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Outline of the talk:

e Poisson processes.

Martingales in continuous time.

Poisson random measures.

e Lévy processes.

Lévy-It6 decomposition.

Strong Markov property.
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Poisson processes

A Poisson process with parameter ¢ > 0 is a renewal process where the
time between occurrences is exponentially distributed with parameter c.

More precisely take a sequence (7,,,n > 1) of independent exponential

random variables with parameter ¢ and introduce the partial sums

Sp =71+ -+ 7, n € N. The counting or renewal process
Nt:sup{nEN:Sngt}, t>0,

is called a Poisson process of parameter c.

Let us explain some details of the above definition.

We first recall that S,, has the same law as a Gamma distribution with
parameters ¢ and n.
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This implies that for any fixed ¢t > 0, N; is a Poisson r.v. with parameter
tc, from where this process takes his name.
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This implies that for any fixed ¢t > 0, N; is a Poisson r.v. with parameter
tc, from where this process takes his name.

The lack of memory property of the exponential law implies that for every
0 < s <t, the increment N;s — N, is a Poisson r.v. with parameter cs
and is independent of the o-field generated by (N,,0 < u < t).



Why is Andreas Kyprianou so obsessed with Lévy processes?
LPuisson processes

Therefore, for any fixed k € N and ¢t € R,

P(N, = k) =E [l{skg«sm}} - E [1{5k§t} P(rpsr >t — Sk)]

1 t
_ F(k) /0 6—c(t—x)cke—cz$k—1dw — ¢

kﬁ
k!

e—ct

This implies that for any fixed ¢t > 0, N; is a Poisson r.v. with parameter
tc, from where this process takes his name.

The lack of memory property of the exponential law implies that for every
0 < s <t, the increment N;s — N, is a Poisson r.v. with parameter cs
and is independent of the o-field generated by (N,,0 < u < t). Proof by
picture
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This implies that for any fixed ¢t > 0, N; is a Poisson r.v. with parameter
tc, from where this process takes his name.

The lack of memory property of the exponential law implies that for every
0 < s <t, the increment N;s — N, is a Poisson r.v. with parameter cs
and is independent of the o-field generated by (N,,0 < u < t).

In other words, the Poisson process N = (N, t > 0) is an increasing
process with independent and homogeneous increments and jumps of size
one.
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Martingales

Let us consider a probability space (€2, F,P) with a filtration (F;);>0, i.e.
an increasing sequence of sub-cg-algebras, satisfying the usual conditions,
in other words F; is P-complete and the filtration is right-continuous, i.e.

=
u>t
A stochastic process M = (M, t > 0) is a martingale if
i) for each ¢, we have E[|M;|] < oo,

i) for 0 < s <t,
E[M:|Fs] = Ms.

We say that M is right-continuous if its paths are right-continuous a.s.
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Maximal inequality (Doob): Let M be a right-continuous martingale
such that for p > 1 and 7' > 0, we have sup,¢(o, ) E[|M;[P] < oo, then

p
E| sup |M.J? s( p ) sup E[|M,[?].
s€[0,T] p—1/ sepo,1

We say that 7 : Q — [0, o0] is a stopping time if for ¢ > 0, the set
{T S t} € ]:t-

Very important example: Let X = (X;, ¢ > 0) be a real-valued stochastic
process which is adapted to the filtration (F;);>0, i.e. Xt is
Fi-measurable. If X is right-continuous and A € B(R) open or closed,
then

Ta=inf{t >0: X; € A}

is a stopping time.
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time, then

i) The process (M at,t > 0) is a martingale.
ii) If M is uniformly integrable. Then E[M;] = E[M)].
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ii) If M is uniformly integrable. Then E[M;] = E[M)].

Example: Let B = (B;, t > 0) be a standard Brownian motion and
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martingale, since it has stationary and independent increments. Moreover
(B7, ,at;t > 0) is a bounded martingale.
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Optimal stopping theorem: Suppose that 7 is an a.s. finite stopping
time, then

i) The process (M at,t > 0) is a martingale.

ii) If M is uniformly integrable. Then E[M;] = E[M)].

