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Outline of the talk:

• Poisson processes.

• Martingales in continuous time.

• Poisson random measures.

• Lévy processes.

• Lévy-Itô decomposition.

• Strong Markov property.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Poisson processes

Poisson processes

A Poisson process with parameter c > 0 is a renewal process where the
time between occurrences is exponentially distributed with parameter c.

More precisely take a sequence (τn ,n ≥ 1) of independent exponential
random variables with parameter c and introduce the partial sums
Sn = τ1 + · · ·+ τn , n ∈ N. The counting or renewal process

Nt = sup
{
n ∈ N : Sn ≤ t

}
, t ≥ 0,

is called a Poisson process of parameter c.

Let us explain some details of the above definition.

We first recall that Sn has the same law as a Gamma distribution with
parameters c and n.
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Poisson processes

Therefore, for any fixed k ∈ N and t ∈ R+

P(Nt = k) = E
[
1{Sk≤t<Sk+1}

]
=

E
[
1{Sk≤t} P(τn+1 ≥ t − Sk )

]
=

1

Γ(k)

∫ t

0

e−c(t−x)cke−cxx k−1dx =
ck tk

k !
e−ct .

This implies that for any fixed t > 0, Nt is a Poisson r.v. with parameter
tc, from where this process takes his name.

The lack of memory property of the exponential law implies that for every
0 ≤ s ≤ t , the increment Nt+s −Nt is a Poisson r.v. with parameter cs
and is independent of the σ-field generated by (Nu , 0 ≤ u ≤ t). Proof by
picture

In other words, the Poisson process N = (Nt , t ≥ 0) is an increasing
process with independent and homogeneous increments and jumps of size
one.
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Martingales

Martingales

Let us consider a probability space (Ω,F ,P) with a filtration (Ft)t≥0, i.e.
an increasing sequence of sub-σ-algebras, satisfying the usual conditions,

in other words Ft is P-complete and the filtration is right-continuous, i.e.⋂
u>t

Fu = Ft ,

A stochastic process M = (Mt , t ≥ 0) is a martingale if

i) for each t , we have E[|Mt |] <∞,

ii) for 0 ≤ s ≤ t ,
E[Mt |Fs ] = Ms .

We say that M is right-continuous if its paths are right-continuous a.s.
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Martingales

Martingales

Let us consider a probability space (Ω,F ,P) with a filtration (Ft)t≥0, i.e.
an increasing sequence of sub-σ-algebras, satisfying the usual conditions,
in other words Ft is P-complete and the filtration is right-continuous, i.e.⋂

u>t

Fu = Ft ,

A stochastic process M = (Mt , t ≥ 0) is a martingale if

i) for each t , we have E[|Mt |] <∞,

ii) for 0 ≤ s ≤ t ,
E[Mt |Fs ] = Ms .

We say that M is right-continuous if its paths are right-continuous a.s.



5/ 34

Why is Andreas Kyprianou so obsessed with Lévy processes?
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Martingales

Maximal inequality (Doob): Let M be a right-continuous martingale
such that for p > 1 and T > 0, we have sups∈[0,T ] E[|Ms |p ] <∞, then

E

[
sup

s∈[0,T ]

|Ms |p
]
≤
(

p

p − 1

)p

sup
s∈[0,T ]

E[|Ms |p ].

We say that τ : Ω→ [0,∞] is a stopping time if for t ≥ 0, the set
{τ ≤ t} ∈ Ft .

Very important example: Let X = (Xt , t ≥ 0) be a real-valued stochastic
process which is adapted to the filtration (Ft)t≥0, i.e. Xt is
Ft -measurable. If X is right-continuous and A ∈ B(R) open or closed,
then

τA = inf{t ≥ 0 : Xt ∈ A}

is a stopping time.
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Martingales

Optimal stopping theorem: Suppose that τ is an a.s. finite stopping
time, then

i) The process (Mτ∧t , t ≥ 0) is a martingale.

ii) If M is uniformly integrable. Then E[Mτ ] = E[M0].

Example: Let B = (Bt , t ≥ 0) be a standard Brownian motion and
τa,b = inf{t ≥ 0 : Bt /∈ [a, b]}, where a < 0 < b. Recall that B is a
martingale, since it has stationary and independent increments. Moreover
(Bτa,b∧t , t ≥ 0) is a bounded martingale. From the Optimal stopping
theorem, we have

0 = E[Bτa,b ] = a P(Bτa,b = a) + b P(Bτa,b = b).

