} \langle h, X_{t+\tau} \rangle, \quad \tau \geq 0,$$

and

$$Y_t^{3,g}(\tau) := e^{\lambda_1(t+\tau)/2} (\langle g, X_{t+\tau} - F_{t+\tau}(g) \rangle), \quad \tau \geq 0.$$

Then, for each fixed $t \in [0, \infty)$, $(W_t, Y_t^{1,U_q f}(\cdot), Y_t^{2,h}(\cdot), Y_t^{3,g}(\cdot))$ is a $\mathbb{D}(\mathbb{R}^4)$ -valued random variable under \mathbb{P}_μ , where W_t is regarded as a constant process. Furthermore, under \mathbb{P}_μ ,

$$(W_t, Y_t^{1,U_q f}(\cdot), Y_t^{2,h}(\cdot), Y_t^{3,g}(\cdot))$$

$$\xrightarrow{d, \mathbb{D}(\mathbb{R}^4)} (W_\infty, \sqrt{W_\infty} G^{1,U_q f}(\cdot), \sqrt{W_\infty} G^{2,h}, \sqrt{W_\infty} G^{3,g}(\cdot)).$$

Main Results

Theorem 2 (continue)

Here $G^{2,h} \sim \mathcal{N}(0, \rho_h^2)$ is a constant process, and $\{(G^{1,U_q f}(\tau), G^{3,g}(\tau)) : \tau \geq 0\}$ is a continuous \mathbb{R}^2 -valued Gaussian process with mean 0 and covariance functions given by

$$E(G^{1,U_q f}(\tau_1)G^{1,U_q f}(\tau_2)) = \sigma_{U_q f, \tau_2 - \tau_1}, \quad \text{for } 0 \leq \tau_1 \leq \tau_2, \quad (12)$$

$$E(G^{3,g}(\tau_1)G^{3,g}(\tau_2)) = \beta_{g, \tau_2 - \tau_1}, \quad \text{for } 0 \leq \tau_1 \leq \tau_2, \quad (13)$$

and

$$E(G^{3,g}(\tau_1)G^{1,U_q f}(\tau_2)) = \begin{cases} \eta_{\tau_1, \tau_2}(U_q f, g), & \text{if } 0 \leq \tau_1 < \tau_2, \\ 0, & \text{if } \tau_1 \geq \tau_2 \geq 0. \end{cases} \quad (14)$$

Moreover, W_∞ , $G^{2,h}$ and $(G^{1,U_q f}, G^{3,g})$ are independent.

References

- [1]. Adamczak, R. and Miłoś, P.: CLT for Ornstein-Uhlenbeck branching particle system. Preprint, 2011. arXiv:1111.4559.
- [2]. Asmussen, S. and Hering, H.: *Branching Processes*. Birkhäuser, Boston, 1983.
- [3]. Athreya, K. B.: Limit theorems for multitype continuous time Markov branching processes I: The case of an eigenvector linear functional. *Z. Wahrs. Verw. Gebiete* **12** (1969), 320–332.
- [4]. Athreya, K. B.: Limit theorems for multitype continuous time Markov branching processes II: The case of an arbitrary linear functional. *Z. Wahrs. Verw. Gebiete* **13** (1969), 204–214.
- [5]. Athreya, K. B.: Some refinements in the theory of supercritical multitype Markov branching processes. *Z. Wahrs. Verw. Gebiete* **20** (1971), 47–57.
- [6]. Janson, S.: Functional limit theorems for multitype branching processes and generalized Pólya urns. *Stoch. Proc. Appl.* **110** (2004), 177–245.

References

- [7]. Kesten, H. and Stigum, B. P.: Additional limit theorems for indecomposable multidimensional Galton-Watson processes. *Ann. Math. Statist.* **37** (1966), 1463–1481.
- [8]. Miłoś, P.: Spatial CLT for the supercritical Ornstein-Uhlenbeck superprocess. Preprint, 2012. arXiv:1203:6661.
- [9]. Ren, Y.-X., Song, R. and Zhang, R.: Central limit theorems for super Ornstein-Uhlenbeck processes. *Acta Appl. Math.* **130** (2014), 9–49.
- [10]. Ren, Y.-X., Song, R. and Zhang, R.: Central limit theorems for supercritical branching Markov processes. *J. Funct. Anal.* **266** (2014), 1716-1756.
- [11]. Y.-X. Ren, R. Song and R. Zhang: Central limit theorems for supercritical superprocesses. *Stoch. Proc. and Their Appl.*, 125(2015) 428-457.
- [12]. Ren, Y.-X., Song, R. and Zhang, R.: Central limit theorems for supercritical branching nonsymmetric Markov processes. To appear in *Ann. Probab.* also available at arXiv:1404.0116

Thank you!