Example: Let B = (B;, t > 0) be a standard Brownian motion and

Ta,p = Iinf{t > 0: B, ¢ [a, b]}, where a < 0 < b. Recall that B is a
martingale, since it has stationary and independent increments. Moreover
(Br, ,at;t > 0) is a bounded martingale. From the Optimal stopping
theorem, we have

0=E[B,,|=aP(B,,, =a)+bP(B,,, =0).

On the other hand P(B;, , = a) + P(B;, , = b) = 1, implying

a
b—a’

P(Bm,b =b)=—
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Convergence theorem: Suppose that M is an uniformly integrable
martingale. Then lim; ,,, My = M, exists a.s., and in L'(P). Moreover,
we have

M, = E[My|Fi] for all ¢ > 0.
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Convergence theorem: Suppose that M is an uniformly integrable
martingale. Then lim; ,,, My = M, exists a.s., and in L'(P). Moreover,

we have
M, = E[My|Fi] for all ¢ > 0.

More examples: We are interested in two families of martingales related
to the natural filtration (F;) of the Poisson process N.

Let us define

My = Ny—ct, and & =exp {—qN,g—l—czi(l—e_q)}7 t>0, ¢>0.

From the independence and the homogeneity of the increments, we get
]E[Nt—i-s|]:t} = ]E[NH_S — Nt —+ Nt|]:s] = Nt + CS,

then subtracting ¢(¢ + s) in both sides, we deduce that M = (M, ¢t > 0)
is a martingale related to (F;).
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that £2 = (&, ¢ > 0) is also a martingale related to (F%).
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An interesting example Let H = (Hy,t > 0) be a left-continuous adapted
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Poisson process N by
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The additivity of the exponents and similar arguments as above, give us
that £2 = (&, ¢ > 0) is also a martingale related to (F%).

An interesting example Let H = (Hy,t > 0) be a left-continuous adapted

process. Now, let us introduce the stochastic integral related to the
Poisson process N by

t
/ H,dN, = > H,AN,, where AN,=N,-N,_.
0

s<t

Observe that from the definition of N, we have the following identity

t [e7}
/ H,dN, = Z H. T <y
0 n=1
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Proposition
Let H be a left-continuous and adapted process with

¢
E(/ |H5|ds> < 00, forall t>0,
0
then the compensated integral

t t
/ Hsd]\[s - C/ HQdS, t Z 07
0 0

is a martingale related to (F;). Moreover, we have the well-known
compensation formula

E{/(:Hsts} _CE{/OtHsds}
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(M(B),B € &) is a Poisson random measure with intensity p if it
satisfies:
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Let E be a polish space and p a o-finite measure on E. We say that
(M(B),B € &) is a Poisson random measure with intensity p if it
satisfies:
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parameter u(B),
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are independent.
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Poisson point process

Let E be a polish space and p a o-finite measure on E. We say that
(M(B),B € &) is a Poisson random measure with intensity p if it
satisfies:
i) for each B € £ with u(B) < oo, M(B) is Poisson distributed with
parameter u(B),
ii) if By,..., B, € & are disjoints, then the r.v.'s M(By),..., M(B,)
are independent.

Construction: Let us suppose ¢ = p(E) < co. Let (§;);>1 be a sequence
of i.i.d. r.v's with common distribution ¢!y and N a Poisson r.v. with
parameter ¢ which is independent of (£;). The random measure

N
M() =3280

is a Poisson random measure with intensity pu(-).
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Since p is o-finite, then there exist a partition (E,),>0 of E such that
w(E,) < oo, for each n. Therefore, one can construct a sequence M,, of
Poisson random measures with intensity u(- N E,;) and such that

M =" M, is a Poisson random measure with intensity p.
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Since p is o-finite, then there exist a partition (E,),>0 of E such that
w(E,) < oo, for each n. Therefore, one can construct a sequence M,, of
Poisson random measures with intensity u(- N E,;) and such that

M =" M, is a Poisson random measure with intensity p.