On the other hand P(Bτa,b = a) + P(Bτa,b = b) = 1, implying

P(Bτa,b = b) = − a

b − a
.
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Martingales

Convergence theorem: Suppose that M is an uniformly integrable
martingale. Then limt→∞Mt = M∞ exists a.s., and in L1(P). Moreover,
we have

Mt = E[M∞|Ft ] for all t ≥ 0.

More examples: We are interested in two families of martingales related
to the natural filtration (Ft) of the Poisson process N .

Let us define

Mt = Nt−ct , and ξqt = exp
{
−qNt+ct(1−e−q)

}
, t ≥ 0, q > 0.

From the independence and the homogeneity of the increments, we get

E[Nt+s |Ft ] = E[Nt+s −Nt + Nt |Fs ] = Nt + cs,

then subtracting c(t + s) in both sides, we deduce that M = (Mt , t ≥ 0)
is a martingale related to (Ft).



8/ 34

Why is Andreas Kyprianou so obsessed with Lévy processes?
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Martingales

The additivity of the exponents and similar arguments as above, give us
that ξq = (ξqt , t ≥ 0) is also a martingale related to (Ft).

An interesting example Let H = (Ht , t ≥ 0) be a left-continuous adapted
process. Now, let us introduce the stochastic integral related to the
Poisson process N by∫ t

0

HsdNs =
∑
s≤t

Hs∆Ns , where ∆Ns = Ns −Ns−.

Observe that from the definition of N , we have the following identity∫ t

0

HsdNs =

∞∑
n=1

Hτn 1I{τn≤t}.
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Martingales

Proposition

Let H be a left-continuous and adapted process with

E
(∫ t

0

|Hs |ds
)
<∞, for all t ≥ 0,

then the compensated integral∫ t

0

HsdNs − c

∫ t

0

Hsds, t ≥ 0,

is a martingale related to (Ft). Moreover, we have the well-known
compensation formula

E
[∫ t

0

HsdNs

]
= c E

[∫ t

0

Hsds

]
.
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Poisson Point process

Poisson point process

Let E be a polish space and µ a σ-finite measure on E . We say that
(M (B),B ∈ E) is a Poisson random measure with intensity µ if it
satisfies:

i) for each B ∈ E with µ(B) <∞, M (B) is Poisson distributed with
parameter µ(B),

ii) if B1, . . . ,Bn ∈ E are disjoints, then the r.v.’s M (B1), . . . ,M (Bn)
are independent.

Construction: Let us suppose c = µ(E ) <∞. Let (ξi)i≥1 be a sequence
of i.i.d. r.v’s with common distribution c−1µ and N a Poisson r.v. with
parameter c which is independent of (ξi). The random measure

M (·) =
N∑
j=1

δξj (·),

is a Poisson random measure with intensity µ(·).
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Poisson Point process

Since µ is σ-finite, then there exist a partition (En)n≥0 of E such that
µ(En) <∞, for each n. Therefore, one can construct a sequence Mn of
Poisson random measures with intensity µ(· ∩ En) and such that
M =

∑
Mn is a Poisson random measure with intensity µ.

Now, we consider the space E × [0,∞), the measure µ⊗ dx and a
Poisson random measure M with intensity µ⊗ dx . One can show that
a.s. for all t ≥ 0,

M (E × {t}) = 0 or 1.

This allow us to define a process (e(t), t ≥ 0), that we will call Poisson
point process taking values on E ∪Υ, where Υ is an additional isolated
point, such that M (E × {t}) = 0, then e(t) = Υ and if
M (E × {t}) = 1, then the restriction of M to E × {t} is the Dirac
measure on the point (ε, t) and we define e(t) = ε. In other words, we
can write the Poisson random measure M as follows

M =
∑
t≥0

δ(e(t),t).
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Poisson Point process

Proposition

Let B such that µ(B) <∞, and define the counting process

NB
t = #{s ≤ t : e(s) ∈ B}, t ≥ 0,

and the first hitting time

TB = inf{t ≥ 0 : e(t) ∈ B}.

Then

i) NB is a Poisson process with parameter µ(B) adapted to the
filtration (Gt)t≥0 generated by e. The time TB is a stopping time
with respect to (Gt) and it is an exponential r.v. with parameter
µ(B).

ii) e(TB ) and TB are independent, and for A ∈ E

P(e(TB ) ∈ A) =
µ(A ∩ B)

µ(B)
.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Poisson Point process

Proof: The first part of (i) is straightforward, since

NB
t =

∑
s≤t

δ(e(s),s)(B).

