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Kesten and Stigum (1966) gave a central limit theorem for multi-type
discrete time processes by using the Jordan canonical form of the
expectation matrix M.

Then Athreya (1969, 1969, 1971) proved central limit theorems for
multi-type continuous time branching processes, also using the
Jordan canonical form and the eigenvectors of the matrix M, the
mean matrix at time t.

Asmussen and Hering (1983) established spatial central limit
theorems for general supercritical branching Markov processes under
a certain condition. )
Janson (2004) extended the results mentioned above and established
functional central limit theorems for multitype branching processes.
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theorems for supercritical branching Ornstein-Uhlenbeck processes
with binary branching mechanism. Mito$ (2012) proved some central
limit theorems for supercritical super Ornstein-Uhlenbeck processes
with branching mechanisms satisfying a fourth moment condition.

Ren, Song and Zhang (2012-2014, 4 papers) established central limit
theorems for supercritical branching Markov processes and
superprocesses. We also extend the functional central limit theorems
of Janson (2004) to supercritical superprocesses with
space-dependent branching mechanisms.

In this talk | will introduce our reuslts for superprocesses. )
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that the spatial central limit theorem(CLT) works for supercritical
superprocesses with space-dependent branching mechanisms..
The conditions should be easy to check and satisfied by a lot of
Markov processes.



First we would like to find conditions on the spatial processes such
that the spatial central limit theorem(CLT) works for supercritical
superprocesses with space-dependent branching mechanisms..
The conditions should be easy to check and satisfied by a lot of
Markov processes.

We also would like to give the functional CLT for supercritical
superprocesses (to give a superprocess version of Jason’s work).
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Superprocesses

E: a locally compact separable metric space.

m: a o-finite Borel measure on E with full support.

0: a separate point not contained in E. 0 will be interpreted as the
cemetery point.

& = {&,MNx}: a Hunt process on E.
¢ :=inf{t > 0: & = 0} is the lifetime of &.
{P; : t > 0}: the semigroup of &.




Superprocesses

The superprocess X = {X; : t > 0} we are going to work with is
determined by three objects:

(i) a spatial mation ¢ = {&;, Nk} on E, which is symmetric with respect
to m.

(i) a branching rate function 5(x) on E which is a non-negative
bounded measurable function.

(iii) a branching mechanism ¢ of the form

w(x,z) = —a(x)z+b(x)22+/ (e7¥—1+4zy)n(x,dy),x € E,z > 0,

(0,400)

1)
where a € By(E), b € B/ (E) and n is a kernel from E to (0, co)
satisfying

sup y2n(x,dy) < oo. (2)

XE€E J(0,400)
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M ( ) denote the space of finite measures on E.
= Je f(x)u(dx) and [l == (1, ) = p(E).

The superprocess X is a Markov process taking values in Mg (E).
For any u € Mg (E), we denote the law of X with initial configuration
p by P,. Then for every f € B/ (E) and € Mg (E),

- |Og ]PN (eiﬁ’xo) = <uf(t7 ')7M>7 (3)

where u¢(t, x) is the unique positive solution to the equation

tAC
Ur(t,X) + My /0 (o Ut — . £))B(E)ds = ML F (&), (4)

Define

a(x) = B(x)a(x) and A(x) = B(x) (Zb(x) + /Oooyzn(x,dy)) :

o
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Superprocesses

Forany f € B,(E) and (t,x) € (0,) x E, define

Tif (x) = My [efo ()% (g,)|

First moment: Forany f € B,(E),

]P)P«<fvxt> = <th7u>

Second moment: For any f € By(E),

Var, (f, X;) = (Vars (f, Xt), // Ts[A(Te_sf)?](x) dsp(dx), (5)

where Var, stands for the variance under PP,,.
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Assumptions on the spatial process

We assume that that there exists a family of continuous strictly
positive symmetric functions {pi(x,y) : t > 0} on E x E such that

/ptxy m(dy).

ai(x) = pi(x, x).

Define

Assumption 1
(i) Foranyt > 0, we have [ a;(x)m(dx) < oo.
(i) There exists to > 0 such that a;,(x) € L%(E, m).

Remark (i) above is equivalent to

(ii") There exists ty > 0 such that for all t > to,
ar(x) € L2(E, m).
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Assumptions

One can check that there exists a family {q:(x,y) : t > 0} of
continuous strictly positive symmetric functions on E x E such that

T (x) = [ elo o) dsg (g, /qt (x,y)f(y)m(dy).

