

Why is Andreas Kyprianou so obsessed with Lévy processes?

Juan Carlos Pardo

CIMAT, Mexico

Outline of the talk:

- Poisson processes.
- Martingales in continuous time.
- Poisson random measures.
- Lévy processes.
- Lévy-Itô decomposition.
- Strong Markov property.

Poisson processes

A Poisson process with parameter $c > 0$ is a renewal process where the time between occurrences is exponentially distributed with parameter c .

Poisson processes

A Poisson process with parameter $c > 0$ is a renewal process where the time between occurrences is exponentially distributed with parameter c .

More precisely take a sequence $(\tau_n, n \geq 1)$ of independent exponential random variables with parameter c and introduce the partial sums $S_n = \tau_1 + \cdots + \tau_n$, $n \in \mathbb{N}$. The counting or renewal process

$$N_t = \sup \left\{ n \in \mathbb{N} : S_n \leq t \right\}, \quad t \geq 0,$$

is called a Poisson process of parameter c .

Poisson processes

A Poisson process with parameter $c > 0$ is a renewal process where the time between occurrences is exponentially distributed with parameter c .

More precisely take a sequence $(\tau_n, n \geq 1)$ of independent exponential random variables with parameter c and introduce the partial sums $S_n = \tau_1 + \cdots + \tau_n$, $n \in \mathbb{N}$. The counting or renewal process

$$N_t = \sup \left\{ n \in \mathbb{N} : S_n \leq t \right\}, \quad t \geq 0,$$

is called a Poisson process of parameter c .

Let us explain some details of the above definition.

Poisson processes

A Poisson process with parameter $c > 0$ is a renewal process where the time between occurrences is exponentially distributed with parameter c .

More precisely take a sequence $(\tau_n, n \geq 1)$ of independent exponential random variables with parameter c and introduce the partial sums $S_n = \tau_1 + \cdots + \tau_n$, $n \in \mathbb{N}$. The counting or renewal process

$$N_t = \sup \left\{ n \in \mathbb{N} : S_n \leq t \right\}, \quad t \geq 0,$$

is called a Poisson process of parameter c .

Let us explain some details of the above definition.

We first recall that S_n has the same law as a Gamma distribution with parameters c and n .

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\mathbb{P}(N_t = k) = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] =$$

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\mathbb{P}(N_t = k) = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t\}} \mathbb{P}(\tau_{n+1} \geq t - S_k) \right]$$

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\begin{aligned}\mathbb{P}(N_t = k) &= \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t\}} \mathbb{P}(\tau_{n+1} \geq t - S_k) \right] \\ &= \frac{1}{\Gamma(k)} \int_0^t e^{-c(t-x)} c^k e^{-cx} x^{k-1} dx = \frac{c^k t^k}{k!} e^{-ct}.\end{aligned}$$

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\begin{aligned}\mathbb{P}(N_t = k) &= \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t\}} \mathbb{P}(\tau_{n+1} \geq t - S_k) \right] \\ &= \frac{1}{\Gamma(k)} \int_0^t e^{-c(t-x)} c^k e^{-cx} x^{k-1} dx = \frac{c^k t^k}{k!} e^{-ct}.\end{aligned}$$

This implies that for any fixed $t > 0$, N_t is a Poisson r.v. with parameter tc , from where this process takes his name.

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\begin{aligned}\mathbb{P}(N_t = k) &= \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t\}} \mathbb{P}(\tau_{n+1} \geq t - S_k) \right] \\ &= \frac{1}{\Gamma(k)} \int_0^t e^{-c(t-x)} c^k e^{-cx} x^{k-1} dx = \frac{c^k t^k}{k!} e^{-ct}.\end{aligned}$$

This implies that for any fixed $t > 0$, N_t is a Poisson r.v. with parameter tc , from where this process takes his name.

The lack of memory property of the exponential law implies that for every $0 \leq s \leq t$, the increment $N_{t+s} - N_t$ is a Poisson r.v. with parameter cs and is independent of the σ -field generated by $(N_u, 0 \leq u \leq t)$.

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\begin{aligned}\mathbb{P}(N_t = k) &= \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t\}} \mathbb{P}(\tau_{n+1} \geq t - S_k) \right] \\ &= \frac{1}{\Gamma(k)} \int_0^t e^{-c(t-x)} c^k e^{-cx} x^{k-1} dx = \frac{c^k t^k}{k!} e^{-ct}.\end{aligned}$$

This implies that for any fixed $t > 0$, N_t is a Poisson r.v. with parameter tc , from where this process takes his name.

The lack of memory property of the exponential law implies that for every $0 \leq s \leq t$, the increment $N_{t+s} - N_t$ is a Poisson r.v. with parameter cs and is independent of the σ -field generated by $(N_u, 0 \leq u \leq t)$. **Proof by picture**

Therefore, for any fixed $k \in \mathbb{N}$ and $t \in \mathbb{R}_+$

$$\begin{aligned}\mathbb{P}(N_t = k) &= \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t < S_{k+1}\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{S_k \leq t\}} \mathbb{P}(\tau_{n+1} \geq t - S_k) \right] \\ &= \frac{1}{\Gamma(k)} \int_0^t e^{-c(t-x)} c^k e^{-cx} x^{k-1} dx = \frac{c^k t^k}{k!} e^{-ct}.\end{aligned}$$

This implies that for any fixed $t > 0$, N_t is a Poisson r.v. with parameter tc , from where this process takes his name.

The lack of memory property of the exponential law implies that for every $0 \leq s \leq t$, the increment $N_{t+s} - N_t$ is a Poisson r.v. with parameter cs and is independent of the σ -field generated by $(N_u, 0 \leq u \leq t)$.

In other words, the Poisson process $N = (N_t, t \geq 0)$ is an increasing process with independent and homogeneous increments and jumps of size one.

Martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. an increasing sequence of sub- σ -algebras, satisfying the **usual conditions**,

Martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. an increasing sequence of sub- σ -algebras, satisfying the **usual conditions**, in other words \mathcal{F}_t is \mathbb{P} -complete and the filtration is right-continuous, i.e.

$$\bigcap_{u > t} \mathcal{F}_u = \mathcal{F}_t,$$

Martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. an increasing sequence of sub- σ -algebras, satisfying the **usual conditions**, in other words \mathcal{F}_t is \mathbb{P} -complete and the filtration is right-continuous, i.e.

$$\bigcap_{u > t} \mathcal{F}_u = \mathcal{F}_t,$$

A stochastic process $M = (M_t, t \geq 0)$ is a **martingale** if

Martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. an increasing sequence of sub- σ -algebras, satisfying the **usual conditions**, in other words \mathcal{F}_t is \mathbb{P} -complete and the filtration is right-continuous, i.e.

$$\bigcap_{u > t} \mathcal{F}_u = \mathcal{F}_t,$$

A stochastic process $M = (M_t, t \geq 0)$ is a **martingale** if

- i) for each t , we have $\mathbb{E}[|M_t|] < \infty$,

Martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. an increasing sequence of sub- σ -algebras, satisfying the **usual conditions**, in other words \mathcal{F}_t is \mathbb{P} -complete and the filtration is right-continuous, i.e.

$$\bigcap_{u > t} \mathcal{F}_u = \mathcal{F}_t,$$

A stochastic process $M = (M_t, t \geq 0)$ is a **martingale** if

- i) for each t , we have $\mathbb{E}[|M_t|] < \infty$,
- ii) for $0 \leq s \leq t$,

$$\mathbb{E}[M_t | \mathcal{F}_s] = M_s.$$

Martingales

Let us consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. an increasing sequence of sub- σ -algebras, satisfying the **usual conditions**, in other words \mathcal{F}_t is \mathbb{P} -complete and the filtration is right-continuous, i.e.

$$\bigcap_{u > t} \mathcal{F}_u = \mathcal{F}_t,$$

A stochastic process $M = (M_t, t \geq 0)$ is a **martingale** if

- i) for each t , we have $\mathbb{E}[|M_t|] < \infty$,
- ii) for $0 \leq s \leq t$,

$$\mathbb{E}[M_t | \mathcal{F}_s] = M_s.$$

We say that M is **right-continuous** if its paths are right-continuous a.s.