The r.v. TB is the first jump of NB , implying that it is exponential with
parameter µ(B). In order to prove the second part of the proposition,
lets take A ⊂ B and observe that

P(TB ≤ t , e(TB ) ∈ A) = P(TA < TB\A,TA ∧ TB\A ≤ t),

where TA denotes the first jump of the Poisson process NA. Since A
and B \A are disjoint, TA and TB\A are independent and exponentially
distributed with parameter µ(A) and µ(B)− µ(A), respectively.
Therefore,

P(TB ≤ t , e(TB ) ∈ A) =
µ(A)

µ(B)
(1− e−tµ(B)).
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Poisson Point process

Let B ∈ E , 0 ≤ t1 < t2 and define

Ht(y) = 1B×(t1,t2](y , t),

in this case, it is clear

E

 ∑
0≤t<∞

Ht(e(t))

 = (t2 − t1)µ(B).

From this fact, we deduce the compensation formula for Poisson point
processes: Let H = (Ht , t ≥ 0) be a right-continuous process taking
values on E ∪Υ and such that Ht(Υ) = 0. Then

E

 ∑
0≤t<∞

Ht(e(t))

 = E
[∫ ∞

0

dt

∫
E

Ht(y)µ(dy)

]
.
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Poisson Point process

In a similar way, one can obtain the exponential formula: Let f be a
positive measurable function defined on E ∪Υ with f (Υ) = 0 and such
that ∫

E

|1− e−f (y)|µ(dy) <∞.

Then for all t ≥ 0,

E

exp

− ∑
0≤s≤t

f (e(s))


 = exp

{
−t
∫
E

(1− e−f (y))µ(dy)

}
.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy processes

Lévy processes

Let (Ω,F ,P) be a probability space. We say that X = (Xt , t ≥ 0) is a
real-valued Lévy process if for 0 ≤ s ≤ t , the increment Xt+s −Xt is
independent from (Xu , 0 ≤ u ≤ t) and has the same distribution as Xs .

Observe that necessarilly P(X0 = 0) = 1. We write Px for the measure
corresponding to (x + Xt , t ≥ 0) under P.

From the decomposition

X1 = X1/n +
(
X2/n −X1/n

)
+ · · ·+

(
Xn/n −X(n−1)/n

)
,

we see that X1 is infinitely divisible. The law of an infinitely divisible r.v.
is characterized by the so-called Lévy-Khintchine formula which implies
the following result.
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Lévy processes

Theorem
Let X be a Lévy processes defined on (Ω,F ,P), then

E
[

exp{iλXt}
]

= exp{−tΨ(λ)}, t ≥ 0, λ ∈ R,

where

Ψ(λ) = iaλ+
σ2

2
λ2 +

∫
(−∞,∞)

(
1− eiλx + iλx1{|x |<1}

)
Π(dx ),

for a ∈ R, σ ≥ 0 and a measure Π on R \ {0} such that∫
(−∞,∞)

(1 ∧ x2)Π(dx ) <∞.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy processes

Examples:

In the case of the standard Brownian motion, a = 0, σ = 1, Π ≡ 0
and

Ψ(λ) =
λ2

2
.

In the case of the compound Poisson process with jump rate c and
jump distribution F , we have

a = −c
∫
{|x |<1}

xF (dx ), σ = 0, Π(dx ) = cF (dx ),

and

Ψ(λ) = c

∫
(−∞,∞)

(
1− eiλx

)
F (dx ).
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Lévy processes

In the case of the Gamma process,

a = c(e−1 − 1), σ = 0, Π(dx ) = c
e−x

x
1{x>0}dx ,

and
Ψ(λ) = c log(1− iλ).

In the case of the strictly stable process with index
α ∈ (0, 1) ∪ (1, 2), we have

σ = 0, Π(dx ) =

(
c+

x1+α
1{x>0} +

c−
|x |1+α

1{x<0}

)
dx

with c+ ≥ 0, c− ≥ 0, and

Ψ(λ) = c|λ|α(1− iβsgn(λ) tan(πα/2)) + iaλ

where β = (c+ − c−)/(c+ + c−). If α = 1, c+ = c− ≥ 0 and
Ψ(λ) = c+|λ|+ iaλ. The latter case is known as the Cauchy
process with drift.
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Figure : A sample path of the independent sum of a Brownian motion and a
compound Poisson process.
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Figure : a = 0, σ = 0 and

Π(dx) =
(

ex

(ex−1)3/2
1{x>0} + e−x

(e−x−1)3/2
1{x<0}

)
dx .
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy-Itô decomposition

Lévy-Itô decomposition

This decomposition provide us a probabilistic interpretation of the
Lévy-Khintchine formula. In particular, it describes the way the measure
Π determines the structure of the jumps of a Lévy process.