Now, we consider the space E X [0, 00), the measure 1 ® dz and a
Poisson random measure M with intensity 4 ® dz. One can show that
a.s. forall ¢t >0,

M(E x {t}) =0or 1.
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Since p is o-finite, then there exist a partition (E,),>0 of E such that
w(E,) < oo, for each n. Therefore, one can construct a sequence M,, of
Poisson random measures with intensity u(- N E,;) and such that

M =" M, is a Poisson random measure with intensity p.

Now, we consider the space E X [0, 00), the measure 1 ® dz and a
Poisson random measure M with intensity 4 ® dz. One can show that
a.s. forall ¢t >0,

M(E x {t}) =0or 1.

This allow us to define a process (e(t),¢ > 0), that we will call Poisson
point process taking values on E U Y, where T is an additional isolated
point, such that M(E x {t}) =0, then e(¢t) = T and if

M(E x {t}) =1, then the restriction of M to E x {t} is the Dirac
measure on the point (g, t) and we define e(t) = . In other words, we
can write the Poisson random measure M as follows

M =7 bew-

t>0
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Proposition
Let B such that u(B) < oo, and define the counting process

NP =#{s <t:e(s) € B}, t >0,
and the first hitting time
Tp =inf{t > 0: e(t) € B}.

Then



Why is Andreas Kyprianou so obsessed with Lévy processes?
LPuisson Point process

Proposition
Let B such that u(B) < oo, and define the counting process
NP =#{s <t:e(s) € B}, t >0,

and the first hitting time

Tp =inf{t > 0: e(t) € B}.
Then

i) N is a Poisson process with parameter u(B) adapted to the
filtration (G;)>o generated by e. The time Tg is a stopping time

with respect to (G;) and it is an exponential r.v. with parameter
u(B).
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Proposition
Let B such that u(B) < oo, and define the counting process

NP =#{s <t:e(s) € B}, t>0,

and the first hitting time

Tp =inf{t > 0: e(t) € B}.
Then

i) N is a Poisson process with parameter u(B) adapted to the
filtration (G;)>o generated by e. The time Tg is a stopping time
with respect to (G;) and it is an exponential r.v. with parameter
u(B).

ii) e(Tp) and Tp are independent, and for A € £

1(AN B)

]P)(C(TB) € A) = /L(B)
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NP =3 " 8(c(s),5)(B).
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The r.v. Ty is the first jump of N B, implying that it is exponential with
parameter p(B).
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Proof: The first part of () is straightforward, since

NP =3 " 8(c(s),5)(B).

s<t
The r.v. Ty is the first jump of N B, implying that it is exponential with
parameter u(B). In order to prove the second part of the proposition,
lets take A C B and observe that
P(TB <t, G(TB) S A) = P(TA < TB\A7 TaN TB\A < t),

where T4 denotes the first jump of the Poisson process N4.
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Proof: The first part of () is straightforward, since

B
NP =3 " 8(c(s),5)(B).

s<t

The r.v. Ty is the first jump of N B, implying that it is exponential with
parameter u(B). In order to prove the second part of the proposition,
lets take A C B and observe that

P(TB < t,e(TB) S A) :P(TA < TB\A7 TaN TB\A < t),

where T4 denotes the first jump of the Poisson process N4. Since A
and B\ A are disjoint, T4 and T’p\ 4 are independent and exponentially
distributed with parameter p(A4) and p(B) — p(A), respectively.
Therefore,

P(Tp < t,e(Tp) € A) = LA)@ — 7B,
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Let B &, 0<1t <ty and define

Hi(y) = 1By (t,t) (y,t),

in this case, it is clear

E| Y Hie(®)| = (2 — t1)u(B).

0<t<oco
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Let B &, 0<1t <ty and define

Hi(y) = 1By (t,t) (y,t),

in this case, it is clear

E| Y Hie(®)| = (2 — t1)u(B).

0<t<oco

From this fact, we deduce the compensation formula for Poisson point
processes: Let H = (H;, t > 0) be a right-continuous process taking
values on £ U Y and such that H;(Y) = 0. Then

B| 3 )| =8| [ ar [ mwwan].

