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On the wall of the entrance hall of the main building of the
Humboldt University, Berlin (freely translated):

”For centuries scientists and philosophers have tried to understand
the world. Now is the time to control it!”

Karl Marx



Abstract

We give a short introduction to the stochastic calculus for
Itô-Lévy processes and review briefly the two main methods of
optimal control of systems described by such processes:

(i) Dynamic programming and the Hamilton-Jacobi-Bellman
(HJB) equation

(ii) The stochastic maximum principle and its associated
backward stochastic differential equation (BSDE).

The two methods are illustrated by application to the classical
portfolio optimization problem in finance. A second application
is the problem of risk minimization in a financial market. Using
a dual representation of risk, we arrive at a stochastic
differential game, which is solved by using the
Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation, which is an
extension of the HJB equation to stochastic differential games.



Introduction

The purpose of the course is to give a quick introduction to
stochastic control of jump diffusions, with applications to
mathematical finance, with emphasis on portfolio optimization and
risk minimization. The content of these lectures is the following:

In Section 2 we review some basic concepts and results from the
stochastic calculus of Itô-Lévy processes.



In Section 3 we present a portfolio optimization problem in an
Itô-Lévy type financial market. We recognize this as a special case
of a stochastic control problem and we present the first general
method for solving such problems: Dynamic programming and the
HJB equation. We show that if the system is Markovian, we can
use this method to solve the problem.

In Section 4 we study a risk minimization problem in the same
market. By a general representation of convex risk measures, this
problem may be regarded as a stochastic differential game, which
also can be solved by dynamic programming (HJBI equation) if the
system is Markovian.

Finally, in Section 5 we study the portfolio optimization problem by
means of the second main stochastic control method: The
maximum principle. The advantage with this method is that it also
applies to non-Markovian systems.



Stochastic calculus for Itô-Lévy processes

In this section we give a brief survey of stochastic calculus for
Itô-Lévy processes. For more details we refer to Chapter 1 in [5].
We begin with a definition of a Lévy process:

Definition
A Lévy process on a probability space (Ω,F ,P) is a process,
η(t) ≡ η(t, ω) with the following properties

(i) η(0) = 0.

(ii) η has stationary, independent increments.

(iii) η is stochastically continuous.

The jump of η at time t is ∆η(t) = η(t)− η(t−).

Remark. One can prove that η always has a càdlàg (i.e. right
continuous with left sided limits) version. We will use this version
from now on.



The jump measure N([0, t],U) gives the number of jumps of η up
to time t with jump size in the set U ⊂ R0 :≡ R \ {0}. If we
assume that U ⊂ R0, then it can be shown that U contains only
finitely many jumps in any finite time interval.

The Lévy measure ν(·) of η is defined by

ν(U) = E[N([0, 1],U)].(2.1)

and N(dt,dζ) is the differential notation of the random measure
N([0, t],U). Intuitively, ζ can be regarded as generic jump size.

Let Ñ(·) denote the compensated jump measure of η, defined by

Ñ(dt,dζ) ≡ N(dt, dζ)− ν(dζ)dt.(2.2)



For convenience we shall from now on impose the following
additional integrability condition on ν(·) :∫

R
ζ2ν(dζ) <∞,(2.3)

which is equivalent to the assumption that for all t ≥ 0

E[η2(t)] <∞.(2.4)

This condition still allows for many interesting kinds of Lévy
processes. In particular, it allows for the possibility that a Lévy
process has the following property:∫

R
(1 ∧ |ζ|)ν(dζ) =∞.(2.5)

This implies that there are infinitely many small jumps.



Under the assumption (2.3) above the Itô-Lévy decomposition
theorem states that any Lévy process has the form

η(t) = at + bB(t) +

∫ t

0

∫
R
ζÑ(ds,dζ),(2.6)

where B(t) is a Brownian motion, and a, b are constants.



More generally, we study the Itô-Lévy processes, which are the
processes of the form

X (t) = x +

∫ t

0
α(s, ω)ds +

∫ t

0
β(s, ω)dB(s)(2.7)

+

∫ t

0

∫
R
γ(s, ζ, ω)Ñ(ds,dζ),

where
∫ t

0 |α(s)|ds +
∫ t

0 β
2(s)ds +

∫ t
0

∫
R γ

2(s, ζ)ν(dζ)ds <∞ a.s.,
and α(t), β(t), and γ(t, ζ) are predictable processes (predictable
w.r.t. the filtration Ft generated by η(s), for s ≤ t).

In differential form we have

dX (t) = α(t)dt + β(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ).(2.8)



We now proceed to the Itô formula for Itô-Lévy processes: Let
X (t) be an Itô-Lévy process defined as above. Let f : [0,T ]× R
be a C1,2 function and put Y (t) = f (t,X (t)).
Then Y (t) is also an Itô-Lévy process, with representation:

dY (t)

=
∂f

∂t
(t,X (t))dt +

∂f

∂x
(t,X (t))(α(t)dt + β(t)dB(t))

+
1

2

∂2f

∂x2
(t,X (t))β2(t)dt

+

∫
R
{f (t,X (t−) + γ(t, ζ))− f (t,X (t−))}Ñ(dt,dζ)

+

∫
R
{f (t,X (t) + γ(t, ζ))− f (t,X (t))− ∂f

∂x
(t,X (t))γ(x , ζ)}ν(dζ)dt,

where the last term can be interpreted as the quadratic variation of
jumps. To simplify the notation we will in the following always
assume that the predictable version version (X (t−)) is chosen
when X (t) appears in the Ñ(dt, dζ)-integrals.



The Itô isometries state the following:

E

[(∫ T

0
β(s)dB(s)

)2
]

= E
[∫ T

0
β2(s)ds

]
(2.9)

E

[(∫ T

0

∫
R
γ(s, ζ)Ñ(ds, dζ)

)2
]

= E
[∫ T

0

∫
R
γ2(s, ζ)ν(dζ)ds

](2.10)

Martingale properties: If the quantities of (2.10) are finite, then

M(t) =

∫ t

0

∫
R
γ(s, ζ)Ñ(ds, dζ)(2.11)

is a martingale for t ≤ T .