Maximal inequality (Doob): Let M be a right-continuous martingale such that for $p > 1$ and $T > 0$, we have $\sup_{s \in [0, T]} \mathbb{E}[|M_s|^p] < \infty$, then

$$\mathbb{E} \left[\sup_{s \in [0, T]} |M_s|^p \right] \leq \left(\frac{p}{p-1} \right)^p \sup_{s \in [0, T]} \mathbb{E}[|M_s|^p].$$

Maximal inequality (Doob): Let M be a right-continuous martingale such that for $p > 1$ and $T > 0$, we have $\sup_{s \in [0, T]} \mathbb{E}[|M_s|^p] < \infty$, then

$$\mathbb{E} \left[\sup_{s \in [0, T]} |M_s|^p \right] \leq \left(\frac{p}{p-1} \right)^p \sup_{s \in [0, T]} \mathbb{E}[|M_s|^p].$$

We say that $\tau : \Omega \rightarrow [0, \infty]$ is a **stopping time** if for $t \geq 0$, the set $\{\tau \leq t\} \in \mathcal{F}_t$.

Maximal inequality (Doob): Let M be a right-continuous martingale such that for $p > 1$ and $T > 0$, we have $\sup_{s \in [0, T]} \mathbb{E}[|M_s|^p] < \infty$, then

$$\mathbb{E} \left[\sup_{s \in [0, T]} |M_s|^p \right] \leq \left(\frac{p}{p-1} \right)^p \sup_{s \in [0, T]} \mathbb{E}[|M_s|^p].$$

We say that $\tau : \Omega \rightarrow [0, \infty]$ is a **stopping time** if for $t \geq 0$, the set $\{\tau \leq t\} \in \mathcal{F}_t$.

Very important example: Let $X = (X_t, t \geq 0)$ be a real-valued stochastic process which is adapted to the filtration $(\mathcal{F}_t)_{t \geq 0}$, i.e. X_t is \mathcal{F}_t -measurable. If X is right-continuous and $A \in \mathcal{B}(\mathbb{R})$ open or closed, then

$$\tau_A = \inf\{t \geq 0 : X_t \in A\}$$

is a stopping time.

Optimal stopping theorem: Suppose that τ is an a.s. finite stopping time, then

- i) The process $(M_{\tau \wedge t}, t \geq 0)$ is a martingale.
- ii) If M is uniformly integrable. Then $\mathbb{E}[M_\tau] = \mathbb{E}[M_0]$.

Optimal stopping theorem: Suppose that τ is an a.s. finite stopping time, then

- i) The process $(M_{\tau \wedge t}, t \geq 0)$ is a martingale.
- ii) If M is uniformly integrable. Then $\mathbb{E}[M_\tau] = \mathbb{E}[M_0]$.

Example: Let $B = (B_t, t \geq 0)$ be a standard Brownian motion and $\tau_{a,b} = \inf\{t \geq 0 : B_t \notin [a, b]\}$, where $a < 0 < b$.

Optimal stopping theorem: Suppose that τ is an a.s. finite stopping time, then

- i) The process $(M_{\tau \wedge t}, t \geq 0)$ is a martingale.
- ii) If M is uniformly integrable. Then $\mathbb{E}[M_\tau] = \mathbb{E}[M_0]$.

Example: Let $B = (B_t, t \geq 0)$ be a standard Brownian motion and $\tau_{a,b} = \inf\{t \geq 0 : B_t \notin [a, b]\}$, where $a < 0 < b$. Recall that B is a martingale, since it has stationary and independent increments. Moreover $(B_{\tau_{a,b} \wedge t}, t \geq 0)$ is a bounded martingale.

Optimal stopping theorem: Suppose that τ is an a.s. finite stopping time, then

- i) The process $(M_{\tau \wedge t}, t \geq 0)$ is a martingale.
- ii) If M is uniformly integrable. Then $\mathbb{E}[M_\tau] = \mathbb{E}[M_0]$.

Example: Let $B = (B_t, t \geq 0)$ be a standard Brownian motion and $\tau_{a,b} = \inf\{t \geq 0 : B_t \notin [a, b]\}$, where $a < 0 < b$. Recall that B is a martingale, since it has stationary and independent increments. Moreover $(B_{\tau_{a,b} \wedge t}, t \geq 0)$ is a bounded martingale. From the Optimal stopping theorem, we have

$$0 = \mathbb{E}[B_{\tau_{a,b}}] = a \mathbb{P}(B_{\tau_{a,b}} = a) + b \mathbb{P}(B_{\tau_{a,b}} = b).$$

On the other hand $\mathbb{P}(B_{\tau_{a,b}} = a) + \mathbb{P}(B_{\tau_{a,b}} = b) = 1$, implying

$$\mathbb{P}(B_{\tau_{a,b}} = b) = -\frac{a}{b-a}.$$

Convergence theorem: Suppose that M is an uniformly integrable martingale. Then $\lim_{t \rightarrow \infty} M_t = M_\infty$ exists a.s., and in $L^1(\mathbb{P})$. Moreover, we have

$$M_t = \mathbb{E}[M_\infty | \mathcal{F}_t] \quad \text{for all } t \geq 0.$$

Convergence theorem: Suppose that M is an uniformly integrable martingale. Then $\lim_{t \rightarrow \infty} M_t = M_\infty$ exists a.s., and in $L^1(\mathbb{P})$. Moreover, we have

$$M_t = \mathbb{E}[M_\infty | \mathcal{F}_t] \quad \text{for all } t \geq 0.$$

More examples: We are interested in two families of martingales related to the natural filtration (\mathcal{F}_t) of the Poisson process N .

Convergence theorem: Suppose that M is an uniformly integrable martingale. Then $\lim_{t \rightarrow \infty} M_t = M_\infty$ exists a.s., and in $L^1(\mathbb{P})$. Moreover, we have

$$M_t = \mathbb{E}[M_\infty | \mathcal{F}_t] \quad \text{for all } t \geq 0.$$

More examples: We are interested in two families of martingales related to the natural filtration (\mathcal{F}_t) of the Poisson process N .