0<t<©
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In a similar way, one can obtain the exponential formula: Let f be a
positive measurable function defined on E U Y with f(T) = 0 and such
that

/ 11— e~ ®)|u(dy) < co.
E

Then for all t > 0,

B o= 3 (el p| =exp{t [ (1= T Mutan)}.

0<s<t
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Lévy processes

Let (Q2, F,P) be a probability space. We say that X = (X;,t >0) is a
real-valued Lévy process if for 0 < s < ¢, the increment Xy, — X; is
independent from (X,,0 < u < t) and has the same distribution as Xj.
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Lévy processes

Let (Q2, F,P) be a probability space. We say that X = (X;,t >0) is a
real-valued Lévy process if for 0 < s < ¢, the increment Xy, — X; is
independent from (X,,0 < u < t) and has the same distribution as Xj.

Observe that necessarilly P(Xy = 0) = 1. We write P, for the measure
corresponding to (z + Xy, ¢t > 0) under P.
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Lévy processes

Let (Q2, F,P) be a probability space. We say that X = (X;,t >0) is a
real-valued Lévy process if for 0 < s < ¢, the increment Xy, — X; is
independent from (X,,0 < u < t) and has the same distribution as Xj.

Observe that necessarilly P(Xy = 0) = 1. We write P, for the measure
corresponding to (z + Xy, ¢t > 0) under P.

From the decomposition
X1 = Xl/n + (X2/n - Xl/n) +o 4+ (Xn/n - X(nfl)/n) )

we see that X; is infinitely divisible. The law of an infinitely divisible r.v.
is characterized by the so-called Lévy-Khintchine formula which implies
the following result.
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Theorem
Let X be a Lévy processes defined on (2, F,P), then

E [exp{z‘AXt}] =exp{—tT(\)}, t>0,A€eR,

where

0.2
V() = ia) + 7A2 +/

(—O0,00)

(1 M g i)\xl{‘z|<1})ﬂ(dx),
for a € R, 0 > 0 and a measure II on R\ {0} such that

/ (1 A z?)TI(dz) < oo.
(—00,00)



Why is Andreas Kyprianou so obsessed with Lévy processes?
LLévy processes

Examples:

m In the case of the standard Brownian motion, a =0, 0 =1, II =0
and
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Examples:

® In the case of the standard Brownian motion, a =0, c =1, I1 =0
and
/\2

=5

® In the case of the compound Poisson process with jump rate ¢ and
jump distribution F', we have

U(A)

a:—c/ zF(dz), o=0, II(dz)= cF(dz),
{l=[<1}

and

() = c/(m . (1 -~ eW)F(dx).
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m In the case of the Gamma process,
—T

a=clet=1), o=0, I(dz)= ce—l{m>0}dx,
%

and
T(N) = clog(l — iA).
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m In the case of the Gamma process,

e~ %
- 1{.’r>0}dxa

a=cle!=1), 0=0, T(dz)=rc

and
T(N) = clog(l — iA).

m In the case of the strictly stable process with index
a € (0,1)U(1,2), we have

@ C—
g = O, H(d{L’) = (xlial{x>0} + Wl{m<o}) dz

with ¢, >0, c. >0, and
U(A) = c|A\|*(1 — i8sgn()) tan(mra/2)) + taA
where 8= (cy —c_)/(c4+ +c_). Ifa=1, ¢y =c_ >0 and

U(A) = cq |\ + iaA. The latter case is known as the Cauchy
process with drift.
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i

0.0 02 0.4 06 08 10

Figure : A sample path of the independent sum of a Brownian motion and a
compound Poisson process.
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25

20
|

15
|

X0

Figure : ¢ =0, 0 =0 and
H(dx) = (W1{1>0} + ﬁl{m<0}) dz.
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independent of B which is determined by the jumps, as we will see later.
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[ Lévy-Ité decomposition

Lévy-1t6 decomposition

This decomposition provide us a probabilistic interpretation of the
Lévy-Khintchine formula. In particular, it describes the way the measure
II determines the structure of the jumps of a Lévy process.