The Itô representation theorem states that any F ∈ L2(FT ,P) has
the representation

F = E[F ] +

∫ T

0
ϕ(s)dB(s) +

∫ T

0

∫
R
ψ(s, ζ)Ñ(ds,dζ)

for suitable predictable (unique) L2-processes ϕ(·) and ψ(·).
Remark: Using Malliavin calculus (see [1]), we get the
representation

ϕ(s) = E[DsF |Ft ]

and
ψ(s, ζ) = E[Ds,ζF |Fs ],

where Ds and Ds,ζ are the Malliavin derivatives at s and (s, ζ)
w.r.t. B(·) and Ñ(·, ·), respectively (the Clark-Ocone Theorem).



Example

Suppose η(t) = η0(t) =
∫ t

0

∫
R ζÑ(ds, dζ), i.e. η(t) is a pure-jump

martingale. We want to find the representation of the random
variable F := η2

0(T ). By the Itô formula we get

d(η2
0(t)) =

∫
R
{(η0(t) + ζ)2 − (η0(t))2}Ñ(dt, dζ)

+

∫
R
{(η0(t) + ζ)2 − (η0(t))2 − 2η0(t)ζ}ν(dζ)dt

=

∫
R

2η0(t)ζÑ(dt, dζ) +

∫
R
ζ2Ñ(dt,dζ) +

∫
R
ζ2ν(dζ)dt

= 2η0(t)dη0(t) +

∫
R
ζ2Ñ(dt,dζ) +

∫
R
ζ2ν(dζ)dt.(2.12)



This implies that

η2
0(T ) = T

∫
R
ζ2ν(dζ) +

∫ T

0
2η0(t)dη0(t) +

∫ T

0

∫
R
ζ2Ñ(dt, dζ).

(2.13)

Note that it is not possible to write F ≡ η2
0(T ) as a constant + an

integral w.r.t. dη0(t).
This has an interpretation in finance: It implies that in a
normalized market with η0(t) as the risky asset price, the claim
η2

0(T ) is not replicable. This illustrates that markets based on Lévy
processes are typically not complete.



Consider the following stochastic differential equation (SDE):

dX (t) = b(t,X (t))dt + σ(t,X (t))dB(t)

+

∫
R
γ(t,X (t−), ζ)Ñ(dt, dζ); X (0) = x .

(2.14)

Here b : [0,T ]× Rn → Rn; σ : [0,T ]× Rn → Rn×m; and
γ : [0,T ]×Rn ×R`0 → Rn×` are given functions. If these functions
are Lipschitz continuous with respect to x and with at most linear
growth in x , uniformly in t, then a unique L2 - solution to the
above SDE exists.



Example

The (generalized) geometric Itô-Lévy process X is defined by:

dX (t) = X (t−) [α(t)dt + β(t)dB(t)(2.15)

+

∫
R
γ(t, ζ)Ñ(dt,dζ)

]
; X (0) = x > 0

If γ > −1 then X (t) can never jump to 0 or a negative value.
Then we see by the Itô formula that the solution is

X (t) = x exp

[∫ t

0
β(s)dB(s) +

∫ t

0
(α(s)− 1

2
β2(s))ds

+

∫ t

0

∫
R
{ln(1 + γ(s, ζ))− γ(s, ζ)}ν(dζ)ds

+

∫ t

0

∫
R

ln(1 + γ(s, ζ))Ñ(ds, dζ)

]
(2.16)



If b(t, x) = b(x), σ(t, x) = σ(x), and γ(t, x , ζ) = γ(x , ζ), i.e. b(·),
σ(·), and γ(·, ·) do not depend on t, the corresponding SDE takes
the form

dX (t) = b(X (t))dt + σ(X (t))dB(t) +

∫
R
γ(X (t), ζ)Ñ(dt, dζ).

(2.17)

Then X (t) is called an Itô-Lévy diffusion or simply a
jump-diffusion.

The generator A of a jump-diffusion X (t) is defined by

(Af )(x) = lim
t→0

Ex [f (X (t))]− f (x)

t
,(2.18)

if the limit exists. The form of the generator A of the process X (·)
is given explicitly in the following lemma:



Lemma
If X (·) is a jump-diffusion and f ∈ C2

0(R) (the twice continuously
differentiable functions with compact support on R), then (Af )(x)
exists for all x and

(Af )(x) =
n∑

i=1

bi (x)
∂f

∂xi
(x) +

1

2

n∑
i ,j=1

(σσT )ij(x)
∂2f

∂xi∂xj
(x)

+
∑̀
k=1

∫
R
{f (x + γ(k)(x , ζ))− f (x)−∇f (x) · γ(k)(x , ζ)}νk(dζ)

where γ(k) is column number k of the n × ` matrix γ.



The Dynkin formula

The generator gives a crucial link between jump diffusions and
(deterministic) partial differential equations. We will exploit this
when we come to the dynamic programming approach to
stochastic control problems in the next section. One of the most
useful expressions of this link is the following result, which may be
regarded as a giant generalization of the classical mean-value
theorem in classical analysis:

The Dynkin formula
Let X be a jump-diffusion process and let τ be a stopping time.
Let h ∈ C2(R) and assume that Ex

[∫ τ
0 |Ah(X (t))|dt

]
<∞ and

{h(X (t))}t≤τ is uniformly integrable. Then

Ex [h(X (τ))] = h(x) + Ex

[∫ τ

0
Ah(X (t))dt

]
.(2.19)



Application to Stochastic Control

Recall the two main methods of optimal control of systems
described by Itô - Lévy processes:

I Dynamic programming and the Hamilton-Jacobi-Bellman
(HJB) equation
R. Bellman, 1950’s.