Let us define

$$M_t = N_t - ct, \quad \text{and} \quad \xi_t^q = \exp \left\{ -qN_t + ct(1 - e^{-q}) \right\}, \quad t \geq 0, \quad q > 0.$$

Convergence theorem: Suppose that M is an uniformly integrable martingale. Then $\lim_{t \rightarrow \infty} M_t = M_\infty$ exists a.s., and in $L^1(\mathbb{P})$. Moreover, we have

$$M_t = \mathbb{E}[M_\infty | \mathcal{F}_t] \quad \text{for all } t \geq 0.$$

More examples: We are interested in two families of martingales related to the natural filtration (\mathcal{F}_t) of the Poisson process N .

Let us define

$$M_t = N_t - ct, \quad \text{and} \quad \xi_t^q = \exp \left\{ -qN_t + ct(1 - e^{-q}) \right\}, \quad t \geq 0, \quad q > 0.$$

From the independence and the homogeneity of the increments, we get

$$\mathbb{E}[N_{t+s} | \mathcal{F}_t] = \mathbb{E}[N_{t+s} - N_t + N_t | \mathcal{F}_t] = N_t + cs,$$

then subtracting $c(t + s)$ in both sides, we deduce that $M = (M_t, t \geq 0)$ is a martingale related to (\mathcal{F}_t) .

The additivity of the exponents and similar arguments as above, give us that $\xi^q = (\xi_t^q, t \geq 0)$ is also a martingale related to (\mathcal{F}_t) .

The additivity of the exponents and similar arguments as above, give us that $\xi^q = (\xi_t^q, t \geq 0)$ is also a martingale related to (\mathcal{F}_t) .

An interesting example Let $H = (H_t, t \geq 0)$ be a left-continuous adapted process. Now, let us introduce the stochastic integral related to the Poisson process N by

$$\int_0^t H_s dN_s = \sum_{s \leq t} H_s \Delta N_s, \quad \text{where} \quad \Delta N_s = N_s - N_{s-}.$$

The additivity of the exponents and similar arguments as above, give us that $\xi^q = (\xi_t^q, t \geq 0)$ is also a martingale related to (\mathcal{F}_t) .

An interesting example Let $H = (H_t, t \geq 0)$ be a left-continuous adapted process. Now, let us introduce the stochastic integral related to the Poisson process N by

$$\int_0^t H_s dN_s = \sum_{s \leq t} H_s \Delta N_s, \quad \text{where} \quad \Delta N_s = N_s - N_{s-}.$$

Observe that from the definition of N , we have the following identity

$$\int_0^t H_s dN_s = \sum_{n=1}^{\infty} H_{\tau_n} \mathbb{1}_{\{\tau_n \leq t\}}.$$

Proposition

Let H be a left-continuous and adapted process with

$$\mathbb{E} \left(\int_0^t |H_s| ds \right) < \infty, \quad \text{for all } t \geq 0,$$

then the compensated integral

$$\int_0^t H_s dN_s - c \int_0^t H_s ds, \quad t \geq 0,$$

is a martingale related to (\mathcal{F}_t) . Moreover, we have the well-known **compensation formula**

$$\mathbb{E} \left[\int_0^t H_s dN_s \right] = c \mathbb{E} \left[\int_0^t H_s ds \right].$$

Poisson point process

Let E be a polish space and μ a σ -finite measure on E . We say that $(M(B), B \in \mathcal{E})$ is a **Poisson random measure** with intensity μ if it satisfies:

Poisson point process

Let E be a polish space and μ a σ -finite measure on E . We say that $(M(B), B \in \mathcal{E})$ is a **Poisson random measure** with intensity μ if it satisfies:

- i) for each $B \in \mathcal{E}$ with $\mu(B) < \infty$, $M(B)$ is Poisson distributed with parameter $\mu(B)$,

Poisson point process

Let E be a polish space and μ a σ -finite measure on E . We say that $(M(B), B \in \mathcal{E})$ is a **Poisson random measure** with intensity μ if it satisfies:

- i) for each $B \in \mathcal{E}$ with $\mu(B) < \infty$, $M(B)$ is Poisson distributed with parameter $\mu(B)$,
- ii) if $B_1, \dots, B_n \in \mathcal{E}$ are disjoint, then the r.v.'s $M(B_1), \dots, M(B_n)$ are independent.

Poisson point process

Let E be a polish space and μ a σ -finite measure on E . We say that $(M(B), B \in \mathcal{E})$ is a **Poisson random measure** with intensity μ if it satisfies:

- i) for each $B \in \mathcal{E}$ with $\mu(B) < \infty$, $M(B)$ is Poisson distributed with parameter $\mu(B)$,
- ii) if $B_1, \dots, B_n \in \mathcal{E}$ are disjoint, then the r.v.'s $M(B_1), \dots, M(B_n)$ are independent.

Construction: Let us suppose $c = \mu(E) < \infty$. Let $(\xi_i)_{i \geq 1}$ be a sequence of i.i.d. r.v.'s with common distribution $c^{-1}\mu$ and N a Poisson r.v. with parameter c which is independent of (ξ_i) . The random measure

$$M(\cdot) = \sum_{j=1}^N \delta_{\xi_j}(\cdot),$$

is a Poisson random measure with intensity $\mu(\cdot)$.

Since μ is σ -finite, then there exist a partition $(E_n)_{n \geq 0}$ of E such that $\mu(E_n) < \infty$, for each n . Therefore, one can construct a sequence M_n of Poisson random measures with intensity $\mu(\cdot \cap E_n)$ and such that $M = \sum M_n$ is a Poisson random measure with intensity μ .

Since μ is σ -finite, then there exist a partition $(E_n)_{n \geq 0}$ of E such that $\mu(E_n) < \infty$, for each n . Therefore, one can construct a sequence M_n of Poisson random measures with intensity $\mu(\cdot \cap E_n)$ and such that $M = \sum M_n$ is a Poisson random measure with intensity μ .

Now, we consider the space $E \times [0, \infty)$, the measure $\mu \otimes dx$ and a Poisson random measure M with intensity $\mu \otimes dx$. One can show that a.s. for all $t \geq 0$,

$$M(E \times \{t\}) = 0 \text{ or } 1.$$

Since μ is σ -finite, then there exist a partition $(E_n)_{n \geq 0}$ of E such that $\mu(E_n) < \infty$, for each n . Therefore, one can construct a sequence M_n of Poisson random measures with intensity $\mu(\cdot \cap E_n)$ and such that $M = \sum M_n$ is a Poisson random measure with intensity μ .

Now, we consider the space $E \times [0, \infty)$, the measure $\mu \otimes dx$ and a Poisson random measure M with intensity $\mu \otimes dx$. One can show that a.s. for all $t \geq 0$,

$$M(E \times \{t\}) = 0 \text{ or } 1.$$

This allow us to define a process $(e(t), t \geq 0)$, that we will call **Poisson point process** taking values on $E \cup \Upsilon$, where Υ is an additional isolated point, such that $M(E \times \{t\}) = 0$, then $e(t) = \Upsilon$ and if $M(E \times \{t\}) = 1$, then the restriction of M to $E \times \{t\}$ is the Dirac measure on the point (ε, t) and we define $e(t) = \varepsilon$. In other words, we can write the Poisson random measure M as follows

$$M = \sum_{t \geq 0} \delta_{(e(t), t)}.$$

Proposition

Let B such that $\mu(B) < \infty$, and define the counting process

$$N_t^B = \#\{s \leq t : e(s) \in B\}, \quad t \geq 0,$$

and the first hitting time

$$T_B = \inf\{t \geq 0 : e(t) \in B\}.$$

Then

Proposition

Let B such that $\mu(B) < \infty$, and define the counting process

$$N_t^B = \#\{s \leq t : e(s) \in B\}, \quad t \geq 0,$$

and the first hitting time

$$T_B = \inf\{t \geq 0 : e(t) \in B\}.$$

Then

- i) N^B is a Poisson process with parameter $\mu(B)$ adapted to the filtration $(\mathcal{G}_t)_{t \geq 0}$ generated by e . The time T_B is a stopping time with respect to (\mathcal{G}_t) and it is an exponential r.v. with parameter $\mu(B)$.