The process X can be written as follows

Xt = −at + σBt + Yt ,

where B is a standard Brownian motion and Y is a Lévy process
independent of B which is determined by the jumps, as we will see later.

Let (e(t), t ≥ 0) be a Poisson point process on R× [0,∞) with intensity
Π. Observe that Π({x : |x | ≥ 1}) <∞, then

Thanks to the
compensation formula

∑
s≤t

1{|e(s)|≥1}|e(s)| <∞, a.s.
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Lévy-Khintchine formula. In particular, it describes the way the measure
Π determines the structure of the jumps of a Lévy process.
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Lévy-Itô decomposition

Let us define

Y
(1)
t =

∑
s≤t

1{|e(s)|≥1}e(s), t ≥ 0.

The process (Y
(1)
t , t ≥ 0) is a compound Poisson process with

jump rate c := Π({x : |x | ≥ 1}) > 0,

jump distribution F (dx ) = c−1Π(dx )1{|x |≥1} and

characteristic exponent

Ψ(1)(λ) =

∫
{|x |≥1}

(1− eiλx )Π(dx ).

If

I =

∫
(−∞,∞)

(1 ∧ |x |)Π(dx ) <∞,

one can prove for all t∑
s≤t

1{ε<|e(s)|<1}|e(s)| −−−→
ε→0

∑
s≤t

1{|e(s)|<1}|e(s)| <∞,
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s≤t

1{ε<|e(s)|<1}|e(s)| −−−→
ε→0

∑
s≤t

1{|e(s)|<1}|e(s)| <∞,
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Lévy-Itô decomposition

In this case Yt = Y
(1)
t + Y

(2)
t , where

Y
(2)
t =

∑
s≤t

1{|e(s)|<1}e(s), t ≥ 0.

Obviously, it is independent of Y (1) and its characteristic exponent is
given

Ψ(2)(λ) =

∫
{|x |<1}

(1− eiλx )Π(dx ).

The process Y has paths of bounded variation (on finite intervals) and

Ψ(λ) = −iλd +
σ2

2
λ2 + Ψ(1)(λ) + Ψ(2)(λ),

where

d = −a −
∫
{|x<1|}

xΠ(dx ).
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy-Itô decomposition

Lévy-Itô decomposition can be written, in this case, as follows

Xt = dt + σBt + Y
(1)
t + Y

(2)
t , t ≥ 0.

If I =∞, then a.s.
∑

s≤t |e(s)| =∞ for t > 0. In this case, we define

Y (2) as the limit when ε→ 0 of

Y
(2),ε
t =

∑
s≤t

1{ε<|e(s)|<1}e(s)− t

∫
{ε<|x |<1}

xΠ(dx ).

The process Y (2),ε is a compensated compound Poisson process, i.e.

Ψ(2),ε(λ) =

∫
{ε<|x |<1}

(1− eiλx + iλx )Π(dx ),

and in particular

a martingale.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy-Itô decomposition

Using Doob’s maximal inequality, for p = 2, we see that for all t ≥ 0 and
η ∈ (0, ε)

E
[
sup
s≤t

∣∣∣Y (2),ε
s −Y (2),η

s

∣∣∣2] ≤ 4t

∫
{η<|x |<ε}

|x |2Π(dx ),

Since the integral
∫

(1 ∧ |x |2)Π(dx ) <∞, the expectation from the RHS
of the above inequality goes to zero as ε→ 0. Then (Y (2),ε, ε > 0) is a
Cauchy sequence. The limit, that we denote by Y (2), has independent
increments and càdlàg paths. Moreover, its characteristic exponent is
given by

Ψ(2)(λ) =

∫
{|x |<1}

(1− eiλx + iλx )Π(dx ).

The Lévy-Itô decomposition, in this case, is written

Xt = −at + σBt + Y
(1)
t + Y

(2)
t , t ≥ 0.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy-Itô decomposition

Since Y (2) has paths of unbounded variation we deduce that X has
paths of bounded variation if and only if σ = 0 and I <∞.

Proposition

i) In all the cases, we have

lim
|λ|→∞

Ψ(λ)

λ2
=
σ2

2
.

ii) If X is of bounded variation, then

lim
|λ|→∞

Ψ(λ)

λ
= id.

iii) X is a compound Poisson process if and only if Ψ is bounded.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Lévy-Itô decomposition

Suppose that Π(−∞, 0) = 0. By the Lévy-Itô decomposition we observe
that X has no negative jumps.