I The stochastic maximum principle
Pontryagin et al (1950’s, deterministic case),
Bismut (Brownian motion driven SDE’s, 1970),
Bensoussan, Peng, Pardoux ... (Brownian motion driven
SDE’s, 1970 -1990),
Tang & Li, Framstad, Sulem & Ø. (jump diffusions, 1990 - ).

Dynamic programming is efficient when applicable, but it requires
that the system is Markovian. The maximum principle has the
advantage that it also applies to non-Markovian SDE’s, but the
drawback is the corresponding complicated BSDE for the adjoint
processes.



Stochastic Control (1): Dynamic Programming

We start by a motivating example:

Example

(Optimal portfolio problem). Suppose we have a financial market
with two investment possibilities:

(i) A risk-free asset with unit price S0(t) = 1.

(ii) A risky asset with unit price S(t) at time t given by

dS(t) = S(t−) [α(t)dt + β(t)dB(t)

+

∫
R
γ(t, ζ)Ñ(dt,dζ)

]
, γ > −1, S(0) > 0.(3.1)



Let π(t) denote a portfolio representing the fraction of the total
wealth invested in the risky asset at time t. If we assume that π(t)
is self-financing, the corresponding wealth X (t) = Xπ(t) satisfies
the state equation{
dX (t) = X (t−)π(t)

[
α(t)dt + β(t)dB(t) +

∫
R γ(t, ζ)Ñ(dt, dζ)

]
.

X (0) = x .

The problem is to maximize E[U(Xπ(T ))] over all π ∈ A, where A
denotes the set of all admissible portfolios and U is a given utility
function.



This is a special case of the following general stochastic control
problem:

The state equation is given by:

dY (t) = dYu(t) = b(Y (t), u(t))dt + σ(Y (t), u(t))dB(t)

+

∫
R
γ(Y (t), u(t), ζ)Ñ(dt, dζ), Y (0) = y ∈ Rk .(3.2)

The performance functional is assumed to have the form:

Ju(y) = Ey

∫ τS

0
f (Y (s), u(s))︸ ︷︷ ︸

profit rate

ds + g(Y (τS))︸ ︷︷ ︸
bequest function

1{τS<∞}

 ,
(3.3)

where τS = inf{t ≥ 0 : Y (t) /∈ S} (bankruptcy time), and S is a
given solvency region.



Problem: Find u∗ ∈ A and Φ(y) such that

Φ(y) = sup
u∈A

Ju(y) = Ju∗(y).

Theorem
(Hamilton-Jacobi-Bellman (HJB) equation)

(a) Suppose we can find a function ϕ ∈ C2(Rn) such that

(i) Avϕ(y) + f (y , v) ≤ 0, for all v ∈ V, where V is the set of
possible control values, and Avϕ(y) is given by

Avϕ(y) =

k∑
i=1

bi (y , v)
∂ϕ

∂yi
(y) +

1

2

k∑
i ,j=1

(σσT )ij(y , v)
∂2ϕ

∂yi∂yj

+
∑̀
k=1

∫
R
{ϕ(y + γ(k)(y , v , ζ))− ϕ(y)−∇ϕ(y)γ(k)(y , v , ζ)}νk(dζ)

(3.4)



(ii) limt→τS ϕ(Y (t)) = g(Y (τS))1{τS<∞}

(iii) “growth conditions:”

E y
[
|ϕ(Y (τ))|+

τS∫
0

{|Aϕ(Y (t))|+ |σT (Y (t))∇ϕ(Y (t))|2

+
∑̀
j=1

∫
R

|ϕ(Y (t) + γ(j)(Y (t), u(t), ζj))−

ϕ(Y (t))|2νj(dζj)}dt
]
<∞, for all u ∈ A and all stopping

times τ .

(iv) {ϕ−(Y (τ))}τ≤τS is uniformly integrable for all u ∈ A and
y ∈ S,

where, in general, x− := max{−x , 0} for x ∈ R.

Then
ϕ(y) ≥ Φ(y).



(b) Suppose we for all y ∈ S can find v = û(y) such that

Aû(y)ϕ(y) + f (y , û(y)) = 0

and û(y) is an admissible feedback control (Markov control),
i.e. û(y) means û(Y (t)). Then û(y) is an optimal control and

ϕ(y) = Φ(y).

Remark. This is a useful result because it, in some sense, basically
reduces the original highly complicated stochastic control problem
to a classical problem of maximizing a function of (possibly several)
real variable(s), namely the function v 7→ Avϕ(y) + f (y , v); v ∈ V.
We will illustrate this by examples below.



Sketch of proof: Using the “growth conditions” (iii), one can prove
by an approximation argument that the Dynkin formula holds with
h = ϕ and τ = τS , for any given u ∈ A.
This gives (if τS <∞)

Ey [ϕ(Y (τS))] = ϕ(y) + Ey

[∫ τS

0
Aϕ(Y (t))dt

]
≤(Aϕ+f≤0) ϕ(y)− Ey

[∫ τS

0
f (Y (t), u(t))dt

]
.(3.5)

This implies

ϕ(y) ≥ Ey

[∫ τS

0
f (Y (t), u(t))dt + g(Y (τS))

]
(3.6)

= Ju(y), for all u ∈ A,(3.7)

which means that

(3.8) ϕ(y) ≥ sup
u∈A

Ju(y) = Φ(y).

This proves (a).



To prove (b), observe that if we have a control û with equality
above, i.e. Aϕ+ f = 0, then by the argument in (a) we get

ϕ(y) = Jû(y).

Hence
Φ(y) ≤ ϕ(y) = Jû(y) ≤ Φ(y).