Proposition

Let B such that $\mu(B) < \infty$, and define the counting process

$$N_t^B = \#\{s \leq t : e(s) \in B\}, \quad t \geq 0,$$

and the first hitting time

$$T_B = \inf\{t \geq 0 : e(t) \in B\}.$$

Then

- i) N^B is a Poisson process with parameter $\mu(B)$ adapted to the filtration $(\mathcal{G}_t)_{t \geq 0}$ generated by e . The time T_B is a stopping time with respect to (\mathcal{G}_t) and it is an exponential r.v. with parameter $\mu(B)$.
- ii) $e(T_B)$ and T_B are independent, and for $A \in \mathcal{E}$

$$\mathbb{P}(e(T_B) \in A) = \frac{\mu(A \cap B)}{\mu(B)}.$$

Proof: The first part of (i) is straightforward, since

$$N_t^B = \sum_{s \leq t} \delta_{(e(s), s)}(B).$$

Proof: The first part of (i) is straightforward, since

$$N_t^B = \sum_{s \leq t} \delta_{(e(s), s)}(B).$$

The r.v. T_B is the first jump of N^B , implying that it is exponential with parameter $\mu(B)$.

Proof: The first part of (i) is straightforward, since

$$N_t^B = \sum_{s \leq t} \delta_{(e(s), s)}(B).$$

The r.v. T_B is the first jump of N^B , implying that it is exponential with parameter $\mu(B)$. In order to prove the second part of the proposition, lets take $A \subset B$ and observe that

$$\mathbb{P}(T_B \leq t, e(T_B) \in A) = \mathbb{P}(T_A < T_{B \setminus A}, T_A \wedge T_{B \setminus A} \leq t),$$

where T_A denotes the first jump of the Poisson process N^A .

Proof: The first part of (i) is straightforward, since

$$N_t^B = \sum_{s \leq t} \delta_{(e(s), s)}(B).$$

The r.v. T_B is the first jump of N^B , implying that it is exponential with parameter $\mu(B)$. In order to prove the second part of the proposition, lets take $A \subset B$ and observe that

$$\mathbb{P}(T_B \leq t, e(T_B) \in A) = \mathbb{P}(T_A < T_{B \setminus A}, T_A \wedge T_{B \setminus A} \leq t),$$

where T_A denotes the first jump of the Poisson process N^A . Since A and $B \setminus A$ are disjoint, T_A and $T_{B \setminus A}$ are independent and exponentially distributed with parameter $\mu(A)$ and $\mu(B) - \mu(A)$, respectively. Therefore,

$$\mathbb{P}(T_B \leq t, e(T_B) \in A) = \frac{\mu(A)}{\mu(B)} (1 - e^{-t\mu(B)}).$$

Let $B \in \mathcal{E}$, $0 \leq t_1 < t_2$ and define

$$H_t(y) = \mathbf{1}_{B \times (t_1, t_2]}(y, t),$$

in this case, it is clear

$$\mathbb{E} \left[\sum_{0 \leq t < \infty} H_t(e(t)) \right] = (t_2 - t_1)\mu(B).$$

Let $B \in \mathcal{E}$, $0 \leq t_1 < t_2$ and define

$$H_t(y) = \mathbf{1}_{B \times (t_1, t_2]}(y, t),$$

in this case, it is clear

$$\mathbb{E} \left[\sum_{0 \leq t < \infty} H_t(e(t)) \right] = (t_2 - t_1)\mu(B).$$

From this fact, we deduce the **compensation formula** for Poisson point processes: Let $H = (H_t, t \geq 0)$ be a right-continuous process taking values on $E \cup \Upsilon$ and such that $H_t(\Upsilon) = 0$. Then

$$\mathbb{E} \left[\sum_{0 \leq t < \infty} H_t(e(t)) \right] = \mathbb{E} \left[\int_0^\infty dt \int_E H_t(y) \mu(dy) \right].$$

In a similar way, one can obtain the **exponential formula**: Let f be a positive measurable function defined on $E \cup \Upsilon$ with $f(\Upsilon) = 0$ and such that

$$\int_E |1 - e^{-f(y)}| \mu(dy) < \infty.$$

Then for all $t \geq 0$,

$$\mathbb{E} \left[\exp \left\{ - \sum_{0 \leq s \leq t} f(e(s)) \right\} \right] = \exp \left\{ -t \int_E (1 - e^{-f(y)}) \mu(dy) \right\}.$$

Lévy processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say that $X = (X_t, t \geq 0)$ is a real-valued **Lévy process** if for $0 \leq s \leq t$, the increment $X_{t+s} - X_t$ is independent from $(X_u, 0 \leq u \leq t)$ and has the same distribution as X_s .

Lévy processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say that $X = (X_t, t \geq 0)$ is a real-valued **Lévy process** if for $0 \leq s \leq t$, the increment $X_{t+s} - X_t$ is independent from $(X_u, 0 \leq u \leq t)$ and has the same distribution as X_s .

Observe that necessarily $\mathbb{P}(X_0 = 0) = 1$. We write \mathbb{P}_x for the measure corresponding to $(x + X_t, t \geq 0)$ under \mathbb{P} .

Lévy processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say that $X = (X_t, t \geq 0)$ is a real-valued **Lévy process** if for $0 \leq s \leq t$, the increment $X_{t+s} - X_t$ is independent from $(X_u, 0 \leq u \leq t)$ and has the same distribution as X_s .

Observe that necessarily $\mathbb{P}(X_0 = 0) = 1$. We write \mathbb{P}_x for the measure corresponding to $(x + X_t, t \geq 0)$ under \mathbb{P} .

From the decomposition

$$X_1 = X_{1/n} + (X_{2/n} - X_{1/n}) + \cdots + (X_{n/n} - X_{(n-1)/n}),$$

we see that X_1 is infinitely divisible. The law of an infinitely divisible r.v. is characterized by the so-called **Lévy-Khintchine formula** which implies the following result.