The process X can be written as follows
Xt = —at —+ O'Bt + Yt,

where B is a standard Brownian motion and Y is a Lévy process
independent of B which is determined by the jumps, as we will see later.

Let (e(¢),t > 0) be a Poisson point process on R x [0, 00) with intensity
II. Observe that II({z : |z| > 1}) < oo, then Thanks to the
compensation formula

Zl{\ yz13le(s)] < oo, as.

s<t
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[ Lévy-Ité decomposition

Let us define

=D Lgewizuye(s) >0

s<t

The process (Yt(l),t > 0) is a compound Poisson process with
m jump rate c:=I({z : |z| > 1}) > 0,
= jump distribution F(dz) = ¢~ 'II(dz)1{;>1} and
m characteristic exponent

T (N) /{l Dl}(l—e”“)ﬂ(dx).

= / (1 A |2))TI(ds) < oo,
(—O0,00)
one can prove for all ¢

D Liecteqs)<iyle(s)] — D Lgei<arle(s)] < oo,

s<t s<t
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In this case Y; = Yt(l) T Yt(Q), where

2
Yt( ) — Z 1{‘6(5)‘<1}6(8), t 2 0

s<t
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In this case Y; = Y(l) Yt(Q), where

Zl{‘ y<iye(s), t>0.

s<t

Obviously, it is independent of Y1) and its characteristic exponent is
given
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[ Lévy-Ité decomposition

In this case Y; = Y(l) Yt(Q), where

Zl{‘ y<iye(s), t>0.

s<t

Obviously, it is independent of Y1) and its characteristic exponent is
given

T\ = /{ |<1}(1 — A I(dx).

The process Y has paths of bounded variation (on finite intervals) and

T(N) = —ixd + A2 + D) + 0@ (N,

where

d= —af/ zIl(dx).
{le<1}
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Lévy-It6 decomposition can be written, in this case, as follows
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[ Lévy-Ité decomposition

Lévy-It6 decomposition can be written, in this case, as follows

X,=dt+oB,+ YV +v®, t>o0.

If I = o0, then a:s. > _,|e(s)| = oo for £ > 0. In this case, we define
Y ) as the limit when € — 0 of

Y2 =3 Liecieoyi<aye(s) - t/ 2T1(dz).
{e<lz|<1}

s<t

The process Y (2):€ is a compensated compound Poisson process, i.e.
T2e()) = / (1 — e 4 i\z)II(dz),
{e<|z|<1}

and in particular a martingale.
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Cauchy sequence. The limit, that we denote by Y2 has independent
increments and cadlag paths.
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- Lévy-Ité decomposition

Using Doob's maximal inequality, for p = 2, we see that for all ¢t > 0 and
1€ (0,¢)

E [sup

s<t

2
y(@e ypm‘ } < 425/ |#[*T(dz),
{n<lal<e}

Since the integral [(1 A |z|?)II(dz) < oo, the expectation from the RHS
of the above inequality goes to zero as € — 0. Then (Y(2)’5, e>0)isa
Cauchy sequence. The limit, that we denote by Y2 has independent
increments and cadlag paths. Moreover, its characteristic exponent is
given by

TAN) = / (1 — e 4 iAz)TI(dz).
{lo<1}

The Lévy-1tdo decomposition, in this case, is written

X,=—at+oB+ Y+ Y2, t>o0.
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[ Lévy-Ité decomposition

Since Y3 has paths of unbounded variation we deduce that X has
paths of bounded variation if and only if c =0 and I < cc.

Proposition

i) In all the cases, we have

U(\) o2

li = —.
\Agloo A2 2

ii) If X is of bounded variation, then

im
[A|—oo A
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[ Lévy-Ité decomposition

Since Y3 has paths of unbounded variation we deduce that X has
paths of bounded variation if and only if c =0 and I < cc.

Proposition

i) In all the cases, we have

U(\) o2

li = —.
\Agloo A2 2
ii) If X is of bounded variation, then
|)\\lgloo A

iii) X is a compound Poisson process if and only if U is bounded.
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that X has no negative jumps.
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that X has increasing paths.
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Suppose that II(—o0,0) = 0. By the Lévy-1t6 decomposition we observe
that X has no negative jumps.