It follows that û is optimal. �



To illustrate this result, let us return to the optimal portfolio
problem (Example) :
Suppose we have logarithmic utility, i.e. U(x) = ln(x). Then the
problem is to maximize E[lnXπ(T )]. Put

dY (t) =

[
dt

dX (t)

]
=

[
1

X (t)π(t)α(t)

]
dt +

[
0

X (t)π(t)β(t)

]
dB(t)(3.9)

+

[
0

X (t)π(t)

] ∫
R
γ(t, ζ)Ñ(dt, dζ)(3.10)

and

Aπϕ(t, x)

=
∂ϕ

∂t
(t, x) + xπα(t)

∂ϕ

∂x
(t, x) +

1

2
x2π2β2(t)

∂2ϕ

∂x2
(t, x)

+

∫
R
{ϕ(t, x + xπγ(t, ζ))− ϕ(t, x)− ∂ϕ

∂x
(t, x)xπγ(t, ζ)}ν(dζ)

Here f = 0 and g(t, x) = ln x .



We guess that the value function is of the form

ϕ(t, x) = ln x + κ(t),

where κ(t) is some deterministic function (to be determined).
Then if we maximize Aπϕ over all π we find, if we assume that
α(t), β(t), and γ(t, ζ) are deterministic (this ensures that the
system is Markovian; see Remark below), that our candidate π̂ for
the optimal portfolio is the solution of the equation

(3.11) π̂(t)β2(t) + π̂(t)

∫
R

γ2(t, ζ)ν(dζ)

1 + π̂(t)γ(t, ζ)
= α(t).

In particular, if ν = 0 and β2(t) 6= 0, then

π̂(t) =
α(t)

β2(t)
.



We can now proceed to find κ(t), and then verify that with this
choice of ϕ and π̂ all the conditions of the HJB equation. Thus we
can conclude that

π∗(t) := π̂(t)

is indeed the optimal portfolio.

Remark. The assumption that α(t), β(t), and γ(t, ζ) are
deterministic functions is used when applying the dynamic
programming techniques in solving this type of stochastic control
problems. More generally, for the dynamic programming/HJB
method to work it is necessary that the system is Markovian, i.e.
that the coefficients are deterministic functions of t and X (t).
This is a limitation of the dynamic programming approach to
solving stochastic control problems.
In Section 5 we shall see that there is an alternative approach to
stochastic control, called the maximum principle, which does not
require that the system is Markovian.



Risk minimization

Let p ∈ [1,∞]. A convex risk measure is a map ρ : Lp(FT )→ R
with the following properties:

(i) (Convexity): ρ(λF + (1− λ)G ) ≤ λρ(F ) + (1− λ)ρ(G ); for
all F ,G ∈ Lp(FT ),
i.e. diversification reduces the risk.

(ii) (Monotonicity): F ≤ G ⇒ ρ(F ) ≥ ρ(G ); for all
F ,G ∈ Lp(FT ),
i.e. smaller wealth has bigger risk.

(iii) (Translation invariance): ρ(F + α) = ρ(F )− α if a ∈ R;
for all F ∈ Lp(FT ),
i.e. adding a constant to F reduces the risk accordingly.



Remark. We may regard ρ(F ) as the amount we need to add to
the position F in order to make it “acceptable”, i.e.
ρ(F + ρ(F )) = 0. (F is acceptable if ρ(F ) ≤ 0).

One can prove that basically any risk convex measure ρ can be
represented as follows:

ρ(F ) = sup
Q∈℘
{EQ(−F )− ζ(Q)}

for some family ℘ of measures Q � P and for some convex penalty
function ζ : ℘→ R. We refer to [3] for more information about
risk measures.



Returning to the financial market above, suppose we want to
minimize the risk of the terminal wealth, rather than maximize the
expected utility. Then the problem is to minimize ρ(Xπ(T )) over
all possible admissible portfolios π ∈ A.

Hence we want to solve the problem

(4.1) inf
π∈A

(sup
Q∈℘
{EQ [−Xπ(T )]− ζ(Q)}).

This is an example of a stochastic differential game (of zero-sum
type). Heuristically, this can be interpreted as the problem to find
the best possible π under the worst possible scenario Q.



The game above is a special case of the following general zero-sum
stochastic differential game:

We have 2 players and 2 types of controls, u1 and u2, and we put
u = (u1, u2). We assume that player number i controls ui , for
i = 1, 2. Suppose the state Y (t) = Yu(t) has the form

dY (t) = b(Y (t), u(t))dt + σ(Y (t), u(t))dB(t)

+

∫
R
γ(Y (t), u(t), ζ)Ñ(dt, dζ) ; Y (0) = y .(4.2)

We define the performance functional as follows:
(4.3)

Ju1,u2(y) = Ey [

∫ τS

0
f (Y (t), u1(t), u2(t))dt + g(Y (τS))1τS<∞].

Problem: Find Φ(y) and u∗1 ∈ A1, u∗2 ∈ A2 such that
(4.4)
Φ(y) := inf

u2∈A2

( sup
u1∈A1

Ju1,u2(y)) = sup
u1∈A1

( inf
u2∈A2

Ju1,u2(y)) = Ju∗1 ,u∗2 (y).



The HJBI equation for stochastic differential games

This type of problem is not solvable by the classical
Hamilton-Jacobi-Bellman (HJB) equation. We need a new tool,
namely the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation,
which in this setting goes as follows:



Theorem
(The HJBI equation for zero-sum games ([4]))
Suppose we can find a function ϕ ∈ C2(S)

⋂
C(S̄) (continuous up

to the boundary of S) and a Markov control pair (û1(y), û2(y))
such that

(i) Au1,û2(y)ϕ(y) + f (y , u1, û2(y)) ≤ 0 ; ∀u1 ∈ A1 and ∀y ∈ S
(ii) Aû1(y),u2

ϕ(y) + f (y , û1(y), u2) ≥ 0 ; ∀u2 ∈ A2 and ∀y ∈ S
(iii) Aû1(y),û2(y)ϕ(y) + f (y , û1(y), û2(y)) = 0 ; ∀y ∈ S
(iv) lim

t→τS
ϕ(Yu(t)) = g(Yu(τS))1τS<∞ for all u

(v) “growth conditions”.
Then

ϕ(y) = Φ(y) = inf
u2

(sup
u1

Ju1,u2(y)) = sup
u1

(inf
u2

Ju1,u2(y))

= inf
u2

Jû1,u2(y) = sup
u1

Ju1,û2(y)

= Jû1,û2(y).