Theorem

Let X be a Lévy processes defined on $(\Omega, \mathcal{F}, \mathbb{P})$, then

$$\mathbb{E} \left[\exp\{i\lambda X_t\} \right] = \exp\{-t\Psi(\lambda)\}, \quad t \geq 0, \lambda \in \mathbb{R},$$

where

$$\Psi(\lambda) = ia\lambda + \frac{\sigma^2}{2}\lambda^2 + \int_{(-\infty, \infty)} \left(1 - e^{i\lambda x} + i\lambda x \mathbf{1}_{\{|x| < 1\}} \right) \Pi(dx),$$

for $a \in \mathbb{R}$, $\sigma \geq 0$ and a measure Π on $\mathbb{R} \setminus \{0\}$ such that

$$\int_{(-\infty, \infty)} (1 \wedge x^2) \Pi(dx) < \infty.$$

Examples:

- In the case of the standard Brownian motion, $a = 0$, $\sigma = 1$, $\Pi \equiv 0$ and

$$\Psi(\lambda) = \frac{\lambda^2}{2}.$$

Examples:

- In the case of the standard Brownian motion, $a = 0$, $\sigma = 1$, $\Pi \equiv 0$ and

$$\Psi(\lambda) = \frac{\lambda^2}{2}.$$

- In the case of the compound Poisson process with jump rate c and jump distribution F , we have

$$a = -c \int_{\{|x|<1\}} xF(\mathrm{d}x), \quad \sigma = 0, \quad \Pi(\mathrm{d}x) = cF(\mathrm{d}x),$$

and

$$\Psi(\lambda) = c \int_{(-\infty, \infty)} \left(1 - e^{i\lambda x}\right) F(\mathrm{d}x).$$

- In the case of the Gamma process,

$$a = c(e^{-1} - 1), \quad \sigma = 0, \quad \Pi(dx) = c \frac{e^{-x}}{x} \mathbf{1}_{\{x>0\}} dx,$$

and

$$\Psi(\lambda) = c \log(1 - i\lambda).$$

- In the case of the Gamma process,

$$a = c(e^{-1} - 1), \quad \sigma = 0, \quad \Pi(dx) = c \frac{e^{-x}}{x} \mathbf{1}_{\{x>0\}} dx,$$

and

$$\Psi(\lambda) = c \log(1 - i\lambda).$$

- In the case of the strictly stable process with index $\alpha \in (0, 1) \cup (1, 2)$, we have

$$\sigma = 0, \quad \Pi(dx) = \left(\frac{c_+}{x^{1+\alpha}} \mathbf{1}_{\{x>0\}} + \frac{c_-}{|x|^{1+\alpha}} \mathbf{1}_{\{x<0\}} \right) dx$$

with $c_+ \geq 0$, $c_- \geq 0$, and

$$\Psi(\lambda) = c|\lambda|^\alpha (1 - i\beta \operatorname{sgn}(\lambda) \tan(\pi\alpha/2)) + ia\lambda$$

where $\beta = (c_+ - c_-)/(c_+ + c_-)$. If $\alpha = 1$, $c_+ = c_- \geq 0$ and $\Psi(\lambda) = c_+|\lambda| + ia\lambda$. The latter case is known as the Cauchy process with drift.

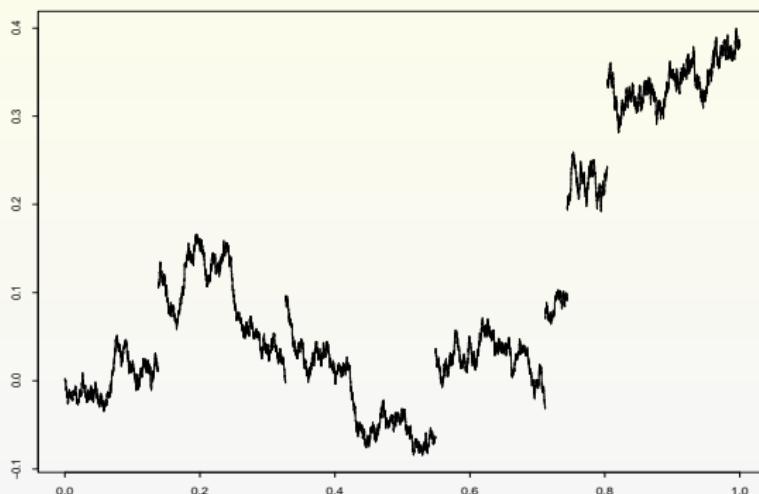


Figure : A sample path of the independent sum of a Brownian motion and a compound Poisson process.

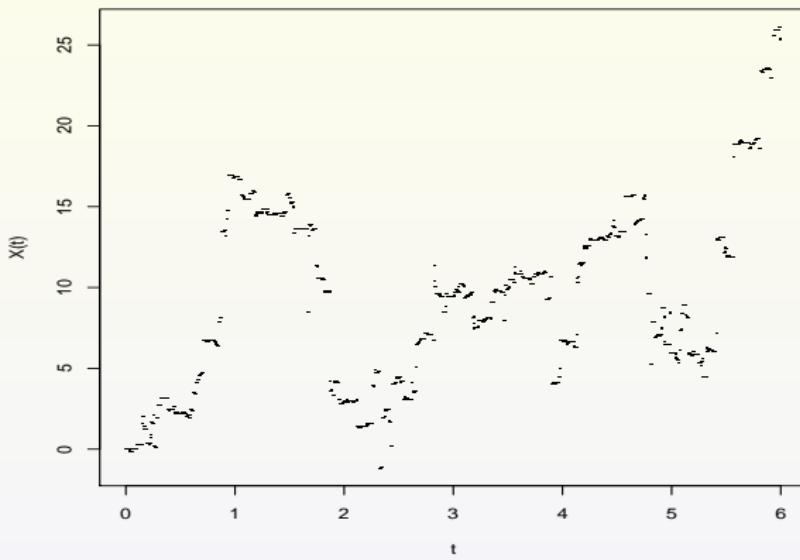


Figure : $a = 0$, $\sigma = 0$ and

$$\Pi(dx) = \left(\frac{e^x}{(e^x - 1)^{3/2}} \mathbf{1}_{\{x > 0\}} + \frac{e^{-x}}{(e^{-x} - 1)^{3/2}} \mathbf{1}_{\{x < 0\}} \right) dx.$$

Lévy-Itô decomposition

This decomposition provides us a probabilistic interpretation of the Lévy-Khintchine formula. In particular, it describes the way the measure Π determines the structure of the jumps of a Lévy process.

Lévy-Itô decomposition

This decomposition provides us a probabilistic interpretation of the Lévy-Khintchine formula. In particular, it describes the way the measure Π determines the structure of the jumps of a Lévy process.

The process X can be written as follows

$$X_t = -at + \sigma B_t + Y_t,$$

where B is a standard Brownian motion and Y is a Lévy process independent of B which is determined by the jumps, as we will see later.

Lévy-Itô decomposition

This decomposition provides us a probabilistic interpretation of the Lévy-Khintchine formula. In particular, it describes the way the measure Π determines the structure of the jumps of a Lévy process.

The process X can be written as follows

$$X_t = -at + \sigma B_t + Y_t,$$

where B is a standard Brownian motion and Y is a Lévy process independent of B which is determined by the jumps, as we will see later.

Let $(e(t), t \geq 0)$ be a Poisson point process on $\mathbb{R} \times [0, \infty)$ with intensity Π . Observe that $\Pi(\{x : |x| \geq 1\}) < \infty$, then

$$\sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} |e(s)| < \infty, \quad \text{a.s.}$$

Lévy-Itô decomposition

This decomposition provides us a probabilistic interpretation of the Lévy-Khintchine formula. In particular, it describes the way the measure Π determines the structure of the jumps of a Lévy process.

The process X can be written as follows

$$X_t = -at + \sigma B_t + Y_t,$$

where B is a standard Brownian motion and Y is a Lévy process independent of B which is determined by the jumps, as we will see later.