−X is used in risk theory

If σ = 0 y I <∞ and d ≥ 0, again the Lévy-Itô decomposition tell us
that X has increasing paths. If a Lévy process has only increasing paths
necessarily is of bounded variation. Therefore I <∞ and σ = 0, and
from the form of it characteristic exponent we necessarily have d ≥ 0.

Lema
A Lévy process is a subordinator if and only if Π(−∞, 0) = 0, I <∞,
σ = 0 and d ≥ 0.



29/ 34

Why is Andreas Kyprianou so obsessed with Lévy processes?
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A Lévy process is a subordinator if and only if Π(−∞, 0) = 0, I <∞,
σ = 0 and d ≥ 0.



29/ 34

Why is Andreas Kyprianou so obsessed with Lévy processes?
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Lévy-Itô decomposition

Suppose that Π(−∞, 0) = 0. By the Lévy-Itô decomposition we observe
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Lévy-Itô decomposition

Suppose that Π(−∞, 0) = 0. By the Lévy-Itô decomposition we observe
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Strong Markov property

Strong Markov property.

Let (Ft)t≥0 be the filtration defined as follows

Ft = σ(Ys , s ≤ t), t ≥ 0.

We say that the process Y = (Yt , t ≥ 0) satisfies the Markov property if
for B ∈ B(R) and s, t ≥ 0,

P(Yt+s ∈ B |Ft) = p(Yt , s,B),

where x ∈ R and s ≥ 0, p(x , s,B) = P(Ys ∈ B |Y0 = x ).

Thanks to the property of independent and stationary increments, it is
clear that X satisfies the Markov property. In this case

p(x , s,B) = Px (Xs ∈ B).
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Strong Markov property

Let τ be a stopping time with respect to (Ft)t≥0. Define the stopped σ-
algebra

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft , for all t ≥ 0}.

We say that the process Y satisfies the strong Markov property if for
each stopping time τ we have

P(Yτ+s ∈ B |Fτ ) = p(Yτ , s,B) on {τ <∞}.

Theorem
Suppose that τ is a stopping time. Under {τ <∞}, we define the
process X̃ = (X̃t , t ≥ 0) where

X̃t = Xτ+t −Xτ , t ≥ 0.

Then, under {τ <∞}, the process X̃ is independent of Fτ , and has the
same law as X and in particular is a Lévy process.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Strong Markov property

Proof: Suppose that τ is finite a.s., and let A ∈ Fτ , 0 ≤ t1 ≤ · · · ≤ tn
and F : Rn → R a continuous and bounded function. It is enough to see

E
[
1AF (X̃t1 , · · · X̃tn )

]
= P(A)E

[
F (Xt1 , · · · ,Xtn )

]
.

Then now, we observe

∞∑
i=1

1{ i−1
2m <τ≤ i

2m }
F
(
X i

2m +t1 −X i
2m
, · · · ,X i

2m +tn −X i
2m

)
,

converge, as m →∞, to F
(
X̃t1 , · · · , X̃tn

)
.
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Why is Andreas Kyprianou so obsessed with Lévy processes?

Strong Markov property

From the Monotone Convergence Theorem and the Markov property, we
deduce

E
[
1AF

(
X̃t1 , · · · , X̃tn

)]
= lim

m→∞

∞∑
i=0

P
(
A ∩

{
i − 1

2m
< τ ≤ i

2m

})
E
[
F
(
Xt1 , · · · ,Xtn

)]
= P(A)E

[
F
(
Xt1 , · · · ,Xtn

)]
.

The general case follows from similar arguments,

E
[
1A∩{τ<∞}F

(
X̃t1 , · · · , X̃tn

)]
= P

(
A∩{τ <∞}

)
E
[
F
(
Xt1 , · · · ,Xtn

)]
.
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deduce

E
[
1AF

(
X̃t1 , · · · , X̃tn

)]
= lim

m→∞

∞∑
i=0

P
(
A ∩

{
i − 1

2m
< τ ≤ i

2m

})
E
[
F
(
Xt1 , · · · ,Xtn

)]
= P(A)E

[
F
(
Xt1 , · · · ,Xtn

)]
.

The general case follows from similar arguments,

E
[
1A∩{τ<∞}F

(
X̃t1 , · · · , X̃tn

)]
= P

(
A∩{τ <∞}

)
E
[
F
(
Xt1 , · · · ,Xtn

)]
.
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