Proof.
The proof is similar to the proof of the HJB equation.

Remark. For the sake of the simplicity of the presentation, in (v)
above and also in (iv) of Theorem 10 we choose not to specify the
rather technical “growth conditions”; we just mention that they
are analogous to the growth conditions in earlier theorems. We
refer to [4] for details. For a specification of the growth conditions
in Theorem 11 we refer to Theorem 2.1 in [9].



To apply this risk minimization problem to our zero-sum game
results, we parametrize the family ℘ of measures Q � P as follows:
For given predictable processes θ0(t), θ1(t, ζ) we put θ := (θ1, θ2)
and define the process Zθ(t) as follows:

dZθ(t) = Zθ(t−)[θ0(t)dB(t)+

∫
R
θ1(t, ζ)Ñ(dt,dζ)];Zθ(0) > 0, θ1 > −1

i.e.

Zθ(t) = Zθ(0) exp[

∫ t

0
θ0(s)dB(s)− 1

2

∫ t

0
θ2

0(s)ds

+

∫ t

0

∫
R

ln(1 + θ1(s, ζ))Ñ(ds,dζ)

+

∫ t

0

∫
R
{ln(1 + θ1(s, ζ))− θ1(s, ζ)}ν(dζ)ds].(4.5)



Define a probability measure Qθ � P on FT by putting
dQθ
dP = Zθ(T ). Then Zθ(t) = d(Qθ|Ft)

d(P|Ft)
and Zθ(t) = E[Zθ(T )|Ft ]

for all t ≤ T . If we restrict ourselves to this family ℘ of measures
Q = Qθ for θ ∈ Θ, the risk minimization problem gets the form:

inf
π∈Π

(sup
θ∈Θ
{EQθ

[−Xπ(T )]−ζ(Q0)}) = inf
π∈Π

(sup
θ∈Θ
{E[−Zθ(T )Xπ(T )]−ζ(Q0)})

For example, if ζ(Qθ) =
∫ τs

0 λ (Y (s), θ(s))ds, then this problem is
a special case of the zero-sum stochastic differential game.



Example: Entropic risk minimization by the HJBI equation
Suppose the financial market is as before, i.e.
(4.6)

S0(t) = 1 for all t

dS1(t) = S1(t−)

[
µ(t)dt + σ(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ)

]
; t ≥ 0

S1(0) > 0.

If β(t) is a self-financing portfolio representing the number of units
of the risky asset (with unit price S1(t)) held at time t, the
corresponding wealth process X (t) = Xβ(t) will be given by

dX (t) = β(t)dS1(t)

= w(t)

[
µ(t)dt + σ(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ)

]
= dXw (t),(4.7)

where w(t) := β(t)S1(t−) is the amount held in the risky asset at
time t.



If we choose ζ(Q) to be the entropy, i.e.

(4.8) ζ(Q) = ζe(Q) =
dQ

dP
ln(

dQ

dP
),

then the corresponding ρ = ρe is called the entropic risk.



If we use the above representation of the risk measure ρ = ρe
corresponding to the family PΘ of measures Q given above and
the entropic penalty ζe , the entropic risk minimizing portfolio
problem becomes

(4.9) inf
w∈W

(
sup
θ∈Θ

{
E

[
−dQ

dP
Xw (T )− dQ

dP
log

(
dQ

dP

)]})
where W is the family of admissible portfolios w .



To put this problem into the setting of the HJBI equation, we
represent Q by dQ

dP = Mθ(T ) and we put

dY (t) = dY θ,w (t) =

 dt
dXw (t)
dMθ(t)

 =

 1
w(t)µ(t)

0

 dt

+

 0
w(t)σ(t)
Mθ(t)θ0(t)

 dB(t) +

∫
R

 0
w(t)γ(t, ζ)

Mθ(t−)θ1(t1, ζ)

 Ñ(dt, dζ),

(4.10)

with initial value

(4.11) Y θ,w (0) = y =

 s
x
m

 ; s ∈ [0,T ], x > 0,m > 0.

In this case the solvency region is S = [0,T ]× R+ × R+ and the
performance functional is
(4.12)

Jθ,w (s, x ,m) = E s,x ,m[−Mθ(T )Xw (T )−Mθ(T ) logMθ(T )].



Assume from now on that

(4.13) µ(t), σ(t) and γ(t, ζ) are deterministic.

Then Y θ,w (t) becomes a controlled jump diffusion, and the risk
minimization problem is the following special case of the zero-sum
game:

Problem (Entropic risk minimization)

Find w∗ ∈ W, θ∗ ∈ Θ and Φ(y) such that

(4.14) Φ(y) = inf
w∈W

(
sup
θ∈Θ

Jθ,w (y)

)
= Jθ

∗,w∗(y) ; y ∈ S.



We see that the generator Aθ,w is given by

Aθ,wϕ(s, x ,m) =
∂ϕ

∂s
(s, x ,m) + wµ(s)

∂ϕ

∂x
(s, x ,m)

+
1

2
w2σ2(s)

∂2ϕ

∂x2
(s, x ,m) +

1

2
m2θ2

0

∂2ϕ

∂m2
(s, x ,m)

+ wθ0mσ(s)
∂2ϕ

∂x∂m
(s, x ,m)

+

∫
R
{ϕ(s, x + wγ(s, ζ),m + mθ1(ζ))− ϕ(s, x ,m)

−∂ϕ
∂x

(s, x ,m)wγ(s, ζ)− ∂ϕ

∂m
(s, x ,m)mθ1(ζ)

}
ν(dζ).(4.15)

Comparing with the general formulation in Section 42, we see that
in this case

f = 0 and g(y) = g(x ,m) = −mx −m log(m).