Define a;(x) := gi(x, X). )

It follows from the assumptions (i) and (i) in the previous subsection
that a; enjoys the following properties:

(i) Foranyt > 0, we have

/ ar(x)m(dx) < oo

(if) There exists ty > 0 such that for all t > to,
ai(x) € L(E, m).
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Assumptions

It follows from (i) above that, for any t > 0, T; is a compact operator.
The infinitesimal generator £ of {T; : t > 0} in L(E, m) has purely
discrete spectrum with eigenvalues —\; > —X\y > —A3 > ---.

The first eigenvalue —); is simple and the eigenfunction ¢;
associated with —\; can be chosen to be strictly positive everywhere
and continuous. We will assume that ||¢1]|2 = 1. ¢1 is sometimes

denoted as ¢(1l).

Fork > 1, let {¢j(k),j =1,2,---ng} be an orthonormal basis of the
eigenspace associated with — ).

{(bj(k),j =1,2,---n;k =1,2,...} forms a complete orthonormal
basis of L2(E, 1) and all the eigenfunctions are continuous.
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Assumptions

More Assumptions

Assumption 2  The superprocess is supercritical, that is, A; < 0.
Then
Ps, (f, %) = Tif (X) ~ ™' ast — oco.

Assumption 3 foranyt > 0andx € E,

Ps, {|[Xt[| = 0} € (0, 1).
Remark Here is a sufficient condition for (6). Suppose that
®(z) = infyeg ¥(X,2)B(x) can be written in the form:

d(z) =az 1+ bz? + / (e — 1+ zy)n(dy)
0

witha € R, b > 0and i being a measure on (0, cc) satisfying
Jo Sy Ay?)n(dy) < co. If b +n(0,00) > 0 and ®(z) satisfies
= ﬁ dz < oo then (6) holds.

(6)
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Main Results

Define _
R = eA"t<¢j(k)7Xt>7 t>0.

For any nonzero i € Mg (E), H{" is a martingale under P,.

Strong Law of Large Numbers: If A1 > 2\, then
SUP¢~ 3, }P’#(Htkd )2 < co. Thus the limit

K.j k i 2

HE - I|m HS'  exists P,-a.s. and in L?(P,,).

In particular, we write W; := Htl’l =eMl(p1, X) and W, := HL1L.
{W; : t > 0} is a positive martingale and

W; — W, P,-as.andinL?(P,).

Moreover we have P, (Wso) = (d1, p1).
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Main Results

Question 1: Is it possible to get
W; — W C
L > 9 anormal distribution, t — co?

eAlt/Z

We will use (-, -)m to denote inner product in L?(E, m). J

Question 2: For any bounded measurable f > 0, it will be proved that
eMUf, Xt) — (61, F)mWe  ast — oo.

When (¢1,f)m = 0, what is the proper scaling rate for (f, X;)?
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Denote
C| Z Zbk k) ER
K:di>2)¢ j=1
{ Zbk ®I(x) : 22 = A1, bf eR}
and
N Nk
Cs={gx)= > S b o) with Y S(bf)<oop.
K:di<2X¢ j=1 K:idi<2X¢ j=1

'
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Main Results

For f € Cs, define

For h € C., define
= (Ahz’ Qsl)m

For g(x) = Yyon e, E”k bkgzs(k)(x) € (;, we define

65 ::/ g~ NS (A(Isg)z,qbl)m ds, where
0

a0 = YY)

k:2M <Ap j=1
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Main Results

Iff €Cs,h €Cand g(x) = Yy, <x, s b6 (x) € i, then
of < o0, ph < oo and 33 < oco. Let

Z efAkthka]

k2 <A1

Then, it holds that, under P, (- | £¢), as t — oo,

<ew<¢1,,xt>, (0.%) —Fi(@) _(h.X) <f,xt>>

Vo X0 7 Ve, %) (d, X)
9 (W*,Gs(g), G2(h), Gi(f)), )

where W* has the same distribution as W, conditioned on £°¢,
Gs(g) ~ N(0, 53), Ga(h) ~ N(0, o) and Gy (f) ~ N(0, 07). Moreover,
W*, G3(g), G»(h) and G, (f) are independent.
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Main Results

For f1,f, € Cs, define
o(fufe) = [ &M (ATef)(Tsfe), o) ds
0

Then, under P,,(- | £°),

(\)2;1)(2}’ \/<Z;1Xt)20> 5% (G1(f), Gi()), t— oo,

where (G;(f1), G1(f2)) is a bivariate normal random variable with
covariance

COV(G]_(f]_), Gl(fz)) = O'(f]_, fz)



Main Results

For hy, hy € C., define
p(h1,h2) = (Ahihy, ¢1)m.