Let $(e(t), t \geq 0)$ be a Poisson point process on $\mathbb{R} \times [0, \infty)$ with intensity Π . Observe that $\Pi(\{x : |x| \geq 1\}) < \infty$, then **Thanks to the compensation formula**

$$\sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} |e(s)| < \infty, \quad \text{a.s.}$$

Let us define

$$Y_t^{(1)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} e(s), \quad t \geq 0.$$

The process $(Y_t^{(1)}, t \geq 0)$ is a compound Poisson process with

Let us define

$$Y_t^{(1)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} e(s), \quad t \geq 0.$$

The process $(Y_t^{(1)}, t \geq 0)$ is a compound Poisson process with

- jump rate $c := \Pi(\{x : |x| \geq 1\}) > 0$,

Let us define

$$Y_t^{(1)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} e(s), \quad t \geq 0.$$

The process $(Y_t^{(1)}, t \geq 0)$ is a compound Poisson process with

- jump rate $c := \Pi(\{x : |x| \geq 1\}) > 0$,
- jump distribution $F(dx) = c^{-1}\Pi(dx)\mathbf{1}_{\{|x| \geq 1\}}$ and

Let us define

$$Y_t^{(1)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} e(s), \quad t \geq 0.$$

The process $(Y_t^{(1)}, t \geq 0)$ is a compound Poisson process with

- jump rate $c := \Pi(\{x : |x| \geq 1\}) > 0$,
- jump distribution $F(dx) = c^{-1}\Pi(dx)\mathbf{1}_{\{|x| \geq 1\}}$ and
- characteristic exponent

$$\Psi^{(1)}(\lambda) = \int_{\{|x| \geq 1\}} (1 - e^{i\lambda x})\Pi(dx).$$

Let us define

$$Y_t^{(1)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| \geq 1\}} e(s), \quad t \geq 0.$$

The process $(Y_t^{(1)}, t \geq 0)$ is a compound Poisson process with

- jump rate $c := \Pi(\{x : |x| \geq 1\}) > 0$,
- jump distribution $F(dx) = c^{-1}\Pi(dx)\mathbf{1}_{\{|x| \geq 1\}}$ and
- characteristic exponent

$$\Psi^{(1)}(\lambda) = \int_{\{|x| \geq 1\}} (1 - e^{i\lambda x})\Pi(dx).$$

If

$$I = \int_{(-\infty, \infty)} (1 \wedge |x|)\Pi(dx) < \infty,$$

one can prove for all t

$$\sum_{s \leq t} \mathbf{1}_{\{\epsilon < |e(s)| < 1\}} |e(s)| \xrightarrow{\epsilon \rightarrow 0} \sum_{s \leq t} \mathbf{1}_{\{|e(s)| < 1\}} |e(s)| < \infty,$$

In this case $Y_t = Y_t^{(1)} + Y_t^{(2)}$, where

$$Y_t^{(2)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| < 1\}} e(s), \quad t \geq 0.$$

In this case $Y_t = Y_t^{(1)} + Y_t^{(2)}$, where

$$Y_t^{(2)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| < 1\}} e(s), \quad t \geq 0.$$

Obviously, it is independent of $Y^{(1)}$ and its characteristic exponent is given

$$\Psi^{(2)}(\lambda) = \int_{\{|x| < 1\}} (1 - e^{i\lambda x}) \Pi(dx).$$

In this case $Y_t = Y_t^{(1)} + Y_t^{(2)}$, where

$$Y_t^{(2)} = \sum_{s \leq t} \mathbf{1}_{\{|e(s)| < 1\}} e(s), \quad t \geq 0.$$

Obviously, it is independent of $Y^{(1)}$ and its characteristic exponent is given

$$\Psi^{(2)}(\lambda) = \int_{\{|x| < 1\}} (1 - e^{i\lambda x}) \Pi(dx).$$

The process Y has paths of **bounded variation** (on finite intervals) and

$$\Psi(\lambda) = -i\lambda d + \frac{\sigma^2}{2}\lambda^2 + \Psi^{(1)}(\lambda) + \Psi^{(2)}(\lambda),$$

where

$$d = -a - \int_{\{|x| < 1\}} x \Pi(dx).$$

Lévy-Itô decomposition can be written, in this case, as follows

$$X_t = dt + \sigma B_t + Y_t^{(1)} + Y_t^{(2)}, \quad t \geq 0.$$

Lévy-Itô decomposition can be written, in this case, as follows

$$X_t = \mathrm{d}t + \sigma B_t + Y_t^{(1)} + Y_t^{(2)}, \quad t \geq 0.$$

If $I = \infty$, then a.s. $\sum_{s \leq t} |e(s)| = \infty$ for $t > 0$. In this case, we define $Y^{(2)}$ as the limit when $\epsilon \rightarrow 0$ of

$$Y_t^{(2),\epsilon} = \sum_{s \leq t} \mathbf{1}_{\{\epsilon < |e(s)| < 1\}} e(s) - t \int_{\{\epsilon < |x| < 1\}} x \Pi(\mathrm{d}x).$$

Lévy-Itô decomposition can be written, in this case, as follows

$$X_t = \mathrm{d}t + \sigma B_t + Y_t^{(1)} + Y_t^{(2)}, \quad t \geq 0.$$

If $I = \infty$, then a.s. $\sum_{s \leq t} |e(s)| = \infty$ for $t > 0$. In this case, we define $Y^{(2)}$ as the limit when $\epsilon \rightarrow 0$ of

$$Y_t^{(2),\epsilon} = \sum_{s \leq t} \mathbf{1}_{\{\epsilon < |e(s)| < 1\}} e(s) - t \int_{\{\epsilon < |x| < 1\}} x \Pi(\mathrm{d}x).$$

The process $Y^{(2),\epsilon}$ is a compensated compound Poisson process, i.e.

$$\Psi^{(2),\epsilon}(\lambda) = \int_{\{\epsilon < |x| < 1\}} (1 - e^{i\lambda x} + i\lambda x) \Pi(\mathrm{d}x),$$

and in particular

Lévy-Itô decomposition can be written, in this case, as follows

$$X_t = \mathrm{d}t + \sigma B_t + Y_t^{(1)} + Y_t^{(2)}, \quad t \geq 0.$$

If $I = \infty$, then a.s. $\sum_{s \leq t} |e(s)| = \infty$ for $t > 0$. In this case, we define $Y^{(2)}$ as the limit when $\epsilon \rightarrow 0$ of

$$Y_t^{(2),\epsilon} = \sum_{s \leq t} \mathbf{1}_{\{\epsilon < |e(s)| < 1\}} e(s) - t \int_{\{\epsilon < |x| < 1\}} x \Pi(\mathrm{d}x).$$

The process $Y^{(2),\epsilon}$ is a compensated compound Poisson process, i.e.

$$\Psi^{(2),\epsilon}(\lambda) = \int_{\{\epsilon < |x| < 1\}} (1 - e^{i\lambda x} + i\lambda x) \Pi(\mathrm{d}x),$$

and in particular a **martingale**.