Therefore, according to the HJBI equation, we should try to find a
function ϕ(s, x ,m) and control values θ = θ̂(y), w = ŵ(y) such
that

(4.16) inf
w∈R

(
sup
θ∈R2

Aθ,wϕ(y)

)
= Aθ̂,ŵϕ(y) = 0 ; y ∈ S

and

(4.17) lim
t→T−

ϕ(s, x ,m) = −xm −m log(m).



Let us try a function of the form

(4.18) ϕ(s, x ,m) = −xm −m log(m) + κ(s)m

where κ is a deterministic function, κ(T ) = 0. Then by (4.15)

Aθ,wϕ(s, x ,m) =

κ′(s)m + mµ(s)(−m) +
1

2
m2θ2

0

(
− 1

m

)
+ wθ0mσ(s)(−1)

+

∫
R
{−(x + wγ(s, ζ))(m + mθ1(ζ)) + xm

− (m + mθ1(ζ)) log(m + mθ1(ζ))

+ m logm + κ(s)(m + mθ1(ζ))− κ(s)m + mwγ(s, ζ)

−mθ1(ζ)(−x − 1− logm + κ(s))}ν(dζ)

= m[κ′(s)− wµ(s)− 1

2
θ2

0 − wθ0σ(s)

+

∫
R
θ1(ζ){1− log(1 + θ1(ζ))− wγ(s, ζ)}ν(dζ)](4.19)



Maximizing Aθ,wϕ(y) with respect to θ = (θ0, θ1) and minimizing
with respect to w gives the following first order equations

(4.20) θ̂0(s) + ŵ(s)σ(s) = 0

(4.21) 1− log(1 + θ̂1(s, ζ))− ŵ(s)γ(s, ζ) = 0

(4.22) µ(s) + θ̂0(s)σ(s)−
∫
R
θ̂1(s, ζ)γ(s, ζ)ν(dζ) = 0.

These are 3 equations in the 3 unknown candidates θ̂0, θ̂1 and ŵ
for the optimal control for the entropic risk minimization problem.



To get an explicit solution, let us now assume that

(4.23) N = 0 and γ = θ1 = 0.

Then (4.20)-(4.22) gives

(4.24) θ̂0(s) = −µ(s)

σ(s)
, ŵ(s) =

µ(s)

σ2(s)
.

Substituted into (4.19) we get by the HJBI equation

Aθ̂,ŵϕ(s, x ,m) = m

[
κ′(s)− 1

2

(
µ(s)

σ(s)

)2
]

= 0.

Combining this with the boundary value for κ we obtain

(4.25) κ(s) = −
∫ T

s

1

2

(
µ(t)

σ(t)

)2

dt.



Now all the conditions of the HJBI equation are satisfied, and we
get:

Theorem (Entropic risk minimization)

Assume that (4.13) and (4.23) hold. Then the solution of Problem
8 is

(4.26) Φ(s, x ,m) = −xm −m logm −
∫ T

s

1

2

(
µ(t)

σ(t)

)2

dt

and the optimal controls are

(4.27) θ̂0(s) = −µ(s)

σ(s)
and ŵ(s) =

µ(s)

σ2(s)
; s ∈ [0,T ].

In particular, choosing the initial values s = 0 and m = 1 we get

(4.28) Φ(0, x , 1) = −x −
∫ T

0

1

2

(
µ(t)

σ(t)

)2

dt.



Extension of HJBI to non-zero sum games.
In the general case of not necessarily zero-sum games we have two
performance functionals, one for each player:
(4.29)

J
(i)
u1,u2(y) = Ey

[∫ τs

0
fi (Y (t), u1(t), u2(t))dt + gi (Y (τs))1τs<∞

]
; i = 1, 2

(In the zero-sum game we have J(2) = −J(1)). The pair (û1, û2) is
called a Nash equilibrium if

(i) J
(1)
u1,û2

(y) ≤ J
(1)
û1,û2

(y) for all u1

(ii) J
(2)
û1,u2

(y) ≤ J
(2)
û1,û2

(y) for all u2

Remark. This is related to the Nash prisoner dilemma, and it is
not a very strong equilibrium: One can sometimes obtain a better
result for both players at points which are not Nash equilibria.

The next result is an extension of the HJBI equation to the
non-zero sum games:



Theorem
(The HJBI equation for non-zero stochastic differential games [4])

Suppose there exist functions ϕi ∈ C2(S); i = 1, 2, and a
Markovian control (θ̂, π̂) such that:

(i) Au1,û2(y)ϕ1(y) + f1(y , u1, û2(y)) ≤
Aû1(y),û2(y)ϕ1(y) + f1(y , û1(y), û2(y)) = 0 ; for all u1

(ii) Aû1(y),u2
ϕ2(y) + f2(y , û1(y), u2) ≤

Aû1(y),û2(y)ϕ2(y) + f2(y , û1(y), û2(y)) = 0 ; for all u2.

(iii) lim
t→τ−s

ϕi (Yu1,u2(t)) = gi (Yu1,u2(τs))1τs<∞ for i = 1, 2 and for

all u1, u2

(iv) “growth conditions”.

Then (û1, û2) is a Nash equilibrium and

ϕ1(y) = sup
u1∈A

Ju1,û2
1 (y) = J û1,û2

1 (y)(4.30)

ϕ2(y) = sup
u2∈A2

J û1,u2
2 (y) = J û1,û2

2 (y).(4.31)



Stochastic Control (2): The Maximum Principle Approach

We have mentioned that the dynamic programming approach to
stochastic control only works if the system is Markovian. However,
there is another method, called the maximum principle approach,
which also works for non-Markovian systems. In this section we
describe this method.

Consider a controlled Itô-Lévy process of the form
dX (t) = b(X (t), u(t), ω)dt + σ(t,X (t), u(t), ω)dB(t)

+
∫
R γ(t,X (t), u(t), ζ, ω)Ñ(dt, dζ); t ≥ 0

X (0) = x .