If c =0y I <ooandd >0, again the Lévy-1té6 decomposition tell us
that X has increasing paths. If a Lévy process has only increasing paths
necessarily is of bounded variation. Therefore I < oo and ¢ =0, and
from the form of it characteristic exponent we necessarily have d > 0.
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- Lévy-Ité decomposition

Suppose that II(—o0,0) = 0. By the Lévy-1t6 decomposition we observe
that X has no negative jumps.

If c =0y I <ooandd >0, again the Lévy-1té6 decomposition tell us
that X has increasing paths. If a Lévy process has only increasing paths
necessarily is of bounded variation. Therefore I < oo and ¢ =0, and
from the form of it characteristic exponent we necessarily have d > 0.

Lema
A Lévy process is a subordinator if and only if TI(—00,0) =0, I < oo,
oc=0and d> 0.
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Strong Markov property.

Let (F;)¢>0 be the filtration defined as follows

Fi=0(Yy,s<t), t>0.
We say that the process Y = (Y;,t > 0) satisfies the Markov property if
for B € B(R) and s,t > 0,

P(Yiys € B|F) = p(Y, s, B),

where z € R and s > 0, p(z,s,B) =P(Y, € B|Yy = z).
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Strong Markov property.

Let (Fi)i>0 be the filtration defined as follows
Fi=0(Yy,s<t), t>0.
We say that the process Y = (Y;,t > 0) satisfies the Markov property if
for B € B(R) and s,t > 0,
P(Yi4s € BIFy) = p(Yy, s, B),
where z € R and s > 0, p(z,s,B) =P(Y, € B|Yy = z).

Thanks to the property of independent and stationary increments, it is
clear that X satisfies the Markov property. In this case

p(anaB) = ]P)x(Xs S B)
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Let 7 be a stopping time with respect to (F;);>¢. Define the stopped o-
algebra

Fr={AeF:An{r <t} € F, forall t >0}.
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LSlrong Markov property

Let 7 be a stopping time with respect to (F;);>¢. Define the stopped o-
algebra

Fr={AeF:An{r <t} € F, forall t >0}.

We say that the process Y satisfies the strong Markov property if for
each stopping time 7 we have

P(Y;4s € B|F;) =p(Y:,8,B) on{r <o}

Theorem
Suppose that 7 is a stopping time. Under {1 < o0}, we define the
process X = (X;,t > 0) where

Xi=X,1—X,, t>0.

Then, under {T < o}, the process X is independent of F,, and has the
same law as X and in particular is a Lévy process.
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Proof: Suppose that 7 is finite a.s., and let Ae ., 0< 4, <--- < ¢,
and F : R™ — R a continuous and bounded function. It is enough to see

E [1AF(Xt1, : .-Xt,)] —P(A)E [F(th, . ,th)].

n
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LSlrong Markov property

Proof: Suppose that 7 is finite a.s., and let Ae ., 0< 4, <--- < ¢,
and F : R™ — R a continuous and bounded function. It is enough to see

E [1AF(Xt1, : .-Xt,)] —P(A)E [F(th, . ,th)].

n

Then now, we observe

o0
> 1 il org iy F (Xfwn — X Xy, — XQ—) :
g=il

converge, as m — 00, to F(th, . 7th)-
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From the Monotone Convergence Theorem and the Markov property, we
deduce

B[t (K % )]

_Mmip(/m{gml <rs i )E[F(X 0]

— P(A)E [F(th,--- ,th)}.
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LSlrong Markov property

From the Monotone Convergence Theorem and the Markov property, we
deduce

B[t (K % )]

_Mmip(/m{gml <rs i )E[F(X 0]

— P(A)E [F(th,--- ,th)}.

The general case follows from similar arguments,

E [1AQ{T<OO}F()~Q1,--- )?t)} _P (Aﬂ{T < oo}) E [F(Xt ,Xt")} :
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