Using Doob's maximal inequality, for $p = 2$, we see that for all $t \geq 0$ and $\eta \in (0, \epsilon)$

$$\mathbb{E} \left[\sup_{s \leq t} \left| Y_s^{(2),\epsilon} - Y_s^{(2),\eta} \right|^2 \right] \leq 4t \int_{\{\eta < |x| < \epsilon\}} |x|^2 \Pi(dx),$$

Using Doob's maximal inequality, for $p = 2$, we see that for all $t \geq 0$ and $\eta \in (0, \epsilon)$

$$\mathbb{E} \left[\sup_{s \leq t} \left| Y_s^{(2),\epsilon} - Y_s^{(2),\eta} \right|^2 \right] \leq 4t \int_{\{\eta < |x| < \epsilon\}} |x|^2 \Pi(dx),$$

Since the integral $\int (1 \wedge |x|^2) \Pi(dx) < \infty$, the expectation from the RHS of the above inequality goes to zero as $\epsilon \rightarrow 0$.

Using Doob's maximal inequality, for $p = 2$, we see that for all $t \geq 0$ and $\eta \in (0, \epsilon)$

$$\mathbb{E} \left[\sup_{s \leq t} \left| Y_s^{(2),\epsilon} - Y_s^{(2),\eta} \right|^2 \right] \leq 4t \int_{\{\eta < |x| < \epsilon\}} |x|^2 \Pi(dx),$$

Since the integral $\int (1 \wedge |x|^2) \Pi(dx) < \infty$, the expectation from the RHS of the above inequality goes to zero as $\epsilon \rightarrow 0$. Then $(Y^{(2),\epsilon}, \epsilon > 0)$ is a Cauchy sequence. The limit, that we denote by $Y^{(2)}$, has independent increments and càdlàg paths.

Using Doob's maximal inequality, for $p = 2$, we see that for all $t \geq 0$ and $\eta \in (0, \epsilon)$

$$\mathbb{E} \left[\sup_{s \leq t} \left| Y_s^{(2),\epsilon} - Y_s^{(2),\eta} \right|^2 \right] \leq 4t \int_{\{\eta < |x| < \epsilon\}} |x|^2 \Pi(dx),$$

Since the integral $\int (1 \wedge |x|^2) \Pi(dx) < \infty$, the expectation from the RHS of the above inequality goes to zero as $\epsilon \rightarrow 0$. Then $(Y^{(2),\epsilon}, \epsilon > 0)$ is a Cauchy sequence. The limit, that we denote by $Y^{(2)}$, has independent increments and càdlàg paths. Moreover, its characteristic exponent is given by

$$\Psi^{(2)}(\lambda) = \int_{\{|x| < 1\}} (1 - e^{i\lambda x} + i\lambda x) \Pi(dx).$$

Using Doob's maximal inequality, for $p = 2$, we see that for all $t \geq 0$ and $\eta \in (0, \epsilon)$

$$\mathbb{E} \left[\sup_{s \leq t} \left| Y_s^{(2),\epsilon} - Y_s^{(2),\eta} \right|^2 \right] \leq 4t \int_{\{\eta < |x| < \epsilon\}} |x|^2 \Pi(dx),$$

Since the integral $\int (1 \wedge |x|^2) \Pi(dx) < \infty$, the expectation from the RHS of the above inequality goes to zero as $\epsilon \rightarrow 0$. Then $(Y^{(2),\epsilon}, \epsilon > 0)$ is a Cauchy sequence. The limit, that we denote by $Y^{(2)}$, has independent increments and càdlàg paths. Moreover, its characteristic exponent is given by

$$\Psi^{(2)}(\lambda) = \int_{\{|x| < 1\}} (1 - e^{i\lambda x} + i\lambda x) \Pi(dx).$$

The Lévy-Itô decomposition, in this case, is written

$$X_t = -at + \sigma B_t + Y_t^{(1)} + Y_t^{(2)}, \quad t \geq 0.$$

Since $Y^{(2)}$ has paths of **unbounded variation** we deduce that X has paths of bounded variation if and only if $\sigma = 0$ and $I < \infty$.

Since $Y^{(2)}$ has paths of **unbounded variation** we deduce that X has paths of bounded variation if and only if $\sigma = 0$ and $I < \infty$.

Proposition

Since $Y^{(2)}$ has paths of **unbounded variation** we deduce that X has paths of bounded variation if and only if $\sigma = 0$ and $I < \infty$.

Proposition

- i) *In all the cases, we have*

$$\lim_{|\lambda| \rightarrow \infty} \frac{\Psi(\lambda)}{\lambda^2} = \frac{\sigma^2}{2}.$$

Since $Y^{(2)}$ has paths of **unbounded variation** we deduce that X has paths of bounded variation if and only if $\sigma = 0$ and $I < \infty$.

Proposition

i) *In all the cases, we have*

$$\lim_{|\lambda| \rightarrow \infty} \frac{\Psi(\lambda)}{\lambda^2} = \frac{\sigma^2}{2}.$$

ii) *If X is of bounded variation, then*

$$\lim_{|\lambda| \rightarrow \infty} \frac{\Psi(\lambda)}{\lambda} = i.d.$$

Since $Y^{(2)}$ has paths of **unbounded variation** we deduce that X has paths of bounded variation if and only if $\sigma = 0$ and $I < \infty$.

Proposition

i) *In all the cases, we have*

$$\lim_{|\lambda| \rightarrow \infty} \frac{\Psi(\lambda)}{\lambda^2} = \frac{\sigma^2}{2}.$$

ii) *If X is of bounded variation, then*

$$\lim_{|\lambda| \rightarrow \infty} \frac{\Psi(\lambda)}{\lambda} = i.d.$$

iii) *X is a compound Poisson process if and only if Ψ is bounded.*

Suppose that $\Pi(-\infty, 0) = 0$. By the Lévy-Itô decomposition we observe that X has no negative jumps.

Suppose that $\Pi(-\infty, 0) = 0$. By the Lévy-Itô decomposition we observe that X has no negative jumps. **$-X$ is used in risk theory**

Suppose that $\Pi(-\infty, 0) = 0$. By the Lévy-Itô decomposition we observe that X has no negative jumps.

If $\sigma = 0$ y $I < \infty$ and $d \geq 0$, again the Lévy-Itô decomposition tell us that X has **increasing paths**.

Suppose that $\Pi(-\infty, 0) = 0$. By the Lévy-Itô decomposition we observe that X has no negative jumps.

If $\sigma = 0$ y $I < \infty$ and $d \geq 0$, again the Lévy-Itô decomposition tell us that X has **increasing paths**. If a Lévy process has only increasing paths necessarily is of bounded variation. Therefore $I < \infty$ and $\sigma = 0$, and from the form of it characteristic exponent we necessarily have $d \geq 0$.

Suppose that $\Pi(-\infty, 0) = 0$. By the Lévy-Itô decomposition we observe that X has no negative jumps.

If $\sigma = 0$ y $I < \infty$ and $d \geq 0$, again the Lévy-Itô decomposition tell us that X has **increasing paths**. If a Lévy process has only increasing paths necessarily is of bounded variation. Therefore $I < \infty$ and $\sigma = 0$, and from the form of it characteristic exponent we necessarily have $d \geq 0$.

Lema

*A Lévy process is a **subordinator** if and only if $\Pi(-\infty, 0) = 0$, $I < \infty$, $\sigma = 0$ and $d \geq 0$.*

Strong Markov property.

Let $(\mathcal{F}_t)_{t \geq 0}$ be the filtration defined as follows

$$\mathcal{F}_t = \sigma(Y_s, s \leq t), \quad t \geq 0.$$

Strong Markov property.