Here b(t, x , u, ω) is a given Ft-adapted process, for each x and u
and similarly with σ and γ. So this system is not necessarily
Markovian.



The performance functional has the form:

J(u) = E[

∫ T

0
f (t,X (t), u(t), ω)dt + g(X (T ), ω)]

where T > 0 is a fixed constant. Note that this performance is
also non-Markovian.

Problem: Find u∗ ∈ A so that sup
u∈A

J(u) = J(u∗).

To solve the problem above, we first define the Hamiltonian as
follows:

H(t, x , u, p, q, r(·)) = f (t, x , u) + b(t, x , u)p + σ(t, x , u)q

+

∫
R
γ(t, x , u, ζ)r(ζ)ν(dζ).(5.1)

Here p, q and r are adjoint variables, r = r(·) is a real function on
R.



The backward stochastic differential equation (BSDE) in the
adjoint processes p(t), q(t), r(t, ζ) is defined as follows:


dp(t) = −∂H

∂x (t,X (t), u(t), p(t), q(t), r(t, ·))dt + q(t)dB(t)

+
∫
R r(t, ζ)Ñ(dt, dζ); 0 ≤ t ≤ T

p(T ) = g ′(X (T )).

(5.2)

This equation is called backward because we are given the terminal
value p(T ), not the initial value p(0). One can prove in general
that under certain conditions on the drift term there exists a unique
solution (p, q, r) of such equations. Note that this particular BSDE
is linear in p,q and r and hence easy to solve (if we know X (T )
and u). See [11], [12] and [13] for more information about BSDEs.



Theorem
(The Mangasarian (sufficient) maximum principle)
Suppose û ∈ A, with corresponding
X̂ (t) = Xû(t), p̂(t), q̂(t), r̂(t, ·). Suppose the functions

x → g(x) and (x , u)→ H(t, x , u, p̂(t), q̂(t), r̂(t, ·)) are concave for

each t and ω and that, for all t,
(5.3)
max
v∈V

H(t, X̂ (t), v , p̂(t), q̂(t), r̂(t, ·)) = H(t, X̂ (t), û(t), p̂(t), q̂(t), r̂(t, ·)),

where V is the set of all possible control values.
Moreover, suppose that some growth conditions are satisfied.

Then û is an optimal control.



Application to the optimal portfolio problem

We want to maximize E[U(Xπ(T ))] over all admissible portfolios
π, where as before π(t) represents the fraction of the wealth
invested in the risky asset at time t. The corresponding wealth
process Xπ(t) generated by π is given by{
dX (t) = π(t)X (t)[α(t, ω)dt + β(t, ω)dB(t) +

∫
R γ0(t, ζ, ω)Ñ(dt, dζ)]

X (0) = x

which has the solution

X (t) = x exp[

∫ t

0
{π(s)α(s)− 1

2
π2(s)β2(s)

+

∫
R

(ln(1 + π(s)γ0(s, ζ))− π(s)γ0(s, ζ))ν(dζ)}ds

+

∫ t

0
π(s)β(s)dB(s) +

∫ t

0

∫
R

ln(1 + π(s)γ0(s, ζ))Ñ(ds, dζ)]

(5.4)



In this case the coefficients are

b(t, x , π) = πxα(t),

σ(t, x , π) = πxβ(t),

γ(t, x , π, ζ) = πxγ0(t, ζ),

(5.5)

and the Hamiltonian is

H = πxα(t)p + πxβ(t)q + πx

∫
R
γ0(t, ζ)r(ζ)ν(dζ).(5.6)



The BSDE (5.2) becomes
dp(t) = −π(t)[α(t)p(t) + β(t)q(t) +

∫
R γ(t, ζ)r(t, ζ)ν(dζ)]dt

+q(t)dB(t) +
∫
R r(t, ζ)Ñ(dt, dζ); 0 ≤ t ≤ T

p(T ) = U ′(Xπ(T )).

Note that π appears linearly in H. Therefore we guess that if π is
optimal, the coefficient of π in H must be 0. Otherwise one could
make H arbitrary big by choosing π suitably.



Hence we obtain the following two equations that must be satisfied
for an optimal triple (p(t), q(t), r(t, ·)):

α(t)p(t) + β(t)q(t) +

∫
R
γ(t, ζ)r(t, ζ)ν(dζ) = 0(5.7) {

dp(t) = q(t)dB(t) +
∫
R γ(t, ζ)r(t, ζ)ν(dζ)

p(T ) = U ′(Xπ(T )).
(5.8)

In addition we have the (forward) SDE (5.4) for X (t). So we really
have a coupled system of a forward and backward SDEs (FBSDE
for short ). By using a necessary version of the maximum principle
we can prove that these two conditions are both necessary and
sufficient for a control π to be optimal. We formulate this as
follows:

Theorem
A control π is optimal for the utility maximization problem in
Example 5 if and only if the solution (Xπ(t), p(t), q(t), r(t, ·)) of
the FBSDE (5.4) &(5.8) satisfies the equation (5.7).



This result can be used to find the optimal portfolio in some cases.
To illustrate this, we proceed as follows:

To solve (5.8), we try to put

q(t) = p(t)θ0(t), r(t, ζ) = p(t)θ1(t, ζ),

for suitable processes θ0, θ1 (to be determined). Then (5.8)
becomes {

dp(t) = p(t)[θ0(t)dB(t) +
∫
R θ1(t, ζ)Ñ(dt,dζ)]

p(T ) = U ′(Xπ(T )).
(5.9)



This SDE has the solution

p(t) = p(0) exp
( ∫ t

0
{−1

2
θ2

0(s) +

∫
R

(ln(1 + θ1(s, ζ))− θ1(s, ζ))ν(dζ)}ds

+

∫ t

0
θ0(s)dB(s) +

∫ t

0

∫
R

ln(1 + θ1(s, ζ))Ñ(ds, ζ)
)
.