Then we have, under P,,(- | £°),

<\/<th<t;;1Xt)it>’ \/%1)(%) % (Ga(h1), Ga(hz)), t — oo,

where (Gz(h1), G2(h2)) is a bivariate normal random variable with
covariance

COV(Gz(hl), Gz(hz)) = p(hl, hz)



Main Results

For 91,9, € (), define

5(01,02) = [ & (A0:)(1:02). 62)m ds.
0
Then we have, under P,,(- | £°),

<<91,Xt> —Fi(91) (92, Xt) — Ft(Qz))
VoL, X) T e, X)

9 (Ga(g1), Ga(g2)),

where (G3(91), Gs(g2)) is a bivariate normal random variable with
covariance

Cov(G3(91), G3(92)) = (91, 92).-
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Main Results

We denote by D(RY) the space of all cadlag functions from [0, o) into
RY, equipped with the Skorokhod topology.

Our next aim is to establish functional central limit theorem: for “good”
test function f such that (f, X;) is right continuous and has left limit,
we hope that prove

Cit-((f, Xer.) — Att.) = VW G(+)  (in distribution)

with G being some Gaussian process.
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0, otherwise.
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Main Results

Fix a g > max{K,—2\:}. Forany p > 1 and f € LP(E, m), define

Uiy | [ e ds, i e ()0 ds < ox,
q 0
0, otherwise.

Then Uqf € LP(E, m).

If f € L2(E, m), then for any u € Mg (E), the function (Ugf, X.) is in
D(R), P,-a.s.
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Main Results

For f € Cs, define
Of ;= e*”/z/ e*lS(A(TSf)(TSHf),qﬁl)m ds. (8)
0

We write ot o as o?.

For h € C., define

ph = (AhZ, d1)m. ©)
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Main Results

For f € Cs, define
o r i @NT2 / M (A(Ts )(Ts+F), é1)m d ®)
0

We write ot o as o?.

For h € C., define

= (Ah?, ¢1)m. )
Recall that for g(x) = Y-y .05, <, 2oita bk Y (x) € ¢, we put

n
> ie—*ktbijgi, t > 0.

K:2X <A1 j=1
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Main Results

Main Results

For g € (), define
Bor 1= N2 [T e NS(Aig)s1r0), b)ns.  (10)
0

where 1ug(X) := Yo, <x, Doita e*k“bjk¢j(k)(x),x €E,u>0.
We write 33 := fg.0.

Forf €(Cs,g €C and 0 < 11 < 7, define

T2
N, (f,9) = —ehi(ntn)/2 / e MY (A(T'rzfuf)(lufng)y (bl)m du.
1 (11)
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Main Results

Assume thatf € Cs, h e Cc, g € C and u € Mg(E). Forany t > 0,
define

Ytl,f (7_) - e’\l(t+7)/2<f,xt+7>, T>0,
Y2N(r) = tL2eMED2 (0 X ) 7> 0,

and
Yts’g(T) =eMM/2((g Xy, — Feir())), 72>0.

Then, for each fixed t € [0, 00), (Wt,Ytl’Uqf(-),Ytz’h(-),Yf’g(-)) is a

D(R*)-valued random variable under P,,, where W, is regarded as a
constant process. Furthermore, under PP,,,

(Wt, Ytl,Uqf (), Ytz,h(_)’ YtS,g ())

12D (Wa, VNG (), VW G2, VW G29())
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Theorem 2 (continue)

Here G2 ~ N/(0, p?) is a constant process, and
{(GYYaf (1), G39(7)) : 7 > 0} is a continuous R?-valued Gaussian
process with mean 0 and covariance functions given by

E(GM (1)GMN (12)) = 0upf,rp—ryy TOrO< T <72, (12)

E(G*9(m)G*¥(2)) = fgrym, fOrO<m<m,  (13)
and

m(Ugf,g),  if0<7 <,
E(G3’9(71)Gl’uqf(rz))—{ 81’2( af,9) it 71 ;;2 ;3 (14)

Moreover, W, G>" and (G1Y%" G39) are independent.
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