Let $(\mathcal{F}_t)_{t \geq 0}$ be the filtration defined as follows

$$\mathcal{F}_t = \sigma(Y_s, s \leq t), \quad t \geq 0.$$

We say that the process $Y = (Y_t, t \geq 0)$ satisfies the **Markov property** if for $B \in \mathcal{B}(\mathbb{R})$ and $s, t \geq 0$,

$$\mathbb{P}(Y_{t+s} \in B | \mathcal{F}_t) = p(Y_t, s, B),$$

where $x \in \mathbb{R}$ and $s \geq 0$, $p(x, s, B) = \mathbb{P}(Y_s \in B | Y_0 = x)$.

Strong Markov property.

Let $(\mathcal{F}_t)_{t \geq 0}$ be the filtration defined as follows

$$\mathcal{F}_t = \sigma(Y_s, s \leq t), \quad t \geq 0.$$

We say that the process $Y = (Y_t, t \geq 0)$ satisfies the **Markov property** if for $B \in \mathcal{B}(\mathbb{R})$ and $s, t \geq 0$,

$$\mathbb{P}(Y_{t+s} \in B | \mathcal{F}_t) = p(Y_t, s, B),$$

where $x \in \mathbb{R}$ and $s \geq 0$, $p(x, s, B) = \mathbb{P}(Y_s \in B | Y_0 = x)$.

Thanks to the property of independent and stationary increments, it is clear that X satisfies the Markov property. In this case

$$p(x, s, B) = \mathbb{P}_x(X_s \in B).$$

Let τ be a stopping time with respect to $(\mathcal{F}_t)_{t \geq 0}$. Define the stopped σ -algebra

$$\mathcal{F}_\tau = \{A \in \mathcal{F} : A \cap \{\tau \leq t\} \in \mathcal{F}_t, \text{ for all } t \geq 0\}.$$

Let τ be a stopping time with respect to $(\mathcal{F}_t)_{t \geq 0}$. Define the stopped σ -algebra

$$\mathcal{F}_\tau = \{A \in \mathcal{F} : A \cap \{\tau \leq t\} \in \mathcal{F}_t, \text{ for all } t \geq 0\}.$$

We say that the process Y satisfies the **strong Markov property** if for each stopping time τ we have

$$\mathbb{P}(Y_{\tau+s} \in B | \mathcal{F}_\tau) = p(Y_\tau, s, B) \quad \text{on } \{\tau < \infty\}.$$

Let τ be a stopping time with respect to $(\mathcal{F}_t)_{t \geq 0}$. Define the stopped σ -algebra

$$\mathcal{F}_\tau = \{A \in \mathcal{F} : A \cap \{\tau \leq t\} \in \mathcal{F}_t, \text{ for all } t \geq 0\}.$$

We say that the process Y satisfies the **strong Markov property** if for each stopping time τ we have

$$\mathbb{P}(Y_{\tau+s} \in B | \mathcal{F}_\tau) = p(Y_\tau, s, B) \quad \text{on } \{\tau < \infty\}.$$

Theorem

Suppose that τ is a stopping time. Under $\{\tau < \infty\}$, we define the process $\tilde{X} = (\tilde{X}_t, t \geq 0)$ where

$$\tilde{X}_t = X_{\tau+t} - X_\tau, \quad t \geq 0.$$

Then, under $\{\tau < \infty\}$, the process \tilde{X} is independent of \mathcal{F}_τ , and has the same law as X and in particular is a Lévy process.

Proof: Suppose that τ is finite a.s., and let $A \in \mathcal{F}_\tau$, $0 \leq t_1 \leq \dots \leq t_n$ and $F : \mathbb{R}^n \rightarrow \mathbb{R}$ a continuous and bounded function. It is enough to see

$$\mathbb{E} \left[\mathbf{1}_A F(\tilde{X}_{t_1}, \dots, \tilde{X}_{t_n}) \right] = \mathbb{P}(A) \mathbb{E} \left[F(X_{t_1}, \dots, X_{t_n}) \right].$$

Proof: Suppose that τ is finite a.s., and let $A \in \mathcal{F}_\tau$, $0 \leq t_1 \leq \dots \leq t_n$ and $F : \mathbb{R}^n \rightarrow \mathbb{R}$ a continuous and bounded function. It is enough to see

$$\mathbb{E} \left[\mathbf{1}_A F(\tilde{X}_{t_1}, \dots, \tilde{X}_{t_n}) \right] = \mathbb{P}(A) \mathbb{E} \left[F(X_{t_1}, \dots, X_{t_n}) \right].$$

Then now, we observe

$$\sum_{i=1}^{\infty} \mathbf{1}_{\left\{ \frac{i-1}{2^m} < \tau \leq \frac{i}{2^m} \right\}} F \left(X_{\frac{i}{2^m} + t_1} - X_{\frac{i}{2^m}}, \dots, X_{\frac{i}{2^m} + t_n} - X_{\frac{i}{2^m}} \right),$$

converge, as $m \rightarrow \infty$, to $F(\tilde{X}_{t_1}, \dots, \tilde{X}_{t_n})$.

From the Monotone Convergence Theorem and the Markov property, we deduce

$$\begin{aligned} \mathbb{E} \left[\mathbf{1}_A F\left(\tilde{X}_{t_1}, \dots, \tilde{X}_{t_n}\right) \right] \\ = \lim_{m \rightarrow \infty} \sum_{i=0}^{\infty} \mathbb{P} \left(A \cap \left\{ \frac{i-1}{2^m} < \tau \leq \frac{i}{2^m} \right\} \right) \mathbb{E} \left[F\left(X_{t_1}, \dots, X_{t_n}\right) \right] \\ = \mathbb{P}(A) \mathbb{E} \left[F\left(X_{t_1}, \dots, X_{t_n}\right) \right]. \end{aligned}$$

From the Monotone Convergence Theorem and the Markov property, we deduce

$$\begin{aligned}
 & \mathbb{E} \left[\mathbf{1}_A F\left(\tilde{X}_{t_1}, \dots, \tilde{X}_{t_n}\right) \right] \\
 &= \lim_{m \rightarrow \infty} \sum_{i=0}^{\infty} \mathbb{P} \left(A \cap \left\{ \frac{i-1}{2^m} < \tau \leq \frac{i}{2^m} \right\} \right) \mathbb{E} \left[F\left(X_{t_1}, \dots, X_{t_n}\right) \right] \\
 &= \mathbb{P}(A) \mathbb{E} \left[F\left(X_{t_1}, \dots, X_{t_n}\right) \right].
 \end{aligned}$$

The general case follows from similar arguments,

$$\mathbb{E} \left[\mathbf{1}_{A \cap \{\tau < \infty\}} F\left(\tilde{X}_{t_1}, \dots, \tilde{X}_{t_n}\right) \right] = \mathbb{P} \left(A \cap \{\tau < \infty\} \right) \mathbb{E} \left[F\left(X_{t_1}, \dots, X_{t_n}\right) \right].$$

Bibliography

- Bertoin, J. Lévy processes. Cambridge University Press. 1996.
- Doney, R. Fluctuation theory for Lévy processes. Lectures Notes in Mathematics 1897, Springer. 2007
- Kyprianou, A. Introductory Lectures on Fluctuations of Lévy processes with Applications. Springer, 2012.