(5.10)

In particular, putting t = T this gives

p(T ) =

p(0) exp
( ∫ T

0
{−1

2
θ2

0(s) +

∫
R

(ln(1 + θ1(s, ζ))− θ1(s, ζ))ν(dζ)}ds

+

∫ T

0
θ0(s)dB(s) +

∫ T

0

∫
R

ln(1 + θ1(s, ζ))Ñ(ds, ζ)
)
.

(5.11)



Combining this with the terminal condition in (5.8) we have

Xπ(T ) = I (p(T ))

= I
(
p(0) exp

[ ∫ T

0
{−1

2
θ2

0(s) +

∫
R

(ln(1 + θ1(s, ζ))− θ1(s, ζ))ν(dζ)}ds

+

∫ T

0
θ0(s)dB(s) +

∫ T

0

∫
R

ln(1 + θ1(s, ζ))Ñ(ds, ζ)
])
,

(5.12)

where
I = (U ′)−1.



The logarithmic utility case
Now let us assume that

U(x) = ln x

Then I (y) = 1
y and combining (5.12) with (5.4) we get the identity

1

p(0)
exp

[ ∫ T

0
{1

2
θ2

0(s)−
∫
R

(ln(1 + θ1(s, ζ))− θ1(s, ζ))ν(dζ)}ds

−
∫ T

0
θ0(s)dB(s)−

∫ T

0

∫
R

ln(1 + θ1(s, ζ))Ñ(ds, ζ)
]

= x exp[

∫ T

0
{π(s)α(s)− 1

2
π2(s)β2(s)

+

∫
R

(ln(1 + π(s)γ0(s, ζ))− π(s)γ0(s, ζ))ν(dζ)}ds

+

∫ T

0
π(s)β(s)dB(s) +

∫ T

0

∫
R

ln(1 + π(s)γ0(s, ζ))Ñ(ds, dζ)].

(5.13)



If we require that the integrands of the ds-integrals, the
dB(s)-integrals and the Ñ(ds, dζ)-integrals, respectively, in the
two expressions are identical, we get the following 3 equations in
the 3 unknowns π(s), θ0(s), θ1(s, ζ):

π(s)β(s) = −θ0(s)(5.14)

ln(1 + π(s)γ0(s, ζ)) = − ln(1 + θ1(s, ζ))

(5.15)

and

π(s)α(s)− 1

2
π2(s)β2(s) +

∫
R

(ln(1 + π(s)γ0(s, ζ))− π(s)γ0(s, ζ))ν(dζ)

=
1

2
θ2

0(s)−
∫
R

(ln(1 + θ1(s, θ(s, ζ))− θ1(s, ζ))ν(dζ).

(5.16)



If we substitute the two first equations into the third, we get the
following equation for the optimal portfolio π(s) = π∗(s):
(5.17)

α(s)− 1

2
π∗(s)β2(s)− π∗(s)

∫
R

γ2
0(s, ζ)

1 + π∗(s)γ0(s, ζ)
ν(dζ) = 0.

This is the same solution that we found by using dynamic
programming and the HJB equation (see (3.11)). But note that
now we are dealing with a more general, non-Markovian system,
allowing the coefficients α(s), β(s) and γ0(s, ζ) to be general
stochastic processes (not necessarily deterministic).



General utility case

Using the maximum principle, we can also deal with the general
utility case, but then we cannot get explicit solutions. For
simplicity, assume in the following that ν = 0 from now on (i.e.,
that there are no jumps). Then (5.7) becomes:

α(t) + β(t)θ0(t) = 0

i.e.

θ0(t) = −α(t)

β(t)
.

This determines the value of θ0 and hence by (5.18) the value of
p(t), except for the constant p(0):

p(t) = p(0) exp
( ∫ t

0
−1

2
θ2

0(s)ds +

∫ t

0
θ0(s)dB(s)

)
.(5.18)

How do we find p(0)?



Recall the equation for X (t) = Xπ(t):

(5.19)

{
dX (t) = π(t)X (t) [α(t)dt + β(t)dB(t)]

X (T ) = I (p(T ))

If we define

(5.20) Z (t) = π(t)X (t)β(t),

then we see that X (t) satisfies the BSDE

(5.21)

{
dX (t) = α(t)

β(t)Z (t)dt + Z (t)dB(t)

X (T ) = I (p(T )).



The solution of this linear BSDE is

(5.22) X (t) =
1

Γ(t)
E [I (p(T ))Γ(T )|Ft ]

where dΓ(t) = −Γ(t)α(t)
β(t)dB(t); Γ(0) = 1.

Now put t = 0 and take expectation to get

(5.23) X (0) = x = E [I (p(T ))Γ(T )] .

This equation determines (implicitly) the constant p(0) and hence
by (5.21) the optimal terminal wealth Xπ(T ). Then, when the
optimal terminal wealth Xπ(T ) is known, one can find the
corresponding optimal portfolio π by solving the BSDE (5.21)
above for X (t),Z (t) and then using that Z (t) = π(t)X (t)β(t).
We omit the details.



We have obtained the following:

Theorem
The optimal portfolio π∗ for the general utility and with no jumps
is given by

(5.24) π∗(t) =
Z (t)

Xπ∗(t)β(t)

where (Xπ∗(t),Z (t)) solves the BSDE (5.21), with p(0) given by
(5.23) and p(T ) given by (5.18).



Remark: The advantage of this approach is that it applies to a
general non-Markovian setting, which is inaccessible for dynamic
programming.

Moreover, this approach can be extended to case when the agent
has only partial information to her disposal, which means that her
decisions must be based on an information flow which is a
subfiltration of F .

A suitably modified version can also be applied to study optimal
control under inside information, i.e. information about the future
value of the system.
More information can be found in the references below.



Di Nunno, G., Øksendal, B. and Proske, F.: Malliavin Calculus
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